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Abstract

This paper studies some new properties of set functions {(and, in
particular, "non-additive probabilities"™ or "capacities") and the Choquet
integral with respect to such functions, in the case of a finite domain.

We use an isomorphism between non-additive measures on the original
space (of states of the world) and additive ones on a larger space (of
events), and embed the space of real-valued functions on the former in the
corresponding space on the latter. This embedding gives rise to the following
results:

-- the Choquet integral with respect to any totally monotone capacity
is an average over minima of the integrand;

-- the Choquet integral with respect to any capacity is the
difference between minima of regular integrals over sets of additive measures;

-- under fairly general conditions one may define a "Radon-Nikodym
derivative" of one capacity with respect to another;

-- the "optimistic" pseudo-Bavesian update of a non-additive measure
follows from the Bayesian update of the corresponding additive measure on the
larger space.

We also discuss the interpretation of these results and the new light
they shed on the theory of expected utility maximization with respect to non-

additive measures.



1. Introduction

The reptresentation of beliefs by real-valued set functions which do not
necessarily satisfy additivity dates back to Dempster (1967, 1968) and Shafer
{1976} at the latest. Their theory is not directly related to decision making
under uncertainty, nor is their concept of "probability" derived from
preferences. Rather, they assume that "weight of evidence" for events is a
primitive, and study the "belief functions" which are generated by summation
of such weights. Belief functions are a special class of "non-additive
measures" or "capacities," characterized by a condition called "total
monotonicity."

In modern economic and decision theory, on the other hand, terms such as
"utility" and "probability" are defined via preferences which, at least in
principle, are supposed to be observable. Von Neumann and Morgenstern (1944)
have defined a "utility" by preferences over lotteries, with given
probabilities. Building upon works of Ramsey (1931) and de Finetti (1937),
Savage (1954) provided a simultaneous derivation of "utility" and
"probability" from preferences over objects ("act") which did not presuppose
either of these (potentially-metaphysical) concepts. In the same vein,
Anscombe and Aumann (1963) provided a similar axiomatization of "subjective"
probability (assuming that probabilities on an auxiliary space are given).
Apart from bestowing "cognitive significance" upon the term "probability," the
advantage of the axiomatic approach is that this term is derived together with
a procedure to use it. While abstract set functions which represent "beliefs"
do not, in and of themselves, prescribe a way to make decisions in face of

uncertainty, the "probability" measure derived by Savage (1954) and Anscombe-
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Aumann (1963) are to be used in a very specific way, namely in the
maximization of expected utility.

However, the expected utility paradigm, which is stiil the dominant
approach in economic, decision and game theory, was subjected to empirical
refutations as a descriptive theory, and sometimes also to theoretical attacks
as a normative one. Among the most famous experiments, mind-experiments and
"paradoxes”™ are Allais (1953), Ellsberg (1961) and Kahnemann-Tverskey (1979).
(See Machina (1987) for a survey and references.) While Allais (19533} and
Kahnemann-Tverskey (1979) do not necessarily undermine the concept of
probability per se, Ellsberg's (1961l) findings are incompatible with the very
notion of an (additive) probability measure as representing beliefs. That is
to say, neither expected utility maximization nor any other reasonable
procedure which relies oniy on the distributions induced by an additive
probability could account for observed choices.

Although his original motivation was somewhat different, Schmeidler
(1982, 1986, 1989) suggested a generalization of expected utility which could
accommodate Ellsberg’s evidence. He provided an axiomatization derivation of
both utilities and not-necessarily-additive probabilities, such that a
decision maker’s preferences are equivalent to expected utility maximization,
where expectation with respect to a non-additive measure is computed by the
Choquet integral (Choquet (1953-4)). Conceptually similar but mathematically
different, Gilboa (1987), Wakker (1989) Sarin-Wakker (1990) and Fishburn
(1988) provided additional such axiomatizations for other frameworks, the
latter allowing for intransitive preferences as well.

