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ABSTRACT

We consider the problem of selecting envy-free allocations in economies
with indivisible objects and quasi-linear utility functions. We study the set
of envy-free allocations for these economies and characterize the minimal
amount of money necessary for its nonemptiness when negative
distributions of money are not allowed. We also find that, when this is
precisely the available amount of money, there is a unique way to combine
objects and money such that these bundles may form an envy-free
allocation. Based on this property, we propose a solution that selects a
unique utility profile for any economy. When there is more money than is
needed to solve the envy-free problem, our solution allocates it equally and
we retain the uniqueness of the utility profile. Among the properties
satisfied by this solution we find that it is invariant with respect to shifts in
the utility scale of any agent, not obviously manipulable and can be
computed by a polynomial-bounded algorithm. We show that when some
agents leave the economy, the set of envy-free allocations for the new
economy may offer new possible combinations of objects and money. Based
on this, we argue that one should not expect a solution to this selection
problem to satisfy any property related to consistency, as has been
suggested in the literature.



1. INTRODUCTION.

Envy-free allocations, as defined by Foley (1967) are allocations for
which every agent prefers his own bundle to those assigned to other agents.
It is well known that they do not always exist when there are indivisible
goods to be allocated among the agents. For instance, consider a two person
economy with two indivisible goods to be allocated and such that one of the
goods is preferred to the other one by both agents. Obviously, in any allocation
one of the agents does not get the most preferred good and will envy the other
agent. In order to guarantee the existence of envy-free allocations for these
economies, there has to exist an infinitely divisible good (that we may think of
as money) to compensate agents when the distribution of the indivisible ones
generates envy among them.

The availability of the infinitely divisible good (money) guarantees the
existence of envy-free allocations if we do not have any restriction on the
distribution of money (Svensson (1983) and Alkan, Demange and Gale (1991)).
Sometimes, we may want the money allocations to be nonnegative, since the
allocation of negative quantities of money requires additional assumptions on
the original wealth of the agents. In this case, envy-free allocations only exist
when the quantity of money available in the economy is large enough
(Maskin (1987) and Alkan, Demange and Gale (1991)). In this paper we
study both cases.

The economies we deal with are defined by a set of objects, a quantity of
money and a set of agents with preferences defined on objects and money.
The agents are going to receive an object and an amount of money in addition
to the wealth they may already have. A classical example is the allocation of
an inheritance. Another typical example is the allocation of jobs and money
compensations, where money comes from taxes paid by the agents. In this
case we may have special interest in solutions that choose allocations using
the minimal possible amount of money. We address here the problem of
deciding in which way the goods and the money should be allocated among
the agents if all agents are supposed to have the same property rights over
the objects and the money (see Moulin (1990)). First we are interested in
allocations that do noi generate any envy, but for these economies the set of



envy-free allocations may be quite large. Thus we are faced with a selection
problem. Since a solution to this problem that chooses many different
allocations is not very useful, the goal of this paper is to find a solution that
gives a precise recommendation of how to allocate objects (indivisible goods)
in a way that is envy-free and normatively justified.

This problem has been addressed by Alkan, Demange and Gale (1991)
and Tadenuma and Thomson (1991.c) who proposed solution based on
intuitive considerations of fairness, and by Tadenuma and Thomson (1991.a)
whose solutions were defined axiomatically.

Traditionally, an allocation is called “fair” if it is both Pareto efficient
and envy-free. It has been proved (Svensson(1983) and Alkan, Demange and
Gale (1991)) that for economies with indivisible goods and money, given
continuous utility functions which are unbounded in money, the set of Pareto
efficient allocations contains all envy-free allocations. Therefore, the set of
“fair” allocations for these economies does not satisfy our requirement of a
precise recommendation.

We use the model suggested by Tadenuma and Thomson (1991.a and
1991.c) with the additional assumption that the utility functions are quasi-
linear. A few words on this condition are in order. We find that envy-freeness
is a relevant condition on the “desired” allocations only as long as there exists
some homogeneity among the agents. For example, if we were to allocate an
inheritance among a set of agents of which some were very wealthy while
others were extremely poor, the envy that the rich may experience would
hardly be a convincing argument to rule out certain allocations. Thus, the
focus on the concept of envy seems to presuppose some comparability or
homogeneity of the agents. In our model the homogeneity among agents is
represented by the assumption of identical and constant marginal utility of
money, i.e. the utility functions are quasi-linear in money (additively
separable and linear in money). This special case is mentioned in Tadenuma
and Thomson (1991.a) and (1991.c).

Given this notion of homogeneity, a natural suggestion for a solution is
to equate the utility of all agents. This criterion seems to make sense since
our uiility functions allow interpersonal utilily comparisons. We call it the



egalitarian criterion, and we find that in our economies egalitarian
allocations always exist but the set of envy-free allocations satisfying this
property may be empty. We characterize the class of economies for which
this set is nonempty. For the economies in this class, the egalitarian
allocations satisfying envy-freeness are almost unique, and coincide with the
solution proposed by Alkan, Demange and Gale (1991). But for the economies
out of this class this criterion does not provide a solution.

However, in many problems the utility functions of the agents may not
be available. Since the preferences are defined on bundles composed by an
object and money, we will only be able to learn the differences between the
values that each agent assigns to each pair of objects. Typically, we will not
have an object that is necessarily “as valuable” to all agents, even if we
include a “nothing” object. For instance, in a job-allocation problem we
cannot always assume that all agents value leisure in the same way. Thus
we will assume that the utility functions of the agents are given up to a shift
by a constant. This renders the egalitarian criterion devoid of content, since
it again becomes meaningless to state that “agent i is as well-off as agent j”.
It is crucial to note two points: first, the assumption of quasi-linear utilities
does not imply interpersonal comparisons of absolute utility levels: only the
differences between such levels are comparable. Second, the notions of envy
and envy-freeness (as well as Pareto efficiency, of course) are well-defined
even if the utilities are given up to a numerical shift.

We approach the selection problem by applying a pseudo-egalitarian
criterion. First, we construct an envy-free allocation that allocates
nonnegative quantities of money to the agents and uses the minimal amount
of money. We find that this allocation is “almost unique” in two ways: first,
there is only one way of combining objects and money to have envy-freeness;
second, all agents are indifferent among all envy-free allocations (Tadenuma
and Thomson (1989) refer to this property as “single-valuedness up to
indifferent permutations”). When there is more than one envy-free
allocation, the same bundles are given to different agents. This implies that
when we have just enough money to guarantee the existence of envy-free
allocations the envy-free solution gives as precise a recommendation to the
allocation problem as one could hope for (obviously, ties can always be broken



arbitrarily or randomly). When money is given exogenously and exceeds the
amount needed to solve the envy-free problem, we allocate it equally and we
retain the egalitarian and envy-free properties as well as the uniqueness of
the utility profile. Therefore, this allocation satisfies the requirements
described at the beginning and is proposed here as a solution to the selection
problem. We describe a procedure to calculate the set of allocations selected
by our solution. The computation of these allocations can be done by an
algorithr ;' a polynomial time complexity.

Comparing the allocations chosen by our solution for two economies
which only differ in the total amount of money, we find that the solution
chooses an allocation that distributes the difference between the two total
amounts of money equally among the agents. We name this property
monotonicity with respect to money. It implies the properties of “money-
monotonicity” and “translation invariance” defined by Tadenuma and
Thomson (1989). Furthermore, our solution depends only on the differences
between the values every agent assigns to each pair of objects. Hence, it is
invariant with respect to shifts in the utility scale of any agent.

We note that most solution concepts proposed in the literature fail to
choose a unique (or almost unique) allocation. An exception is Alkan,
Demange and Gale (1991) who proposed a solution that also chooses a unique
utility profile, and is based on the maximin criterion, where the worst off
person is as well off as possible. In order to find the allocation chosen by this
solution we need to know not only the differences between the values every
agent assigns to each pair of objects but also the differences of these values
for all pairs of agents and objects.

