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1II: PARTIAL ORDERING OF DICTIONARIES

DoxALD G. SAARI

Departments of Mathematics and of Economics

ABSTRACT. Por n > 3 candidates, a system voting vector W7 specifies the positional voting
method assigned to each of the 2% — (n + 1) subsets of two or more candidates. While most
system voting vectors need not admit any relationships among the election rankings: the ones
that do are characterized here. The characterization is based on a particular geometric structure
(an algebraic variety) that is described in detail and then used to define a partial ordering ~«”
among system voting vectors. The imipact of the partial ordering is that i\f W] 4 W2 then
W admits more kinds of (single profile) voting paradoxes than W, Therefore the partial
ordering provides a powerful, computationally feasible way to compare system voting vectors.
The basic ideas are tllustrated with examples that completely describe the partial ordering for
n = 3 and n = 1 candidates.

1. INTRODUCTION

This is the second of a three part study devoted toward completely characterizing all
possible election outcomes over all subsets of candidates that can oceur for all possible
choices of positional clection procedures with any profile. In the first part [4] it is shown
that when the cffects of neutrality are examined over families of subsets of candidates.
new kinds of “super-symmetries” emerge. The importance of these symmetries is that they
create the election relationships among the different subsets of candidates. So, by using these
svminetries to assign certain positional voting methods to specified subsets of candidates.
we can ensure the existence of election relationships. (We assume, of course, that the same
voters sincerely rank the candidates of the various subsets.)

To underscore this assertion, in [4] I show that the well known relationships between the
Borda Count clection for n candidates and the majority vote elections for the ('2') pairs of
candidates extend to large numbers of other classes of positional voting methods. In fact,
for any s satisfyving 2 < s < n and for any positional voting method for s-candidate subsets.
there is an unique positional n-candidate voting method which permits relationships among
the election rankings of n candidates and the () subsets of s candidates. In the third part
of this study [5], the technical material needed to compute all possible clection outcomes
for any choice of a system voting vector and to prove the major conclusions of this study
are developed.

In this current article. the cmphasis is

1. to describe new types of relationship that emerge from positional voting methods,
2. to characterize all possible system voting vectors that ensurc election relationships
among the different subsets of candidates,

This research was supported in part by NSF Grant IRI-9103180.



2 DONALD G. SAARI

3. to describe the (stratified) geometry formed by the system voting vectors, and
1. to use the geometric stratification to define a partial ordering for positional voting
mcthods - a partial ordering that determines which systems admit more kinds and
numbers of voting paradoxes.
Most of the definitions used in this article are given in [4].

One goal of this article is to answer and/or extend comments in [S].! As an example, a
natural extension of a classical problem from choice theory is to determine whether there
exists a positional procedure so that a specified family of subsets of candidates must admit
clection relationships. For instance. no relationship can exist among the election rankings
of the two subsets defining the family F = {{c1.c2,e3}, {c1.¢5.06}} because neither set has
anything to do with the other. Ou the other hand. the significant overlap of candidates
among the subsets of F* = {{c1.ca,e3}. {ca,c3.ca}. {es.cr. 1 }} suggests that some sort of
relationship must hold. To illustrate. if a given profile results in the election raukings of
c1 = ¢y = ¢z and ¢y = ¢y = c¢y. then it would seem to be 1mpossible for the ranking of
the third set to be the reversed ¢y = ¢z > ¢1: but this can happen. Indeed. no matter
what positional voting svstems are used. the family F* need not admit any relationship
whatsoever aimong the three election rankings. This means that we can arbitrarily choose a
ranking for cach of the three subsets and then, for any choices of positional voting methods,
there exists a profile so that each chosen ranking 1s the election ranking.

As demonstrated. it is not obvious whether a given family F must admit eleetion relation-
ships. However. we now know the minimal conditions for a family to admit relationships: the
subsets of F must satisfy the set theoretic conditions developed in [3]. But, as emphasized in
[3]. even if F satisfies these minimal conditions. it can be that election relationships among
the subscts of F emerge iff cach subsct of candidates is tallied with the Borda Count (BC).
So. what can be said about a family F if the BC 1s not used? What stronger conditions
ensure that F is relationship admitting for non-BC positional voting vectors? This problem
1s completely solved here.

By characterizing the relationship admitting families F (Sect. 2), we complete the goal
of (1). (A surprise is that the derived conditions are computed with elementary algebra.)
Then, armed with this theory and the results from {4], the nission of part (2) is fulfilled;
all system voting vectors that must admit election relationships — either good or bad - are
characterized.

A main result from [S] asserts that the set of relationship admitting system voting vectors
form a lower dimensional (algebraic) subset, a”*, in the space of all system voting vectors.
It is further reported in [S] that o” has a stratified geometric structure. The appropriate
mathematical tools to describe the algebraic variety a” is not developed in {S], so the asser-
tion is not proved. But these required tools are based on ideas needed to solve parts (1) and
(2). so the description of the stratified structure of a” along with a discussion of implications
of the geometry is in Section 3. As suggested by the constructions in [4] and in this paper,
the analysis involves the actions of various symmetry groups.” To keep the discussion from

UFollowing the lead of [], reference [S] represents the three references [1,2,3].

?The underlying mathematical structure depends on symmetry considerations. including groups and sub-
groups of wreath products, that are not commonly used by researchers in social choice. To make this paper
accessible to a wider audience. my proofs and discussions are based on more standard arguments. However,
I strongly recommend that readers familiar with wreath products arguments reinterpret the assertions in
this series in the more abstract setting. In this way, insight is gained about how and why these results
extend to more general clioice settings.
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becoming overly abstract. when a branch of a” is described, the corresponding branch of
the simpler at is deseribed in detail. By doing so. we discover that even though a* has the
simplest non-trivial structure of all a™'s, it is surprisingly complicated.

The importance of the stratified structure for positional voting methods 1s that the geom-
ctry captures the intricate connections among systen voting vectors. Indeed, this geometry
is used to define a partial ordering among the system voting vectors that characterizes which
methods provide more relief from clection paradoxes. Of particular importance 1s that this
partial ordering is not just a theoretical existence assertion; with the geometric construction
developed in Section 3 any set of system voting vectors can be compared! Examples showing
how to do this are found at the end of Section 4.

2. F — COMPOSITE VECTORS

The theorems in Section 2 of [4] come close to characterizing all system vectors that
admit election relationships. The remaining situations are motivated by examining the
subtle BC relationships among. say. the BC rankings of the (i) = 4 three-candidate subsets
with n = 4 candidates. (See [2].) As emphasized in [4]. the origin of these desirable BC
relationships is the BC symmetry acquired by virtue of the BC being the aggregation of the
pairwise contests. To underscore this fact, the notation adopted in {4 for the BC vector

B = (n—1.n-2...... 0) is W ™{(1,0)). (Sce [4] for a precise definition.)

To exploit the fact that the BC clection tally for a set of candidates 1s uniquely determined
by the sums of the pairwise majority vote outcomes. consider what happens if ¢y beats ¢
in a pairwise clection with the vote iy > mo. The values my and my become key terms
to compute the BC tally for every subset of candidates that includes the pair {¢;.cz}! (See
[4].) Because the same values reappear in the computations of different election outcomes.
the tallies of these different subsets of candidates must be related.  In particular. with
cnough overlap (of pairs) of candidates among the F subsets, we must expect the pairwise
vote tallies to force relationships among the outcomes of the different subsets: consequently,
clection relationships must emerge.

To understand the ideas, observe that if F3 represents the four sets of three candidates
constructed with n = 4 candidates, then each pair of candidates is in half of the Fy subsets.
Are the BC rankings of these subsets related? They are ([S]). but the analysis is more
delicate than suggested by the example. After all. F* from the introductory section does
not admit relationships even though some pairs of candidates belong to 1; of the F* subsets.

As a tool to develop intuition about when relationships occur. observe that the voting

— L s . .. Ak .
vector WX = (wy.ws. ..., wg) requires each voter to divide Zj:l w; points among the k-

candidates in a specified fashion. As v voters spread v 25:1 w; points among the candidates,
if we know the vote totals for & — 1 of the candidates, we know the last candidate’s vote total
- she gets the rest of the votes. So, in a pairwise vote with the voting vector (1.0); if one
candidate gets m) votes. then the other gets my = v—my votes. Thus the clection outcomes
of the (1) pairs of candidates are completely deseribed with the (3) variables where only
the vote of a designated candidate in cach pairwise contest is specified.

Applying the same reduction to the family F3 consisting of the (;) subsets of three can-
didates. observe that the BC eclection outcome for two candidates of a subset determines the
BC outcome for the last candidate. Thus the BC outcome for the 4 three-candidate subsets
involves eight equations. But the BC outcome for each equation is uniquely determined

by the values of the (;) = 6 variables coming from the (3) = § pairwise elections. This
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creates an overdetermined system of eight equations with six variables, so the values of at
least two equations are uniquely determined by the values of the other six. Consequently.,
there must exist BC election rankings among these four three-candidate subsets; these new
relationships are in addition to the known ones whereby the BC ranking if each set of three
(or more) candidates must be related to the rankings of the pairs!

Example. Two examples are offered to further illustrate the equation counting approach.
The first one explains the relationship of the BC election with that of the pairs. With the BC
clection of n > 3 candidates. the (}) pairwise elections define the (}) basic variables and (7))
cquations. The BC election for n candidates defines n — 1 equations. Thus. the family of (})
pairs and the set of n candidates defines the overdetermined system of n— 14 (g) equations
in () variables. The overdetermined system forces BC election relationships which are. of
course. the assertions that a Condorcet winner cannot be BC bottom-ranked. that she is
BC ranked above a Condorcet loser, cte.

