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Abstract

We consider a two-stage game in which firms simultaneously select prices
and capacities (or equivalently, outputs). Then, a random number of consumers
attends the market, and each consumer selects a firm to visit. Consumers know
all prices and quantities but not the realization of aggregate demand. The
probability of being served at any firm depends on its capacity and the mixed
strategy chosen by consumers. Consumers distribute themselves across firms so
as to equalize the utility of each price-service pair. We show that there
exists at most one equilibrium in which firms choose pure strategies, and
characterize the "candidate" equilibrium. Consumers face a probability of
being rationed, firms may have excess inventory, and the price remains above
marginal cost. When there are many firms, the candidate is shown to be an

equilibrium.



1. Introduction

In many industries, such as entertainment, transportation, and
retailing, the possibility of stockouts and rationing is the rule rather than
the exception. Prices often do not respond to short-run variability in
demand. When demand is high, stores are willing to sell out their entire
stock at one price and ration future customers, preferring not to raise the
price as stocks become depleted. Our goal is to provide a formal strategic
model of competition over price and service rate. This approach can develop
testable implications for pricing patterns and service rates in markets, based
upon the nature of the demand uncertainty and the technology for consumers to
search across firms.

We consider a model in which firms, before knowing the state of demand,
compete by simultaneously choosing a price and a level of output (or
capacity). There is a nondegenerate distribution of consumers who will arrive
at the market, knowing the prices and quantities chosen by each firm but not
knowing the realization of aggregate demand. Consumers freely select a firm
to visit, but consider visiting a second firm prohibitively expensive. If the

ratio

s; = (total capacity of firm i)/(total number of consumers visiting firm 1)

is less than one, then some consumers visiting firm i are rationed, and s;
represents the probability of being serviced. Consumers optimally select a
firm, based on the firm’s price and service rate. Each firm’s service rate is
endogenously determined from consumer optimization, which equalizes the

utility of each viable price-service pair offered in the market.



Having specified consumer behavior, we model the game played by the
firms. For any aggregate distribution of consumers, we show that at most one
Nash equilibrium exists in which firms choose pure strategies. Existence is
guaranteed when the number of firms is sufficiently large. In equilibrium,
consumers face a positive probability of being rationed, and the price charged
by all firms remains above marginal cost, even as the number of firms
approaches infinity.

In the literature on simultaneous competition in price and quantity,
pure strategy equilibria often fail to exist. See Levitan and Shubik [1978]
for a model in which demand is nonstochastic and consumers can costlessly move
from firm to firm. The nonexistence problem holds in our context as well,
where demand is nonstochastic, but consumers cannot move from firm to firm.
The problem is that, when the lowest price is above marginal cost, firms have
an incentive to undercut and serve the entire market. However, when the price
equals marginal cost, then firms have an incentive to raise the price and
reduce capacity. We show that the nonexistence result disappears with even
the slightest amount of demand uncertainty, as the number of firms approaches
infinicty.

Carlton [1978] models the same type of competition we consider here, but
in a non-strategic context. In his model, firms are assumed to earn zero
expected profits. Competitive equilibrium is defined as a situation in which
no firm can offer a price-service rate combination that offers consumers
higher utility (than some fixed level offered by other firms) and earns
positive expected profits. In our analysis, firms explicitly take into
account the effects of their actions on the consumer utility offered by other

firms, and the profits received by firms are determined endogenously. 1In view



of the inability of the Bertrand model to deliver the competitive result, a
formal game-theoretic justification for competitive equilibrium is important.
Indeed, we demonstrate that, if firms were "utility takers", pure-strategy
Nash equilibrium would never exist! On the other hand, we show that, as the
number of firms approaches infinity, our Nash equilibrium converges to the
outcome proposed by Carlton.

Our model is similar to that of Peters [1984], in that firms compete in
prices and serve customers at the stated price until capacity is reached.
Consumers can only visit a single firm, and mix over which firm to visit until
the utility (as a function of price and service probability) offered by each
firm is equated. 1In Peters’ setting, firms in general must employ mixed
strategies, although an approximate pure-strategy equilibrium exists when the
number of firms approaches infinity. Our model differs along several
dimensions, and we are able to derive stronger existence results. We assume
inelastic demand, which avoids the problem of having to select a rationing
rule. (See Kreps and Scheinkman [1983] and Davidson and Deneckere [1986] for
a related model in which the choice of rationing rule makes a big
difference.) We assume that there is aggregate risk, but no idiosyncratic
risk; Peters [1984] considers the opposite case. 1In our model, firms must
choose their output (equivalently, capacity) before the arrival of customers;
in Peters’ model, capacities are given, and consumers produce output to order
as customers arrive (until capacity is reached).

