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ABSTRACT

It is known, to be real, that the per unit transportation cost from
a specific Supply source to a given demand sink is dependent on the quantity
shipped, so that there exists finite intervals for quantities where price
breaks are offered to customers. Thus, such a quantity discount results
in non convex, piecewise-linear functional. 1In this paper algorithms are
provided for solving the 'all unit’' and the 'incremental' quantity dis-
count, as well as, the 'fixed charge' problems. These algorithms are
based upon a branch and bound solution procedure. The branches lead to
ordinary transportation problems whose results are obtained utilizing the
"cost operator" for one branch and "rim operator'" for another branch so
that these new problems are not resolved thus reducing computational

time. Suitable illustrations and extensions are also provided.



I. Introduction

In the real world, it is a common practice to offer discounts for the pur-
chase of large quantities, and/or for shipment of large volumes of a given
commodity. [6,2]

In this paper we analyze quantity discount problems, representing the
"all unit" [5] and the "incremental quantity" discounted transportation prob-
lems. The details of the procedure are explained considering the 'all unit'
quantity discount problem in Section 2, whereas the associated algorithm is
presented in Section 3. Certain branch selection procedures and heuristics are
provided in Section 4 with corresponding illustrations in Section 5. Based on
this algorithm, we provide extensions in Section 6 where the'imcremental quantity
discounted problem" and the "fixed charge transportation problems'" are addressed
specificélly.

The analysis will focus on the "all unit" quantity discount problem where
the methodology concerning the general approach for solving the piecewise linear

programming is developed.
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This problem may be solved with separable convex programming [ 117, but solving
the transportation problem in this manner has the disadvantage of a large number
of constraint equations being necessary.

Our approach is similar to the one suggested by Falk and Soland [4] for
solving the general non-convex type math program, but, nevertheless, is more
specialized and concerns the special type of non-convex math program,

namely, the piecewise linear program.

II. The All Unit Quantity Discount Transportation Type Problem

The transportation type problem with all unit quantity discounts may be

formulated as follows:
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In order to facilitate the presentation, expressions (1) ~ (5) will be referred
* .
to as problem P .
*
The algorithm pyovided for solving P is basically a branch and bound type

similar to the subtour elimination algorithm of the travelling salesman prob-

lem [ 7]. Here, instead of eliminating infeasible subtours, we eliminate all
infeasibilities due to (5) until complete feasibility is restored.

Let us now define the following "initial Transportation Problem" PO which

is given by (1) ~ (4) of P¥* (note that constraint set (5) is not included), and
*
all cij are replaced with C;j' Since Czj are the minimum values for every

(i,j) € I x J, the solution to problem P0 is a "better than optimal" solution.

If, in addition, the solution matrix X = {xij} satisfies Xi;l <x,.< Xij for

ij

*
every i,j, then the solution of problem PO is the optimum solution to problem P .

Definition 1: A solution X = {xij} to the problem (1) - (4) is said to be
*
"interval feasible" if all cij used in (1) are implied to be feasible due to the

fact that xij lies in the feasible interval given by (5).

Definition 2: A solution X = {xij} to the problem (1) - (4) provided

k-1 k
kij S-xij < kij is said to be the "better than optimal solution" if that solution
*
is an optimal solution to the problem where each 5 T cfj in (1) where

k<4< r. (Note that '4' may be different for different (i,j) € [(Tx J)].
It is true that the optimal solution to problem (1) - (5) should be both

"better than optimal solution' and "interval feasible." Thus our algorithm presented




here will always possess '"better than optimality" criterion and proceed to
restore "interval feasibility", similar to any dual algorithm which always has

a "better than optimal solution'" and approaches '"primal feasibity."