For the family F* = {{c1.co.c3}.{c2.c5.cy}. {e3, ¢y c1}} from the introductory section.
the BC tallies for the three F* subscts requires six equations. The number of independent
variables - the number of pairs of candidates i the three subsets — also is six. There is
no reason to expect the outcomes of six equations in six unknowns to be related, and. in
general, they are not. This is why F* does not admit election relationships.

Suppose F* is augmented by adding {cj.ca.c3,¢4} to F*. No new pairs of candidates
are involved. so the augmented family defines nine equations in six variables. The overde-
termined system forees election relationships to occur. O

These ideas generalize. If the BC admits election relationships because it 1s the agerega-
tion of the pairwise votes. then election relationships should emerge whenever a positional
voting method aggregates the votes of simpler methods. Because w*(w'®) is the aggre-
gate of W elections [4]. election relationships should emerge when w*(w™?) is used with
“enough”™ of the h-candidate subsets in F that contain the same s-tuples of candidates. This
is because the w? tallies should dictate the tallies of the different @ *(w'*) elections. The
answer to “What 18 “enough’ 77 follows from the equation and variable counting exercise.

To illustrate what to expect. for n = 5 candidates let F be the (z) four-candidate subsets.
Each four-candidate election is defined by three equations, so the election outcomes of the
(‘2) sets requires 3(01) = 15 equations. If cach election is based on the voting vector w(’?)
where w'® # w?((1.0)), then the four-candidate tallics are uniquely determined by the
W tallies of the (‘3’) three-candidate elections. This means that the three-candidate elec-
tion outcomes are the independent variables for the four-candidate clections. To count the
number of independent variables, cach three-candidate set is determined by two equations
where the values of these equations hecome the relevant independent variables. As there
are (;) = 10 three-candidate subsets, there are 20 variables. Because there is no reason to
expect relationships for a system of 15 equations in 20 variables, there is no reason to expect
clection relationships.? To force election relationships. it appears we need more subsets of

3The caution is due to the concern deferred to later in this section that 15 equations in 20 variables
can admit election relationshipsif the equations are linearly dependent. A related but more general issue is
whether clection relationships can be introduced though mechanisms other than this aggregation process.

The surprising fact. as proved in this three part study, is that the equation counting approach is the only
method!
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candidates (more equations) that do not involve new triplets of candidates (i.e.. that do not
itroduce more mdependent variables).

Another way to obtain more cquations (subscts of candidates) is to introduce additional

candidates. So. consider the family of (?) = 15 four-candidate subsets constructed from

n = 6 candidates. If the voting vector W w?) is used with cach set, then the election
- . - . . T . .

outcomes for these 135 sets are determined by 45 equations with 2(;) = 40 variables. The

resulting overdetermined system requires the values of at least five equations to be expressed
in terms of the 40 others. so clection relationships must exist. Of course. in order for the five

relationships to occur, all of the equations must use the same three-candidate independent
6 w3

N wy.

Relationships for the above family still emerge even should one four-candidate subset de-

viate from the pattern by using a different voting vector. Here the system remains overde-
termined with 42 equations in 40 variables. so there exist at least two possible election
relationships. On the other hand. if two subsects are assigned different voting vectors. the
resulting system is not overdetermined (39 equations i 40 variables), so it is not clear
whether any clection relationships remain.

. - . . —.
variables. Namely, the () subsets must be assigned the same voting vector w’*(

It is important to note that the existence of election relationships among the 15 four-
candidate subsets does not require the three-candidate elections to be tallied with ¢®!
This is because the election relationships among the four-candidate subsets are based on
what would be the @? tallies if it had been used. If @ is used with the three-candidate
elections, then extra equations based on the sanie variables are mtroduced, so even more

clection relationships emerge!

Fmally. return to the family of (;) four-candidate subsets.  Rather than increasing
the number of equations. clection relationships can be forced by decreasing the number
of independent variables. To do so. choose the voting vector @® = w3((1.0)) so that
wt = w((1.0)) 1s the BC voting method. Now the relevant independent variables are the
outcomes of the pairwise elections. rather than the triplets. In this situation. the number
of independent variables is decreased to (3) = 10 independent variables, so we have an
overdetermined system of 15 equations with 10 variables. Consequently the family of (:)
four-candidate subsets must admit election relationships if the BC is used. This is a reason
the BC admits more relationships than any other method.

2.2. The start of a theory.

The first goal is to convert the “equation and variable counting™ intuition into a theory
to determine when a family must admit election relationships and for what kinds of voting
vectors. The idea is clear: the subsets of a family F = {S;...., Sk} determine the number
of equations. In [3] this is called (for different but related reasons) the dimension of F. More
precisely,

(2.1) dim(Fy= > (|S;|-1).

S;€F

Example. For n = 5. if F is the family of (:) four- candidate subsets. then dim(F) =

3(3) = 15.
For n = 3, let F5 be the family of all subsets of four or more candidates. Fs differs from

the above family in that it includes the set of all five candidates, so dim(F5) = 19. O
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To count the nuber of independent variables, we need to count the nunbers of pairs,
triplets. ete. involved in the aggregation process.

Theorem 2.1. For the family F = {S;.....Si}. suppose that S; 1s assigned the .\ reduced
WIS W ), j= 1. k. Foreach S;. list all possible t;-candidate
subsets that can be constructed. ¢ = 1.....z. Next. count the number of distinet subsets
created in this fashion over all choices of S; € F. If this number is less than dim(JF). then

F must admit election relationships.

voting vector

Example. Suppose n = 8 and let F consist of all six and seven candidate subsets. For
cach S € F. assign the voting vector w!®/((3.1.0).(1.0): {I.— +}). (Because of the negative
value. a Condorcet loser has the advantage over a Condorcet winner if she also does well
in each (3.1.0) election ([4]).) Here dim(F) = 188 > 140 = {the number of triplets and
pairs that can be created from the subsets of F}. There must exists at least 48 clection
relationships among the subsets of F.

As another example, suppose all sets in F are BC ranked and pairs in F are majority
n

ranked. As the number of pairs is (1) = nle=l) it dim(F) > (4), then BC clection

2 2

relationships must exist. This is a result from [3]. O

While Theorem 2.1 is a sufficient condition. it is not a necessary condition for the existence
of election relationships. The problem is that the defining equations for the tallies of the
sets in F can admit reductions that reduce the effective number of variables.

Example. a. The system of three equations in five unknowns,
Tyt cH+utv

L+ z4+u+tv
rHdy+rtutv=s;

1
V4
G

I

admits the relationship sz = 5o + 4(s; — s2).

b. For n = 3. the above F; (all subsets of four or more candidates) has dimension 19.
If WIS(W3) is assigned to cach subset, we have 19 equations and 20 variables so it is
not clear whether election relationships must exist with this three-fold symmetry. On the

other hand, with the four-fold symmetry introduced by assigning w™ to the four-candidate
subsets and w2 (wW'!) to the five-candidate set creates a system of 19 equations with 15
independent variables. so there must be clection relationships. But. because a three-fold
syvinmetry admits at least as many election relationships as a four-fold symnmetry, it appears
that the dimension counting argument is incomplete.  In other words, we must believe
that the three-fold symmetry also adwmits clection relationships for F5. The proof of this
assertion follows from the relationship ([4]) @ (W (W) ~ W) that requires any
election relationship admitted by the four-symumetry to be automatically inherited by the
three-fold symmetry. Consequently, the tally equations based on the three- fold symmetry
must admit reductions described by the four-fold syminetry.

c. The family {{ci,co.cs} {es.cqes) {erieaseat {erien), {er ez}, {ea e}, {ea, e} de-
fines ten equations in ten unknowns with the BC, so there is no reason to expect relation-
ships. Yet. as shown in [3]. this family does admit an election relationship. To prove this,
one could use a laborious algebraic analysis of the ten equations in ten unknowns, or the
simpler cyclic dimension argument of [3]. O
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The goal is to discover the appropriate necessary and sufficient conditions on the subsets
of a family F = {S;..... Sy} so that if Wt W) isused with S5, j = 1., k.
then there must exist election relationships.t The conditions developed below extend the
cyclic dimension of a family (developed in [3]). but they are expressed in a significantly dif-
ferent form. The difference is needed because the BC admits only a few potential paradoxes
(i.e.. unexpected lists of election rankings) relative to other methods. so it is simpler to em-
phasize the BC election rankings that can occur ~ this leads to the derivation of the cyclic
dimension.” On the other hand. if a non-BC positional method admits clection rankings.
the numbers of potential paradoxes remains sufficiently large to make 1t more economical
to emphasize what clection relationships are not admitted. rather than those that are. This
dual philosophy® is the source of the following derivation.

Definition 2.1. Assume given a family F = {S;....,S5;} and solitary voting vectors

who. T’} where #; > 1, > ... t. > 2. Assume that the assigned voting vectors are
(@, @ )Y for all |[S)] > ¢ and that @4 is used whenever there is an #; and
a S; € F sothat |S)| =1;. Let £(F) = Us, exS; be the set of all candidates that are in any
of the subsets in F. The {ﬁwsﬂ(?t‘ ..... W= \)} estended famaly, F* . is the collection
of all subsets that can be constructed from E(F) of cardinality .. .. .. of cardinality ¢;. and

of cardinality greater than ¢;. O

Example. Let F = {{c1.co.c3.c4}, {c2.c5.c4.¢5}}. I both sets use the voting vector
WHW?). then E(F) = {¢y.ca.e3.¢0.¢5 ). and FE consists of all (3) subsets of three candi-

dates. all (:) subsets of four candidates. and the set of five candidates. O

Definition 2.2. Let S be a subset of the given n candidates. The ¢, indicator vector for S
is the vector

5] -1 €k
Vis = g€ — 5 ¥l
151 — |9
cL €S crFo
where e; € R™ is the unit vector with unity for the /th component. O]
Example. For n = 5 candidate. the ¢y indicator vector for S; = {cj.co,c5.0,} is
Vo, = (—i,%,—i—,—},( ). the ¢y ndicator vector for Sy = {cy.c3.cq,¢5} 1s vyg =

(O.—i, —% 3 —%), and the ¢4 veetor for S3 = {ci.ch 05} 1s vy g, = (~%.0,0, 5 —%). O

[V

1

Definition 2.3. 1. For a given family F and solitary vectors {w'. ..., W} where t; >
-+ > t., assume that the voting vectors assigned to sets in F are the reduced A composite
vectors { WIS .. W A)} for all S; € F so that |S;] > 1), and W is the assigned
voting vector for any S; € F for which there is an ¢; so that |S;| = #,. The family F is
{?k(l—v’h ..... W' \)} relazed if for each subscet S € Fr. |S| > t). scalars d; s can be
found so that for all S; € FE\F the equality

(2.2) 2: disvis, = 0.