The structure of our paper is as follows. 1In section 2, we set up the
model and derive some technical properties of the service rate. In section 3,
we prove that at most one equilibrium, in which all firms choose pure

strategies, exists. We explicitly characterize the prices and capacities



chosen in the candidate equilibrium. 1In section 4, we discuss the possible
nonexistence of equilibrium, and prove that existence is guaranteed when the
number of firms is sufficiently large. 1In section 5, we present an example

with uniform demand uncertainty, and section 6 concludes the paper.

2. The Model

The economy is composed of n firms and a random number of consumers,
drawn from a continuous distribution. Let the number of consumers per firm be
denoted as a, where a is a random variable with continuous density function
f(a). The density function f is assumed to be strictly positive on the
support [a,d], where & can be infinity. Let the expected number of consumers

per firm be denoted as

*®
[l

J'_ af(a)da.

It follows that the aggregate number of consumers is na.}

We assume that all consumers are symmetric in the following sense.
There are nid "potential" consumers.? When nature chooses the aggregate
number of consumers at the market, na, each of the potential consumers faces

the same conditional probability of being selected. That is, we have

'All of our results go through when we hold aggregate demand fixed as we
vary n. The reason is that, when we scale aggregate demand by any factor
(including 1/n), equilibrium capacities are scaled by the same factor. Prices
and service rates are unchanged.

?Making the number of potential consumers coincide with the upper support
of the density f was done to avoid introducing more notation. Any number of
potential consumers greater than nad would work as well.



Pr.(consumer a is at the market|a = a) = a/a.

Therefore, the unconditional probability of consumer a being at the market

when a = a is

Pr.(consumer a is at the market and a = a) = af(a)/3,

and the unconditional probability of consumer o being at the market is

Pr.(consumer a is at the market) = r 2 f(a)da.
a a
From Bayes' rule, we have
(2.1) Pr.(a = a|consumer a is at the market) = ._:ffiil__n
a -~ - ~
f af(a)da
a

It might seem unintuitive that one consumer out of a continuum receives
any useful information from the fact that he or she is at the market. 1In
other words, why is the conditional density in (2.1) different from the
unconditional density, £? Consider the example of a rock concert that draws
10,000 fans with probability .5 or 50,000 fans with probability .5. If there
are 50,000 potential concertgoers, a particular individual is part of all
large crowds (50,000 fans) but only part of small crowds (10,000 fans) 20% of
the time. Therefore, he or she arrives at a large crowd with probability .5,
arrives at a small crowd with probability .1, and stays home with probability
.4. Conditional on arriving, the probability of a small crowd is therefore

1/6, although the unconditional probability of a small crowd is 1/2.



The timing of actions is specified as follows. First, each firm 1
simultaneously chooses its capacity, k;, and the price of its output, p;. All
firms face a constant marginal cost of capacity, c¢. Then nature chooses the
set of consumers, and each consumer irrevocably chooses which firm to visit.
Arriving consumers know the prices and capacities offered by all firms, and
they know that they are at the market (hence, the conditional probability in
equation (2.1) will be used), but they do not know the realization of
aggregate demand.

The commodity is consumed in units of zero or one, with all consumers
having the same reservation value, v. We assume that ¢ < v holds. If the
number of consumers visiting a firm is less than the capacity, then all
consumers are served. If there is excess demand, output is rationed
anonymously, with all consumers at the firm receiving one unit with
probability equal to the ratio of supply to demand.® If s is the probability
of consuming the good (to be endogenously determined later), each consumer has
the utility function, U(p,s) = (v - p)s. Firms are risk neutral, maximizing
expected profits.

The service rate offered by firm i depends on firm i’s capacity, the
density f, and the choices consumers make about which firm to visit.
Consumers choose a mixed strategy, q = (Qy,...,4;,...,4q,), Where q; represents
the probability that a consumer (at the market) visits firm i. Without loss

of generality, we only consider Nash equilibria in which all consumers choose

*We conjecture that allowing firms to choose any rationing rule would not
affect the results.



the same strategy q.° In equilibrium, consumers will mix so as to equate the
expected utility offered by each firm. A firm that slightly lowers its price,
holding capacity constant, will not experience a jump in demand, because that
would discontinuously lower the service rate. Instead, q; will increase
slightly, which slightly lowers the service rate.

Before deriving the service rate, the following notation will be useful.
Let q; = q;n, and let a, be a random variable representing the number of
consumers arriving at firm i. The law of large numbers guarantees that we

have

(2.2) 4; = qa.