IXI. A General Description of the Algorithm

*
In the first stage P0 is solved. Thus, if the "better than optimal” solu-

*
tion to P0 is "interval feasible'" it is also the optimal solution to P given
by (1) - (5). If the "better than optimal" solution to P0 is not "interval
*
feasible" to P the algorithm proceeds as follows: Let X3 be a_value for which

"interval feasibility" is violated. More specifically, suppose X4 5 is "better

than optimal” in the interval X:}l < xij < ng and its associated cost parameter

*
cij is not equal to ch. This condition leads to two branches (subproblem) as
i

follows:

*
(i) In branch 1 the current ©ij is replaced by the "interval feasible"

c?j and an upper bound restriction in the form of xij < Xij is

implied. (Note that it is unnecessary to impose an explicit

k
upper bound. 1If Xij 2 Xij at the optimum, then branch 1 is inferior to

branch 2.)

k
(ii) In branch 2 a lower bound restriction of the form xij > A, is

ij
. * e
imposed and cij remains unchanged.
The two new transportation problems corresponding to (i) and (ii) are solved

(see the solution procedure in Algorithm Al) to determine the lower bounds of Z

for all interval-feasible better than optimal solutions in their respective subsets.

If the optimal solution corresponding to any one subset is "interval feasible"

*
We have used the Srivinasan and Thompson [ 8] algorithm for solving PO'



that basis from the two subsets but does not exclude any other interval feasible

basis. The algorithm converges in a finite number of steps since the total num-

ber of bases for the constraint set given by (2) - (5) is finite and each itera-

tion excludes at least one basis. Secondly the branching procedure results in a

partition of the interval feasible basic feasible solutions in that subset, and
thus the algorithm is expected to be efficient. Third and most importantly each
.subproblem is not completely resolved. Instead,‘we apply theA"Operator Theory"
[8] for the Transportation Problem which is utilized to generate the new solution
for each subproblem with minor computational efforts.

Let X ¢ be one such x,, where the interval feasibility is violated. (In
Section IV we provide a heuristic for the choice of such Xst)' First let us
consider (i) where C:t is replaced by czt. Let czt - C:t =8 > 0 (due to (6))

*
be the positive value to which the current cost Cot is to be increased. The op-

timal solution to this problem (where the entire data of the problem is unchanged

s

st

4

except for the new cost ¢, +§) is obtained by applying the "cell cost operator'
[8,9] 6C:t to the current problem P*.

This operation provides the new best optimal solution X and the optimal

total cost Z for the revised problem,




Now let us consider the second subproblem (ii). Here the only change

. . . k k
is the new lower bound imposed on x i.e. Xx . Let x = x -
P st’ ? )‘st = X5t st st )‘st

and x;j =X for all (i,j) ¢ [I,J] - { (s,t)} such that
(7) 0< xéj < o for all (i,j) e [1x J]

Substituting (7) in the current problem we have

(8) Mininize Y 2 ¢t x! 4+ Ak
L. ij Tij st st
jeJ  iex
(9) Subject to ji xgj = a; for i ¢ I and i # s
j&J
9a :ﬂ ', = -k
(9a) L, xsj as kst
jeJ
(10) z x".=bJ for j€Jand j # t
ier HJ
10a ) ! = -k
(10a) L Fir TP T A
i€l
(11) 0<x!. <w
= %53

The solution to this new problem (8) - (11) can be obtained by utilizing the
"Rim Operator Theory' [ 8] where a cell rim operator 6R;t is applied by equating
k
§ = Xst for one row s and a column t. Note, that in both subproblems we use

the "operator theory of parametric programming for the transportation problem"

[8,9] for computing the solutions to the branch problems efficiently.



