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Abstract

Braess and others have shown that creating a new link in a congested
network, or adding capacity to an existing link, can raise total travel costs
if drivers switch routes. We show that a paradox can also result when routes
are fixed but users choose when to travel. As is true of the Braess paradox,
the paradox here arises when the inefficlency due to underpricing of
congestion increases by more than the direct benefit of the new capacity.

For a corridor with two groups of drivers, we show that expanding
capacity of an upstream bottleneck raises travel costs when the reduction in
congestion upstream is more than offset by increased congestion downstream.
Metering can thus improve efficiency. Optimal upstream capacity 1is equal to
or smaller than downstream capacity for the user equilibrium. Total
construction costs equal total variable travel costs when capacities are

optimal and constructlon costs are independent of scale.



Notational Glossary

(in alphabetic order)

Greek characters

Unit cost of in-vehicle travel time
Unit cost of arriving at work early
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]

Set of times during which group g departs

English characters

Cq(t) Travel cost of a group g commuter departing at time t

Eq Equilibrium travel cost for group g

d Subscript denoting downstream bottleneck

dq Departure rate of group g from residential area

g Index of groups

i Index of bottlenecks

kl Marginal cost of expanding bottleneck i

nq Number of commuters in group g

Ql(t) Number of commuters queued behind bottleneck i at time t

L Arrival rate of commuters at downstream bottleneck

s, Capacity of downstream bottleneck

s1 Capacity of upstream bottleneck serving group 1

s, Capacity of upstream bottleneck serving group 2

s: Optimal long-run capacity of bottleneck i in user equilibrium

t Time

tA(t) Arrival time for commuter departing at time t

t" Desired arrival time at work

t: Earliest departure time for group g

t: Last departure time for group g

Tg(t) Trip duration for commuter of group g departing at time t
Subscript denoting upstream bottleneck serving group 1

2 Subscript denoting upstream bottleneck serving group 2

TC Aggregate travel costs



INTRCDUCTION

Since Braess [8] it has been well known that adding capacity to a
congested network can raise total travel costs. Braess demonstrated this by
supposing a link is created that connects two routes in parallel running
between a common origin and destination. Sternberg and Zangwill [27]) extended
the analysis to an arbitrary network and showed that adding a link increases
costs if a determinantal condition is met that "... is about as likely to
occur as not occur”. (p.32)

It is also possible for an increase in capacity to reduce welfare when
only one of the travel alternatives is congested. Suppose there is a roadway
along a route served also by raill. If travel costs by road rise with the
number of drivers, while rail costs are independent of ridership, then in
equilibrium just that number of travelers will drive to raise travel costs by
road to equal costs by rail. If road capacity is now expanded, users will
shift to the road until it is as congested as before.

But if the railway has to balance its budget, the loss of revenue will
force it to increase fares and cut service, inducing more passengers to switch
so that travel costs on both modes end up higher than before the road
exXpansion. This phenomenon, first noted by Downs [10] and Thomson [29), has
been called the "Downs-Thomson paradox" by Mogridge, Holden, Bird and Terzis
(20]. For later discussions see [13], [17) and [19].

The situations just described involve networks with alternative routes or
modes on at least one of which unpriced congestion occurs. The user
equllibrium is inefficient because travelers make decisions without taking
Into account their impact on system costs. The paradox arises when an

investment causes users to alter their behavior in such a way that the



increased efficlency loss from underpricing of congestion exceeds the direct
benefit of the improvement.

Several other examples of paradoxical behavior have been identified in
the literature. Arnott and Mackinnon [5] consider a monocentric city in which
the number of commuters and thelr routes are given, but the length of their
trips is endogenous. An increase in the proportion of city land devoted to
transportation creates an increase in lot size, causing the city to expand and
more commuting traffic to occur at any given distance from the centre.

Another paradox, discussed by Sheffi [24, Ch. 10], can occur under
stochastic network loading when a relatively costly alternative is marginally
improved: travelers may switch to it in sufficlent numbers that total costs
increase. This phenomenon is driven by randomness of perceived travel times,
rather than unpriced congestion.

Finally, Harker [12] and Catoni and Pallottino [9] have recently shown
that, on a network with fixed 1link capacities and a fixed O-D demand matrix,
total travel costs can be higher than in user equilibrium when some users
generate an appreciable fraction of the demand, and select routes so as to
internalize the congestlion costs they impose on themselves.