Definition 2.3: The service rate of firm i, conditional on a consumer

visiting firm i, is given by

min(k,,q;a)

s(k;/q;) = E | consumer a is at the market

Qi(é)

Lemma 2.4: Let K; be defined as K; = k;/q;. Firm i’'s service rate is given by

(2.5) s(K;) = K;/u, for K; < a

J'f_ (3 - K)E(3)da

L

(2.6) s(Kp) =1 , for a = K; <3

“Because consumers are small, one can think of q as a distribution of
pure strategies chosen by different consumers. Under this interpretation, our
uniqueness result refers to the strategies chosen by each firm and the
distribution of actions chosen by consumers.



Furthermore, s is increasing, concave, and continuously differentiable.

Proof: When K; < a holds, we have min(k;,q;a) = k;. Definition (2.3) implies

s(K;) = E[K,/a|consumer a is at the market]. From (2.1), we obtain:

s(K,) =K, J' 17z 2f(@)da 4z _p /.
a p
When a < K; < & holds, definition (2.3) implies s(K;) = E[min(K;/a,l)|consumer
a is at the market]. From equation (2.1), we have

s(K,) =J-Ki | af(a)da +J-E K /& af(a)da
a p K, n

Therefore,

s(K) = 1/u [J':* af(a)da + Jf

- 1

if(a)da - Jf if(a)da + J'K_ K £(3)da]

i

- Lw (w - [ G- KOEG)dE)

'[K_ (3 - K)f(a)da
= 1 - !

m

When K; > 3 holds, s(K;) 1 follows immediately from definition (2.3).

In the region (a,a), s'(K;) exists and is given by

(2.8) s'(K) = 1/u '[K- £(a)da.



From equations (2.5), (2.7), and (2.8), it is trivial to verify that s’(K;)

exists and is continuous at K; = a and K; = a. For K; € (a,4d) we have

(2.9) s"(Ky) = -(L/w)E(Ky).

1A

Therefore, s(K;) is weakly concave for K; < a and K; = a8, and s(K;) is strictly

— 1 =

concave for K; € (a,a). ||

From Lemma (2.4) we conclude that the service rate offered by firm i to
all of its customers is the ratio of the expected number of serviced customers
to the expected number of arriving customers. The key step in the derivation

of this result is to condition on a consumer arriving at the market.

3. Characterization of Egquilibrium

In this section, we show that a Nash equilibrium in which all firms use
pure strategies, if it exists, is unique. We characterize this "candidate"
equilibrium and show how it may be computed. Our results are that (i) all
firms choose the same price and capacity, (ii) there is a positive probability
of rationing, (iii) there is a positive probability of unsold (wasted) goods,
which keeps the price bounded above marginal cost, even as n - =, and (iv) as

n » «, the equilibrium converges to that described by Carlton [1978].

Definition 3.1: Let k™ be defined as the unique solution to s'(K) = c/(vu).

Observe that k" is well defined, since ¢ < v, s'(a) = 1/p for a < a,

s'(a) = 0 for a 2 a, and since s is continuously differentiable everywhere and
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strictly concave on (a,d). Observe that k% € (a,a).

Lemma 3.2: In an equilibrium in which firms use pure strategies, all active

firms (with k; > 0) receive positive expected profits.

Proof: Expected profits for firm i are given by

(3.3) m; = p;uq;s(k;/q;) - ck;.

Consumers mix so as to equate the expected utility offered by all active

firms, so we have

(3.4) (v - pos(ky/a;) = (v - pys(ky/qy) = U

for all active firms i and j.

Suppose we had an equilibrium in which n; = 0 for some i (firms would
stay inactive rather than allow n; < 0). We know that reducing k; leads
consumers to reduce q; and increase qj, j = 1. From expression (3.4), and the
fact that p; and k; are unchanged, we know that U" goes down. Holding p;
constant, s(k;/q;) must also go down. Similarly, raising p;, all else held
constant, leads consumers to lower q; and increase q;, j # i. This raises
s(ky/q;).°

It follows that firm i could lower k; to k; and raise p; to p;, such that

firm i’s service rate remains the same. That is, we have s(k;/q:) = s(k,/q;).
1 ql 1 ql

3This argument relies on K; < &, but firm j cannot be optimizing with
K; > a. Instead, firm j could reduce production without affecting sales.
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Originally, profits are zero, which implies

(3.5) piss(k;y/q;) - c(k;/q;) = O.

With the deviation to (k;,p;) firm i’s profits are given by

m = q;[pips(ki/q;) - c(ki/q;)].