Furthermore, an implementation problem may also arise here:
assume (rather realistically) that the utilities are not commonly known and
have to be reported by the agents. Knowing that they are to get the allocation
chosen by this solution, some agents may have an incentive to misreport
utility values. To be precise, for every agent truth-telling (assuming well-
defined) is dominated by reporting a utility function which is shifted down by
an (additive) constant. While our solution also fails to be nonmanipulable
(see Tadenuma and Thomson (1991.b), who prove that such do not exist), it is,
at least, robust with respect to these dominant manipulation strategies. Not



knowing what the utilities of the others really are, other manipulations may
or may not be profitable. Hence, even though truth-telling is by no means a
dominant strategy (given our solution), it is at least an undominated one. We
say that a solution is “not obviously manipulable” when it satisfies this
property.

We also find that our solution does not satisfy the axioms related to
consistency required by Tadenuma and Thomson (1991.a). In studying the
reasons we find that the number of envy-free allocations increases when the
economy becomes smaller. Intuitively this means that when there are less
agents and objects they may envy each other as much as before, but no more.
We conclude that we should not expect an envy-oriented solution to the
selection problem to be invariant with respect to the number of objects or
agents.

The rest of the paper is organized as follows. Section 2 describes the
model and defines the properties for allocations that we use in the paper.
Section 3 studies the set of envy-free allocations when there are no
restrictions on the distribution of money and when nonnegative allocations of
money are required. Section 4 analyzes the set of egalitarian allocations.
Section 5 describes the recommended solution to the selection problem and its
properties. Section 6 includes some comments on consistency and its
relevance to the envy-free problem. Finally, section 7 describes how our
solution can be applied to economies in which the number of agents and
objects differ.

2. MODEL AND DEFINITIONS

An economy is represented by an ordered pair e = (F, M), where M is a
real number representing the amount of an infinitely divisible good, which
we call money. F describes the fundamentals of economy e and is given by an
ordered triple F = (Q, A, uQ), where Q = {1, 2, ..., n} is a finite set of agents, A
= {a1, ®2, ..., @n} is a finite set of objects and the component uq is constructed
thus:



Each agenti e Q is endowed with a preference relation defined on the
product of A and the real line, which is assumed to admit a numerical
representation by a quasi-linear utility function:

Ui(ay,x) = uj(ay) + x

This function is interpreted as the utility that agent 1 € Q derives when
he receives an object aj € A and an amount of money x € K. The symbol ugq,

in the economy description, stands for a list of n nonnegative vectors, one for
each agenti e Q.

uQ = { [Ui(al), ui(a2), reey ui(an)] }ieQ

Each component of the vector [uj(aty), uj{a2), ..., uj{an)] denotes the

utility levels that agent i derives from receiving each one of the objects in A.

We will denote by € the class of such economies.

Given an economy e = (F, M) € €, we define an allocation for this
economy to be a pair z=(o,m), where ¢ is a bijection, 6:Q—A, assigning to
each agent i € Q an element oj € A, and where m = {m1, msg, ..., mp} is a
vector in R and m; is to be thought of as the amount of money agent i

receives.

We say that an allocation z = (g, m) is feasible when the total amount of
money is distributed among the agents, i.e.:

i=M

'ﬁ'[\E/] ot
[

Z(e) will denote the set of feasible allocations for the economy e € €.

In some cases it may be of little interest to consider allocations in
which agents receive negative quantities of money, unless we make
additional assumptions (e.g., the agents hold positive quantities of money).
Therefore, we also study the case in which agents can only receive
nonnegative quantities of money. Obviously, only economies with a



nonnegative total quantity of money M are of interest in this case. The sub-
class of € containing these economies will be called €., i.e.:

e,=e=F, M)ee/M=z0}

Correspondingly, we define a modified concept of feasibility: an
allocation z = (o,m) € Z(e), where e = (F, M) € €., is called feasible with

nonnegative transfers if it is feasible and m 2> 0.

Z.(e) will denote the set of feasible allocations with nonnegative
transfers for the economy e € €, . Naturally, for each economy e € €, Z+(e) ¢
Z(e).

For each economy e = (F, M) € € there are n! different ways to

distribute the objects among the agents, which we will generically denote by
o, ¢, ... and for each ¢ there are infinitely many ways to divide the total
amount of money M among the agents. Therefore, the set Z(e) contains
infinitely many allocations. The following properties may aid in the selection
of a normatively appealing allocation.

Definition 1:

An allocation z = (o,m) € Z(e), where e = (F, M)e €, is called Pareto
efficient if there is no feasible allocation z'=(c',m') € Z(e) such that

ui(c'i)) + mj' 2 u;(c(@d)) + mj for all 1€ Q, and

uj(6'() + mj' > uj(o()) + m; for some j € Q.
P(e) will denote the set of Pareto efficient allocations for e € €.
Definition 2:

(Foley (1967)). An allocation z = (o,m) € Z(e), wheree = (F, M) € €, is
called envy-free if

ui(o(1)) + mj 2 uj(c(j)) + mj foralli,je Q.

E(=) will denote the set of envy-free allocations for tne economy e € €.



Definition 3:
An allocation z = (o,m) € Z(e), where e = (F, M) € €, is called
egalitarian if
ui(o(i)) + m; = uj(c()) + mj foralli,je Q.

I(e) will denote the set of egalitarian allocations for e e €.

Definition 4:

An allocation z = (o,m) € Z(e), where e = (F, M) € €, is called g-efficient

if it is optimal with respect to the utilitarian criterion, i.e.,

n n
Yuic@®) =2 Yuia'@) for every bijection 6:Q—A.
1=1 i=1

aP(e) will denote the set of a-efficient allocations for e € €. Since the
requirement is only on the distribution of objects, we shall say that o is a-
efficient if this condition is satisfied.

The intersection of P(e), I(e), E(e) and aP(e) with Z,(e) are denoted by
P.(e), E.(e), I.(e) and aP.(e). These are the sets of Pareto efficient, envy-free,
egalitarian and a-efficient allocations again which are also feasible with

nonnegative transfers.
3. ENVY-FREE ALLOCATIONS

In order to analyze the set of envy-free allocations for our economies
we give a characterization for Pareto efficient allocations and we derive the
already known results of existence and efficiency of envy-free allocations for
our economies. We then proceed to show how the nonnegativity requirement
on the distribution of money affects these results. The proof of existence of
envy-free allocations for our economies reveals the special structure of the set
E(e), and will also suggest a natural solution to the selection problem. We
also include a very simple proof for efficiency. See Svensson (1983) and
Alkan, Demange and Gale (1988) for more general proofs.



Since for each economy e = (F, M) € €, there is a finite number (n!) of

different distributions of money among agents, there will always exist at
least one satisfying a-efficiency. Therefore, the set aP(e) is never empty. And

this property characterizes the set of Pareto efficient allocations for the class
of economies we are interested in.

PR™POSITION 1

For each e € €, aP(e) = P(e).

Proof:

First, we show that aP(e) < P(e), for each e € €.

Let z = (0, m) be an a-efficient allocation. Suppose that there exists z'= (o',
m') such that

ui(c'd)) + mj' 2 uj(c@d)) + mj

for all i € Q, with at least one strict inequality. Summing up these
inequalities for all i € Q, we have:

n

n
ui(o'G) +M > Dui(o) + M
1=1 =1

Thus

n n
Yui@@) > Yui(o@)
1=1 =1

So we must have z = (6, m) ¢ aP(e) which contradicts our initial assumption.
Therefore, z € aP(e) implies z € P(e).

To show that P(e) ¢ aP(e) for each e € €, assume that there exists z=( o, m)
P(e) such that z = (6, m) ¢ aP(e). This implies that there exists a bijection ¢’
Q — A such that:



n n
ui(o’()) > Yui(odi)).
=1 1=1

1

Using the distribution ¢' we construct a new allocation z' = (¢', m') such
that:

m;i = mj + u(o(@)) - ui(a’(i))
This allocation is at least as preferred as z = (o, m) for all the agents. But, it
is not feasible since:

n n

n
Ymi' = Ymi+ Yuio@d) - ue’iN] < Ymi = M.
i=1 =

i=1 i=1 i=1

o]

From 2z’ it is easy to construct a feasible allocation, for instance, assigning
the residual money to one agent j € Q:

n
mj" = m; +M-‘21mi
1=

B
Il

m; foreachie Q withi#j.