In thls paper we show that a paradox can result when the number of
drivers, as well as their origins, destinations, travel modes and routes are
all fixed, but they may choose when to travel. To demonstrate this we
consider a Y-shaped travel corridor with one bottleneck on each arm and a
third bottleneck downstream. Two groups of commuters use the corridor, one
entering each arm and passing through the corresponding upstream bottleneck as
well as the bottleneck downstream on their way to work. We show that
expanding one of the upstream bottlenecks may induce drivers to alter their

departure times in such a way as to increase the sum of total queueing and



schedule delay costs.

As is true of most other paradoxes, the paradox here arises because of
unpriced congestion; however the behavioral adjustment that generates the
perverse lncrease in costs 1s different. As a corollary of the result that
increasing capacity can raise costs we show that metering access to an
upstream bottleneck can improve welfare. Traffic engineers have long known
that ramp metering can increase efficiency, either by preventing flow from
exceeding capacity, or by encouraging drivers to use alternative surface
routes. (See, for example, [1], [16, Ch. 25] and (24, p.771.) Here, neither
of these factors is at work; the benefits of metering come from adjustments in
the times at which individuals travel.

The paradox we identify is reminiscent of, but distinct from, that
studied by Smeed [26], who claimed that drivers on a given route can arrive
earlier by leaving later. Ben-Akliva and de Palma [7] showed that such a
result cannot happen under realistic traffic behavior assumptions. Our
demonstration that delaying vehicles can decrease total travel costs
revitalizes Smeed’s conjecture, but within a modified framework in which
travel cost 1lncludes schedule delay as well as travel time.

The two-bottleneck corridor model we consider is similar to that employed
by Kuwahara [18] in a recent paper. (We wrote the first version of this paper
before seeing Kuwahara's, and have modified our notation somewhat to conform
to his.) Kuwahara provides a comprehensive derivation of the time pattern of
departures and queueing at the two bottlenecks under various assumptions about
the distribution of work start times of drivers and their travel time and
schedule delay cost functions. He also suggests ramp metering as a way to
alleviate a certain equity problem (described later) but does not solve for

equilibrium travel costs, consider optimal capacity or identify the paradox.



In Section 1 we specify the model and in Section 2 demonstrate the
paradox. Ramp metering is considered in Sections 3 and 4 and optimal

capacities in Section 5. Concluding remarks are made in Section 6.

1. THE MODEL

The model is similar to Kuwahara's (1990); thus the description will be
brief. We consider a network, shown in Figure 1, with two upstream
bottlenecks with maximum service rates or capacities s, and s,, and one
downstream bottleneck with capacity s4. If the arrival rate of vehicles at
bottleneck i exceeds S, a queue, Ql, develops behind it. There is assumed to
be no congestion elsewhere on the network, or on access routes to and from
residential areas and workplaces. Without loss of generality free~-flow travel
times are set to zero, so that travel time consists only of queueing time. It
is assumed that queue discipline is first-in, first-out (FIFO) and that the
service rate of a bottleneck, when saturated, is independent of the number of
drivers queued up. The physical length of the queue behind a bottleneck is
immaterial as long as vehicles are not backed up so far as to interfere with
bottlenecks upstream. Consistent with our assumptions of constant free-flow
travel time and a maximum service rate independent of queue length, empirical
studies have found that travel speed on freeways declines only slightly with
flow until capacity is approached, and that the discharge rate of vehicles
from a queue is equal to or only slightly below free-flow capacity (see, e.g.,
(6], [11], [14) and [15]).

Individuals live at different locations relative to the corridor. Group
g enters upstream of bottleneck g, g = 1,2. Choice of entry point for each

driver is assumed fixed. Drivers travel one per car. The departure rate from



home of group g (the rate at which it enters the corridor) at time t is dq(t).