Since p; and k; are small deviations, we know that q; = 0 holds. From p; > p;
and equation (3.5), it follows that =; is positive, contradicting the

supposition that =, = 0. |

Lemma 3.6: In any equilibrium in which all firms use pure strategies, all

firms are active and receive positive profits.

Proof: First, observe that there must be at least one active firm. If no
firms were active, any firm could charge a price of v and attract all

consumers. As a function of K, this would yield profits of wvus(K) - ¢K, or

(3.7) VuKR[s(K) /K - c/(vp)].

If a > 0, expression (3.7) is positive at K = a, because s(a)/a = 1/u. Even

if a = 0, 1'Hopital’s rule implies limK_,E s(K)/K = s'(a) = 1/u. Continuity then

implies that expression (3.7) is positive for sufficiently small positive K.
Having established that there must be at least one active firm, suppose

that firm i is active and firm j is inactive. Now consider the following
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profitable deviation for firm j. Choose pj = p; and k; = €k;, were ¢ is a

i
small positive scalar. When consumers optimize, taking the deviation into
account, we must have qj = eq;, because consumers must be indifferent between

choosing firms i and j.

The profits of firm j are given by

(3.8) ny = eqi[pims(ky/q;) - c(ky/qi)].

For small enough ¢, consumers do not change their mixing probabilities very

much. Continuity implies =

is positive for some ¢ > 0 whenever

(3.9 €qy[pips(k;/q;) - c(kiy/q;)] > 0.

Inequality (3.9) is equivalent to em; > 0, which follows from Lemma (3.2). A
profitable deviation for firm j is inconsistent with equilibrium; hence, all

firms must be active in any pure-strategy equilibrium. |

Lemma 3.10: In any equilibrium in which all firms choose pure strategies, we

have K; = k;/q; = k* for i = 1,...,n.

Proof: From Lemma (3.6), all firms are active and earn positive profits.
Suppose some firm, i, has K; # k*. We will show that firm i has a profitable
deviation within the class of strategies that causes consumers to maintain
their strategy, q. If U* is the equilibrium utility offered to consumers,

they will maintain their strategy, q, whenever (p;,k;) satisfies
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(3.11) (v - pi)s(ki/qy) = U

Consider a deviation such that k; = q;k* and p; = v - (U*/s(k")). Since
equation (3.11) holds, it follows that consumers will continue to choose q;.

For now, we will allow the possibility that p; < 0. We have

3.12 Coq || vs(kT) -U" k*) - ck*|.
(3.12) x; qH ST ks - e

Equation (3.12) can be simplified to

(3.13) n;/q; = pvs(k*) - ck* - pU*.

At the equilibrium strategy, firm i’s profits are
(3.14) 7,./q; = pvs(Ky) - cK; - uU*.

However, the right side of (3.13) is strictly greater than the right side of

(3.14). To see this, consider the maximization problem
(3.15) maXg < g < « VBS(K) - cK.

Since s" < 0 everywhere and s" < 0 for K € (a,a), the first-order condition
s'(K) = ¢/(pv) gives rise to the unique optimum, k™ (see definition (3.1)).
Therefore, the deviation (p;,k;) gives rise to higher profits than the

equilibrium level. The supposition that K, = k" is therefore false. [ ]
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The proof of Lemma (3.10) shows that, in any equilibrium with firms
choosing pure strategies, all firms provide a service rate that maximizes

gains from trade, given q. We can now prove the main result of this section.

Proposition 3.16: An equilibrium in which all firms choose pure strategies,

if it exists, is unique. The equilibrium is given by

(3.17) ki = k" for i = 1,...,n,

p, = ck'n/(n - 1) for i = 1,...,n

ps(k®) +ck*/(v(n - 1))

and

]

q; 1 for i = 1,...n (along the equilibrium path).

Proof: From Lemmas (3.6) and (3.10), we know that all firms are active and
provide the same service rate, s(k™). It immediately follows that all firms
choose the same price, which we denote by p. Now consider the optimization
problem faced by firm i. Given the prices and capacities of other firms, firm
i's price and capacity choice will determine q; and q;, j » i. Thus, a
necessary condition for equilibrium is that firm i chooses a price, capacity,

and induced q; to solve

(3.18) max q;p;us(k;/q;) - ck;

s.t.

(v - pi)s(ky/q;) = (v - p)s(k;/qy) V J.

For any choice of q;, k;/q; must be independent of j (in equilibrium, the
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constant is k*), because all other firms are choosing the same price, p. Call

this constant a(q;). We therefore have

a(q;) = Zjﬁ.kj/Xﬁﬁ qj.

n holds, a(q;) is equal to ()4 k;)/(n - q;). Substituting

Since Yy q; + Gy
the service rate offered by other firms, as a function of q;, maximization

problem (3.18) becomes

(3.19) max, i o qiPiks(k;i/q;) - ck;
s.t.