In a different model, Gilboa and Schmeidler (1989) characterized

preferences which may be represented by a utility function and a set of
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additive measures, In the sense that preferences obey maximization of the
minimal expected utility over all measures in the given set. (See also Bewley
(1986) who deals with a set of probabilities with partially ordered
preferences.) These preferences can also be represented by the non-additive
model (with maximization of the Choquet integral) in case the set of measures
is the core of a convex non-additive measure. (The definitions will be given
below. At this point let us only mention that convex non-additive
probabilities correspond to uncertainty aversion and that belief functions
are, in particular, convex.}

The non-additive expected utility theory in general, and with convex
probabilities in particular, has been recently applied to a variety of
problems. In economics and finance, such applications include Dow and Werlang
{1990, 1992), Dow, Madrigal and Werlang (1989), Simonson and Werlang (1950),
and Yoo (1990, 1991). The same mathematical structure, though differently
interpreted, is also used in other fields of decision theory. (See, for
instance, Gilboa {1989a) for multi-stage decisions and Ben-Porath and Gilboa
(1991) for the measurement of inequality.)

However, the interest in non-additive measures and the Choquet integral
stems from other applications as well. The theory of transferable-utility
cooperative games deals with non-additive set functions, and, at times, also
with integration with respect to them. (See Rosenmuller (1971, 1972).) 1In
artificial intelligence, belief functions have been used to represent
uncertainty (see Dubois and Prade (1986, 1991) Halpern and Fagin (1989},
Dubois, Prade and Ramer (1991), and others.) Following Dempster, belief
functions are also used in statistics in the absence of an additive prior.

(See Huber and Strassen (19732), Huber (1973), Walley and Fine (1982), Walley
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(1987), Wasserman (1990) and Wasserman and Kadane (1990).) Additional studies
of mathematical properties of the Choquet integral include Denneberg (1990)
and Dyckerhoff and Mosler (1990).

In this paper we present some results, which shed new light on Choquet
integration and suggest ways to re-interpret various models using it.

Although the results are interpretable in any domain, we will adhere to
decisions under uncertainty for the most part. The counterpart
interpretations in other domains will be obvious.

The mathematical cornerstone of this paper is a well-known theorem in
cooperative game theory, according to which the space of all non-additive
measures ("games") is spanned by a natural linear basis (of "unanimity
games"). This result may be viewed as suggesting an isomorphism between non-
additive set functions on the original space (of states of the world) and
additive one on a larger space (of all events). (Similarly, one may use the
basis of the "duals" of the unanimity games, which would lead to "dual™
results of those presented here.)

Using this result we show that the Choquet integral with respect to any
non-additive set function v is simply some linear combination of the minima of
the integrand (over various events}). Furthermore, if v is a belief function,
this linear combination reduces to a weighted average. Thus, for such
probabilities v, the integral is both mean of minima (over events) and, since
they are also convex, minimum of means (where the minimum is taken over
additive measures in the core). (Related results, with a somewhat different
interpretation, were obtained in Jaffray (1989) and Wasserman (1990).)

We then provide an interpretation of this result, according to which the

space of real-valued functions on the original space is embedded in the



corresponding one on the larger space of events in an integral-preserving way.
This view of the Choquet integral may accommodate models in which the space of
states of the world may be misspecified, in which case the non-additivity of
the measure is due to possibly missing states, which are accounted for in the
larger space.

Reinterpreting the "mean of minima" result in the context of social
choice, one finds that any social welfare function which satisfies
Schmeidler’s (1989) axioms is a linear combination of coalitienal "utility
levels," where the utility level of a coalition is simply the minimal utility
of each of its members. Again, if the underlying non-additive measure is
totally monotone, this linear combination reduces (up to a positive constant)
to a weighted average. (See also Remark 5.3 in the sequel.)

Another result which follows from the linear combination representation
is that any non-additive measure is the difference of two totally monetone set
functions (i.e., belief functions multiplied by a non-negative constant). It
then follows that for every set function v there are sets of additive measures
Cc* and ¢, such that the Choquet integral with respect to v equals the
difference of two minima: one of all integrals with respect to measures in
C*, the other--with respect to C°. Thus, while minima of integrals is only a
subset of the functionals described by Choquet integration, differences of
such minima exhaust all these functionals. We later discuss further
interpretations of this result.

Next we proceed to deal with the question of Radon-Nikodym derivative of
one set-function with respect to another. While straightforward
generalizations of the theorem for the finite case do not seem to hold, it

appears that the (larger) space of events is the appropriate one for such a



generalization.