Drivers are assumed to incur costs from travel time and from schedule
delay: arriving at work earlier or later than desired. All have the same
travel cost function and the same desired arrival time, t'. For simplicity it
is also assumed that late arrival i{s not permitted. Let a denote cost per
unit of travel time and B cost per unit time of early arrival. (For there to
exist a deterministic equilibrium it is necessary to assume « > B; the case «
= B is considered for a single bottleneck in [2]). The travel cost of a group
g commuter departing at time t can then be written

Cq(t) = aTq(t) + B[t'-(t+Tq(t))], (1)

where Tq(t) is trip duration. If Qi(t) is the number of drivers in the
queue behind bottleneck I at time t then the trip duration of a driver

in group g departing at time t is

Qq(t)
Qd L s
Q (t) g
T (t) = 2 + . (2)
g S S
g d
Q (t)
where t + is the time at which the driver arrives at bottleneck d.
g

2. THE CAPACITY EXPANSION PARADOX

In the model the route taken by each driver 1s predetermined. However,
drivers can choose when to leave for work. Equilibrium on a day-to-day basis
obtains when no driver can reduce his travel costs by departing at a different
time. In this subsection we derive the equilibrium departure rate and travel
costs of each group on the assumption that s; is sufficiently large that it is
not binding. The network reduces then to a corridor with one upstream

bottleneck 2 and one downstream bottleneck d; queueing time for group 1 is

Qu(t)

Sq4

T, (t) = (3)




We focus on this simplified case in Section 2 because the paradox can be
illustrated most clearly this way.

Let rq be the set of times during which group g departs, and let Eq be
its equilibrium travel cost. By definition, equilibrium obtains if and

only if

1
@N]

for t e T,
Cq(t) 9 9 g =1,2. (4)

z for ter,
q g

(@

Clearly, C2 z C1’ since someone in group 1 can always arrange to reach
bottleneck d at the same time as someone in group 2, thereby incurring the
same queueing time at bottleneck d, and the same schedule delay, but no
queuelng time at bottleneck 2. Thus, either Ez = El or Ez > El. {These cases
are referred to as Case 2 and Case 3 respectively by Kuwahara [18, Section
2.1.].) We first derive equilibrium on the assumption that Ez > 61 and
identify the parameter conditions under which it obtains. Then we consider Ez
-

Case A: Ez > 61

In equilibrium a queue must exist at bottleneck 2 throughout T, since
otherwise someone in group 2 could traverse bottleneck 2 when it has no queue
and incur the same cost as someone in group 1 departing at the same time. By
(4), Cx(t) must be constant during T, Differentiating (1) with respect to t

and using (3), the equilibrium condition (4) implies for t € 7,

i . B
Qd(t) = m Sd

(5)
where the dot denotes a time derivative. Gliven a fixed and deterministic
bottleneck service rate the number of vehicles in the queue follows the law of

motion



Q(t) = r (t) - s, (6)
where T, is the aggregate arrival rate of both groups at the downstream
bottleneck. Since Qz(t) >0 for t e T

r {t) =s_+d(t) for t € T_, (7)
d 2 1 1
and hence from (5), (6) and (7)
a

dl(t) = ﬁ Sd - 52 for t e Tl. (8)

Since d1(t) > 0, a necessary condition for C2 > C1 is

S
2 < 2, (9)
s

d

a-p
We now show that T, and T, are as indicated in Figure 2, with rq = [tg ,
t:], where subscript 0 (zero) indicates the beginning of departures and e the
end. The last driver in each group arrives at work on time; that 1s tA(t:) =
tA(ti) = t., where tA(°) denotes arrival time. {(Figure 2 is drawn with t: >
t;, but ti = t; is also possible.) A proof is given by the following four
lemmas.

2 1
(L1) to < to.

Proof: If not, the first group 2 driver would depart home at the same time as
someone in group 1 and arrive at work at the same time, thus incurring the

same travel cost, a contradiction.

(2) t (£ = ¢,

Proof: tA(tf) = t' since otherwise the last drivers in group 2 would arrive
late and incur an infinite travel cost. If tA(t:) < t', anyone in group 2
could delay departure until bottleneck 2 cleared, thereby incurring the same

queueing time and schedule delay as the driver departing at tz but less delay

at bottleneck 2, a contradiction.



(L3) t (1) =t°.
A [

Proof:tA(tl) = t. for the same reason as tA(ti) = t.. If tA(t:) < t. then for
-1

1 ; B
= = - <
an interval of time after tc, rd(t) s, and Qd(t) s2 sd sd by (9]}.