(v - pi)s(ky/qy) = (v - p)s(k-y/(n - q;))

where k_; = ), k;. Solving the constraint in problem (3.19) for p;, and
plugging it into the objective, we obtain the following unconstrained

maximization problem :

s(k.;)/(n - q;)

3. : - -
(3.20) maxy o q; |V (v - p) ST

}“s(ki/ch) - ck;

Simplifying, we have

k_.
(3.21) maxk“qiqips(ki/qi)v - (v - p)s[n —ld ]qi“ - ck;.
i
By Lemma (3.6), an equilibrium (if one exists) must involve firm i choosing

0 < q; < n, so the interior first order conditions are necessary. Taking the

partial derivative with respect to k;, we have
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(3.22) s'(ki/q;) = ¢/(uv)

*

which implies k;/q; = k". Setting the partial derivative of expression (3.21)

with respect to q; equal to zero, we have

0 =vs fﬁ -(v-p)s ks +
\qi n-gq

(3.23) :
vs' Ktk o (v - p)s’ Ko Ko
% 9 )|q? PR lE )

From equation (3.22), and some straightforward calculations, we have

(3.24) k;/(n - q;) = k" = k;/q;.

Substituting (3.24) into (3.23) yields

(3.25) vs(k™) = vs' (k)K" + (v - p)s’'(k")k"(q;/(n - q;) + (v - p)s(k").

Since equation (3.25) must hold for all i, it follows that q; is independent
of i, so we have q; =1 for 1 = 1,...,n. Therefore, equation (3.25) and

q; = 1 uniquely determine the price, p. Solving for p and substituting s’ (k")
= c/(pv), the equilibrium price must equal the expression for p; in

(3.17). |

From the properties of the function s derived in Section 2, a < k* < &
must hold. (See the discussion following Definition (3.1).) Thus, all firms

offer service rates strictly less than one at the candidate equilibrium.
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There is a positive probability of rationing, when a > k*, and there is a
positive probability of unsold goods, when a < k*. A positive probability of
unsold goods means that the expected number of served customers, us(k*), is
strictly less than the capacity, k*. Nonnegative profits implies p;us(k")

ck® > 0, so we have p; = ck*/us(k") > c. To compensate for the possibility of
unsold goods, firms charge a price above marginal cost, even for large n. As
n approaches infinity, the price approaches ck*/ps(k™), and profits per firm
approach zero. Thus, the candidate Nash equilibrium coincides in the limit
with the solution proposed by Carlton [1978], who assumes that competition
will drive profits to zero.

Observe that, in the limit, we have

(3.26) (p-c) _ k* - us(k*)
p k*

Equation (3.26) states that the percentage markup over marginal cost equals

the percentage of excess capacity.

4, Existence and Potential Nonexistence of Equilibrium

Before presenting the proposition that, for large n, an equilibrium
exists in which all firms choose pure strategies, we want to emphasize the
possibility that pure-strategy Nash equilibrium may fail to exist. In much of
the literature on price-competition, existence problems arise because shading
the price downward yields a discontinuous jump in a firm’s demand. Carlton
[1978] noticed that, in models where consumers must commit to a firm, the
possibility of rationing eliminates this discontinuity; when a firm (offering

a service rate less than one) marginally lowers its price, a jump in demand
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cannot occur, because the firm’s service rate would deteriorate. Indeed, at
the candidate equilibrium, no firm could improve by changing its price or by
changing its capacity, holding the other variable constant.

What, then, may prevent an equilibrium from existing? The problem is
that a firm might have an incentive to deviate from the candidate equilibrium
(3.17) by cutting the price and expanding capacity simultaneously. This
deviation allows the firm to maintain a service rate of s(k*), only slightly
lower its profit margin (which remains positive), but greatly expand its
customer base. Carlton [1978)] assumes zero profits as a precondition for
competitive equilibrium, so this undercut and expand strategy will not
work.® However, when the number of firms is finite, there is no reason to
think that profits will be zero. It will then be important to check whether a
firm has an incentive to deviate from the strategy given in (3.17), cutting
price and expanding to capture the entire market. If we are to justify
competitive equilibrium as the limit of Nash equilibria, as n approaches
infinity, it will be important to verify that no firm has an incentive to
deviate near the limit (where profits are small but positive).