€S, CS

13What needs to be done is clear from the example — we need to find whether there exist algebraic
reductions in the system. Therefore, for a first reading, this material can be skipped.

>The cyclic dimension is the dimension of a vector space designed to capture the binary relationships of
pairs of candidates within the different subsets of candidates.

SThe important vector space is the space of vectors normal to the space of binary, triplet, etc. relation-
ships among the candidates within the different subsets of candidates.
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but for at least one S; € F. we have that

(2.3) > disvis, #0.

I€S;CS
2. If for F and {w!S (..., =)}, we have cither that
(2.4) dim(F) > Z (F)(fi 1)
=1 t
where & = |E(F)|: or
(2.5) Fis {Whwh.. . WL A)) relaxed

then these vectors are called F composite voting vectors. [

Example. a. Let 0= 5 and let F be the collection of all subsets of three or more
candidates except {cj.c3.c5).{ci.ca,e3}. and {c1.ca2,¢4}. Choose a solitary voting vector
W3 and suppose w3 s assigned to all subsets of three candidates of F. while w1l(73)
is the assigned voting vector for all other S € F. To show that this 1s a relaxed family. let
di 12545y = —di 1345y = —di 1234y = Lo and all of other d; 5; = 0. We need to show
that with these choices of {(]l-‘sj }. Eqs. 2.2 and 2.3 are satisfied. To sec the computation
for {c1.c2.¢5}. note that this set involves only the cocfficients d (1 2.3.10.5)-dy {1.2.3.4)- 50 we
have

(i 12305y A2V 2sy = 0.

A similar computation holds for the other sets in F¥ that are not in F. On the other hand.
the set {c1.c2.¢3,¢4,¢5} € F, and the above computation leads to

d1.{1,2A3‘\1.5}V1,{1,2,3.4.5} # 0.

Therefore, for any w’, this family is W (w?)- F composite.
The dimension definition also can be used to prove that these voting vectors are F

composite. This 1s because

dim(F) = 4(3) +3<i> +2[<g> _3)> z<‘;>

It is fairly casy to show that if a system of vectors is composite because the family satisfies
the dimension requirement (Eq. 2.4). then the family 1s relaxed. However. there are many
examples of relaxed families that do not satisfy the dimension condition Eq. 2.5.

b. For any n > s > 2let F be the family consisting of the () subsets of s candidates and
at least one other set with more than s candidates. In computing the value of dim(F). the
(1) subsets of s candidates contribute the value (s —1)("). As the extra set adds a positive
amount to dem(F), it follows immediately that

dim(F) > (s — 1)(11).
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Therefore. the assignment of @° to the subsets of s candidates. and @ P *) to the extra
set ensures that these voting vectors are F-composite voting vectors.

¢. Let n = 4 and F be the four subsets of three candidates. This family satisfies Eq. 2.4
for the binary svmmetries. so it follows that it is @ *{(1.0)) relaxed. However. to illustrate
Eqs. 2.2. 2.3. and to create an example for the reader interested in comparing the cyelic
symmetry dinension with the above definition. the assertion that this family is @ *({1.0))
relaxed is shown directly.

The family F* consists of all subsets of two or more candidates. The scalars di 12y =
(],';‘{1,2.3} = (/2.{1,2,1} = (/1.{1,2.-1} = (/1.{1.:;,;} = (13.{1.3;;} = (/2.{2,3.4} = (11.{2,3.4} = 1 satisfy
the conditions of the definition. For instance. consider some pair, say S = {ca.c4}. We have
that

dy 120y (€ —ey)+ dy aaayler —er) +dy raa(er —e2) +dy paayles —ex) =0.
However. when we consider a set of three variables. say {cy.ca, 3} we obtain the outcome
di {1.23y(2ey —ey —ez) +dy (1231(2e3 —e; —ey) =(—2er + e +e3) £ 0,

Therefore. this family is BC- composite.

d. We now come to a surprise. One of the first families discussed in this article is

Jf = {{("[.('2.(‘;;.(:_;}. {CL.C-_)‘.C;;.,(:JMC;;}, {(’1.(7;}_.(‘4,(75}, {Cl,(fg,(‘,1,(';',}. {(J-_Z,Cg.(“,‘i.(fr)}},

the family of all 5 subsets of four candidates for n = 3. where the equation counting approach

gave little hope for election relationships to exist. However, with the above argument. it
.

k( W J)

can be shown that F is @ relaxed so there are election relationships. O

The following is onc of the major conclusions of this article.

Theorem 2.2. A svstem voting vector W' € o iff it contains an F-composite voting
vector for some familv F.

Because this theorem completely characterizes all possible ways to define system voting
vectors so that relationships more exist among the election outcomes, it plays a critical role
in characterizing the positional voting vectors.

Example. To illustrate this theorem, suppose for n = 5 that

. — . . N .

1. w?{(1.0.0)) 1s assigned to the five- candidate subset,

i wt((1.0,0)) is assigned to the sets
{erceaiesies) {eriesieq s}, {caves,eq.e5}), {er. g, cq. 05}

while @™((1.1.0)) is assigned to the remaining four-candidate subset, and
iii. the plurality vote is used with the sets {¢y,co.e3}. {2, ci.e5}. {1, cq,¢5} while
v, the antiplurality vote is used with the rest of the three-candidate subsets.
This assignment of voting vectors admits clection relations because the family

F = {{ci.ca,c5.ca.e5}. {eraeaiesien}. {er.es,eae5), {c1.ca,eq,05,

{CQ,CJ,Q,Cs}, {Cl,(«'z,ca}, {02704,65}, {61,04,65}}
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satisfies the condition dim(F) = 21 > 2(;) = 20. This is the only clection relationship
among all possible familics.
As a second example for n = 6. suppose
Wb ((1.1.0)) is assigned to the six-candidate subset,
i, W ((1.1.0.0)) is assigued to cach five- candidate subset,
1. the BC is assigned to cach four-candidate subset. and
iv. the anti-plurality vector is assigned to cach three-candidate subset.
For this system voting vector, several different kinds of relationships occur. For instance.
1. there are relationships between the ranking of the six- candidate subset and ( ) three-
candidate subsets,
1. there are election relationships among the (t) five-candidate subsets and among the
((;) four-candidate subsets, and
i, there are election relationships between cach set of four candidates and the (;) pairs
of candidates that can be constructed from this set. O

Corollary 2.3. Let S be a subset of k > 3 candidates. C C S, and wk(wdh, ..., W, .\)
be the voting vector assigned to S where t. > |C|. Let Fs ¢ be the familv consisting of S
and all subsets V' C S where C C V aud [V] = t;.0 = 1.....z. The family Fs ¢ admits

election relationships.

Example. Suppose that €' = {¢;} and that S is the set of all n candidates. Then,
for any .\ composite voting vector. there is a relationship among the clection rankings of
the family Fg (. 3. This relationship is described in [4] in terms of the different kinds of
Condorcet winners and losers that ¢; can be. [

3. THE STRATIFIED STRUCTURE OF "

To describe the geometrie. stratified structure of a”, assume all voting vectors are
expressed in a Borda normalized form. (Sce [4] for a definition.) As this normaliza-

tion W* = (b — 1, ug. w3 ....we_y.0) allows k& — 2 degrees of freedom (the choices of
Wo.... k-1 ) for the S(‘l(‘Ctl()ll of a particular ¥, there are
n
(3.1) Y=Y (=2
— J
j—v

degrees of freedom in the selection of the 2™ — (n + 1) voting vectors defining a system
voting vector. In the obvious way, a system voting vector can be identified with a point in
Jralton

Example. For n = 3 the voting vector for each of the (;) pairs of candidates is (1.0) so
there are zero degrees of freedom in the choice of these voting vector. What remains is the
three-candidate subset where the normalized voting vector w? = (2, w,.0) has (3) = 1
degrees of freedom in the choice of the value of ws

For n = 4 candidates, the 5(4) = 6 degrees of freedom arise in the following manuner.
There are zero degrees of freedom to choose the (é) voting vectors for the pairs of candidates
and a single degree of freedom for the voting vector for each of the (;) three-candidate
subsets. (This is the choice of the value of wy for cach voting vector (2,w,,0); so it
accounts for four of the six degrees of freedom.) The remaining two degrees of freedom
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ivolve choosing two variables ws. wy from the normalized form (3. wy. wy. 0) for the four-
candidate set. This completely desceribes the six degrees of freedom for the choice of the
svstem voting vector W,

For n = 5. the 7 (3) = 23 degrees of freedom retlect the (;) choices of wy for cach (2. w»,,0)
three-candidate voting vector. the (;) choices of w. wy for ecach (3, wo. ws. 0) four-candidate
voting vector. and the choices of wy. wy. wy for the five-candidate normalized voting vector

(4, wo,ws wy,0). O

The space of svstem voting vectors is the subset of R7(") determined by the constraints
imposed on the variables so that the associated vector 1s a voting vector. For instance. to
make (2, w,.0) a voting vector. it must be that 0 < wy < 20 Similarly, to make (3. wy. w3, 0)
a voting vector. we need 3 > wy > wy > 0.