«-B
Given (S) this would mean that group 1 drivers would be better off departing

after t:, a contradiction.
(La) t° < t'.
e -]
Proof: This follows from (L2), (L3) and the fact that there is a queue at

bottleneck 2 during T,

tl, t:. tz and t: can be solved with equations (10)-(13) that follow.

o]
From (L3)
1
N Qd(te)
t -t &8 —_— (10}
e s
d
By (8)
1 1 na
" -t —_— (11)
° ° e s - s
a-fB "d 2

Since bottleneck 2 1s fully utilized from tz to tl,
e

n

t! -2 2 (12)
[ 0 s
2
Finally,
2
Q_(t™)
tl =% e 2, (13)
e e 52

It turns out that the welfare properties of equilibrium depend on whether

s2 > sd or s2 = Sd' We begin with the case s2 > sd, for which the promised

capaclty expansion paradox occurs.



Case Al: C >C , B > 8
2 17 T2 q
The equilibrium departure and arrival distributions for Case Al are shown
in Figure 3 for a numerical example. The unit cost of travel time 1s set at «
= 6.0. B follows from Small's [25, Table 2, model 1] estimate of B/a = 0.61.
t‘ is set at 8:30 (times are written in decimal form). Other parameters are
chosen in order to obtain Case Al.

By (L1), only group 2 departs initially. Differentiating (i) and using

(2), the equilibrium condition (4) implles

S(t)y  Qlt+Q,(t)/s,) Q,(t) .
-8 + (a-B) } + [1 + ] =0 fort <t.

Sz Sq Sz

As shown below, d,(t) > s,. Thus, Qy(t) = d(t) - s, and Qq(t) = 55 — s4.

Making the substitutlions one obtains
o 1
d,(t) = ;:Esd for t <t ..
That d,(t) > s, is confirmed by condition (9). Given Q(t) = 55 = sq4. Qd(t;J

2

= (s57s4) () = t2), or by (11) and (12)

n n

1, _ _ 2 _ 1
Qd(to) = (sz Sa) S m (14)
2 — s -s
a-B d 27"

When group 1 starts to travel, it departs at rate di(t) glven by (8).
Qd(t) continues to rise at the same rate as before t;. The travel cost of
group 2 remains constant provided the queue length at bottleneck 2 remalns
constant; thus dzft) = s Now

1 1 t: i
0,(th) = q ) + [ q(wiat,
1
t
o)
or by (5), (i1) and (14)
1 N2y
Qd(t,) =n, *n, - — . (15)
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Given that all group 2 incurs the same cost as the first driver to depart

- 2, _ s _ L2 _ * 1 1 _ .2
c = cC () = B{t to) - 3[[t te] + [te to]],

which by (10), (12) and (15) reduces to

- n +n,
C2 =B S (16)
d
This reflects the fact that n1+n2 users flow through the downstream
bottleneck d between tz and t’. Similarly,
1
- Q (t7)
C =C(th) =a3% ° |
1 1 e s
d
or using (15)
- n_+n, n, n_+n, n +n, n,
C1 = a|— ol B + (x-B) -a — (17)
d 2 d d 2
Thus, by (16) and (17)
- - n, n1+n2
Cz-C1=as——(a-B) s
2 d
Since by assumption C2 > Cx' consistency requires
2 ny
2 o & 2 (18a)
s -8 n_+n
d 12

Introducing the dimensionless variables 6=B/«, vEnl/n2 and 02£sz/sd, (18a) can

be written

~ 1
0"2 < 0'2 = i—_e 1+—v. (18b)

This condition is more stringent than (9) above, assuring that (9) is

satisfied if (i8) is. Total travel costs are

_ N n_+n, an n,
TC = n1C1 + n2C2 = (an1+Bn2) S -— {19)
d 2
aTC 8TC
Clearly, =— < 0, but —— > 0: expanding capacity of the downstream bottleneck
asd 852

d reduces costs, but paradoxically expanding the upstream bottleneck 2 is

harmful.
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To see intuitively why the paradox occurs, note first from (16) that the
travel cost of group 2 does not depend on s, expanding s, merely transfers
queueing time spent by group 2 downstream. Expanding s, however Increases
travel costs for group 1. The last group 1 individual to depart faces a queue

equal to the number of individuals who have arrived at the bottleneck, n1+n2,

n
minus the number who have got through, EE s, Increasing s, lengthens this
2

queue.

Looked at another way: expansion of s, allows group 2 to arrive at a
greater rate downstream, thereby partially crowding out group 1. This
lengthens the period over which group 1 departs and hence increases its costs.
In another paper ([3]) we have derived the dynamic user equilibrium for a
model with the same cost specification as here, but on a network with two
routes in parallel that do not merge. No paradox results in this case,

suggesting that it is dependent on having a series configuration.