Now we have a new allocation z" = (¢', m") which Pareto dominates z = (o,
m) and so z ¢ P(e).e

As an implication of this result, the Pareto efficient allocations are
characterized only by a condition on the fundamentals of the economy. Since
for each economy e € € there is always a o satisfying a-efficiency, we shall

always have infinitely many Pareto efficient allocations for each economy:
n

{(0, m): o is a-efficient and Y mj = M }. To show the existence of envy-free
i=1

allocations for any economy in € we need some additional notation.

Notation: Let kioj denote the extent to which agent i envies agent j given

the distribution of objects among agents o, i.e.,

10



ki‘J’. = ui(o(j)) - uj(o@)).

(Note that this expression may, of course, be negative.)

Observe that z = (o,m) € oP(e) if and only if

n

z : o . ..
kic'l(c’(i))s 0 for every bijection 6”:Q —A.
i=1

And z = (o,m) € E(e) if and only if

mi-mjzk(ij. for alli,j e Q.

Given F = (Q, A, uq) and a distribution of objects 6:Q—A, we construct
a directed graph G4 = (Q, Q2), where every agent is represented by a node and

every two agents are connected by an arc. We define the weight of arc (i, j) to
be kg. . The total weight of a directed path (r, T) = [r(1), ..., r(T)], with r(t) € Q
foreacht =1, ..., T, is given by

T-1

(o)
w(r,T) = Zkr(t)r(tﬂ)
t=1

A cycle is a directed path (r, T) with r(1) = r(T).
LEMMA 1

An allocation z = (g, m) is a-efficient if and only if every cycle in G4 has

a nonpositive total weight.
Proof:

Given o and z = (g, m), z is a-efficient if and only if:

1



n
} : o]
< e .
kio-l(c’(i))" 0 for every bijection ¢":Q —A.
1=1

Given o’, we can define a set of cycles in the graph G5. Notice that every
disjoint set of cycles defines a ¢’. Hence, o satisfies a-efficiency if and only if
the sum of the total weights of these cycles is nonpositive. We want to prove
that this is true if and only if the weight of every cycle in the graph is
nonpositive. However, the “if” is immediate and the “only if” is simple:
Suppose one of this cycles has positive total weight, i.e., for someie Q

T-1

o )
Zkr(t)r(t+1) >0, wherer(1) =r(T) =1
t=1

Supplementing r by (n - T) trivial cycles {(i, 1)}j¢ {r(j)]?:i yields a contradiction.
Hence o is a-efficient if and only if all cycles are nonpositive.®

LEMMA 2

If o satisfies a-efficiency, then for eachi € Q

T-1

w(rj, Tj) = max Ekr(t)r(t+1)
t=1
s.t. (1) =i

(r, T) is any path in Gg
has a finite and nonnegative solution.

Proof:

First, we show that for every path (r, T) there is another path (', T") with
T'<n such that w(r’, T) =2 w(r, T). If T > n then (r, T) must contain a

nontrivial cycle, because the graph has only n nodes. For each cycle there



exist t* and t** such that t* < t** < T and r(t*) = r(t**). Therefore, the total
weight of (r, T) can be decomposed as follows:

T-1 t*-1 t**.1
o o o
wir, T) = Zkr(t)r(m)‘ Zk(t)r(t+1)+ zkr(t)rmn
t=1 t=1 t=t*
T-1
o
* zkr(t)r(tﬂ)
t=t**
Since [r(t*), r(t*+1), ..., r*(t**)] is a cycle, a-efficiency implies that its total

weight must be non positive. Then

T-1 te1 Tl
c Y ¢
w(r, T) = Zkr(t)r(t+1) < zkr(t)r(t+1)+2kr(t)r(t+1)
t=1 t=1 t=t**

Following this reasoning for all cycles, we shall find a path (r’, T") with T’<n
contained in the original path (r, T). Therefore for each i € Q there is a path
(r;, T;) with T; < n, which satisfies:

T-1 T-1
wiri, Ty) = max zkf(t)r(m) = max Zkf(t)r(m)
t=1 t=1
s.t. r(1)=1 s.t. (1) =i
(r, T) is any path in G4 (r, T) is any path in G4
with T < n

Since the solution for the right hand side problem exists and is finite, we
also have a finite solution to our problem. This solution must be nonnegative,
since loops (r, T), with w(r, T) = 0, are also in the feasible set.®



To prove the existence of envy-free allocations we start by showing that,
given the fundamentals of an economy, for every a-efficient distribution of
objects among agents we can find a distribution of money such that they
form an envy-free allocation for the economy defined by these fundamentals
and the amount of money given by the total amount distributed.

PROPOSITION 2

Given F = (Q, A, uq), for each bijection 6:Q— A that satisfies a-
efficiency there exists m* € R? such that z = (¢, m*) e E((F, M*)) where M* =

n
i,
=1

Proof:

Given an a-efficient o, by Lemma 2, for each 1 € Q there is a path (r;, T;)
solving the maximization problem. Define m;* by:

Ti-1 T-1
Sk - T = N = °
m;* = w(rj, Ti) = max E ,kri(t)ri(t+1)- max zkr(t)r(”l)
t=1 t=1

s.t. r(l)=1

(r, T) is any path in G4

Let m* = (m1*, ..., mp*). To show that (o, m*) e E((F, M*)) we need to prove

that for all i, j € Q mj* - mj* 2 kg. Suppose, to the contrary, that mj* - m;* <

kg for some 1, j € Q, then we must have:

Ti-1 Tj-1
% _ oy ¥ = c } (0 (¢}
it my z,kri(t)ri(m) E,krj(t)rj(m) <kj;
t=1 t=1

which implies:

14



(8] (o) (8)
z,kriu)ri(m) < K+ z Kt

t=1 t=1

Since the right hand side is the total weight of a path starting at node i, i.e.,
(i, rj(1), ..., rj(Ty)], this inequality contradicts the fact that the path (rj, Tj) is a

solution to the maximization problem for agent i. Therefore, we must always

have mj* - mj* 2 k?j , which proves that z = (o, m*) € E(e*).*

A correspondence ®: e — Z(e) (for e € €) satisfies monotonicity with

respect to money if given two economies that only differ in the total amount of
money, for each allocation chosen by the correspondence for one of them, it
will choose an allocation for the other that only differs in the distribution of
money and in which agents share equally the difference between the two
amounts of money,.

Definition 5:

A correspondence ®: e — Z(e) (for e € €) satisfies monotonicity with
respect to money if given an allocation z = (¢, m) € O(F, M)) for every M’ the
allocation z’ = (o,m’) € ®{(F, M)) where mj =m; + (IM'-M)/n forallie Q.

The next proposition shows that the set of envy-free allocations
satisfies monotonicity with respect to money.

PROPOSITI
E(.) satisfies monotonicity with respect to money.

Proof:

z = (o,m) e E({(F, M)) if and only if



i=M.

gjb

mi-mjzkg foralli,je @ and
i=1

By construction of z’, we have: m;’ - mj = mj - mj, therefore
n
m;’ - m; Zkg foralli,je Q and Ymi= Ymj+M-M=M
i i=1

which is the definition of z’=(c,m’)e E((F, M’)).*

Propositions 2 and 3 give the existence of envy free allocations for any
economy e = (F, M) e €. We will now show they are also efficient.

PROPOSITION 4 (Svensson (1983))

For each e € €, E(e) c aP(e) = P(e).

Proof:

Suppose that there exists z = (5, m) € E(e) and z = (¢, m) ¢ P(e) = aP(e). Then,
there must exists 0":Q—A such that

n

ko 0
ic ()

i=1

o’ defines at least one cycle [r(1), r(2), ..., r(T)=r(1)] with positive total weight.:

T-1

(o)
Zkr(t)r(m) >0.
t=1

Since z = (6, m) € E(e), we must have that mj - m; > koij for all i, je Q.
Therefore,

(o}
>
mr(1) 2 Mp(2) + kr(l)r(2) >myr) + k

¢ + ...+ ko
r(T-1)r(T) r(1)r(2)

16



T-1

=m + kc >m
= Mr(1) Z r(t)r(t+1) 7 i)
t=1

Which is a contradiction.®

When we restrict our attention to the set of feasible allocations with
nonnegative transfers, we still have existence for a-efficient allocations but

this property no longer characterizes the Pareto efficient allocations. The
result we have here is the following:

PROPOSITI
For each ee €, , aP,(e) c P.(e).