1V. Branch Selection Procedure

In the process of searching for the best optimal solution to problem P* we
suggest two alternative selection rules: 1In the first alternative we select that
branch which yields the lowest upper bound on the value of the objective function
i*. This strategy is similar to the penalty proposed by Driebeek [ 3] and Tomlin
[(10] for solving integer programs. The above procedure tends to postpone the
search in less promising branches by concentrafing on branches which seem to
yield a better solution value. Once our optimal''interval feasible' solution is
found, branches yielding inferior upper bounds are eliminated and the number of
steps required for solving P* are reduced. The process of establishing upper
bounds on the current subsets consists of two major stages. In the first stage
a heuristic rule is used for selecting the variable to be branched upon in
the next step. This stage is followed by a short search which constitutes the
second stage. More specifically, let () represent the current set of cells
(i,j) € {1 x J] where "interval feasibility" is violated. By introducing a cell
(i,j) as the decision cell for branching, define Qij as the infeasibility index

such that:

(12) Q.. = (c,. - c,.)x
and determine the most "interval infeasible'" index:

k *
max = -
Q (e cst) xst

(13) UQax ~ (1,5 €q i st

The variable X ¢ associated with Qmax is the variable used for branching in the

is replaced with ck x . may either stay in the

*
next step. In branch (i) c st? %st

st
basis or may become nonbasic. If X ¢ stays in the basis and the current solution

is still optimal, the penalty PSt is equal to Qmax in (12), namely:

(14) P = (c -c . ) x
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The heuristic given above takes negligible computational time. However, as a
second alternative, if one is prepared for more computations, the following pro-
cedure provides a better heuristic. If Xt becomes non-basic, then a non-basic
cell (s,4) in the sth row or a non-basic cell (k,t) in the tth column replaces
(s,t). Let T be the set of all such non-basic cells in the sth row and tt
column and let . and Bt be the dual variables corresponding to row s and column
t, respectively. Let (u,v) € T. Then we could compute a penalty for each

(u,v) € T given by (c:V Say, T BV) Xt and choose the minimum of all such
penalties corresponding to every (u,v) € T. Comparing this with the earlier

one given in (14) the cell to branch form can be ascertained. It is to be
recognized that this procedure involves additional computations and one needs
computational experiments for the choice of the best heuristic. Currently, we
use the heuristic based on equation (14) and leave the rest for future testing.

Algorithm Al given below summarizes the above discussion for this quantity

discounted non-convex transportation problem.

Algorithm Al. Algorithm for finding the optimal solution to the "interval

feasible" all unit quantity discounted non-convex transportation problem (1) - (6).

Initialization:

*
Step 1. Set up the problem P as presented in (1) ~ (4) with cij in (1) replaced

h -1
by c:. the smallest cost as given in the " interval AY: < x,.< XF.g ©,
1] 1] 1] 1]
Let P1 denote this problem above, and Ql = @ denote the set of cells

(i,j) that are required to be included in the "final optimal interval
feasible" solution. Let Yl = § be the set of all cells (i,j) € [I x J]

"

that should be excluded from the "current optimal solution,'" where the

interval in which the basic xij lies is the one corresponding to the



Step 2.

Step 3.

Step 4.
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current lowest cost c. ., Let X, = {x, ] be the optimum solution to P
ij ij

1

with basis B1 and the current optimal cost Z

1

1 (In this step we solve the
r
ij

for ¥ (i,j)). Let S ={1} denote the set of problems under consideration

*
transportation problem (1)-(4) and obtain the solution with €5 T c

and let m = 1 denote the total number of problems generated thus far.

Choose problem P, for which Zk (Zk is either the current value of the

k

objective function or the current upper bound on that value depending on

the branch selection rule used) is the smallest for k € S. Let this

*
problem have cij = c;j. 1f Bk is interval feasible, i.e. satisfies the

constraint set (5) for every (i,j) € B, ., 80 to (8). Otherwise go to (3).

Find the set of cells A where the cells (i,j) in basis B, violate con-

N . * u
straint set (5). Since Pk has costs cij = c;. (the lowest cost) the

u-1 u

.. . . . < .

%55 for (i,j) € Bk will satisfy (5) if xij < xij < xij where u is the
*

one determined by cij for each (i,j). (Note u may be different for

different (i,j)'s). For each (i,j) € A find the infeasibility index

Qij given by (12) and select the variable to be branched from as in (13).