Case A2: C_ > C , B S B
2 1 2 d

To save space, derivations for the remaining two cases are not provided
here (see Appendix A in [4]). The equilibrium departures and arrivals are
shown in Figure 4 for the same parameters as in Figure 3, except for s, = 0.80
and s, = 1.00. Figures 3 and 4 converge in the limit as s2 approaches s, in
which case the downstream bottleneck operates at capacity without a queue
bullding up during the initlal period when only group 2 is departing.
Individual and total costs for all 3 cases are collected in Table 1. In Case

A2, irip costs are
C\ = &ls =s J*Bs_ (20)
d 2 2

_ n, nlﬁ
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(22)

aT
As in Case Al, — < 0. The consistency condition (18) for Case 1 also

ds
d

applies. But now the costs of group 2 depend on s, as well as S, Parameter
values for which cases Al and A2 obtaln are shown in Figure 5. As indicated

by the shaded region, the paradox (ggg- > 0) occurs throughout Case Al, and in
2

Case A2 wlithin the parameter reglon bounded by the curves ;2 (defined in

(18b)) and

- 172

o, 1-9+[v(v+8)(1—9)] . (23)
From (20) it is clear that increasing s, makes group 1 worse off, as was true
of Case Al. It is not obvious whether group 2 is better off. The first term
in (21} is the cost that group 2 would incur if only the upstream bottleneck
were present. The second term is the additional cost lmposed by the
downstream bottleneck. Increasing 5, (and vz) reduces the first term but
increases the second. However, it ls easy to show that for 02 < Min[l,EZ].
662/852 < 0, so that expanding the upstream bottleneck does make group 2
better off. But within the region (;2,52), the loss to group 2 outweighs the

gain to group 1: a capaclty expansion reduces welfare overall.

Case B: E =C
2 1

This case, in which the two groups incur equal travel costs, occurs when
condition (18) is not satisfied. There is no queue at bottleneck 2; s2 is not
binding and total travel costs are the same as if everyone belonged to group

1:
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_ B(n1+n2)2
IC= — (24)
s
d
Evidently, gg— < 0 and ggg = 0, so that no paradox results.
d 2

Cases Al, A2 and B are mutually exclusive and collectively exhaustive
(see Figure S5). Therefore the necessary conditions ldentified in each case
are also sufficient. Total and individual travel costs are unique by
construction.

The effects of capaclity expansion are summarized in:
PROPOSITION 1

Total travel cost decreases when the downstream bottleneck is expanded,
but may Increase or decrease, depending on parameter values, when the upstream

bottleneck is expanded:

8TC
s <O
d
<0 o < min [1,0] ,
2 2
8TC ! 5 0  iff { min{l,c.] < ¢ <o,
as2 2 2 2
=0 0‘);‘,
2 2

where ;2 and o, are defined by (18b} and (23) respectively.
3. RAMP METERING

According to Proposition 1, increasing the capacity of the upstream
bottleneck 2 ralses total travel costs under some circumstances. Turning this
around, it follows that in these Instances reducing s, would be beneficlal,
which suggests metering as a policy control. Proposition 1 shows that travel
costs are everywhere a decreasing function of downstream capacity, indicating
that the downstream bottleneck should never be metered. However, it is
conceivable that metering the access rate of group 1 to the downstream

bottleneck s1 would be helpful.



- 14 -

In this section we investigate the effects of metering, first of group 2
on the assumption that s, is not binding, then of group 1 on the assumptlion
that s, is not binding, and finally of both groups. We ignore the
infrastructure and operation costs of metering. As envisaged here, metering
does not conform tc the principle specified in [16, p.786] "to limit the
number of vehicles entering the freeway so that the demand on the freeway will
not exceed its capacity". The intent here is to reduce queueing rather than
prevent it. Indeed, we show in Section 4 that it is never optimal to expand a
bottleneck to the polnt where queueing at it is eliminated. Problems of
ensuring adequate storage space for queued vehicles, and congestion on surface
routes, are also ignored.