The first part of the proof for Proposition 1, in which we show that aP(e) ¢
P(e) also applies here. Observe that following the reasoning of the proof of
Proposition 4 we can also prove the next Proposition.

PROPOQSITION
For each e e €, ,E (e) c aP,(e).

Hence, the distributions of objects that can generate envy-free allocations
must satisfy a-efficiency. The following example shows that there may exist
Pareto efficient allocations that are no longer a-efficient.

Example 1:

Let e =(F, M) € € be such that: Q = (1, 2}, A = {«1, ag}, uq = {[ ui(ey) = 10,
up(ag) =117, [ualag) =6, ug(ag) =51} and M = 10.

In this case the a-efficient allocations with nonnegative transfers are such
that agent 1 receives object o; and agent 2 receives object ag because:

upag) + ug(oe) =10 + 521 + 6 = uj(og) + ug(og).
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However, we can easily check that the allocation z = [ (a2, 0), (a1, 10) ] which
is not a-efficient, is Pareto efficient since there is no feasible allocation with

nonnegative transfers that dominates it.®

Furthermore when we select allocations in the set Z,(e) the set of envy-free
allocations may be empty:

Example 2:

Let e = (F, M) € €, be such that: Q = {1, 2}, A = {o], ag}, uq = { [ui(a;) = 10,
uj(ag) = 2], [ua(a) = 9, ug(ag) =4]}and M = 3.

a-efficient allocations for this economy assign the object a; to agent 1 and the
object a2 to agent 2, since:

uj{oy) +ug(oe) =10 +4>9 + 2 =uj(og) + ug(ay).

Given the a-efficient distribution of objects, the distribution of money among
the agents in an envy-free allocation must be such that:

k12 < my-mo < -kg;,
mi; +mg = M,
m; 20, mg=220
where:
k2 = ujlag) - uy(ay) =-8
koj = ug(ay) - uglag) = 5
M=3.

It is easy to see that there are no real numbers satisfying the last conditions.
Therefore, for this economy the set of envy free allocations with nonnegative
transfers is empty.®



The existence of envy-free allocations for our economies can only be
guaranteed when the total quantity of money in the economy is large enough.
Maskin (1987) and Alkan, Demange and Gale (1991) give sufficient conditions
on the total quantity for a more general class of economies. For our
particular model we have a necessary and sufficient condition on the total
quantity of money for envy-free allocations with nonnegative transfers to
exist.

THEQREM 1

Given F = (Q, A, uq) there exists a nonnegative number Mg(F) such
that the set E,((F, M)) is non-empty if and only if M > Mg(F). Moreover, for
every a-efficient ¢ there exists mo 2 0 such that (o, m9) e E(F, Mg(F))).

Proof:

The strategy of the proof is as follows: First, we show that for every a -

efficient distribution of objects ¢ there is a number M%(F) such that there

exists z = (0, m) € E,((F, M%(F))) if and only if M > M%(F). Next, we will show

that M%(F) is independent of o.

Given F = (Q, A, uq), fix an a-efficient bijection 6:Q—A and consider an
allocation z = (o, m*), where for each i e Q

T-1
m;* = w(r;,Tj) = max st(t)r(tﬂ)
t=1
s.t. r(1)=i

(r, T) is any path in Gg

By Lemma 2 we know that this maximization problem has a finite and
nonnegative solution. First, we show that z = (o,m*) is an envy-free allocation



n
for the economy e=(F, M*) where M* = Zmi*. By Lemma 2 we know that m;*

i=1
>0 for alli € Q. Suppose we had:
T;-1 T;-1
ek o ) ] (o]
my™ - my = § ,kri(t)ri(t+1) E ,krj(t)rj(t+1) < kij .
t=1 t=1

This inequality implies that there is a path [j, rj(1), ..., r(Tj)] starting at i with
a higher total weight than (r;, T}), which is a contradiction. This yields:

Ti-1 Tj-1
Kk Y . o c -
m;* - mj* = E kri(t)ri(t+1) E krj(t)rj(t+1) > kij for alli, je
t=1 t=1
Q.

Therefore z = (o, m*) € EL((FF, M)). Now, we show that M* is the minimal
quantity of money needed to generate envy-free allocations from ¢. Suppose

m’ = (my’, ..., my’) 2 0 is another distribution of money such that
n
i =M <M* and z = (o,m’) ¢ E.((F, M)). Then, for some i € Q we must
1=1
have m; < m;*. And, since (o, m’) is envy-free, my,’ - mj > kij must hold for
all h, j e Q. This implies:
T;-1
mi < m;* = k® <m -m’ +m -m’ +..+
! ! riltt)r;(t+1)  ~ (1) ri(2) ri(2) ri(3) T
t=1

M Ti-1) " R(T) = W) " Dry(Ty) = T - Mr(Ty)

which, in turn, implies that m,l‘i(Ti) < 0 and therefore z = (o, m’) is not

feasible.



Finally, note that if M > M*, by Proposition 3, there is m > m* such that z =
(0, m) e EL((F, M)). Therefore, z = (¢, m) is envy-free if and only if M > M*,

Thus, for each o that satisfies a-efficiency we can find the minimal quantity
of money needed to generate envy-free allocations. We denote it by MOE(F). We
now wish to show that it is, in fact, independent of 6. That is, that there is

ME(F) such that, for all o, either z = (5, m) is not an envy-free allocation for

any m, or else M%(F) = Mg (F). We will do so by proving that envy-free

allocations may be permuted and still be envy-free. Let ¢ and ¢’ be two «-

efficient allocations of objects and let z = (5, m) € E,((F, M%(F))). Consider the
allocation z’ = (¢’, m’) where m;’ = M 1(6°(1)) for alli e Q and suppose z’ is
not envy-free. Then, there exist i, h € Q such that

u;i(o’d) + my’ < uj(c’h)) + my’.

Denoting j = 6-1(¢’(h)) and by definition of z’

u;(0’@) + my’ = u;(a’@) + M1 ((i)) < u;(0()) + m; = u;(o’(h)) + mp’.

Rearranging terms and using the definition of kg we have:
M o) - < ui(a()) - wi(d’d)) = ui(a()) - ui(a@@)) + ui(o@@)) - ui(c’@))

g (o)
i " Koo'

n

Because both ¢ and ¢’ are a-efficient k:
-_>- o
h=1

= 0, and we can write:

Y(s’h))
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n
c ,0 c c
i Kioueqy TR Ekho-l(c’(h))

h=1;h=i
Since z = (0, m) is envy-free we have:
n n
kS ° < k2 + my -m
ij ¥ Kpoloth) = 5ij h~ Mo-1(a'(h))
h=1;h#i h=1:hsi

g () 0]
= kl_) + ME(F) - ml - ME(F) + mc_l(c,(i))

=kJ -m; +m RYPRyY
ij 1 o (c’(i))

o C
We get m 151y - m;< kij - M+ Mo 1)) which implies that m, - m;<

ki(;' and contradicts the fact that z is envy-free. Therefore, we have that z’ =

(o’, m) e E.((F, M%)) and by definition of Mg we must have M% > Mg . But

following the same reasoning for ¢’ we would get MY, < Mg , hence M% =

b

9]

ME . This completes the proof of the theorem.®

4. EGALITARIAN ALLOCATIONS

In this section we study the existence of egalitarian allocations.
According to these allocations all agents achieve the same utility level. First,
we do it for the general case, without any restrictions on the amounts of
money, and then for allocations with nonnegative transfers.



PROPOSITI

Given an economy e € €, an allocation z = (6, m) is egalitarian if and

only if
n
M + D Tui(o@)) - uj(e())]
m; = 1=1 - forallje Q
Proof:

To see that z is egalitarian note that for all j e Q

n

M + 2ui(o(i)
~
uj(oG) + mj= ———

On the other hand, if z € I(e) we know that u;(c(i)) + m; = K for all 1 e Q and
some K € R, therefore

n
M+ Zui(c(i))
i=1
n

K=

and m; = K - u;(c(i)) for all 1 € Q which is the desired conclusion.®

Since for each economy there always exists a distribution of objects
among the agents which generates efficient allocations, from the last result
we can conclude that for each economy there is always an efficient and
egalitarian allocation. All one has to do is to choose an a-efficient distribution
of objects and the distribution of money given by the last proposition. When
we consider nonnegative transfers of money, however, egalitarian
allocations may fail to exist if the total quantity of money in the economy is
not large enough. The next result gives necessary and sufficient conditions
on the quantity of money for the set I.((F, M)) to be nonempty.