Definition 3.1. For a subset of candidates S; where |S;| = £, let
R(S;) = {(s1.80 - sk2) € RF T =125y 20y > - 2 55y 2 0},

The positional voting pyramad for n candidates is the set

(3.2) pvritt = [ mrs). O
55055 >2

According to the definition. PV P C R*W s a closed subset of R7(™ with non-
empty interior. To identify a point in PT P77 swith a system voting vector, use the
obvious one-to-one correspondence based on the fact that the coordinates of ¢ € PV P77
correspond to the unspecified values of the voting vectors that define W, Thus, P17 P00
becomes the space of system voting vectors where a” is a subset of P17 P37

Example(a®. at). a. PT" P73 = [0.2] where the boundary point ¢ = 0 corresponds
to the plurality voting vector (2.0.0) and the other boundary point ¢ = 2 corresponds
to the anti-plurality vector (2.2,0). The system voting vector B, where the BC voting
vector for the set of three candidates is w?((1.0)) = (2,1.0). corresponds to the point
¢ =1¢& PVP"3 Thus. according to [S]. a® = {1} € PV P! This midpoint of the line
segment [0, 2] coustitutes the complete description of o?.

b. For n = 4, the normalized voting vector for each three-candidate subset is (2, w5, 0)
while for four candidates the normalized voting vector 1s (3, wo, w3, 0). The free variables
are the four choices of w2 (one for cach three-candidate subset) and the wsy, w3 components
for the four- candidate set. Let

(3.3) (T, 22,03, 040 Y1, Y2) € Py P = pypt

be where the x; component is the value of wy for the voting vector assigned to the three-
candidate subset that does not include ¢;—;. The y components are the values to be selected

m w3 =y = wy = yz = wy > 0. So. the positional voting pyvramid is the six-
dimensional space

PVPY =[0,1]" x {{y1.42) 13 = y1 > y2 > 0}.
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c. The entry (1.0.1.2:2.0) € PV PY represents where the BC ((2.1.0)) 1s used with
the subsets {ci.co. 3} {c1. ez er} (0 = x5 = 1). the plurality vote ((2,0.0)) is used with
{ci.ca ey} (02 = 0). the anti-plurality vote ((2.2.0)) is used with {ca.¢5.¢4} (74 = 2). and

the voting vector for the set of four candidates 1s (3.2,0.0).

d. The 23-dimensional space PV P70) i given by the product

0

[\

02005 {(y1.42)13 =y,
X {(31.32,33)‘4231

v
v

——

52> 0}

X
3 >0}, O

v
G
v

3.2. The stratified structure of a”.
The following assertion playvs an importaut role in our construction of a” ¢ PV P31,
The technical terms of this deseription are illustrated in the examples.

Theorem 3.1. For n > 3. a” is a closed subset (an algebraic variety) of PV P con-
sisting of the finite union of smooth (algebraic) lower dimensional surfaces. For each
non-negative integer k < ~(n). there is at least one surface of a" with dimension k.
Each k dimecnsional component has a parauictric representation in k variables expressed
in algebraic equations with degree bounded by k. Each k-dimensional component of a™.
1 <k <~(n)—=11sin the boundary for two or miore connected components of o’ with
dimension larger than k. The point 3, € PV P representing the BC system voting
vector. B". is a boundary poiut of all components of o',

If 3 is a surface of o' with positive dimension and If p is a boundary point of 3 (i.e.,
if p € O(.3)). then either p is in a lower dimensional surface of a”, or p € PV P M) If
dim(3) > 0. then 3 has a boundary point that is not on d( PV P71y,

As described by this theorem. emanating from each lower dimensional surfaces of o™
is not just a siugle higher dimensional surface. but several higher dimensional surfaces. A
useful image is to view each component as an “edge” connecting several higher dimensional
compouents: a situation not that dissimilar from the binder of a book connecting the pages.
Then, each of these pages are the “edges™ for the even higher dimensional surfaces.

Theorems 2.2, 3.1 and theorems from [4] and [S] are used to construct a™. The idea is to
use an inductive approach by starting with a lower dimensional surface 3 of &™ and then
determine those components of a” with dimension dim(3) + 1 with 3 as a boundary. A
detailed description of at accompanies the introduction of each new branch of the algebraic
variety.

As an aside, remember that the fmportance of a” is that its structure captures the
mtricate connections between different kinds of system voting vectors in a”. The geometry
and connection propertics of a' explain the relationships among different system voting
vectors and lead (in Section 4) to the definition of the partial ordering for system voting
vectors.

3.3. The zero and one-dimensional components of a”.

Our construction of a” starts with the only zero dimensional component; the point 3o
which represents the system voting vector B™. (The subscript emphasizes that 35 is based
on a binary symmetry property.) Starting with this zero-dimensional component of a”,
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the next step is to find all o components with dimension 1+ dim({.3,) = 1. According to
Theorem 3.1. all one-dimensional components have 3y as a boundary point.

A one-dimensional component of a” is a curve defined by the single degree of freedom
coming from the definition of the relation admitting system vector. According to Theorem
2.2 and Theorem 2.1 of [4]. such a one-dimensional curve in a” must be based on the
choice of a single *. Of the two wavs this can oceur. one is to assign @ to a specified
three-candidate subset and the BC to all subsets of candidates. The second approach 1s
to find all families that are @
BC.

According to Theorem 2.1 of [4]. @* composite family is defined by {W* (@3} € a™
such a system voting vector is based on a three-fold symmetry. This class admits the

interpretation of being. at least locally. a perturbation of B" because B® = W™ ((1.0))

composite: all other subsets of candidates are assigned the

is a limiting. special case corresponding to w3 = (2.1.0). (This perturbation asscrtion
manifests the assertion in Theorem 3.1 that Jy must be in the boundary of all surfaces
coustituting a”.)

To represent this system as a one-dimensional set J3 C o C PV P use the fact
that cach voring vector is uniquely and algebraically defined by the sole degree of freedomn.
wsy, in the choice of w?. (The notation Jy is selected to denote the three-fold symmetry
of the voting vectors.) Indeed. each of the two connected portions of 3 1s a segment of a
straight line passing through .3, and terminating on the boundary of P P7") That the
parametric representation is first order follows from the definition of {W?”(’?)}. There are
two line segments parameterized by the choice of wo in @w? = (2. w,.0) where one segment
has the restriction 0 < wo < 1, while the other has 1 < wy < 2. So. 33 € PV P00 g
identified with the one-dimensional set of system voting vectors

. . —_— .
{W™H(&)| W? # B? is a voting vector}.

A simple way to construct 33 is first to define the straight line segment corresponding
to W'((2.w5.0)) in PV P and then remove the center point 3, which represents B,
In other words, the BC defines a point. and passing through this point is a straight line of
positional voting methods that admit election relationships. This construction indicates
the typical situation for the surfaces of a”. By use of Theorem 3.1, a surface corresponding
to a designated class of system voting vectors from a™ 1s defined. Then, lower dimensional
components of a™ divide the surface into several components. In other words, a fixed
parametric, algebraic representation is given for the surface. Restrictions on the parameter
divide the surface into components, To distinguish between the two situation. we call the
union of these components the component type. Thus, the class {W"(@?)} defines one
component type of o with two components.

Example(at). For n = 4. B* = W*((1,0)) is the system vector where (1. 0) is assigned
to all pairwise clections. where (2,1.0) is assiegned to ecach of the four subsects of three
candidates, and where (3.2,1,0) 15 used with the set of four candidates. Using the above
notation. B! corresponds to the point J, = (1.1.1,1;2.1) € PV P3¢,

The component type 33 corresponds to all system voting vectors W((2.5,0)) € a?,
0 < s < 2.8 # 2 where (1.0) i1s assigned to all pairwise elections, (2,s,0) is assigned to
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all elections with three candidates, and (3.1 + s.5.0) 15 assigned to the set of all four
candidates. Thus. these system voting vectors WH((2.5.0). 0 < s < 2. are identified with
the two line segments

(3.4) 33 ={(s.5.5.51 +5.8)) CPVP® 5€]0.1)U(1,2].}

There are two interesting facts to notice.

1. The end points of the line segment are on the boundary of PV PY ™ but the
natural projection of this segment into the component R({cy, ¢z, ¢3,cq}) 1s in the interior
of R({cy.ca.c3.¢0}). In particular. those voting vectors represented by points on the
boundary of R({ci.cz.c5.¢4}). such (3.0.0.0),(3.3.0.0) and (3.3,3.0) are not in the
projection of this set. This geometric fact is closely related to the assertions from [4]
asserting that certain positional voting vectors cannot be expressed as a .\ composite
voting vector W *(w ', W A) thus they cannot admit clection relationships. (In
fact. it is an exercise to show that if a vector of R({c;, ¢, ¢3.¢1}) is not in this projection.
then it can not be expressed as @ '(wW?).)