If we hold the utility offered by other firms constant at U*, justified
by the view that one small firm cannot affect the market utility level, then

firm i’'s maximization problem is

(4.1) max m; = q;[ps(Kj)p; - cK;]

®Although the undercut and expand strategy will not work when firms are
earning zero profits, there is still the problem that a firm could earn
positive profits by raising the price and cutting capacity (keeping the
service rate constant at s(k¥)).
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(v - pj)s(K;) = U”.

Profits are linear in q;, so a firm making profits (even small profits), would
want to capture the market, by deviating to k; = n k" and marking the price
down by one cent. This deviation results in K; = k" and q; = n.

The assumption that firms are exact utility takers is self-negating,
because a utility taker wants to capture the entire market, which multiplies
its profits by n. Of course, a firm serving the entire market affects market
utility. The reason that a Nash equilibrium (in which firms choose pure
strategies) exists for large n is that firms take into account their small
effect on market utility. Since the service rate offered by all firms is
strictly less than one at the candidate equilibrium (3.17), when firm i
deviates to capture it increases the service rates of all firms other than 1.
Firm i therefore raises the market utility, U", which requires a discrete
reduction in p;, or a discrete increase in firm i’s service rate. When the
number of firms is large, the profit margin, n/q, is close to zero.
Therefore, a discrete drop in p; (the required drop remains uniformly bounded

away from zero for all n) will result in negative profits.’

Similarly, a
discrete increase in firm i's service rate will mean more unused capacity and

negative profits.

’Carlton assumes there is firm-idiosyncratic uncertainty but no aggregate
uncertainty. By offering a capacity equal to market demand, and maintaining
the same price, a firm can attract all customers and increase its profits more
than n-fold. Thus, in Carlton’s version of the model, a Nash equilibrium
(with firms choosing pure strategies) will never exist. Idiosyncratic
uncertainty creates increasing returns to scale through the law of large
numbers.
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For the degenerate case where aggregate demand is certain, the
"candidate" equilibrium involves all firms offering a service rate of one. A
deviation by one firm to capture the market does not increase the service
rates offered by other firms, so firm i’s profits are linear in q;.

Therefore, the price cannot be above marginal cost; but if the price equals
marginal cost, a firm could make profits by raising the price and reducing
capacity (maintaining a service rate of one while lowering the service rate of
other firms). It follows that, without the presence of demand uncertainty, no
equilibrium exists in which all firms use pure strategies.

The next proposition shows that, as long as there is some demand
uncertainty, and n is sufficiently large, there exists an equilibrium in which
all firms choose pure strategies. We show that attempts to gain significant
market share above the candidate equilibrium level lead to negative profits,
and that profits are quasi-concave over the domain where profits are positive.
The first order conditions are therefore sufficient for profit maximization.
The value of n that guarantees existence depends on the degree of
uncertainty. When the density, f, approaches the degenerate case of
certainty, the order of limits matters. For any f, there exists an n for
which we have existence; however, for any n, there exists an f for which we

have nonexistence. See section 5 for examples.

Proposition 4.2: For sufficiently large n, a Nash equilibrium in which all

firms choose pure strategies exists. (From proposition (3.16), this

equilibrium is unique and can be calculated from (3.17).)

*

Proof: We must check that, if all firms j = i choose k; = k™ and p; = p
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(given in (3.17)), then firm i’s best response is p; = p* and k; = k*. Firm
i’s maximization problem can be posed as a choice of p;,K;, and q; to maximize
profits, subject to the constraint that q; must be the optimal response chosen

by consumers. We have:

(4.3) max, 4k q[pus(K) - cK]

s.t.
(v -p)s(K) =(v-p")s [E:ég::all], 0<q=<n.

The first constraint in maximization problem (4.3) is expressed as an equality
because the firm would always raise the price rather than allow a strict
inequality to hold.

From the proof of Lemma (3.10) it follows that, for any choice of q,
0 < q = n, the optimal K is k*. Since firm i can ensure positive profits by
going along with the candidate equilibrium, q = O cannot be optimal.
Therefore, the solution to (4.3) must involve K = k*.

Plugging K = k" into problem (4.3), and then solving the constraint for
p as a function of q, we have the following unconstrained maximization
problem, which is equivalent to (4.3).

(4.4) maxg < q<n $(a) = q [vys(k') - (v - p*)s [k_flﬁ%]p - ck‘].

Let k denote k*(n - 1)/(n - q).

Claim 1: For all € > 0, there exists an n such that ¢é(q) > O implies

k - k" < €.
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To see why Claim 1 is true, suppose there is an ¢ > 0 for which

k = k* + € for all n. Then we have

(4.5) $(q) < qlvps(k*) - (v - pMus(k* + €) - ck'].