Let the cell corresponding to this variable be (s,t).

*

Define Pm+1 as the problem obtained from Pk by increasing the cost of cij
u . — =

to cgpr Lee. Qm+1 = Qk U {(s,t)} and let Ym+1 Yk. The problem Pm+1 and

its solution can be obtained from problem Pk by applying "cell cost

+
operator” 6Cst (see Srinivasan and Thompson [8]) to Pk where

u

5 = (Cst

* u
- Cst) > 0. (Here ot is the new cost due to the fact

- *
that A" 1 <x <AY and c is that value which was used as cost for
st — st st st



Step_ 5.

Step 6.

Step 7.

Step 8.

From a computational viewpoint it is unnecessary to store all the problems P
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cell (s,t) in problem Pk). ¥ind the new basis Bm+1 and Zm+1 also as

+
per 6Cst cost operator [8].

Define Pm+ as the problem obtained from P, by imposing a lower bounded

2 k

u .
constraint x Z'kst to the current optimal basis B Set

st k’
Ym+2 =y u {(s,t)} and Qm+2 = Qk. This solution is obtained by solving
the same problem Pk except that the rim conditions (row and column

totals) for sth row and tth column will be decreased by a value of X:

e
The solution for Pm+2 is obtained by applying the cell rim operator
6Rst [87. 1If the new basis Bm+2 still contains cell (s,t), change X ¢
v _y 4 s . = .
value to X = Xgp Xst' The new optimal solution Zm+2 the optimal

* *
solution to problem P + ¢ A where c is the same current cost
m+2 st st st

used in problem P, for the cell (s,t).

k

Denote the basic optimal solutions to Pm

1 and Pm+ obtained from P

2 k

as X and Xm+

- 9 with bases Bm+1 and Bm+

respectively. Let Z.m+

2 1

and 2 be the corresponding costs for problems P and P
m m m+

+2 +1 2°

Drop k from the set S and include (m+l) and (m+2) in S. Redefine m as

(m+2) and go to (2).

The optimal solution to the quantity discounted (interval feasible)

final problem (1) - (6) is given by Xk and B, with associated cost Z, .

k k
Stop.

k

for every k € S. It is enough if the sets Qk and Yk are stored for k € S. With
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the original problem P and the cells in Qk and Yk we know the current P It is

K
to be noted that in Step 5, while decreasing the row and column totals by X:t,
either one of the resultant row or column totals may become negative. This leads
to an infeasible subproblem. In such an eventuality drop that branch from

the list of active branches. Also in Step 7 drop k from the set S and

include only (m+l) to the set S. Next, redefine m as (m+l) and go

to step 2.

V. Tllustration

In this section we will provide a simple illustration of the above algorithm.
Consider the following three sources (m = 3), four destination (n = 4) transporta-
tion problem, which has quantity discounted transportation costs. The following
Table 1 provides the data of the problem for different C:j for the three levels
of quantity discounts. We provide an example where cell upper bounds are also

imposed.

Step 1. Table 2 provides optimal solution for the initial problem. In each
cell (i,j) the value of xij is written in the northeast corner. If a
cell is the basis then the corresponding Cij is circled. Those
celles which have Xij as their upper bound have their corresponding
cy underlined. Those at zero levels are left out without any
entry posted in the northwest corner. The optimal dual variables