2. The midpoint of this line. where s = 1 so the point is (1.1.1.1:2.1). is identified
with .3, = B'. Thercfore. 3, is the boundary points of 33 = {(s.s,5.511 +s,35)|s €
[0.1) U (1.2] that divides the component type into two components. [J

Returning to the description of a’, we seek other choices of system voting vectors which
admit relationships and which correspond to one dimensional sets emanating from J,.
Following the above approach. because our set 1s one-dimensional. our search is restricted
to system voting vectors where only one choice of @? is free to be selected: all subsets of
candidates not based on this choice of @’? must be assigned the BC. Moreover. the stratified
structure requires one of the boundary points of this one-dimensional line to be 35, so (at
least locally) such a class of system voting vectors can be viewed as being a perturbation
of B". According to Theorem 2.1 of [4], [S]. and Theorem 3.1 of this paper, one wayv to
achieve a single degree of freedom is to modify the B™ system vector by replacing the
BC voting vector assigned to a specified three-candidate subset with a w? # w?((1.0))
voting vector. Such a vector isin a" because election relationships are admitted among the
election rankings of all subsets of candidates except the specified three-candidate subset.
There are () choices for this set of three candidates, so there are () different component
types. Each component type is divided by the 33, so it leads to two line segments. Namely,
as the parameterization of thesc lines is based on the choice of wy for the wW? assigned
to the designated three-candidate subset. one straight line component has wy < 1, while
the other has we > 1. This defines 2(';) components of a” with boundaries 3y and on
APV Pilmy,

These 2(';) one dimensional curves have the properties that

1. the curves are pairwise disjoint from one another and from .35,

2. each component type has two components,

3. for cach line segment. one boundary point is 33 and the other is a point in 0PV PY(")

and

4. there is a symmetry relating the (3) component types; a permutation ¢ interchanging

some two coordinates for the triplets maps onc component type onto another. (This
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last assertion holds because the permutation changes which triplet has the BC voting
vector replaced by w3.)

Example. (o). One component type. given by
{(5.1,1.1:2.1)] s € [0. 1) U (1. 2]},

is where the BC assigned to all sets except {c¢p.¢2.¢3} and (2.5.0). s # 1 1Is assigned to
{c1.c2.¢3}. The other three lines of this type in o’ are obtained by permuting swhich of the
first four coordinates has the parameter s. Notice that 35 1s a boundary point for each line:
it is the lower dimensional component of a' that divides cach component type into two
components. By the geometry. these line segments come out of 3, in a pin-wheel fashion.
This is an aspect of the stratified structure of a! and a™ combined with the symmetry. O

There are many other one-dimensional straight lines in a” that emerge from 3,. They
are found. of course. with Theorcm 2.2, According to this theorem. if a system voting
vector contains an w® composite family of voting vectors. then this system voting vector
is in o', So. find all such families of subsets. Then, each family F defines a one-dimensional
component tyvpe consisting of two components that are separated by 4,7 as above. each
component depends upon whether the chosen @'® has wy < 1, or wy > 1. These straight
line segments correspond to where w? is assigned to cach S € F where |S| = 3. and
@ISy is assigned to each S € F where |S| > 3. All § € F must be assigned the BC
voting vector.

As an illustration of a w3-F composite family of voting vectors. recall that a special
case of such families is where a particular subset C of candidates are contained in all sets.
(See Corollary 2.3.) So, choose a particular set of candidates. say, C' = {c1, 2}, and assign
W) to each subset S of three or more candidates that contains C. Any set not
containing C' is assigned the BC voting vector. This assignment defines a component type
of a” with two components. As another choice, assign @ (W) to the subset of all n
3

candidates. W? to cach subset of three candidates that includes C, and the BC for all

remaining sets. This assignment defines another pair of straight line segments in a™.

Example (a*). For n = 4. the above construction introduces only (11) new component
types with a total of Z(f) components (all straight line segments) in a*, This is because
if |Cf > 1. then we obtain the set of system voting vectors {W*(w'?)} analyzed above.
Also. because of the Limited number of subsets of candidates available with only n = 4
candidates, the families defined in terms of such a C' are the only possibilities for a w?-F
composite family of voting vectors.

Each component type is obtained by choosing a particular C' = {¢;}. Assign the BC
to the unique set of three candidates that does not include the designated candidate; the
remaining three subsets of three candidates are assigned w'* and the set of four candidates

is assigned w?(w™?). For instance. the component type

{(1os.s.s:1 + 5, 8)

s€(0.1)u(1,2]}
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arises when €' = {¢;}. The other three component types (where cach produces two line
segnents) correspond to the three remaining permutations of the first four compouents of
the vector.

The construction of a’ admits added possibilities. This is because with the extra can-
didate. there are more admissible families. As an example. the family of all sets of four
candidates is an admissible family. Thercefore. among the component types. given by one
dimensional curves in a® coming out of 3. we now have situations where w?*(w?) is as-
signed to each of the five sets of four candidates, and the BC is assigned to all other sets
of candidates. O

3.4. The two-dimensional components.

By use of Theorem 2.2, we know we have completely characterized all one-dimensional
a™ components. Now counsider the two-dimensional components of a” - surfaces based on
the availability of two degrees of freedom for a syvstemn vector in o”. From Theorem 2.2
and Theorem 3.1 of [4], these degrees of freedom can arise in three ways.

. . — P . .
1. After a solitary voting vector ' is selected. the voting vectors for certain subsets

of candidates 1s based on this choice: all other subsets of candidates are assigned the
BC voting vector. This requires finding all families that are @’ relaxed. or by assigning
w to a particular four-candidate subset.

3

—
2. Two solitary voting vectors w@? and w’? are selected. The voting vector for certain

subscts of candidates arve based cither on w®. while other subsets are based on ;’)2 all

other subsets of candidates are assigned the BC voting vector. This is done by finding

combinations of families that are w™® and/or w'? relaxed. and assigning these vectors
to specified three-candidate subsets.

3. The two degrees of freedom come from a choice of w'? and the choice of a scalar A;.

Then certain subsets of candidates are assigned the voting vector wl(w?, (1,0).\ =

{A1,1 — A }): all other subsets are assigned the BC voting vector.

We know that each of these assignments leads to a two-dimensional component type a”
where its boundary must contain 3, and some one-dimensional branches of a”. Secondly.
a pattern has been established by the construction of the one-dimensional curves of a™:
either the rankings of the set assigned the non-BC voting vector is not related to the
rankings of the other sets, or this voting vector defines a F-composite voting vector. To
illustrate, start with the first possibility where the two degrees of freedom arise from a
choice of W™, For the first possibility. choose a set of four candidates. For this set, define
the class of systemn voting vectors where the voting vector assigned to the specified set is a
Wt #(3.2.1,0): the BC voting veetor is assigned to all remaining subsets of candidates.
This defines (1) two-dimensional surfaces where the only boundary point that is not on
APV Py is 3y, The remaining possibilities involve choosing all possible families that
admit a w?*-F composite voting vector. Assign w?! to cach set S in this family where
1S| = 4. and w!¥I(W) to cach set S in this family for which |S] > 4. All other subsets of
candidates are assigned the BC voting vector.

Example (a!). Of the two choices. only the first is possible for n = 4. This one possible



SYMMETRY EXTENSIONS OF “NEUTRALITY™ [I: PARTIAL ORDERING OF DICTIONARIEST

set 1s given by

{(1.1.1.1:s. )32 s >t > 0. (s ) # (2.1)) Cat.

For n = 5. there arc several families that admit a @ F composite voting vector. One
is the family of all subsets of four or five candidates. Five others are given by a choice of
c;: this is the family of 1 + (1) subsets of four or more candidates that clude the ¢;. O

Another two-dimensional component type corresponds to the class of voting vectors
(W@, (1.0),\)} C a™. One of the two parameters defining this surface is the value of
wo in the definition of w?. the other is the ratio t = Ay, Ao = 1 —¢t. It follows immediately
that

(3:3) as t = 0. W'(W’.(1.0).\) = W"(W?).
At the other extrenie.
(3.6) ast — 1. WH@?.(1.0).\) = B" = W"((1.0)).

This last assertion illustrates the first part of Theorem 3.1 In any case. the set of system
voting vectors {W™(w?.(1.0),.\)} defines three ditferent two-dimensional components of
PV P depending on whether + < 1,0 < ¢t < 1.1 < t. It follows from the discussion
in [4] that a voting vector in cach component type leads to significantly different kinds of
Condorcet properties that are admitted by the election rankings. Notice how the edges of
these components either belong to PV P*") or they are one-dimensional components of
a™. For example, the two edges s = 0.2:0 < ¢t < 1. of one component arc in 9PV P,
Another edge (where t = 0.5 € [0.1)U(1,2]) defines J;. Again, this illustrates the stratified
form of a™. As another illustration of part 1 of Proposition 3.1, the remaining two edges
(t=1:5€[0.1)U(1.2] and 0 <t < 1.s =1 of this component is the point J5. Thus, this
two dimensional surface starts on the closure of 33, arcs through PV P%(") to return to the
point B". A similar description holds for the other two component types corresponding to
t<0.t>1.

This particular family {W7"(w3.(1,0)..\)} can be modified to create a large number
of related classes of voting vectors. To do this, instead of assigning w?® to all set of three
candidates and Wl‘ﬂ(?"‘,(l,()),;\) to sets S where |S| > 3. these assignments are made
only to certain specificd subsets. Namely, for any family F that admits a {w’®,(1,0))}
composite voting vector, the above assignment is made. All other sets are assigned the BC
voting vector.