THEOREM 2

Given F = (Q, A, uq) there exists a nonnegative number M[(F) such
that the set I.((F, M)) is non-empty if and only if M > My(F).

Proof:

By Propo<ition 7, given the distribution of objects o, z = (o,m) € I, ((F, M)) if

and only 1ir the amounts of money received by the agents satisfy:

n
M+ -z[ui(o(i)) - uj(a(G)]
m;j = 1=1 " >0 forallje Q

Therefore, a necessary and sufficient condition for the existence of z = (5, m)
in I.((F, M)) is

n

n
M2 Dui(e()) - ui(o@)] = n uj(s()) - Qui(ol) forallje Q
i=1 i=1

and defining

n

M](F) = n maxieq (uj(0() } - ui(o(d))
=1

we conclude that such allocations exist if and only if M > M?(F). Since for

each economy there is a finite number of distributions of objects, we can
always find the minimum of these total quantities:

M (F) = min { M?/ 5:Q—A is a bijection }.

5.SOLUTIONS.

The goal of this section is to define the best allocation for each economy
following the criteria described in the introduction. The set of feasible
allocations we have under consideration will be Z(e). However, all the



following results apply when transfers of money are required to be
nonnegative if a condition for the existence of the suitable allocations is
satisfied.

Definition 6:

A solution is defined as a correspondence ® which assigns to each

economy e € € a non-empty subset ®(e) of Z(e).

We want a solution to choose allocations satisfying some properties in
the feasible set and we would like it to give precise recommendations
regarding the distribution of objects and money among the agents. We have
seen that the Pareto solution, the Envy-free solution and the Egalitarian
solution choose a large number of allocations.In particular, we want a

solution to choose from the set of envy-free allocations. Given the fact that
E(e) < P(e), it is natural to suggest I(e) n E(e) < P(e) as a solution. But

allocations that are both envy-free and egalitarian do not exist in general.
(See Thomson (1990).) The following proposition characterizes the subclass of
economies for which these allocations do exist. The necessary and sufficient
condition for the set I(e) N E(e) to be nonempty requires the existence of a

distribution of objects such that each agent values the object received from it
more than any other agent. This sub-class will be denoted &.

Definition 7:

e € § if there exist a o such that u;j(6(i)) 2 uj(c(i)) forall i,je Q.
PROPOSITION 8

For each e € €, there exists z = (6, m) € I(e) n E(e) ifand only ife € &.

Proof:

Let us begin with the “only if” part. Let z = (6, m) € E(e) N I(e). Since z € I(e) it

must satisfy:
uj(o(i)) + mj = uj(c(j)) + mj, for allije Q.

Since z € F(e), it must also satisfy:



m; - m; < uj(6(j)) - yjla(@), for all ij e Q.
But since mj - mj = uj(6(j)) - uj(c(i)), we must have
uj(o()) - ui(o@) < uja()) - ujlo)), for all ij € Q.
And this is true if and only if:
ui(o(i)) 2 uj(e@)) for alli,je Q.

As for the “if” part, assuming e € &, let ¢ be such that uj(c(i)) 2 uj(c(i)) for all

1,J € Q. By Proposition 7 there exists m = (mj, ..., mp) such that z = (o, m) €
n
M + Yui(o) - uj(e())]
I(e) and m; = =1 0 for allj € Q. To see that z is an envy

allocation we have to prove that mp - m; > klclj holds for all i, j € Q:

n n

M + Xui(o(i)) - un(oth)] M+ > fui(o(d) - uj(e()]
mp, - m; = 1=1 - ) 1=1 -

= uj(0()) - up(o(h)) = un(o()) - up(a(h)) = kgj

Where the inequality follows because uj(c(i)) 2 uj(c(i)) for all i,j € Q.
Therefore, we have z € 1(e) N E(e).®

When feasibility requires nonnegative transfers we need an additional
condition to guarantee that the set I.(e) N E.(e) is non-empty.

P ITI

Given e = (F, M) e €,, the set I,(e) N E;(e) is non-empty if and only if
there exists 6*: Q — A such that

(a)  uj(c*({) 2 ujlo*@i)) for alli, j e Q.

*

& M2 MS
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Proof:

Starting with the “if” part, assume such o* does exist. By condition (a) and
Proposition 8 we have that there exists z = (6*, m) € I(e) N E(e). By condition
(b) the distribution of money for an egalitarian allocation generated by o* is
nonnegative. Therefore, z = (6*, m) € I4(e) N E;(e). On the other hand, if
there exists z = (o, m) € I4(e) n E.(e) then z = (0, m) € Il(e) n E(e) and by
Proposition 8 we must have e € &, from which condition (a) follows. Since z =
(o, m) e I,(e) we have that z € I(e) and m > 0 and condition (b) follows from

the definition of M?(F). .

The correspondence ®(e) = I(e) N E(e) could have been a good candidate
for a solution, but is has two flaws: (i) it fails to give any recommendation at
all for a subset of economies, and (ii) like the set I(e) itself, it is not invariant
with respect to shifts in the utility function of an agent, thus rendering
“underestimated” self-reports a dominant strategy. Following the criteria
described in the introduction we propose a solution which may be applied to
all economies in our class, will always choose a unique allocation from E(e)
and is invariant with respect to utility-scale shifts. This solution is defined as
follows:

XK, M) = {(c, m) e E((F, M)):

mj = mj* + (M - Mg(F))/ n and (5, m*) € E((F, Mg(F))

It allocates the money as follows: given any a-efficient allocation each

agent will receive the unique amount of money indicated by the envy-free

allocation for (F, Mp(F)) plus an equal share of the amount of money left

over, i.e. it allocates the minimal amount of money to generate an envy-free
allocation and when there is no more envy applies only the egalitarian
criterion to allocate the rest of the money. Since envy-free allocations satisfy
monotonicity with respect to money the allocations chosen by this solution
are envy-free.



This solution clearly chooses at least one allocation for each economy,

since Theorem 1 shows the existence of ME(F) for each one. Furthermore, it

chooses a unique distribution of money for each a-efficient distribution of

objects. Finally, it has the property that all agents are indifferent among all
allocations chosen by ®*.

THEOREM 3
a) o satisfies a-efficiency if and only if there is a vector m® such that z

= (o, mo) e O*((F, M)). Furthermore, in this case the vector m% is unique.

b) For any z = (6, m®), z’ = (6", m® ) e ®*((F, M)) we have

ui(o()) + m? = ui(c’'(@) + mi" for alli e Q.

Proof:

To prove part (a), let us begin with the “only if” part. Let o be a-efficient. Since
®* satisfies monotonicity with respect to money we can restrict our attention

to the economy (F, ME). In the proof of Theorem 1 we have constructed an
envy-free allocation z = (6, m*) for the economy (F, Mg) for which m;* is

defined as the minimal quantity of money that we have to give agent i, given
that he receives object o(i), in any envy-free allocation. For any other

distribution of money m’ summing up to My we must have m;j* > mj’ for
some 1 € Q. Therefore, it cannot be envy-free. As for the “if” part, since z = (o,

mo) e O*(F, M)) we also have that z = (o, mo) e E((F, M)) and by Proposition

4 ¢ must be a-efficient. This proves part (a).



To prove part (b), and again from the proof of Theorem 1, we know that if z =

(0, m)e E4((F, ME))= O*((F, ME)) and &’ is another a-efficient distribution of

objects and mj’ = mg-1(g()) then z’ = (¢’, m’) € EL((F, Mg)) = @*((F, My)),

i.e. z’ allocates exactly the same combinations of objects and money as z but
to different agents. Since z is an envy-free allocation which uses the smallest
amount ot money, for each i € Q we must have that uj(c(i)) + mj = maxje Q
{ui(c(§)) + mj}. By the same reason uj(¢’(i)) + mj = maxje Q {ui(¢’()) + mg
L&'(i)-, and by construction of z’ these quantities are the same. this proves

part b) for (F, Mp). For any (F, M) the solution only adds the same amount of

money to every agent, and therefore the result holds.®

By construction, the differences between the values that every agent
assigns to each pair of objects is all the information we need in order to find
the allocation chosen by our solution. Hence, our solution is invariant to
shifts in the utility scale of any agent.