u.'s for rows and vj's for columns are given in southeast cor-

i
ner (N denotes large positive #). It is easy to check that the
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TABLE 1
- Destination
Warehouse
! Source 1 2 3 4 Capacity
3[20< x,, € o] 6 [10 < x,., < 15] 3 [27 < x,, < 60]) One price bracket
= "11 12 = = "13 4
1 4 {10 < x,, < 20] 7[ 5<%, <10] 415 < Xqq. < 27] Upperbound 30 80
<
Mmonx:AHS mmomxSA 5] mmmeHuAEu
Upperbound 20 5 [65 < Xyp < e 8 [10 < X4 < 25] 15 [30 < Xy, < w]
2 (one price 6 (20 < x.,., < 65] 9 5 <x,, <10] 16 [12 < x.,, < 30] 90
= %22 = 723 = 24
bracket) 6
8 [ 0<x,, <30] Smom.xNuA 5] 17 [ 0 < x,, <15]
1 (27 < Xy < @] 3 [60 < X4y < @] |10 (20 < x4, < 30] 5 [30 < X4, < 507
< )
2 (20 < x4y < 271 4 (30 < X4y < 60] | 11 (10 < Xs4 207] 6 [20 < Xap < 30] 55
umoqupmuS mmom&mAuS SﬁomxuuAHS 70 0<x,, <20]
Market Demand 70 60 35 60
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TABLE 2

Warehouse
3 0 3 7 Capacity
a,
1
25 25 30
O L LO | |
N 15 60 30
20 60 10
- 1O <]
201 75 25] N
25 30
O [ L [ O |-
60 N 30 50
Market 70 60 35 60
Demands
X, is given above; Z, = 945; s={1] m=1

1



Step 2.

Step 3.

Step 4.
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solution is optimal for the costs given. Notice that

cells (1,3), (2,2) and (3,1) are not interval feasible.

Choose Pl; Z1 = 945, B1 is not interval feasible. Hence go to Step 3.

The seat of interval infeasible cells
A=1{Q,3), (2,2), 3,D} .

Infeasibility indices are

= - % =
Q1,3 4-3) 25 25
= - * =
Q2,2 (6-5) 60 60 ¢
= - * =
Q3,1 (2-1) 25 25
Thus the variable to branch from is x...

22
P2 is the problem where cell (2,2) is contained in the basis and the cost
is changed so that it becomes interval feasible.
o, =2 U {(2,0}; ¥, = #. Problem P,'s solution is obtained by
applying cell cost operator [8], 60;2 where § = (6-5) = 1.

Since the current problem is basis preserving, following
+
[8], the new solution becomes X = X so that xij values are not altered,

and +

Z =7+6 x,, =945+ 1* 60 = 1005

22
Form the set Q=8B - {(2,2)} = [(]—,]—), (193)9 (2,3), (3,1), (394)]°

Following the notation of [ 8]

Ip = 12 = {1,2,3}; Iq =0

J

L= (L3435 3 = (2.

+ . .
The maximum extent | to which c,, can be increased without changing

22

the basis structure ('"Basis preserving") will be as in equation (35)

of [8].
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- u, - vj) for (i,j) € [(Ip X Jq) N LB]

(ui + vy T cij) for (i,j) € [(Iq X Jp) N uB].

Now the (i,j) € [(Ip X Jq) N LB) are cells (1,2) and (3,2)

and (i,3) € [(Iq x Jp) NuBl=4¢

+
So that u

Min {(6-0-0); (3+2-0)}

= 5 occurring at cell (3,2).

Thus the basis remains unchanged. The only change occurs in the opti-

mal duals as given below. (Refer to equation (34) of [8])

u., + & for i

i
+—-
u, =
i
u,
i
v, -
J
+—
v, =
J
v,
J
+ +
Thus u, = 1; u,
+ +
and vy T 2; v,

The new tableau

for i

) for j

I
€ P

€I

J
€ P

+
2 and vy, =6.

presented in Table 3 with Zy = 1005.
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'CABLE 3

Demarnds

& i
2 0 2 6
ui ! a; {
25 25 30
1 (:::) 6 (:::) 4 80
N 13 60 30
20 60 10
6 6 (:::) ‘II’ 15 90
20 73 25 N
25 30
-1 (:::) 3 10 (:::) 55
60 N ‘—361 50
Market 70 60 35 60
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Step 5. P, is a unew branch created by imposing the bound constraint

3
65 < Xy, < ® on Pl. This guarantees that (2,2) will be nonbasic.
Now a, becomes 80 - 65 with b2 = 60 - 65 < 0. Since demand must be

nonnegative, this subproblem is infeasible. Thus, this branch and
its associated subbranches are deleted from the list of active

branches. Figure 2 summarizes the operations up to this point.