Finally, we address the question of updating a non-additive probability
measure. Recent studies of this problem include Fagin and Halpern (1989},
Jaffray (1990) and Gilboa-Schmeidler (1991). The latter axiomatize the
Dempster-Shafer update rule (see Dempster {(1968)) as a "pessimistic" one, as
well as a corresponding "optimistic" one (also used in Gilboa (1989b).)

The isomeorphism between non-additive measures and additive ones {(on the
space of events) suggests a new look at the updating problem: since there is
little disagreement regarding the way additive measures should be updated, one
may update the additive measure and project it back to the original space, to
obtain an updated, possibly non-additive, measure on it. This construction
leads to the "optimistic" update. Using a similar update with the dual space
gives rise to the "pessimistic" one. {See Dubois-Prade (1991), and Lipman
(1992) )

In this paper we restrict ourselves to the case of a finite space of
states of the world. All the mathematical results we present range from
immediate to simple. Indeed,-practically all of them have natural
counterparts in the general case, where the mathematics is considerably more
complicated. In order to highlight the conceptual issues, we chose to focus
here only on the finite case, and deal with the general one in Gilboa-
Schmeidler (1992).

The rest of the paper is organized as follows. Section 2 presents
notations and definitions, and Section 3 is devoted to quoting some known
results. From Section 4 on we present our new results and discuss their

interpretation.



2. Notations and Definitions

Let I be a nonempty set of states of the world and let £ be an algebra
of events defined on it. We will assume w.l.o.g that T = 29,

A function v: ¥ + R with v(@) = 0 is called a non-additive signed
measure or a capacity. The space of all capacities will be denoted by V and
will be considered as a linear space (over R) with the natural (pointwise)
operations.

For v € V we will use the following definitions:

(L) v is monotone if A C B implies v(A) = v(B) for all A,B € Z.

(2) v is normalized if v(Z) = 1.

(3) v is additive if v(A U B) =~ v(A) + v(B) for all A,B € £ with
ANDB =@  An additive v is also called a signed measure.

{4) v 1s convex if for every A,B € Z, v(A U B) + v(AN B) =
v{A) + v(B). It is superadditive if the above holds for all A,B € T with
ANB=g.

(5) v is nonnegative if v(A) = 0 for all A € Z.

(6) v is totally monotone if it is nonnegative and, for every Ay, .. Ay
n I|+1
€ I, v(Uly A = NipisIcit,...,n}) GO ving g oay).
(7 v is a measure if it is nonnegative and additive,.

(8) v is a belief function if it is normalized and totally monotone.

Observe that additive capacities are totally monotone, totally monotone
are convex and convex are superadditive.

We denote the space of real-valued functions on Q (or random variables)
by F = (£fjf: 1 - R} = QF,

For v € V and f € F, the Chequet integral of f w.r.t. (with respect to)

v is defined to be



[ fav = ["vitelfw) 2 eae - [ ivitelfie) 2 &) - vi@)]de.

Note that it is always well-defined. Also, observe that this definition
coincides with the standard one if v is additive.

For v € V we define the core to be

Core(v) = [(p[(1) p is a measure;
(i1) p(A) = v(A), ¥V A € Z;

(1ii) p()

v(a)).

Note that we allow for a measure to be identically zero. For instance,
if v = 0, Core(v) = (V).

It will be useful to denote Z' = Z\{d}.

For T € ', define the unanimity game on T ("elementary belief function"

in Jaffray (1989).) to be the capacity uy € V defined by

AxT
up(Aa) = .
0 otherwise.

3. Some Known Results

The following results will be used in the sequel.

Theorem 3.1 (Shapley, 1965): Every convex nonnegative game has a nonempty

core,

Theorem 3.2 (Rosenmuller (1971, 1972). See also Schmeidler (1984, 1986)): A
monotone game v is convex if and only if

(1) Core(v) = @;



{(ii) for every f € T,

f fdv = minpeCore(v) f fdp.

Next is the canonical representation theorem which will drive basically

all the following results:

Theorem 3.3: The set [ug is a linear basis for V. The unique

Hep

coefficients [0¥}Tez' satisfying

Vo= ZTez' a¥ Ur
are given by

a¥ = Toor (-DITHI8Iy(sy =
= V() - L(1|eslc{t,....n}} 1 v(ng 1))

where Ti - T\{wi} and T = {w1,...,wn}.

In the sequel, {a¥} will refer to the above coefficients.