Definition 8:

u(.) and u’(.) are equivalent if u(a) = u'(at) + b for all @ € A for some b €

It is easy to see that our solution also satisfies monotonicity with
respect to money.

PROPOSITI 1

a) O*((F, M)) is invariant with respect to shifts in the utility scale of
any agent: for all F = (Q, A, ug) and F’ = (Q, A, v'Q), with u; and uy
equivalent for all i e Q, we have that O*((F, M)) = O*(F’, M)).

b) ®*((F, M)) satisfies monotonicity with respect to money.



Proof:

To prove part (a) first we have to show that the a-efficient distributions of
objects are the same for both economies. This is clear from the definition of a-
efficiency: in the economy (F’, M) we have that ¢ is a-efficient if and only if

n n n n n
Swile@) = Yuicd) + Ibiz Yuic'@) + Yb;
i=1 i=1 i=1 i=1 i=1
n
= ) u'i(c’(1)) for all c:Q—A.
i=1
n n
This holds if and only if Zui(o(i)) > Xui(o'(i)) for all 0:Q— A, which
i:l 1=1

implies that ¢ is an a-efficient distribution of objects for economy (F, M).

The distribution of money chosen by ®* for any a-efficient distribution of
objects for the economy (F, Mg(F)) is given by Theorem 1 as follows:

T-1
m;* = w(r;,Tj) = max zkg(t)r(tﬂ)
t=1
s.t. r(l)=i

(r, T) is any path in Gg

Since it only depends on kg = ui(6(j)) - ui(o@)) fori, j € Q, we have that

k’?j = u’i(6(3)) - ui(c(i)) = ui(c()) - ui(c@@)) for i,j e Q.

Thus, the distribution of money chosen by ®* for the economy (F’, Mg(F")) is
the same and Mg(F) = Mg(F’). Hence, for the economies (F, M) and (F’, M),
after the equal distribution of the money left (i.e., M - Mg(F) for both of them),
the solution will still choose the same allocations. This proves part (a).



To prove part (b), suppose z = (5, m) € ®&* (F, M)), (6, m*) e &* (F, Me(F)))
where M’ € R and consider

m;j =mj+(M-M)/n

m;* + [(M - Mg(F)) /n] + [(M’ - M)/ n]

m;* + (M’ - Mg(F)) / n.

Clearly z’ = (0, m’) € ®* ((F, M’)).*

An important property of our solution is that if the utility functions of the
agents are to be reported then truth-telling is an undominated strategy. We
say that a solution concept is “not obviously manipulable” when there does
not exist an obvious way to improve the outcome that an agent will receive by
misreporting his utility function, given that he does not know the utility
functions reported by the rest of the agents. l.e., for any utility function that
agent i may report there exist a utility profile for the rest of the agents such
that agent i is better off by reporting his “true” utility function. It is shown in
the next theorem that our solution is “not obviously manipulable”.

Definition 9:

A solution @ is “not obviously manipulable” if given Q, A, M, for any
agent i € Q and any u;j and u;’ which are not equivalent, we can find {uj}jxi
such that U;j(®i(F, M)) > Uj(®i(F’, M)) where Uj(.) = uj(.) + m is interpreted
as the “true” utility function of agent i, F = (Q, A, ug) where uq = {uy, ug, ..,
up} and F’ = (Q, A, ug’) where ug’ = {uy, ..., uj-1, Ui, Uj+1, ..., un}.

THEOREM 4
®* is “not obviously manipulable”.

Proof:

Let ui = {ui(ay), ui(ag), ..., uian)} be interpreted as the “true” utility for agent
1 and let uy’ = {u’(ay), ur’(e2), ..., ur’(ag)} be the utility reported by agent 1.
Suppose that u; and uy’ are not equivalent. For any such u;’ we have to find a
profile of utilities for agents 2 to n, {ug, ug, ..., up}, such that if the other
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agents report {ug, ug, ..., up} agent 1 will be strictly better off reporting u;
rather than uy’.

Suppose that the objects are indexed such that ui(a;) > ui(ejs+1) forall 1 <j <
n. By proposition 10 we know that ®*((F, M)) is invariant with respect to
shifts in the utility scale of any agent, therefore we can assume that ui’(ay) =
ui(ay). Then, we will have that either uj’(a) > u;’(a1) for some o € A or up’(a)
<ui’(ay) for all o € A. These two cases are considered separately.

Case 1: Suppose that maxjeq {ui’(a;j)} = ui’(aj*) > ui'(a1). Consider the
following utility profile for agents 2 to n:

ui(oj) =0forallje Qandforall1<i<n

First we compute the allocation given by &* if agent 1 reports his “true”
utility. Notice that ui(a1) 2 ui(a;) for all j e Q implies that every a-efficient
distribution of objects satisfies o(1) = a1 for the economy given by e = (F, M)

and the minimal amount of money for an envy-free allocation to exist is
MEg(F) = 0, since every agent gets his most preferred object. Therefore, ®*(F,

M) assigns to agent 1:
o*(F, M) = (a1, M-Mg(FE)/n) = (a3, M/n)
Which corresponds to the following utility level:

U1(d*(F, M)) =ui(ay) + M/n.

Similarly, we compute the allocation given by ®* if agent 1 reports uy’. In
this case every a-efficient distribution of objects satisfies 6(1) = aj*, 6(i) = o
and the minimal amount of money for an envy-free allocation to exist is
again Mg(F’) = 0. Therefore, ®*(F’, M) assigns to agent 1:

o*1(F’, M) = (a*, (M - ME(F))/n ) = (oj*, M/n)
Which corresponds to the following utility level:
Ui(@*1(F, M)) = uilaj*) + M/n.

Then, U(®*1(F, M)) - Uy(®*1(F’, M) = ui(ay) - ui(ey*) > 0. So agent 1 may be
worse off by reporting ui’(ej) > ui(ay) forany je Q.
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Case 2: Suppose u1i’(ay) 2 ui’(a;) for all j € Q. Let ak41, with 1 <k < n, be the
object with the lowest index with misreported utility, i.e., uj’is such that

u1'(aj) = ui(ay) for allj <k,
u’(ak+1) = ug(ak) - b # ug(ak+1) = uilak) - a, a2 0.

Here we consider two different cases, depending on whether b is greater or
smaller than a.

Case 2.1: Assume that b > a and consider the following utility profile for
agents 2 to n.

if1<ic<k: uj(ai.1) = L

uij(a) = 0 for all a # 4.1
ifi = k+1: uj(ai.1) =6

uj(a) = 0 for all o # 4.1
ifk+l<i<n: ujey) =L

uij{a) = 0 for all o # o

n n

where a < 8 < b and L > max { Zul(ai) + 95, Zul’(ai) + 8}. First we compute
1=1 i=1

the allocation given by ®* if agent 1 reports his “true” utility. Notice that 6 >
n n

aand L > max { zu 1{a;) + 9, ‘zul’(ai) + 8} imply that the bijection ¢ given

i=1 1=1
by: o(1) = ak+1, 6(i) = ai.1 if 1 <i <k +1, 0(i) = o if k+1 < i < n, is the only a-
efficient distribution of objects for e = (I, M). The amount of money that ®*

assigns to agent 1 depends on the value of the parameters in the following
way:

Case 2.1,1: If 6 < uj(ax1) - uj(ak) + a the minimal amount of money for an
envy-free allocation to exist is Mg(F) = 2 (uj(at1) - ui{og) + a) - §, since we have
to compensate agent 1 by uj(uy) - ui(ak) + a, because he does not get his most
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preferred object, and the envy of agent k+1 with respect to agent 1 by uj(ay) -
ui(ag) + a - 3. Therefore, ®*(F, M) assigns to agent 1:

@*1(F, M) = (ak+1, (ui(o1) - ur(ak) + a + (M - Mg(F))/n )
= (ak+1, (I/n)IM + & + (n-2)(u1(a1) - uilax) + a)l )
Which corresponds to the following utility level:
Une(F, M)) = ui(ak+1) + (Un) [M + 8 + (n-2)(u1(a1) - uiak) + a)]
=ujilag)-a+ (I/n) M + 3 + (n-2)(ui(ay) - uilag) + a)l
=(1/n) [ M + 3 + (n-2) ui(ar) - 2 (a - ur(ak))].