In Case A, where 5, is binding, group 2 incurs a higher travel cost than
group 1 because it is restricted in the rate it can access the downstream
bottleneck, whereas group 1 is not. Kuwahara [18, p.227] calls this an
*equlity problem" and suggests as a possible countermeasure ramp metering of
group 1. In fact, there is no equity problem as such if drivers living
upstream are compensated for thelr greater travel costs by lower housing
costs, as should happen in the long run if residents are moblle. Accordingly,
we treat metering here as a means of increasing overall efficiency, rather

than improving the welfare of a particular group.

(a) Metering of group 2 (slnot binding)

The optimal metering policy for this case follows immediately from Figure
S and Proposition 1. If o, > min{l,;zl the upstream bottleneck 2 should be
metered until 02 = min[l,;z]. (Note that if 02 > ;2, metering has no effect
until o, = 32 and then becomes beneficlal.) If c, = min[l,;zl, metering is

unwarranted.
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These conditions apply under the assumption that s, is not binding. The
question of which bottleneck to meter (if there is a choice) and by how much

Is considered later.

Metering of group 1

Metering of group 1 when s, is not binding is formally identical to

metering of group 2 when s, is not binding, only with subseripts 1 and 2
interchanged. Corresponding to Case Al there is a new Case Al with Ez < 61

and s, > S5, and corresponding to Case A2 there 1s a new Case A2 with Ez < E1

and 31 < sd. Case B 1s the same as before,

{b) Both upstream bottlenecks s1 and s, binding

In the corridor configuration considered above in which the
upstream bottleneck serving group 1 was not binding, group 1 departed at
rate —< s, - s_. We now assume
a-8 “d 2
s < 2 5 -5 (25)
1 a-8 "d 2
so that s, is binding as well as s, We also assume
S +s8 >s, (26)
1 2 d
since otherwise downstream capacity would not be binding, and the two groups

would not Interact. Four new cases emerge under these assumptions, which we

call AAl, AAZ2, AAl and AA2. Since AA1l and AA2 are mirror images of AAl and
AA2, we need conslider only the latter two.
Case AA1: C_ > C , B_ > 8
2 1 2 d
Equilibrium travel costs for this case can be shown (see Appendix B of

ADL (1991)) to be:

_ n +n n S +8 n
g =a[1 2-£]+[a-(a—s) ! 2]—5—’— (27a)
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n,*n, 21 "2 my
= B[ p ] - [a - ((1"3)5'—) (S_ - —S—]’ (27b)
d d 2 1
- n_+n_
C2 =B P . (28)
d
{n +n2)2 S,y (P, n,
TC = B - [a - (a-B) s_] [s_ - s—]nl. (29)
d d 2 1

For this to be consistent with the premise 62 > El we require by (27b) and

n n
1

2
(28) that — > —: upstream capaclity per user must be higher for group 1 than
s s
2 1

group 2. Equatlion (28) reveals that 62 is the same as without metering
(equation (16)), but 61 is larger (compare (27a) with (17)) since the term in

the second pair of brackets in (27a) 1s positive by condition (25). Thus,

8C ac
2 1
in Case AAl metering of group 1 is harmful. Furthermore, — =0, — > 0
852 851
8TC
and —— > 0: in Case AAl metering of group 2 is desirable.
652
Case AA2: C_ > C , B_ S 8
2 1 2 d
User costs In thls case are (see Appendix B in (4]):
= PR S2 (M2 ™
C1=B[ s ]-B-s— E;“ ?], (30)
d d 2 1
- n +n, S,7S, (M, n
R [ PN R @)
d d 2 1
(n1+n2)2 8 , B,
TC = B * = [nzsd-(nlmz)sz] [:-— - ) (32)
d d 2 1
aC aC
Evidently, 3s? < 0, s > 0: in Case AAZ, metering group 1 beneflits group 1
1 1
but ralses costs for group 2. Furthermore,
s s
0Ig 4 . 2 8 gu)t-o. (33)
n 2

os n +n
1 1 2

n
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In Case AA2, metering proup 1 reduces total travel costs if and only if

downstream capacity per person for the two groups combined is greater than

upstream capacity per person in group 2. Furthermore, metering group 2 is

1
c > ‘-—————— - . (34)
2 v(1+v) I_:

n n
2 1

As In Case AA1l, 62 > 61 Iff — > —,

s s
2 1

beneficial if and only if

Case AAl with 62 < 61 and s1 > sd is obtalned from case AAl by

interchanging the role of the bottlenecks. Case AAZ with Ez < 61 and 5, s s,
is obtained similarly from case AA2. These cases require no discussion. It
I1s straightforward to establish that metering both groups is not optimal for
any of the four cases in which both upstream bottlenecks are binding. It is
also readlly checked that in all cases 61 and Ez are nondecreasing functions
of n and n,. Newell [22, pp. 167-8] glves an example of a network in static
equilibrium, with 3 groups, 2 origins and 2 destinations, for which an
increase in the size of one of the groups reduces travel costs for another
group. It remains to be seen whether a 'paradox’ of this sort can arise for
dynamic equilibrium in more complex networks.