Theorem 3.4: For every v € V, v is totally monotone iff af > 0 for all T €

z',

Theorem 3.4 is due to Dempster (1967) and Shafer (1976). Both Thecrems
3.3 and 3.4 are generalized in Gilboa-Lehrer (1991) to real-valued functions

defined on arbitrary finite lattices.
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4. The Choquet Intepral: Min of Means and Mean of Mins.

We first have:

Observation 4.1: The Choquet integral is linear in the game v. That is, for

all v,we V, o, R and f € F,

[ fd(av + gw) = a [ fdv + 8 fdw

It is also useful to state the following lemma:

Lemma 4.2: For f € Fand T € Z',

J fdup = min{f(w)jw € T)

Proof: Immediate. (Also appears in Rosenmuller (1971).)

We can now prove:

Theorem 4.3 (A version of this result appears in Wasserman (1990).

Smets (1981) and Dubois-Prade (1985).): For every v € V and f € F,

I fdv = ZTE - a#{mirkET f(w)l.

Proof: By the auxiliary results above,

f tdv = f fd(ZTezs 0¥ ur) =

See also
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- Ire of(J faup) -

= Jrep or(mingt flw)]. [ ]
Recall that if v is totally monotone, af = 0 for all t € Z'. If,
furthermore, v is normalized, i.e., it is a belief function, then

V - -
which implies that the Choquet integral of a function of w.r.t. v can be
represented as a (weighted) average over all minima of the function £, i.e.,
over its minima on all non-empty events.

In one extreme case v is additive, which is easily seen to be equivalent

to

af = 0 for all T with [T| = 2.

In this case, indeed, the integral of f w.r.t. v is an average of the values
of f--or, if you will, of the minima of f over singletons,

Another extreme case is where v = u,, and the integral of f w.r.t. v is
simply the minimum £ obtains over all of .

While both these extreme cases were known to be special cases of the
Cheoquet integral, Theorem 4.3 shows that anv Choquet integral (to be precise,
the integral w.r.t. any game v) is no more than some average over minima.
(Where "average" has its usual meaning if v is normalized and totally
monotone, )

On the other hand, let us recall that totally monotone capacities are,
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in particular, convex (though the converse is false). Hence, applying Theorem
3.2, the Choquet integral of some f w.r.t. to a totally monotone v may be also
represented as the minimum of all integrals of f w.r.t. measures in a certain
set (the core of v). 1If v is also normalized, each of these measures p is
simply some "weight" vector, and the integral of £ w.r.t. p is a p-average
over f’'s wvalues.

To sum, if v is a belief function, the Choquet integral w.r.t. v is both

a minimum of averages and an average of minima:

Corvollary &4.4: Assume that v is a belief function. Then for every f € F

J fav = } 15 of{miner £(w)] = ming core(y) Lwen PCIw))E(W).

5. Completion of a Misspecified Model

A few more words on the interpretation of Theorem 4.3 may be in order.
The approach of Dempster (1967, 1968), and Shafer (1976), is, roughly, the
following: evidence supporting our belief in certain events is usually not
well-specified enough to be given as a distribution over states of the world.
Rather, they assume there is a function m: 2% - [0,1] with m(@) = 0 and ZTg
m{T) = 1 such that m(T) is the "direct evidence" for T, which cannot be

further specified in terms of subsets of T. The belief in an event T is given

by

v(T) = Zg.r m(S).

(Obviously, in our terms m{(S) = ag.)
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One of the reasons one gets direct evidence for T but not for any subset
thereof may be model misspecifications, i.e., that the states of the world
included in the model do not exhaust the "actual" omnes.
Thus, one is led to an extended model, ﬁ, in which for every T € %’
there 1is &Te {1, and the belief function v corresponds to the measure u, on 0

given by pv(&T) - a%. A function f: {I - R may be naturally "extended" to 0 by

%(&T) =~ min,T f(w). Then, indeed, Theorem 4.3 may be written as

fa fdv = fa Edu,.

In other words, the non-additivity of the "probability" v may be
explained by "omitted" states of the world. If those were introduced into the
model explicitly, the non-additivity would disappear.

Note that restricting the extension f |- f to indicator functions yields
a natural embedding of events in I into events in f1. That is to say, for

TC O, T =@, there corresponds

T=(SeX|SCT)cn =25
and we have
v(T) = u,(T).