Case 2,1.2: Ifuj(ay) - uj(ag) + a < 3 < b the minimal amount of money for an
envy-free allocation to exist is Mg(F) = uj(o1) - uj(oax) + a, since we only have
to compensate agent 1 because he does not get his most preferred object.
Therefore, ®*(F, M) assigns to agent 1:

O*(F, M) = (ok+1, (uiay) - uilax) + a + (M - Mg(F))/n )
= (0k+1, (1I/N)[M + (n-1)(ui(ey) - uiak) + a)l)
Which corresponds to the following utility level:
Ui(@*y(F, M) = uj(ok4+1) + (1/n) [M + (n-1)(ui(ay) - u(ok) + a)]
=uj(ax) - a + (1/n) [M + (n-1)(ui(ay) - ui(og) + a)l
= (1/n) [ M + (n-1) ui(ay) - (a - ur(ax))l.

Now we compute the allocation given by ®* if agent 1 reports u;’. Notice that
n n

a<d<band L > max Zul(oni) + 9, zul’(ai) + 3} imply that the bijection o

i=1 i=1
given by: 6(1) = ag, 06(i) = aj.1 if l <i<k+1,0(G) =0 ifk+1 <i <n, is the only
a-efficient distribution of objects for e = (F’, M). And the minimal amount of
money for an envy-free allocation to exist is Mg(F’) = 2 (ui(ay) - ui(ag)) + 9,
since we have to compensate agent 1 by ui(aj) - uj(ag), because he does not



get his most preferred object, and the envy of agent k+1 with respect to agent
1 by & + ui(ay) - ui(ay). Therefore, ®*(F’, M) assigns to agent 1:

*(F’, M) = (g, (u(ay) - u(ak) + M - Mg(F"))/n )
= (o, (1/n)M - 8§ + (n-2)(u(ary) - ur(og)l)
Which corresponds to the following utility level:
Un@*1(F’, M))  =uj(ok) + (I/n) [M - & + (n-2)(u1(ay) - ualak))]
=(I/n)[ M-+ (n-2) ur(ay) + 2 urlog)l.

Then, if case 2.1.1 applies U(®d*(F, M)) - U(d*1(F’, M)) =(1/n) 2 (& -a) > 0
since 8 > a and if case 2.1.2 applies U(®*1(F, M)) - Up(d*1(F’, M)) =(1/n) b -a
+ uj(og) - ug(ayg)) > 0 since d > a and uj(ag) > ui(ak). So agent 1 may be worse
off by reporting ui’(ag) - ur’(ak+1) = b > a = ui(ag) - uilak+1).

Case 2.2: Suppose that b < a and consider the same utility profile for agents 2
n n

ton asin case 2.1, with 8 > a and L > max { Zul(ai) + 9, Zul’(ai) + 3}. First
i=1 i=1

we compute the allocation given by ®* if agent 1 reports his “true” utility.
n n

Notice that § > aand L > max { Zul(ai) + 9, zul’(ai) + 8} imply that the
i=1 i=1

bijection o given by: o(1) = ak+1,0(0) = aj.;1 if 1 <i<k +1,0() = ifk+1 <i<n,
is the only a-efficient distribution of objects for e = (F, M). And the minimal
amount of money for an envy-free allocation to exist is Mg(F) = uj(ay) - ui(ok)

+ a, since we only have to compensate agent 1 because he is the only one who
does not get his most preferred object. Therefore, ®*(F, M) assigns to agent 1:

o*(F, M) = (ak+1, (ui(ay) - ui(ok) + a + (M - Mg(F))/n )
= (0k+1, (/)M + (n-1)(ui(a1) - uilok) + a)l)
Which corresponds to the following utility level:
U1(@*(F, M) =ui(ak+1) + (Un) (M + (n-D(uiay) - uilak) + a)l

= uj(ag) -a + (1/n) [M + (n-1)(uyay) - ui(ak) + a)l
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=(I/M)[M + (n-1) ui(ay) - (a - urlox)l.

Now we compute the allocation given by ®* if agent 1 reports u;’. Notice that
n n

b<dand L > m'ax. { Zul(ai) + 9, Zul’(ai) + 8} imply that the same bijection
=1 =1

o (thatis: o(1) = ax+1,00) = 4.1 if 1 <i<k +1, 0(i) = aj if k+1 <1< n)is the
only a-efficient distribution of objects for e = (F’, M). Here again, the amount
of money that ®* assigns to agent 1 depends on the value of the parameters:

Case 2.2.1: If § > uj(a1) - uj(okx) + b the minimal amount of money for an
envy-free allocation to exist is Mg(F’) = ui(a1) - ui(ox) + b, since we only have

to compensate agent 1 because he is the only one who does not get his most
preferred object. Therefore, ®*(F’, M) assigns to agent 1:

*(F, M) = (ok+1, (ur(ay) - ug(ax) + b + (M - Mg(F"))/n )
= (ak+1, (V)M + (n-1)(ui(ay) - uiak) + b)])
Which corresponds to the following utility level:
Ui(@*1(F, M))  =uilaks+1) + (Un) [M + (n-D(uy(ay) - ujlox) + b)]
=uj(ak) - a + (I/n) [M + (n-1)(ui(a1) - uilay) + b)]
=(I/n)[ M+ (n-1) ui(ey) + ugok) + (n-1) b - n al.

Case 2.2 2: Ifa < § < ui(ay) - ui(ax) + b the minimal amount of money for an
envy-free allocation to exist is ME(F’) = 2 (ui(ay) - uj(ak) + b) - §, since we
have to compensate agent 1 by uj(aj) - uj(ax) + b because he does not get his

most preferred object and the envy of agent k+1 with respect to agent 1 by
ui(ay) - ui(ag) + b - 8. Therefore, ®*(F’, M) assigns to agent 1:

*1(F’, M) = (ok+1, (urlay) - uy(ok) + b + (M - ME(F))/n )
= (ak+1, (Un)M + 8 + (n-2)(u1(ay) - uiag) + b))
Which corresponds to the following utility level:

Uq(@*(F’, M)) = uj(ok+1) + (/) [M + 8 + (n-2)(ui(ay) - ur(ok) + bl

B §]



=u(ok)-a+ (I/n) [M + 8 + (n-2)(u1(oy) - ui(ok) + b)l
=(I/n)[M+38+(n-2)ur(ay) + 2ui(ok) + (n-2) b -n al.

Then, if case 2.2.1 applies U1(®*(F, M)) - U(®*1(F’, M)) =(I/n)(n-1)(a-b) >0
since a > b and if case 2.2.1 applies Uj(®*1(F, M)) - U(®*1(F’, M)) = (1/n) (
ui(ag) - ulak) +b -8+ (n-1)(a-b))>0sincea>b and 8 < uj(ag) - uj(ak) + b.So
agent 1 may be worse off by reporting uj’(ak) - ur’(ak+1) =b < a = u(ay) -
ui(ok+1). This completes the proof of the theorem.®

Finally, the next proposition provides an algorithm to compute an allocation
selected by our solution and shows that it is of polynomial time complexity.
(For definitions of “algorithm” and “time complexity” the reader is referred
to, say, Lawler (1976).)

PROPOSITION 11

There exists an algorithm, whose time complexity is polynomial, that
computes an element of ®* and the utility profile corresponding to @* for any

given economy. (With rational data.)

Proof:

Given e = (F, M), consider the following procedure to construct an
element of the set ®*(F, M).