Figure 2

w
il

{1}
1
945

N3
nn

{(1,3),2,2),(3,1)} are interval
infeasible

Choose X9 for branching

P2

Apply
+
1l ¢ Operator

(1,3),(3,1)

not feasible

Problem
infeasible
Dropped from
future ton~
siderations
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Step 6. P2, P3 are given. P3 is discarded due to infeasibility. X, is given

2

in Table 3. 22 = 1005;

Step 7. (1) is dropped from S and (2) is included in S. m=mtl = 2. Go to

Step 2.

Step 2. P2 is not interval feasible. Go to Step (3).

Step 3. A= {(1,3)(3,1)}. Q13 = Q35 = 25, Arbitrarily choose X)4 to branch from.

Step 4. P3 is obtained from P, by increasing the cost of ¢y to the interval

2 3

. . .. X + . .
feasible cost. Following similar cost operation, l-c13 application,
we see the operation is basis preserving. The new cost

Z3 = 1005 + 1L * 25 = 1030. The optimal duals change. The optimal

primals do not change. The resultant optimal tableau is given in

Table 4.

Step 5. P4 is obtained from P2 by imposing the lower bounded constraint

27 < X5 < o, This creates a new a; = 80 - 27 = 53 and a new

b3 = 35 - 27 = 8. Now we apply cell rim operator 5R13 with § = 27.

From Thm. 2 of [8] the maximum extent jy that this operator can be

{

applied to be basis preserving is 25. But since § = 27 we follow the
method provided by [8]. The new Tableau is given in Table 5 with the

new optimal primal and dual solutions
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TABLE 4

Warehouse
1 0 2 5 Capacity
a.
1
25 25 30
O L LO L |
N 15 30 30
20 60 10
e | O s |
20] 75 | 25‘ N
25 30
0 @ 3 10 @ 55
60 N 30 50
Market 70 60 35 60

Demands
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TABLE 5

Warehouse
5 0 2 9 Capacity

a.
1

23 30

N | |15l [30] [ 30]

20 ' 60 3 2

“20] {751 [ 25] ]

27 28

<l L e O |-

60] v} | 30] | 50]

Market

Demands 70 60 8 60

Note that cell (1,3) has left the basis so that cell (2,4) is in the basis.
The optimal cost is Z = 930 + 81 = 1011.

Since this problem has the least total costs in all pendent branches and,
nevertheless, it is interval feasible, it is the optimum solution.

Note that the cell (3,1) which was interval infeasible earlier became auto-
matically feasible when the basis change occurred.

The results of branching and bounding are given in Figure 3.
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Figure 3

{(1,3),(2,2),(3,1)}

P P

2
.'_.I.
Apply 1 022

3
Apply 65 R22

Az = {(1,3),(3,1)} Problem infeasible. Drop

all branches from here

S=12};m=2

Fs

Apply 27 Rl;
h = ()

s = {2,4,50;m = 2
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VI. Extensions

(i) The Fixed Charge Problem [ 1]

In this section we outline an algorithm for solving the following fixed

charge (transportation) problem:

(15) min Z = & g cijxij + = fklykl
j k1

(1l6) s.t. T x,, = a, for i ¢ I
. ij i
J

1 = j

17) ; xij bi for je J
i

(18) . _

] 0 if X1 T 0

k1

1 if X Z 1
where k¢ K, 1 ¢ L, ig¢ I, KCc I, LC J, andxijz 0.

The method used for solving the fixed charge problem is identical in principle to
the one devised in Section IV for the all unit quantity discount type problem.