This completes examination of the various equilibrium configurations

individually. We now turn to consideration of the optimal metering strategy.
4. OFTIMAL METERING

In this section we characterize the globally optimal metering policy;
that 1s the optimal effective capacities (s:, s;) = (51' sz) for given initial
capacities sl, s2 and s, A comprehensive analysis would be tedious because

there are 9 equilibrium cases and because total costs are not a concave
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function of s, and s, A reasonably complete picture can nevertheless be
derived from Figure 6, in which the various equilibrium cases are depicted as
a function of o and o, for particular values of «, B and v. Figure 6 is

constructed on the assumption that

=LL
2 1-8 1+v

~ 1 v
= > .
> 1 and ai -8 T+v 1

-
The other three possibilities yield similar figures and conclusions, but some
of the 9 equilibrium configurations are missing from them.

The parameter values for which metering one upstream bottleneck or the
other reduces total costs are Indicated by the shaded areas. Arrows point in
the directlon of falling costs. As noted above, metering both groups is never
optimal: the shaded areas do not intersect. However, if equilibrium begins in
region B, where neither upstream bottleneck is binding, it is always desirable
to meter one of the groups. This is clear in Figure 5, which shows (in the
case where only s, is binding) that metering group 2 is desirable if
equilibrium begins in region B, whatever the value of v, and whether
equllibrium passes through both Case Al and Case A2 as s, is reduced, or only
one of them.

The optimal metering policy can be deduced by inspection of Figure 6.

S S
1

2
Upstream capacity per person is the same for the two groups (i.e. — = —)
n

n
1

M)

along the ray T, = é—ol, extending from the origin through peints P0 and Pa'
This ray is bounded by four cases: AAl1, AA2, AAl and AAZ2. It is readily
checked from the respective equations (29) and (32) that total costs are
constant along the ray, and hence equal to costs in region B. Expanding s1
and s, proportionally along the ray reduces queueing upstream at the expense

of queueing downstream, leaving total travel costs unchanged.
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Total costs are alsc constant along the lines PoP1 and POPS. Using the
arrows as a gulde it follows by a process of elimination that total costs
reach a global minimum either at point P2 (or on the line extending north of

it) or at point P‘ (or on the line extending east of it). As drawn, the

respective equlilibria are of type AZ and A2. Were v < v, P4 would lie on the

boundary between Al and A2, and were 1/v < ;, P2 would lie on the boundary

between ZT and XE.
Using equations (19) and (22) it is stralghtforward, though tedious, to
show that total costs are lower at P2 than P‘ iff v > 1. Thus,

it Is optimal to meter the larger group. The optimal metering policy is

asymmetric in that, at either P2 or P4, upstream capacities per person are
unequal for the two groups

If elther or both of P2 and P‘ are infeasible for scme practical reason,
the optimal metering policy has to be deduced by searching over the feasible
subreglon of the region: 0 = s: s s, 0 = s; = sz. At most one of the two
groups should be metered. Nevertheless, metering can be beneficlial even if
both upstream capacities are initially below their globally optimal values.
For example, if the initial equilibrium is at P7, costs can be reduced by
metering group 1 to move the equilibrium to Ps'

For the example in Figure 6, v < 1, so that metering group 2 is optimal.
Moving from region B to P4 reduces total costs by 12.2%. Moving to point P2
by metering group 1 reduces costs by 8.7%. And moving from P8 with (01. vz) =
(2.46, 0.1) to P6 = (0.9, 0.1) by metering group 1 reduces costs by 4.1%.
Thus, for this example at least, the gains from metering are small but
appreciable.