Example(a’). Let n = 4 and let t represent the value of Aj. so Ay = 1 —¢. The two

R 1, — K .
parameters s.t define the class W@, (1,0). A) € a* and each of the three corresponding
component types are given by a surface with the quadratic representation

(3.7.) {(soscssi(I=H)(s+ 1) +2t(1-t)s+t)] s €[0.1)u(L1.2]} ¢ PVPYH))

where the three component types arve determined by whether t < 0.0 <t < 1,t > 1. The
boundary of each component surface includes 43 and 3;. Each component type is divided
mto two components depending on whether 0 <s < 1,0r 1 < s < 2.
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Next. choose a particular candidate ¢;. Modify the above procedure by assigning the
BC to the one three-candidate subset that does not include {¢;}. For each choice of ¢
we have three new two-dimensional component types of at with two components. For
example, the component type corresponding to the choice of ¢ 1s

(5051081 (L—t)(s 4+ 1)+ 2t (1 —t)s + 1)

s€0.1)uU(1.2))

where. again. the three types are determined by whether t < 0,0 <t < 1.t > 1.
The above introduces fifteen new component types for at with a total of 30 components.
For n = 5. the additional subsets of candidates admit more unaginative choices of
families that admit a @3.(1,0) - F - composite voting vector. thus, different sorts of two

dimensional component types emerge. [
-
3 and «w'? are selected. is handled in the
sanie fashion. First consider where cach class of voting vectors is assigned to a different
subsect of three candidates and the BC is assigned to all other subsets. Here. the election
rankings of the designated two subsets need not have any relationship whatsoever with the
rankings of the remaining subsets. This leads to 4[((}))((3) — 1)]/2 choices of component

A third possibility. where two voting vectors w

types and. as each component type has four components. to 4[((}))( (3)—1)]/2 components
of a”. Notice that the boundaries of such a family consist of the two one dimensional lines
given by where a non-BC voting vector 1s assigned to only one subset of three candidates.
A fourth possibility is where one @™ voting vector is assigned to a particular set of three

3 IS 43
w! b ’(w 2

—
candidates. where w’'? or 15 assigned to the subsets of a family F that admits

—

a w'*~F composite voting vector, and where the BC voting vector is assigned to all other
subsets. For cach such family. the two one-dimensional boundaries consist of where the
non-BC vector 1s assigned to only one subset of three candidates, and where the subsets

—>‘ . .
of a family F admit a w'*>~F composite voting vector.
The remaining possibility 1s where there are two disjoint families F; and F, where one

5y . . _—> . .
admits a - F; composite voting vector and the other admits a w'*~F, composite voting
vector: the BC is assigned to all remaining subsets.

Example(a?). An example of the third possibility is where the two sets of three
candidates arc {c,¢y.c3} and {cy, ¢y, cq} 1s given by the parametric representation

{(5,1.1.1:2.1) ¢ PVP Wst €[0,1)U(1,2] ).

This two- dimensional component type defines four two-dimensional components of at. As
there are six choices ([(;)( (;) —1)]/2) of the pairs. this defines six component types with
24 two-dimensional components for a?.

For the fourth stated possibility in a*. one choice of w? defines a family of subsets
where there are election relationships, and the other does not. For instance, if the family
is a {c;} composite family, then the four components of the two dimensional surface are
given by the set

{{s.5,5. ;1 —s,3)|s.t € [0,1)U(1.2]}.
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As there are four ways to choose the subset represented by t. there are four new compo-

t

nent types for at. Each component type has four components. so this adds 16 connected

components to at

For n = 4 candidates, there cannot be two disjomnt families where each admits a F-
composite voting vector. Therefore. the last possibility cannot occur in a*. On the other
hand. such a situation does occur in . For instance. F; could consist of all (;) subsets
of three candidates and the set of all five candidates, while Fy consists of all (i) subsets
of four candidates. O

3.5. The higher dimensional components.

Now that all possible one and two dimensional components of a” are found. the same

procedurc is used to find the three and higher dimensional components of «”. By use
of Theorem 2.2, the specified dimension of the component of a™ determines the kinds
of voting vectors that can be used to replace BC voting vectors for specified subsets of
candidates. There are two wayvs to determine how to use choose the subsets of candidates.
One is where the rankings of the subset will be independent of the rankings of the other
sets. and the other 1s based on families of candidates that admit composite voting vectors
with the specified degrees of freedom. In choosing the non-BC voting vectors. we use
solitary voting vectors or reduced A composite voting vectors. A particular choice of a
family and signs of the A components defines a component type. Each component type is
further subdivided into components according to the choice of the solitary vectors w'. To
see this division. recall from [4] that if @'’ is a solitary vector, then it must belong to one
of the two components BVVU\LIV(¢;,¢; — 1); corresponding to the choice of component
for each solitary voting vector 1s a component of a”.
RS, W, WP (1.0). A). There are 2* — 1 sign combinations
where not all ;s are negative. so there is a potential of 2* — 1 component types for cach
choice of a relaxed family. Furthermore, each component type is further subdivided into 2?
components reflecting the two different regions admitted by the first three solitary voting
vectors.

To illustrate, cousider

This approach is the obvious generalization of the procedure establishied by the above
discussion for the two-dimensional components, so it is carried out below only for at.

Example(a?). If a three-dimensional components of a? is based on the choice of a
single w*, then this voting vector must admit three degrees of freedom: i.e., we must
use w?. This, of course. is impossible as w® requires five candidates while only four are
available. Thus, there are only three ways to choose the basic voting vectors in order to
obtain the required three degrees of freedom for n = 4.

1. One degree of freedom is given by cach of three choices of a voting vector w3,

2. Two degrees of freedom come from the choice of a w™?, and the last degree of

freedom occurs by choosing a w?.

3. The choice of a W? to define a w*(W?,(1.0). {t.1 — t}) voting vector uses two

degrees of freedom. The final degree of freedom comes from choosing another s, Ounce

the choice of voting vectors have been 1solated, the basic theorems are used to determine
how to assign voting vectors to subsets of candidates. Again, the fact that only a limited
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number of subsets can be defined by n = 4 candidates plays an important role i the
analysis. To illustrate where three choices of voting vectors w? are made, notice that
the limited number of subsets of candidates makes it impossible to use any of these
voting vectors 1 ° to define a composite voting vector. These vectors must be assigned,
therefore. to individual subscts of three candidates: all other sets are assigned the BC.
This assignment has the effect of climinating the rankings of this set from being related
to the rankings of the other subsets of candidates. Each assignment defines a three-
dimensional component type which has 2% three- dimensional components. The dividing
(two-dimensional ) boundaries defining these components correspond to where one of the
three designated scts now are assigned the BC. As there are (;) such assignments. we
add four three-dimensional component types and 32 three-dimensional components to
at. Notice that the two dimensional boundaries of these sets correspond to where one
of these sets is reassigned the BC and two of them have a non-BC voting vector. As
an illustration, the following a™ component corresponds to where {¢(, ¢2. ¢35} 1s the only
three- candidate subset assigned the BC.

{(1.s.t.z:2,1)}s.t.2 €[0.1)U(1.2]}.

'

2, a restriction is imposed
by the relative scarcity of subsets of candidates. Because of the limited nuinber of subsets

Again. with voting vectors based on choices of Wt and

of candidates for n = 4, these choices of W' and W cannot be used to define composite
voting vectors. Therefore, the only choice is to assign ! to the set of all four candidates.
and w? to a specified subset of three candidates. As there are four choices for the subset
of three candidates. this defines four new three-dimensional component types with a total
of eight three-dimensional components have been added to a'. One such component type
where the chosen subset is {cy.¢2,¢3} 1s

{

¥

L1t )]s €[0.1)U(L21.3> 1> 2> 0.(8 1) # (2.1)).

The final way to obtain three degrees of freedom is to use w*(w®.(1,0), {t.1 - t})

—
and w'?. The only way the first composite vector can define relationships for n = 4 is
if there is a family based on a set C' = {¢;} as described in Corollary 2.1. The one

three-candidate subset not containing c; 1s assigned ;')3 Twelve a! component types are
defined in this manner where each component type has four three-dimensional components.
This construction, then. adds 48 three-dimensional components to at. For instance, the
following component type is based on a C' = {¢y}.

{(sosos. (1 4+38)+2(1=t)ts+1—1)]s,2€[0,1)U(L.2],¢ € (0,1)}.
The boundaries of this set include the two dimensional surface given by the ¢ composite

voting vector (where = = 1). Two related component types are where + < 0 and ¢ > 1.

Because of the limited number of subsets when n = 4, the four dimensional surfaces of

a* are even easicr to analyze. To obtain four degrees of freedom, we must either choose
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four vectors w3 or choose two vectors «©° and one w?t. For the first setting, each three
candidate subset is assigned a w? voting vector, and the BC is assigned to the set of
four candidates. This defines one four-dimensional component type with 2 = 16 four-

dimensional components of a*. This component type has the representation

{(s,tou.:2.1)| st e € 0.1) U (1.2]3.

K —.
3 vectors and one wt,

we need to sclect the two three-candidate subsets that remain BC ranked. Each choice
defines a component type that has 2? connected four-dimensional components. Together,
this adds six component types and 24 four-dimensional components to a*. The set

- . . . . . —
When a four dimensional component is defined in terms of two w

{(1l.s,t, iz, st € [0.1)U(L.2).3> 2 > u >0}

is the component type where {cy,cr,ca} and {cs.c3.c4} are BC ranked.

The final possibilities are the five-dimensional components of a*. These can occur only
when only one set of three candidates is assigned the BC voting vector. and the assignment
of the remaining voting vectors does not define a composite voting vector. (The situation
where a composite voting vector is admitted defines a portion of the boundary for this
set. If fact. this boundary divides this sct into two components.) Each choice defines a
component type, and cach component type has 2* components. Thus. there are four five-
dimensional component types and 64 five-dimensional components of a*. The following
component type is where {cj. 2. e3} is assigned the BC voting vector.

{(1.sct, e, )l s, tou € [001) V(L2320 > = >0} —
{(Ls.satt(l1+5)F21—t)ts+1—-t)s€[0.1)U({1.2].t € [0.1]}.0

3.6. The structure of a® and «*.
To summarize, a? has the trivial structure of a single (zero- dimensional) component
consisting of the point 3.

The structure of a’ is significantly more complicated than o?

as indicated by the fol-
lowing table listing the number of components and component types of a*. One measure
of the increased complexity is that a® has only one component while a? has 282 of then.

The numbers rapidly escalate with the value of n.