Here, again, we start by solving a relaxed problem, the solution of which is interval
infeasible, then, branch and bound procedure is applied to retain feasibility.

In the following statements the algorithm is summarized:

Step 1: Let Y1 = 0 for all k¢ K and 1 ¢ L and solve the relaxed transportation
problem in (15) - (18).

Step 2: 1If the solution is interval infeasible, i.e., X1 > 0, Vi1 = 0, select
the one variable among all interval infeasible variables for which fkl

is the largest.

Step 3: Branch from the variable selected in step 2 into two new problems: in

branch 1 increase i1 to an arbitrary large number making cell (k,l) an
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inadmissible cell and solve the new problem using cost operator. 1In
branch 2 introduce a lower bound X1 2 1 and increase the current value
of the objective function by fkl'
Step 4: Select the one branch with the smallest objective function value among
all active branches.

Step 5: 1If the branch selected in step 4 is interval feasible, then stop. This

is the optimum. Otherwise go to step 2.

(ii) The Incremental Quantity Discount Problem

The nonconvex cost structure of this problem is shown in Figure 2. To ac-
k k+1
comodate such a framework, xij must be 2 Xk before xij (the amount that can be

shipped from i to j at a reduced cost c??l) can be positive, etc,

Figure 2
l
Total I 3 l
Cost i Slope = c,, |
! 2 !
i Slope = cij } }
1
Slope = c . .
P ij| i i
X.. Xl Xz X3

1]
The problem can be formulated as follows:

(19) min Z % ck.x.. +3TZ f?.y?.
A O I 1 . ij7ij
1] 1]
(20) s.t. g xij =a, for i¢ 1
J
21 Zx,.=b, for je J
(21) i3 = P; je

i
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(22) tooiro0=2% < x <l
1] 1] 1] 1]
oir Al s x.. <22
ij 1] 1] 1]
ck ) . .
ij \
r . r-1 r
c,. 1if .. S x ,<)A,.s @
1] 1] 1] 1]
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: - 1] 1] 1]
yij =
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and xij 20 forall icecIand je€ J

(24) fgj for all k = 1,...,r.
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A close examination of the above formulation reveals that the incremental
quantity discount problem can be formulated and solved as a generalized fixed

charge problem. 1In the following statements we outline the algorithm:

k . .
Step 1: let cij = cij and yij =0 for all i ¢ T and j € J and solve the trans-
portation problem in (19) - (24).
Step 2: If the solution is interval infeasible, i.e., there is at least one
variable x,. such that thl g x,,< XF. and yF, = 0 select the one
1] 1] 1] 1] 1]
variable among all interval infeasible variables for which f?j is the
largest.,

Step 3: Branch from the variable selected in step 2 into two new problems: in

branch 1 make y?j = 1 (thereby increasing the current value of the
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objective function by f?j and introduce a lower bound Xij z X:j'
k-1
c..

ij and solve the problem in (19)-(24)

k
In branch 2 increase cij to
using cost operator.

Select the branch with the smallest objective function value

Step 4

from among all active branches.

Step 53 1If the solution of the branch selected in step 4 is interval feasible--

stop--this is the optimum. Otherwise go to step 2.

Discussion
In the above examples we showed how one can employ the branch and bound
procedure for solving the piecewise linear programming problem. The algorithm
outlined above yields an efficient procedure in cases where the linear program
has a special structure (as in our examples) because of the important fact

that the special structure is retained throughout the process. Our algdrithm
differs from the one suggested by Falk and Soland [47] whose approach may be
characterized by the use of a convex combination of points to approximate the
value of czj over a given range whereas our approach is characterized by the
use of the marginal cost cij at a given range. Falk and Soland's [4] approach
should, then, be considered as a more general framework for solving nonconvex
programs, while our approach is specialized to the case where the nonconvex

program is, nevertheless, piecewise linear.
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