Furthermore, notice that the function y: v |- B, is linear, continuous,
and together with ¢: £ |+ £, preserves integral values for all f € F.
We therefore conclude that every decision model with a non-additive

measure v on ( may be embedded in a model with an additive measure u, on I*.
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Obviously, v and u, contain precisely the same information and both require
(Ziﬂl - 1) real numbers for their specification. Yet, the extended model is
more "wasteful": it includes many functions (in RE') which do not correspond
to any function in the original space F. Put differently, the objects of
choice in the extended model, {%|f € F), are each fully characterized by ||
values (i.e., by %{{w}) for w € 1), though they are points in a (2'“' - 1)-
dimensional space.

Looked at from the opposite direction, then, a non-additive measure on @
can be viewed as a concise way to represent beliefs and preferences on a
larger space. Instead of (2‘“' - 1) dimensions with an additive u,, one may
use |0) dimensions at the expense of additivity (of v). Obviously, this more
concise representation may hold only if all the available acts f: £ -+ R

satisfy

F(T) = mingt E({w))

which may be interpreted as an uncertainty-averse assessment of f where it is

not fully specified.

Remark 5.1: One may wonder whether minima play here a special role (as
opposed fo, say, maxima) and if so, why. Indeed, when one considers belief
functions, the maximization of Choquet-expected utility is uncertainty averse,
and the minima capture this intuition. (Both in the "mean-of-min" and in the
"min-of-mean" theorems.) However, in general Choquet expected utility may be
uncertainty-seeking as well. Furthermore, all the theory (or theories) with

minima have natural dual theories with maxima.
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For instance, if one defines, for Te Z, T = {7,

1 SgT

wp(8) = {O o
<

[t is easy to check that {wy);,, is also a linear basis for V. (w; is the
"dual" of u in the sense
c
T
wp{S} = 1 ~ upe{S°) VS L.

It is also immediate that for all f € F,
f fawy = maxueTc flw)
and therefore, if v = zT#n ﬁ¥wT,
J fdv = Y1 BY max ¢ f(w).
wel

(For additional duality results, see Gilboa (1989c¢).)

~However, the set of capacities v for which ﬂ¥ > 0 is different from (and

the dual of) the set of totally monotone capacities.

Remark 5.2: The notion of a "misspecified model" above is rather vague. It
may be formalized as follows: assume we are given a set of propositions P
endowed with two binary relations on it, I,IN € PQ, to be interpreted as

"implies" and "implies not," and a function v: P - [0,1] measuring "belief."

A pair (0,¢) where ¥: P » 2"\ {@) is a model for (P,I,IN) if
(i) vp,qeP, pIq=>%(p) < ¥(q);

(ii) ¥ p,q € P, p IN q => ¥(p) N ¥(q) = &.
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29, which will also be denoted by v.
We call a model ({1,%) complete w.r.t. v if v can be extended to a
measure on {. If it cannot, ({I,¥) is incomplete w.r.t. the beliefs v.
However, 1if range (¥) = Z\{@) and v happens to be totally monotone on {I, one

may consider the gompletion of (Q,y) which is (Z’,4¢) defined by

T o= 2N\ ()
$(p) = d(p) = (A€ Z'1AC $(p)).
Notice that for all G the map B |~ B = (A € ='{A C B} satisfies
(i) AGCB =>AC B;
(ii) ANB =@ =>ANB =g,
Hence, if (I,¥) is a model for (P,I,IN), so is (Z',¢). However, (Z',¢)

is a complete model w.r.t. v (extended by #,) even if (1,¥) is not.

Remark 5.3: The interpretation of Theorem 4.3 in the context of social choice
may alsoc be of interest. Consider a social welfare function, or, more
generally, a social preference order, satisfying the axioms of Schmeidler
(1989). (From a conceptual viewpoint, the most important of these is
"comonotonic independence.") Such a function is representable by a Choquet
integral of some utility function with respect to a non-additive measure {or a
"game") v.

As in the context of uncertainty, two well-known special cases of such
functionals are the utilitarian function (if v is additive) and the
egalitarian one (if v = u;). And here again we find that gvery such

functional is a linear combination of "utility levels” of all coalitions,
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functional is a linear combination of "utility levels™ of all coalitions,
where these are defined in the egalitarian spirit; the "utility_level" of a
coalition is the minimal utilicty of its members. Thus, this class of social
welfare functions can be thought of as "utilitarian® with respect to
coalitions and "egalitarian" with respect to individuals within coalitions.