Inequality (4.5) can be rewritten as

(4.6) $(q)/q = (v - pIpls(k") - s(k" + )] + [pp's(k") - ck’].

The second term in brackets on the right side of inequality (4.6) converges to
zero as n approaches infinity. Also, s’(k*) = ¢/(vu) holds, so

s(k™) - s(k* + ¢) is bounded below zero, and the bound is independent of n.

It follows that the right side of (4.6) becomes negative for large enough n,

which contradicts the supposition and proves Claim 1.8

Claim 2: As n approaches infinity, ¢é(q) 1s strictly concave on an interval

containing the set of q for which ¢é(q) is positive.

To prove claim 2, we differentiate the right side of (4.4), which yields

(4.7) $'(q) = vus(k") - (v - pHus(k) - ck”

- q(v - pHes’ (k) k'(n - 1)/(n - q)2.

8Claim 1 proves that large deviations from the candidate equilibrium,
including "taking the market," lead to negative profits (provided the number
of firms is large).
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From (4.7), we calculate the second derivative, keeping in mind that k depends

on q. After simplifying, we have

(4.8) $"(q) = - Y 2 PIHKI(n - 1n Ho ey s"(E)Eﬂ].
(n - q)° n

Rewriting the definition of k as

_k*(n-1)
E n

(4.9) q-1
n

and substituting equation (4.9) into (4.8) yields

(4.10) $'(q) = - pIpk’n- Ln [25'&) . s"&)[i Skt e k]]
(n - q)° n

Using Claim 1 (and choosing the ¢ in Claim 1 to be €¢’'/2), for all ¢’ > 0 we

can find an n such that ¢(q) > 0 implies

(4.11) $'(q) < -V 2 PRk - Dnfserpy v 57 (k)e].
(n - q)°

The fact that the density f is bounded implies s" is bounded®, so the term in
brackets becomes positive as n approaches infinity. Thus, over the range of q
for which profits are nonnegative, ¢ is strictly concave. Since ¢ is concave
over the relevant range of q, there is a unique solution to maximization
problem (4.4), which solves the first-order condition, ¢'(q) = O.

Substituting the formula for p*, given in (3.17), into the right side of

°Instead of assuming that f is continuous everywhere, it is sufficient to
assume that f is continuous on a neighborhood of k*. Therefore, f and s" are
bounded on a neighborhood of k*. Thus, we can handle exponential
distributions.
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(4.7), it is evident that q = 1 is the unique value of q which satisfies
$'(q) = 0. Thus, p; = p*, K, = k*, and q; = 1 is the best response to the

strategies of the other firms. For large enough n, the candidate equilibrium

(3.17) is therefore an equilibrium. n
5. An Example

In this section, we present some examples illustrating the existence of
pure-strategy equilibrium for large n, and the possible nonexistence for small
n. Let a be uniformly distributed on the interval [1 - ¢ , 1 + €], for e < 1.
Observe that an increase in ¢ produces a mean-preserving spread, with p = 1.

From Lemma (2.4), we have

K for K< 1 - ¢
(5.1) s(K) =1 - (1/4€e)(1 + € - K)2 for 1 - e < K=<1+ ¢
1 for 1 + ¢ < K,
Consider the parameter values ¢ = .1, ¢ = .1, and v = 1. Definition (3.1) and
straightforward algebra yield k* = 1.08 and s(k*) = .999.
From equation (4.10), we have
(5.2) sign ¢"(q) = - sign[2s’'(k) + s"(k)(k - k* + k*/n)].

(Recall that k = k"(n - 1)/(n - q).) For .9 <k < 1.1, (5.1) implies

s'(k) = 5.5 - 5k and s"(k) = -5. Equation (5.2) becomes

(5.3) sign ¢"(q) = sign [15k - 16.4 + 5.4/n].
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Since k is strictly increasing in q, 0 < q < n, and the expression in brackets
in (5.3) is linear in k, ¢ can change convexity at most once. When n < 27
holds, we see from equation (5.3) that ¢ is convex at q = 1, so there can be
no equilibrium. When n > 27 holds, then there is a range of q (including q =
1) on which ¢ is concave. Above some cutoff value of q, ¢ becomes convex.
Finally, above a second cutoff value of q, we have k > 1.1, and ¢ is a linear
function of q. Either ¢ is negative, or ¢ 1is an increasing linear function of
q. Therefore, to check whether or not an equilibrium exists for n > 30, we
need only compare ¢(1) with ¢(n).

For n = 100, we have p* = .10908 and ¢(1) = .000972. However, by
deviating to k; = 108 and p; = .10819, firm i captures the market (q; = n) and
maintains K; = 1.08. Firm i’s profits are given by ¢(n) = .008109.