Dimension Components Component types
0 1 1
1 18 9
2 71 26
(3.8) 3 58 20 -
4 40 7
5 64 4
Total 282 67 B
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4. Tie ParTiAL ORDERING OF SYSTEM VOTING VECTORS

The stratified structure of a” leads to once of the main goals of this article - the intro-
duction of a partial ordering for the system voting vectors.

Definition 4.1. For x;.x, € PV P x4y 15 coarser than x|, denoted by X; < X». if one
of the following two conditions arc satisfied.
1. xX; €a™ but xy, € a”.
2. Both x;.x, € a”. Let 3 be the component of a™ that contains x,. Then x; € 9( ).
but x; € 3.

Let W™ and W™ Dbe system voting vectors that are identified in the natural fashion.
respectively, with x,.x; € PVP7( | If X, 4 X9, then we say that W" €4 W*n,

If both x;.,x2 are interior points of the same component type of a”. then we say that
both vectors are equally coarse. This is denoted by x;Hx,. If W™ and W*" are system
voting vectors identified. respectively, with x;.x9 € PVP7U and if x, Wx,, then we say
that W"RBW*". [

Proposition 4.1. The binary relationship < defines a partial ordering on PV P70,

The proof of the proposition follows directly from the stratified structure of a™.

To explain what this partial ordering means. we need some basic definitions from |S]
and [4]. With n candidates, there ave 2™ — (n 4+ 1) subscts of two or more candidates, and
a system voting vector. W' indicates the positional voting methiod assigned to cach set.
A word, f(p. W), defined by profile p is a listing of the 2" — (n + 1) election outcomes:
there is a unique ranking for cach subset of candidates. A dictionary is a listing of all

possible words. Nawely.
DW= {f(p,W")| all possible profiles p}.

It 1s easy to show that all dictionaries contain those words where the ranking of cach
subset of candidates is inherited from the ranking of the set of all n-candidates. Con-
sequently, any other word in a dictionary corresponds to where a profile defines election
rankings that could be viewed as being counter-intuitive or paradoxical. It follows. there-
fore, that the fewer the entries in a dictionary, the fewer the paradoxical words that are
admitted: that 1s, the election results are more predictable. The ultimate extreme is where
a dictionary equals U". (U" is the set of all possible listings of rankings. Namely, for each
subsct of candidates, arbitrarily choose a ranking — thus the rankings among subsets need
not have anything to do with one another. The collection of all possible listings of rankings
constructed in this way is 4".) For more discussion, examples, and applications, see [S].

The following shows that if W™ <€ W*"  then more nummbers and kinds of paradoxes
arc admitted by W*” than by W™, Conversely, W™ enjoys all of the election relationships
permitted by W*™ and then some additional ones.

Theorem 4.2, 1. If W'RW™*"_ then

(4.1) D(W") = D(W™).
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2. IfW" « W*"_ then
(4.2) DIW") C D(W*").

3. W' A W™ and W « W', then DIW?) ¢ DIW™ ) and D(W") ¢ D(W™").
In other words, there are words in cach dictionary that are not in the other.

4. W & o, then DIW™) = U".

This theorem. then. gives a complete characterization of which system voting vectors
admit any kind of relationship among the election rankings. As part 1 asserts. an clection
ranking is admitted iff the svstem voting vector can be expressed as one of the vectors in
the constructed set «”. This theorem 1s surprising in that the words (election rankings
and election relationships) depend more on the component type than on the entries of
a system voting vector. For instance. let W7 be where each three- candidate subset is
plurality ranked and @W*((1.0.0)) = (3.1.0.0) is assigned to the four-candidate set. Next.
let W3 be the system voting vector where the three-candidate subsets are anti-plurality
ranked while w1((1.1.0)) = (3.3.2.0) is assigned to the four-candidate subset. Both
system voting vectors belong to the same one-dimensional component type of a! (but
different compouents). so, according to the theorem. both have the same dictionary! This
means that if the profile p defines a word for W7, then there is a profile p’ which yields
for each set of candidates the same election ranking when W3 is used.

An immediate corollary of Theorem 4.2 is that unity plus the number of component
types in o™ 1s the number of different dictionaries that can be created. (The added value
of unity is required for the dictionary for all system voting vectors not in a”; this dictionary
is the universal set ¢".) The following is a special case based on the derivation in Section

3.

Corollary 4.3. For n = 3 candidates, therc are only two possible types of dictionaries for
system voting vectors. The first is D(B*) C U®, and the other is D(W?) = U*. Namcly.
all dictionaries agree with U* if W* % B,

For n = 4 candidates. there are 68 different dictionaries for system voting vectors. All of
thesc dictionaries contain the Borda Dictionary D(B™), all are contained in the dictionary
for plurality voting which is U*.

This corollary means, for example. that the seemingly impossible problem of character-
izing everything that can happen for all choices of system voting vectors has been reduced
from an infinite dimensional task to a finite dimensional one. After all, if we know the
words in cach of the 68 dictionaries for four candidates, we know everything that can oc-
cur for four candidates with all possible choices of voting vectors.” Of course. 68 different
dictionaries still constitutes a large number of possibilities. So, a further reduction is given
(in Corollary 4.4) after I indicate how to use Theorem 4.2.

Of theoretical interest, Theorem 4.2 answers our earlier questions about the system
voting vectors. It reaffirms ([S]) that B™ is the ~best choice™ because B™ minimizes the
number and the kinds of single profile paradoxes that ever could occur. This is a direct

"The description of what words are in each dicuionary is a basic theme of [5].
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consequence of the theorem because for any W # B we have B" €« W”. This ordering
holds because 33 1s a boundary point of all a” components.
It also follows from Theorem 4.2

structure of am

. the partial (rather than a total) ordering. and the
that there does not exist a natural “sccond best system voting vector.”
Support for this assertion can be seen from the structure of the one-dimensional com-
ponents of a™. For instance, if there were a second best system voting vector.
Theorem 4.1. it must belong to a one-dimensional component type of a™. But. there are
several different disjoint one-dimensional component types of a”, n > 3, so there are sev-

eral different choices of

then. by

“second best” and each choice leads to a
different dictionary. Of course. added conditions could be imposed to force the selection

of a particular one-dimensional branch of a”

system voting vector.

. For mstance, if the BC 1s not to be assigned
to any subset of candidates, then the only one one-dimensional branch of o™ that remains
admissible is the onc corresponding to W3(w?). With this restriction, any system vee-
Indeed, J3 1s in the

tor from the class {W?(?)} is “sccond best.” with this restriction.

boundary of all admissible system vectors.

The choices become even more complicated. This is
because 33 1s in the boundary of several different two-dimensional component types. In
other words. at each level, new branches emerge from cach component type. Thus selections
must be based on imposing appropriate restrictions to isolate particular branches of the
partial orderings.

“third best™., “fourth best.” etc.,

4.2. The computations for an example.

While Theorem 4.2 1s of obvious theorctical interest, what nmproves its value 1s that it
is accompanied by a simple computation scheme to allow specified choices of system voting
vectors to be compared. The computational scheme 1s to determine which o’
type contalus a given systenr voting vector.

comporunent
Then. system vectors can be compared by
At each step. the computations involve nothing
more difficult than the use of elementary algebra.

comparing the component types of a”

Example(a'). To illustrate how to use this partial ordering, twelve different system
voting vectors are given and then ordered. The importance of this example is to illustrate
the required computational steps in the restricted setting afforded by n = 4 candidates.
The same approach, of course. extends to order any sct of system voting vectors for any
n > 3.

For n = 4, the first five system voting vectors have the (3,1,0) assigned to all three-
candidate subsets, so they differ in the assignment of a procedure for the four-candidate
subset. The assigned vectors are

System Vector Choice of !
w (12.7.3.0)
W) (15.9,4.0)
wi (9.5.2.0)
Wi (3,2.1,0)
W; ( 2.8.3,0)
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The next sct of five system voting vectors have (3.1.0) assigned to all three-candidate
subsets except {cy.ca.c3}. Thercfore. these system vectors differ in the assignment of a
voting vector for {¢, ¢z, 3} and for the four-candidate subset.

System Vector Choice of w® Choice of
wi (2.1.0) (12.7.3.0)
wi (2.1.0) (3.2.1.0)
wi (2.1.0) (9.5.2.0)
w! (1.0.0) (9.5.2.0)
Wi (1.0.0) (15.9.4.0)

The final two system vectors have the (3,1.0) assigned to all three- candidate subsets
except {c2.c3.cq}: here the BC is assigned. Then for the four-candidate set, W1, assigns
(12.7.3.0) while W1, assigns (9.5.2.0).

To start the comparisons. note that w*((3,1.0)) = (9,3.2.0), so Wi = W*((3.1.0)).
The vector w? = (3.1.0). which has the normalized form (2, :: 0), is a solitary vector so
W is in a one-dimensional component of a' corresponding to the set of system voting

vectors WH (), Thus W3 belongs to the component of at given by
F = {(s s, 81 +s08)s €0 1),

Next note that (12.7,3,0) = w*((3.1.0) + @'((1.0)) = (9.5.2.0) + (3.2.1.0) and
(15.9.4.0) = wW*((3.1.0) + 271((1.0)) = (9.5.2.0) + (6,4.2.0). Thercfore, both sys-
tem voting vectors belong to the two-dimensional component of a* corresponding to the
class WH(’?.(1.0),.\). Both voting vectors are special cases of the two-dimensional a?
component

Bl= 3 = {(s.s,8,8:(1 =t)(s + 1)+ 2t (1 —t)s+t)|s €[0,1), 0 <t < 1}

Moreover, 3% C 9(.3?) (shich results when ¢ = 0), so we have that W3 corresponds to a
boundary point of the component containing W1 and W3. Therefore.