Similarly, one may define a "completion" of a society {I to be the
"soclety"” I’ whose members are (nonempty} coalitions of {I. A utilitarian
social preference order in the "society of coalitions" corresponds to a
possibly non-utilitarian (but Choquet-representable) preference order in the
society of individuals.

Another special case of these functionals was studied by Ben-Porath and
Gilboa (1991). They axiomatize--under the assumption of a linear utilicy
function of income--the social welfare functions which are a linear
combination of total income and (a version of) the Gini index for the
measurement of inequality. It turns out that these are precisely the Choquet
integrals with respect to a symmetric non-additive measure v, whose

coefficients satisfy

a} = 0 if |T| = 3.

In other words, while utilitarian functions are concentrated only on
singleton coalitions, these functions are concentrated on singletons and
pairs. Thus they can also represent envy-aversion: the introduction of terms

such as

£(1i,§)) = minl£(i),£(j)}, i,] € 0
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reduces the overall impact of a "gift" given to (f£-)rich individuals; the

coefficient of such a term,

p i, 31 = a\gi,j}

may therefore be interpreted as the relative weight put in the social welfare
function on i's envy in j (or vice versa).

It should be noted, however, that such functienals, while obviously
nonlinear in the payoff distribution f, are, in a sense, "linear in envy."
Consider, for instance, a society {1 = {1,2,3) and a payoff (or income)

distribution (0,1,1). According to a non-additive measure v with

ay = 0 for |T|{ = 3

individual 1's envy in 2 and 3 is the "sum"™ of his envy in each of them. More

generally, one may suspect the individual 1 in this example will feel even

"greater" envy than this "sum." After all, s/he may justly claim that
"Everyone is better off than I am." Thus, more general functionals may

capture the fact that envy itself is not always linear.

Choquet integration with respect to general (say, totally monotene) non-
additive measures represents a rich encugh class of preferences to reflect
nonlinear envy. On the other hand, every totally monotone v induces a
functional which is some average of payoffs and of the "envy level" in various
coalitions. (Note that, in general, these functionals may not be symmetric.
For instance, one may only envy one’s neighbors, in which case not all pairs

(triple, quadruples) would be equally weighed in the social welfare function.)
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6. The Choquet Integral: Min Minus Min

As stated by Theorem 3.2, if a game v is convex, the Choquet integral of
a function f w.r.t. v is the minimum of integrals of f w.r.t. additive set
functicns. However, when v is not convex such a result cannot be proven.
{The fact that Core (v) will not do as a set of measures follows from Theorem
3.2 itself. Gilboa-Schmeidler (1989) prove that other sets cannot serve this
purpose either.)

In many applications, the min-of-mean representation is both useful and
intuitive. For instance, maximizing the Choquet integral w.r.t. a non-
additive set function is typicaily less palatable to economists than
maximizing the minimal (regular) integral w.r.t. a set of (regular) measures.
In this subsection we provide an extension to Theorem 3.2, which will
represent any Choquet integral (even w.r.t. a non-convex v) in a more
intuitive way.

We start with:

Lemma 6.1: For every v € V there exist totally monotone v',v’ € V such that

Proof: Given v € V, consider the coefficients [a¥]Tex.. Define Tt =

(T Z’|a¥ > 0}, and

v o= Zre!:‘ ar u,

- _ Y
v = EceE’\E’ (-ar) Ur

It is obvious that v = v* - v*  and that (by Theorem 4.4) both v¥ and v’
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are totally monotone. |
Next we have

Theorem 6.2: For every v € V there exlst two non-empty sets of measures on Z,

+

C" and C°, such that for all f € F

[fdv = minge. [fdp - min,.. [fdp.