Therefore, no equilibrium with all firms choosing pure strategies can exist
when n = 100.

For n = 108, we have p* = .109 and ¢(1) = .000899. By deviating to
p; = .108117 and maintaining K; = 1.08, firm i1 makes profits of
#(n) = .000910. The deviation to steal the market just barely breaks the
candidate equilibrium. For n = 109, we have p* = .109 and ¢(1) = .000891.
Since ¢(n) = 0 holds, and by the concavity-convexity of ¢, we know that a
unique pure-strategy equilibrium exists.

Figures 1, 2 and 3 graph profit (or zero when profit is negative) as a
function of q (0 < q < 15)!° and price (.107 < p < .11) when all other firms
are choosing the equilibrium capacity, k*, and the equilibrium price, p*.

Parameter values are ¢ = .1, v =1, and ¢ = .1. For Figures 1, 2, and 3, the

Note that the constraint in (3.19) implies that the firm’s capacity is
an increasing function of q, i.e. k = q s Y[ (v-p")/(v-p)]s[(n-1)k*/(n-q)]).
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number of firms is 100, 108, and 110, respectively.

The example was chosen to illustrate the fact that pure-strategy Nash
equilibrium might not exist, even when the number of firms is substantial.
Nonetheless, equilibrium must eventually exist. The parameter values ¢ = .1,
v =1, ¢ = .1 do not appear to be extreme, yet they give rise to s(k*) = .999.
Since a deviation to capture the market only raises the service rate the firm
must offer consumers by a factor of .001, this deviation will be attractive
unless the number of firms is quite large and profit margins are quite small.
Increasing ¢ and ¢ greatly reduces the cutoff value for n at which pure-

strategy equilibrium begins to exist.

6. Discussion

Here, as in Carlton [1978] and Peters [1984], there is an infinite cost
of searching beyond the first firm. Unlike most other search papers, however,
the supply-side of the market is known to all consumers before they must
search out a firm. 1In any pure-strategy equilibrium, all firms choose the
same price, and so our model predicts that no price dispersion will exist in
equilibrium. This is a consequence of our assumption that all consumers are
identical. However, if we allowed consumers to have different reservation
prices, we would expect price dispersion to appear. Different firms would
serve different market niches, with some firms offering high-valuation
consumers a high price and high service rate, while other firms would offer
low valuation consumers a low price and low service rate. This "demand-side"
motivation for price dispersion has very different (and testable) implications
from the traditional "supply-side" motivation. Low-price firms should be more

likely to ration consumers than high-price firms, and high-valuation consumers
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should be more likely than low-valuation consumers to visit high-price firms.
Although we have been assuming that firms commit to a fixed price and
ration any excess demand, this form of price competition could be selected
even if the firm could choose any anonymous mechanism for making
transactions. Peck [1992] compares the game, I', where firms must choose
prices and quantities to the game, I', where firms choose quantities and any
anonymous transactions mechanism. (A transactions mechanism is a mapping from
ordered lists of consumers visiting the firm to allocations of the commodity
and money.) It is shown that any equilibrium of T is an equilibrium of T.
Conversely, all equilibria of T' involve firms choosing to fix prices and
ration excess demand. The crucial assumptions are that consumers are
identical, demand one unit of the commodity, and cannot commit to pay money

unless they receive the good.
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Figure 1

The maximum of profit and zero, as a function of the customer base g

(0 < g < 15) and price (.107 <= p < .11) when all other firms are choosing the
equilibrium capacity, k", and the equilibrium price, p*. Parameter values are
n = 100, c=.1, v=1, and ¢ = .1.
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Figure 2

The maximum of profit and zero, as a function of the customer base q

(0 < q < 15) and price (.107 = p < .11) when all other firms are choosing the
equilibrium capacity, k%, and the equilibrium price, p*. Parameter values are
n = 108, c=.1, v=1, and € = .1.
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Figure 3

The maximum of profit and zero, as a function of the customer base q

(0 = q =15) and price (.107 < p < .11) when all other firms are choosing the
equilibrium capacity, k*, and the equilibrium price, p*. Parameter values are
n = 110, c=.1, v=1, and ¢ = .1.



7}/?’?)/

/

"Competition over Price and Service Rate when Demand is

Stochastic: a Strategic Analysis"

by

Raymond Deneckere”
and

James Peck”

May, 1992

*Department of Managerial Economics and Decision Sciences, J. L. Kellogg
Graduate School of Management, Northwestern University, 2001 Sheridan Road,
Evanston, Illinois 60208.

[P4-2]