Wi « W BW.
With respect to the election rankings, this means that
DIW3Y) C D(W3) = D(WH) cu’,

Now turn to Wi. Because the four sets of three candidates does not admit a >
composite voting vector. and because the BC, rather than w?((3,1,0) is used with the
set of four candidates. there is nothing special about the assignment of (3,1,0) to these
3

N . .
sets: any «° would have the same cffect. Therefore, W1 belongs to the four-dimensional

component of a?

3t = {(s,u v, 2;2.1)

sou, v,z €10,1)}
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Notice that the only boundaries of this set correspond to where one of the four variables
assumes the value 1: this is where one of the sets is assigned the BC voting vector. So.

3 g a3y, i=1.2.3.
This means that although W1 € al. it is not comparable to any of the system voting
vectors {VV‘J‘» }?Zl. Therefore. there are words in the dictionary D(W7) that are not in the
three dictionaries already discussed. and cach of these dictionaries has words that are not
in D(W7).

Next cousider W2, The key term is the voting vector (12,8.3.0) assigned to the set of all
four candidates. If W3 € at. then it inust be that (12.8.3,0) = s *((3.1.0) + u(3.2,1.0)
for some choice of non-negative scalars s, u. Simple algebra shows that this is not the casc.
Therefore, W3 € a?. so WJl <« W for j = 1.2.3.4. Moreover, D{(W?) = ¢{*. This means
that for any rankings assigned to the 2! — 5 = 11 subsets of candidates, there is a profile
so that the election rankings are the chosen ones. Also. 3° = PV P*\at.

The voting vector Wy introduces a new feature: it differs from W7 only in that the BC
is assigned to {c).co. ¢z} rather than (3.1,0). As such. one might expect the dictionary of
one of these voting vectors to contain the other. However, this is not the case — W7 and
W are not comparable. As such. there are words in each dictionary that are not in the
other one. To see why this is so. notice that with W the choice of the voting vector for
three of the sets of three candidates and the set of all four candidates creates a special case
of a ¢5 - composite voting vector based on the parameters w® and A. Thus. this voting
vector belongs to the two-dimensional component of a' given by

3% = {(Losco.si (L= t) s+ 1)+ 2t (1 = t)s +t)|s € [0.1).0 < t < 1}.

Since 3% is two-dimensional, it cannot be in the boundary of 3. Moreover. it is not a same
component tvpe as ;3. Similarly. 3* ¢ 9(.3°). The component 3! is of higher dimension.
but J(31) = {32 }. 50 3% ¢ 9(3"). Therefore, we have that any system vector from {W] ‘Jl»:l
and W} are not comparable with this partial ordering. Thus. there exist words in D(W#)
that are not in the other four dictionaries, and there are words in the other four dictionaries
that are not in D(Wé).8 However, W} €4 W3,

Still another feature arises when W2 is considered; this changes the voting vector as-
signed to the set of four candidates from (12,7,3.0) used with W to the BC. However. this

®For exaniple, there is a word in D(W1) with the ranking ¢1 > ¢2 > c3 for the set {c1,co.c3}.
However. the majority vote rankings have ¢g3 > ¢;,c¢3 > ¢o. Thus, ¢y is the Condorcet winner for the
subset {e1, ¢, cz}. Clearly, such a ranking is not admissible for W} as it assigns the BC to {c1,es.c3}.
[n the other direction. there exist words in D(Wg) that have c; top-ranked in all sets of two and three
candidates, yet it is bottom ranked in the set of four candidates. Such a word cannot be in ’D(W?) for
Jj = 1.2,3. There is a word in D(W7) that has the Condorcet winner for {¢|,ca,c3} bottom ranked for
this subset of three candidates (so this word in not in D(W})). Likewise, there is a word in D(W}) where
c1 is the Condorcet winner, yet ¢y is bottom rauked in the set of all four candidates: this cannot occur
for W} The existence of these words requires the material that is developed in [5]. Nevertheless, these

examples are consistent with the assertions about w *~Condorcet winners described in [4].
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simple change destroys the relationship enjoyed by the voting vectors assigned to the fam-
ily of subsets that include ¢;. As such. this forces W2 to belong to the three-dimensional

component
37 = {(Lscuw e:2. ) scue € 10.1)).

It follows immediately that 37 C 9(F!). so W! 4« W1,

Using this same type of analysis. the rest of the system voting vectors are seen to belong

to the following components of a'.

Voting Vector Component of a* Dimension
wi 3" ={(1l.s.u.v:2.1)} 3
W; ;f8:{(1.o.a.o,o—{—l.>)} 1
W3 39:{('(1.;\.&5.5.&—{—1.&\)} 2
Wi I ={(Lsos, s (1 —t)(s+1)+2t (1 —t)s+ 1)} 2
Wi, I ={(s.0.8.10(1 =) (s + 1)+ 2t (1 —t)s + 1)} 2
Wi, I = {(soss s+ 1.8)) 1

1

The following set theoretic relationships occur for these a® components.

P o). I ca,
3 o)., Fca?,
3% c o3, 3" costh.

These sct theoretic containments lead to the following branches of the partial ordering:

B' 4« W; « W EW, « W!
B' « W; « W] «W;

B' « W; « W, « W/, «W!
B' « W), « W} « W}

The partial ordering defines a corresponding relationship among the dictionaries.
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D(W3) = U
Wi)
D(W?) \ \ D(W1))
| D(W ) DWY) |
D(W1) l D(W1,)

W1
N/
D(BY)

Figure 1. The partial ordering

4.3. Symmetry equivalence classes.
From the above example. one might suspect that another symmetry reduction is possi-
ble. To illustrate, using neutrality, a profile defining the word

{c) = caocp = c3.00 = c3ic3 > ¢ > 1}
can be modified to construct a profile defining the word
{e3 = 2,03 > c1,00 = ciyeq = ¢a > c3}.

System voting vectors for n > 4 candidates admnit a related, but more subtle situation.
For instance, notice that the only difference between the above system voting vectors W3
and W1, is that the first assigns the BC to the set {c1,¢2.¢3} and (3,1,0) to the other
three-candidate sets. while the second assigns the BC to the set {cq,c3,¢4} and (3,1,0) to
the other three-candidate sets. The symmetry to convert one situation into the other is to
interchange the subscripts 1 and 4. This symmetry is further manifested in the similarities
of the component types 3%, 312 which contain, respectively, W3, Wi, Noreover, it is casy
to prove that a similar similarity holds between D(W}) and D(W1,); syminetries that
require applying the permutation to the sets of candidates.

Definition 4.2. Let o be a permutation of {cy,...,¢,}. Define
(4.3) o(W™) = o((WI5l @ -menlyy = (Wl et -y,

For a word W € D(W"), let (W) be the element of U™ obtained by permuting the
indices of each symbol in W according to the permutation o.
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Define
(4.4) (DIW")) = {a(W)W € DIW™)}. O

Example. The permutation o = (1.3.2) changes the index 1 to 3, 3 to 2, and 2 to 1.
Now suppose a system voting vector W1 assigns the BC to the four-candidate set with
the following assignments of @? for the three-candidate subsets.

Subset wl

{Cl.(‘-_g,C;g} (1 00)
{erocy.eq} (1.1.0)
{ev, ez} (2.1.0)
{CQ,(J;;.C.L} (3 10)

Here o(W) is the syvstem voting vector where the BC is assigned to the four-candidate
set with the following assignment for the three-candidate subsets.

Subset w?

{er,co.c3} (1.0.0)
{('L.('Q.C',L} (310)
{eriesoaey} (1.1.0)
{eaeseq} (2,1.0).

This assigniment follows because the four-candidate set and {¢y,c¢a.¢3} are invariant under
0. so they retain the same voting vector. (For example.

o({c1.c2,¢3}) = {00(1)»00(2)1%(3)} = {es.cr.ea} = {cr enient)

Also note that o({c;,c3.¢4}) = {co(1),Co3)-Co(y} = {c2.¢3,¢4}, so the voting vector
(2.1.0) is reassigned by o from the set {c1.¢3,¢1} to the set {co,¢3,¢4}.

The effects of o for n = 3 on the word W = {¢| = cy,c; = ¢3,¢0 > ¢3;¢3 = ¢ > ¢, } are
a(W) = {Co(1) ™ Co(2):Ca(1) > Ca(3)-Co(2) > Co(3)iCo(3) ™ Co(2) ™ Co(1)} OF {c3 > c2,¢3 >
€2, €1 = CoiCy > €1 = C3}.

Definition 4.3. Two component types 3!, .3 from o™ are symmetry related if there exists
a permutation ¢ of the n indices such that for cach system voting vector W € 3!, we
have that o(W™) € 32

Two dictionaries D(W1 ), D(W}) are symmetry related if there exists a permutation o
of the n indices such that

d(D(W")) = DWE). O

[t 1s trivial to show that botlh of these symumetry relationships are equivalence relation-
ships and that

o(D(W")) = D{a(W")).

Therefore we can speak about syminetry cquivalence classes of component types and sym-
metry equivalence classes of dictionaries. From the definition, truly different kinds of
election outcomes occur only when words from dictionaries from different symmetry equiv-
alence classes are compared.



30 DONALD G. SAARI

Corollary 4.3. 1. The number of syvmmetry equivalence classes of dictionaries exceeds
the munber of symmetry equivalence classes of component types of a™ by one.

2. For n = 3, there are only two symmetry equivalence classes of dictionaries; D(B?)
and U3. For n = 4. there are 21 symunetry equivalence classes of dictionaries.

By use of symimetry. the number of different types of dictionaries for n = 4 candidates
is significantly reduced from 68 to 21. This symmetry can be used to provide other kinds
of reductions: for instance, it leads to a related partial ordering, etc. Details are left to the
interested reader.

What remains is to find a way to characterize the words in these dictionaries. This is
the purpose of the third part [3] of this study.
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