Proof: Given v, let v® and v’ be the totally monotone capacities provided by

Theorem 6.1. By Observation 4.1,
[ fdv = [ fav* - [ fdv’
for all £ € F. Defining
ct = Core(v+), C™ = Core(v’)
and using Theorem 3.2 (twice) completes the proof. |
We note that neither v',v™ in Theorem 6.1 nor ¢*,C” in Theorem 6.2 are
unique. Furthermore, the representation of Theorem 4.5 may also hold with

sets C*,C° which are not the cores of totally monotone capacities. For

instance, consider, for Q@ = (1,2,3), the capaclty

VoS Y2y Y Ugrey t W2,ey T W1,2,9)
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which is convex but not totally monotone. Then, by Theorem 3.2, f.dv has one

representation with

+

C" = Core{wv), C = {0}

which differs from that cbtained in the proof of Theorem 6.2.
However, it is easy to see that v’ and v~ in Theorem 6.1 are the unique

totally monotone capacities solving

Min vY(Q) + v ()

In other words, if one defines the norm of v € V to be

vl = T la¥l

then we have:

+

Theorem 6.3: Fox every v € V there are unique totally monotone v’ ,v’ & V such

that

and

Proof: Immediate.
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Similarly, one may make C* and C° in Theorem 6.2 unique by further
requiring that they be cores of totally monotone capacities, and that for all

ptect p ec,

vl =T+ ol

(Notice that lv| = v(Q) if and only if v is totally monotone, and, in

particular

ipl = p()

for every measure p.)

The results above reveal yet another facet of maximization of the
Choquet integral. Suppose, for simplicity, that f(w) € [0,1] for all w el
and all possible acts £ € F. (Recall that the utility function derived in
Savage (1954) is bounded. See Fishburn (1970).) Then the maximization of

[ fdv over F is equivalent to maximization of
minﬁc.f fdp-—minﬁc.f'fdp =minxc.ffdp-vmaxmc-f (-fidp
or of

min, .. f fdp + maXp,.- f {1 - f)dp.

Considering f(w) as payoff, (1l - f(«)) may be taken to be a measure of
dissatisfaction with or disappointment from the outcome f(w}. Thus the
Choquet integral is (up to a shift of size v ({J)) the minimal expected payoff
{according to C*) plus the maximal expected disappointment (according to C7).

Also note that changing the relative weights of "min" and "max" above reduces
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to multiplying all measures in C* (or in C7, or in both) by some non-negative
constant, and therefore remains a Choquet integral with respect to a
{possibly) different v € V.

In other words, the class of decision rules
(Max [ fdv|v € V)

is precisely equal to

{Maxi’a min__. f fdp + (1 - e¢)max, - f (1 -9 dp]FC', co,

non-empty closed sets of probability measures and a € [0,1]},

which may be thought of as a variation on Hurwicz's a-maxmin decision rule.

7. Radon-Nikodvm Theorem for Non-Additive Measures.

For many applications, a version of the Radon-Nikodym theorem for not-
necessarily-additive set functions would be useful. However, one cannot hope
for such a theorem in a direct translation from the additive case: consider

the claim that for some v € V, for all w € V there is an f¥ € F such that

w(s) = [g £¥ dv

{where the integral restricted to S is appropriately defined). But if
3] = n, the dimension of V is (2" - 1) while that of F is n, and one can
hardly expect such a result to hold.

However, the canonical decomposition theorem, which basically represents

non-additive set functions oun { as additive ones on X', suggests a natural way
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to extend the Radon-Nikodym theorem and define the derivative of one set-
function w.r.t. another.

We first need the feollowing definition: for w,v € V, w is said te bhe

absolutely continuous w.r.t. v if for every Ap,...,A € =,
VUl A =) GO v L ap
i=1 1 {I|e#Ic{!,...,n}} 1el 1
implies
w(U_, a) =% GO G, L an
i=1 1 {I]ewIc{1,...,n}} iel M/
Observation 7.1: 1If w is absolutely continuous w.r.t. v, then for all T € Z'

ay = 0 implies oF = 0.

Remark 7.2: Note that the converse does not hold. Let 0 = (1,2,3} and define

v by

=1, T = Q

Then for all w € V, (ay = O implies of = 0) trivially holds. However, for

Ay o= {1,271, Ay = {3} we have

v({1,2,3}) = v{({1,2}) + v({3))

which certainly does not imply the same equality for all w € V. |

We can now state and prove
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Theorem 7.3: Suppose £ is finite. If v,w € V are such that w is absolutely
continuous w.r.t. v, then there exists a function g: %' -+ R such that for all
f eF,
J faw = Jr oo af g(T) miner f(w)
and, in particular, for every A € I,

w(A) = YroaTerr o78(T).