First step: Find the a-efficient distributions of objects. Given F = (Q, A,
uQ), let Gr = (QUA, QxA) be a directed bipartite graph, where every agent
and every object are represented by a node (QUA is the set of nodes) and each
agent is connected to each object by an arc (QxA = { (i, oj) :i e Q and aje A}
is the set of arcs). We define the weight of an arc (i, ;) to be uj(a;). Then the
problem of finding an a-efficient distribution of objects can be thought of as a
weighted matching problem:



“Given an arc-weighted bipartite graph, find a matching for which the
sum of the arcs is maximum.” 1

This can be done in O(n3) steps. (See, for instance, Lawler (1976), pp.201-207.)

Second step: Find Mg(F). Following the proof of theorem 1 Mg(F) = %’mi*,
therefore we have to find, for eachi e Q: -
T-1
mi* = max Zkg(t)r(tn)
t=1
s.t. r(1)=1

(r, T) is any path in Gg

for any a-efficient 0. This problem can be written as (n-1) different “shortest
paths problems” 2:

T-1

mi* = maxjeq (- min 2 kg(t)r(t+1) st.r(1) =i (r,T)e Ggand r(T) =j }
t=1

By lemma 1 we know that if o is a-efficient the graph G4 has no cycles with
positive weight. Given this condition a solution can be found in O(n3)

operations. (See Lawler (1976), pp.82-89.) Once we have all the shortest paths
between all pairs of nodes, we have to select, for each i € Q, the shortest path

from i, which requires O(n2) steps.

1 Lawler (1976), p. 183.

2 Lawler (1976), p. 59.



Third step: Compute an allocation in ®*(F, M). Given o, compute m? =

*

m; + (M-Mg(F))/n to obtain z = (o, m?) e ®*(F, M). This can obviously be done
in linear time.

Finally note that the time complexity of the algorithm is O(n3): step 1
requires —.n3) operations, step 2 requires O(n3) as well, while step 3 is of
linear time complexity®

6.COMMENTS ON CONSISTENCY

Tadenuma and Thomson (1989.a) define a set of properties that may be
required of any solution. Among the set of properties they use, consistency
plays an important role. The properties based on consistency define the
solution’s behavior when changes in the number of agents and objects occur.

Because the availability of money (infinitely divisible good) is necessary
for the existence of envy-free allocations in economies with indivisible goods,
the individual amounts of money that agents get in an envy-free allocation
will depend on the values that individuals assign to each and every
indivisible object in the economy as we have seen in the proof of existence.
From our results we see that when the economy gets smaller (an agentie Q
and a bundle (6(i), m;) leave the economy) the bundles that the original envy-
free allocations assigned to the remaining agents are envy-free allocations
for the new sub-economy; yet we may have more envy-free allocations since
now the restrictions on this set have been relaxed. In particular, the
minimal amount of money to have envy-free allocations may decrease,
because now the paths with maximal total weight may be at most as long as
before and the weights have not changed.

Hence it seems too restrictive to require that an envy-based normative
solution would be invariant with respect to these changes: when an agent
leaves the economy there are less sources of envy, and therefore one may
wish to reallocate the money in order to get a better allocation. The following
example illustrates this point.



Example 3:

Consider the following economy e = (F, M) € €, where Q =(1,2, 3}, A = { oy,
ag, a3 }, uQ = { [u1(al) =10, ui(a2) = 5, ui(agz) = 0], [uz(al) = 2, ug(ag) =7,
ug(ag) = 5], [ug(al) =6, ug(a2) =1, ugz(agz) =4] } and M = 11.

There is a unique o-efficient distribution of objects for this economy, and it
defines the following allocation of objects: [(1, 1), (2, a2), (3, a3)]; and the

minimal necessary amount of money for envy-free allocations with

nonnegative transfers to exist, given the a-efficient distribution of objects, is
n

M%(F) = zm? = 2, where m° = (0, 0, 2). If we allocate the remaining amount
i=1
of money equally, M - M%(F) = 9, among the agents we obtain the unique

allocation chosen by our solution:
d*e) = ( (a1, 3), (a2, 3), (a3, 5) }.

Consider the sub-economy of e with respect to Q'= {2, 3} and z = ®*(e), i.e.:
Q'=1{2,3} A’ ={0a2, a3}, uQ = {[uza(a2) =7, uz(ag) = 5], [ug(a2) = 1, ug(ag) = 4]}
and M’ = 8.

For this sub-economy, the minimal amount of money for envy-free

allocations with nonnegative transfers to exist is M%(%-(F)) = 0. The unique
allocation chosen by our solution is [(a2, 4), (a3, 4)] € (D*(ta.(F)),

One may wonder, why does the solution change the amounts of money
assigned to agents 2 and 3, when agent 1 leaves the economy? Clearly,
because in the sub-economy there is no envy generated by the distribution of
objects, and therefore we can just distribute the money equally, whereas
when agent 1 and object o] are in the economy, we have to use money to

compensate the envy generated by the distribution of objects. *

The analysis of the set of envy-free allocations for economies with
indivisibilities show that the size and shape of this set depends on the
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individual valuations of the indivisible objects. If we want to select among
envy-free allocations, it is logical that the sources of envy play an important
role. In our model envy is originated by the values that individuals assign to
the objects in the economy. Therefore, changes in the sets of objects or agents
of the economy imply changes in the sources of envy. Thus the idea of
consistency is not too appealing from the viewpoint of envy-minimization.
Although we have only analyzed a particular case, we can extend the
conclusions to the general case, since it is easy to see that we will always
have more sources of envy to compensate for, the larger the number of agents
we have in the economy.

7. GENERALIZATIONS OF THE MODEL

We can apply our solution to economies with a larger number of
agents than objects by defining as many “empty” objects as needed to equate
the number of objects and agents in the economy. Any agent that receives one
of these “empty” objects in an allocation will derive the utility of having none
of the existing objects plus the amount of money given at that allocation. The
utility of having no object may differ among the agents. Once we have an
economy with the same number of objects and agents we can apply our
solution as shown before.

When the number of objects is larger than the number of agents some
of our results do not hold anymore. It has been already shown (Svensson
(1983)) that in this case there may exist inefficient envy-free allocations. Since
we are interested in a selection of the set of envy-free allocation we will only
consider envy-free allocations that are also efficient, i.e., envy-free
allocations generated from a-efficient distributions of objects. However, even
when restricting attention to such allocations theorem 1 does no longer hold,
since for different a-efficient distributions of objects the minimal amount of
money to derive an envy-free allocation with nonnegative transfers may
differ.

Example 4:

Consider the following economy e = (F, M) € €, where Q ={1, 2, 3}, A = { ay,
ag, a3, 04 }, uQ = { [ur(a1) = 3, ur(a2) = 1, ui(agz) = 0, uilayg) = 1], (ugal) = 2,
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u2(a2) =1, ug(ag) = 0, ug(ay) = 0], [uz(al) = 0, ug(ag) = 2, ug(ag) = 1, ugloy) = 0]}
and M e R.

There are two a-efficient distributions of objects for this economy, ¢ and ¢’,
and they define the following allocations of objects: [6(1) = a1, o(2) = a2, o(3) =
«3)] and [6'(1) = a4, 0'(2) = a1, 6'(3) = a2)]. The minimal amount of money for

envy-free allocations with nonnegative transfers to exist given o is
n n
G c o . s oo a0 T G _
ME(F) = igimi = 3, where m~ = (0, 1, 2) and given ¢’ is ME (F) = g‘{ni =2,

’

where m® = (2,0, 0).

For instance, in the example given above ®* will choose ¢’, because Mg (F) =

2<3= M%(F), which gives the following allocation:

O*F, M) = { (a4, (M+4)/3), (a1, (M-2)/3), (a2, (M-2)/3) }.

In the literature we find generalizations of this model by introducing
fictitious agents when the number of objects in the economy exceeds the
number of agents (Alkan, Demange and Gale (1991)). When this is the case,
we have to compensate real agents for the envy they feel with respect to
fictitious ones (agents who do not exist). Furthermore, the envy of these
fictitious agents is considered as important as the envy of the real ones in the
computation of the solutions. Our generalization does not include any kind of
fictitious agents and, by considering only a-efficient distributions of objects,
agents will never want to exchange the objects assigned to them by the
solution for the ones left over. One may define a variation of our solution for
this case that still satisfies most of the properties of the original ®*, such as:
invariance with respect to shifts in the utility scale of any agent,
monotonicity with respect to money and an appropriately defined version of
“not obviously manipulable”.
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