The function g will be called the derivative of w w.r. t. wv.

Proof: For all T € ' such that af » 0, define g(T) = of/a7, and define g(T)

arbitrarily otherwise. The result then follows from Theorem &4.3. |

In general, one may measure the non-additivity of v € V by

LiTes' ||T]>1} loTl

Given v,w € V, assume that g is the Radon-Nikodym derivative of w w.r.t.
v. Then [g(T)| is a measure of the relative non-additivity of w and v at T,
and g(T) is a measure of their relative uncertainty aversion. For instance,

if g(T) > 1 and v is totally monotonic, we may say that w is more uncertainty

averse than v at T. We conjecture that this is the "appropriate" way to
measure uncertainty aversion, in a way that will be the equivalent of the

measurement of risk aversion in classical economic theory.

2
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8. Pseudo-Bavesian Updates
The problem of updating beliefs is central to statistics, as well as to
applications in artificial intelligence, economic theory and so forth.
Based on "Dempster rule of Combination” for belief functions in general,
Dempster (1968) (see also Shafer (1976)) suggested that, given an event

A € ', the new belief function vy € V should be

vilaN B U A9 - v(a©)
1 - v(ac) '

v, (B) =

Gilboa {(198%b) used, without any axicmatic derivation, the mere

straightforward adaptation of Bayes rule:

valB) = v(A n B)/v(&).

Gilboa and Schmeidler (1991) approached the update problem
axlomatically. From axioms on preference orders parameterized by events (the
event assumed to be known) they derived pseudo-Bayesian update rules. Two of
them, which correspond to a "pessimistic” and an "optimistic" interpretations,
ended up being the two update rules given above. Furthermore, the pessimistic
one, which coincides with the Dempster-Shafer rule, also has an interpretation
of a maximum likelihood rule. Given that an event A has occurred, out of all
Core(v}), only those measures p which a priori maximized p(A) are retained in
the set of measures, and they are each updated acceording to Bayes’' rule.

The canonical representation theorem sheds a new light on the update
problem: since for each v € V there correspcnds an additive g, on ', one may
try to update g, according to Bayes’ rule, and then "project"” the updated u,

back to .



27
However, it is not entirely clear how one translates the fact that "a
has occurred" from {1 to £'. To formulate this issue, first define an update
rule to be a function U: V x £' =+ V with the interpretation that U(v,A)
represents the updated beliefs given that A € £’ has occurred and v € V
represents the original beliefs.

- = ! *
For every translation function r: Z’' -+ 2% one may define an update rule

U': Vx 2 -V as follows: given v € V and A € Z', update i, on Z' as if r{aA)

has occurred, and define U"(v,A) by the updated By, - That is,

Ui(v, ) = zsw (“.g Ius
where
0 S ¢ 1)
(a5’ = _%s Setlad)
@t
TETA)
In particular, define 7°(A) = A= (B« 1B C A},

Theorem 8.1:" (See Dubois-Prade (1991) for closely related results.} The

translation function r°

gives rise to the optimistic update rule., That is,
for all ve V, A€ 2 and B € %,

via N B

U{v,a)(B) = (4]

whenever these are well-defined. Moreover, both sides of the equality are

well defined for the same events A € Z'.

e are grateful to Bart Lipman for pointing out an error in a previous
version of this theorem.
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Proof: Notice that

if v(a) = zTcA a¥ > 0. Then

U‘C(V.A)(B) ) ;B(U;)’ ) sca (d;)’ ) %2)&

Using the dual base (WT]Tez" one may obtain a similar derivation of the
Dempster-Shafter ("pessimistic") update rule. (See Dubois-Prade (1991), and

Lipman (1992).)

9. Conclusion

This paper suggests reinterpreting a known theorem from the theory of
cooperative games as an embedding of not-necessarily-additive probabilities in
additive ones (on a larger space). “ince both the embedding functicn and the
Choquet integral are linear, a variety of additional results follows, which
shed new light on Choquet-expected utility theory. Furthermore, results and
tools regarding additive measures (such as the Radon-Nikodym theorem and
Bayes' update) may be naturally extended ¢ non-additive ones using the
isomorphism between these spaces. We trust that additional results may be
derived in a similar manner, and therefore propose this ilsomorphism as a basic
tool for the analvsis of non-additive measures and Choquet integration with

respect to them.
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