The general results on optimal metering derived here are summarized in
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PROPOSITION 2

{a) If the capacities of the upstream bottlenecks serving groups 1 and 2 are
not binding and sufficliently large, then it is optimal to meter the
larger group; specifically:

if v < 1 then 0; = min([1, 02]. c

1]
9

-~

min[1, 01], c

= a'z'

NoOe o

if v > 1 then o,
where o, and o, are given respectively by (23) and its symmetric
counterpart, and o and o, are the original capacity ratlos.

(b} It is never optimal to meter both groups.
5. OPTIMAL CAPACITIES FOR THE USER EQUILIBRIUM

Section 2 demonstrated that expanding capacity can increase costs. In
this section we take the analysis further by deriving optimal capacities s;
and s; on the assumptlon that s, is not binding. Amongst other results we
show that capacity should never be increased to the point where queueing is
eliminated at either bottleneck.

Optimal capacities s; and s; are defined by the solution to
Min TC(s_,s )} + k. s_ + ks, (34)
s s 2'°d 272 d°d
2'7d

where marginal construction costs k2 and kd are assumed constant, but allowed
to differ between bottlenecks because, for example, land acquisition costs may
vary with location.

The solution to (34) (derived in Appendix C of [4]) is described by

PROPOSITION 3

4

c_ 6 1/2
In user equilibrium there exists v —-2[(1 + f:§:E;7E;) 1] such that:

(a) For v = v° optimal capacities of the upstream and downstream

bottlenecks are equal: s; = s;.
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For v > vc, optimal downstream capacity 1s larger than optimal upstream
[ ] > L
capaclity: s, sz.
(b) It is never optimal to expand elther bottleneck to the point where
queuelng there is eliminated.
(c) With optimal capaclities, total travel costs equal total capacity
construction costs.

A discussion of each part of Proposition 3 follows.

(a) If v = 0, so that all drivers live upstream of bottleneck 2, then s: = s;,

since In a corridor with a single entry point and queueing congesticn, travel
costs are determined solely by the bottleneck with smallest capacity.
Conversely, if v is very large it is not worth investing much in the upstream

bottleneck just to service a few drivers, and s: > s,
Proposition 3 reveals in addition to this that optimal capacities are

equal even when a nontrivial fraction of commuters lives downstream of s,

The reason ls that in Case A2, where s2 < sd, no gueue accumulates downstream

until group 1 departs. Increasing s, thus benefits group 2, by allowing it to

reach work faster, without harming group 1 until after t;. For v sufficliently

small, the overall benefit net of construction costs remains positive until s,

= s, at the boundary between Cases Al and A2: see Flgure 5.

(b) Since it is not economical to eliminate congestion at either bottleneck,
commuters living upstream incur higher travel costs than those living
downstream. This result is sensitive to the assumption that all drivers have
the same deslired arrival time at work. If there is a distribution of desired
times, as Newell [23] and Kuwahara [18) have assumed, travel costs will not
vary hyperbolically with capacity, and it may be cost-effective to eliminate

congestion, as Vickrey [30] showed for a single bottleneck via a numerical
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eXample.

(c) The equality of travel costs and construction costs is an instance of a
well known result in the literature (see, for example, [21] and [28)). It
follows from the assumption that construction costs are homogeneous of degree
1 in capacity, and the result that total travel costs are homogeneous of
degree -1. The equality of travel costs and construction costs is reminiscent
of Lord Kelvin’s rule that, at the optimum, the cost of building an electrical
wire equals the energy lost over the life of the wire due to heat. (This
brings to mind the early days on network analysis in transportation and
operations research where analogles were made with electrical circuits.)

We offer the conjecture that equality of total travel and construction
costs, when all capacities are optimal, holds for any network with queueing
congestion when there are constant costs of capacity expansion. The argument
is as follows: Solve for equilibrium on a network. Then halve the capacities
of all the bottlenecks. Take each commuter in the pre-change equilibrium and
double his schedule delay and queueing costs. [t is conjectured that the
resulting travel pattern is the post-change equilibrium. This would establish
that TC(+) is homogeneous of degree -1 in all capacities, and hence that the

congruence of travel and construction costs applies to any network.
6. CONCLUDING REMARKS

Braess [8] and others have shown that introducing a new link in a
congested network, or adding capacity to an existing link, can raise total
travel time. This paradox is due to the fact that congestion is unpriced, and
route usage socially nonoptimal. In this paper we show that a similar paradox
may result when modes and routes are fixed, but users are free to choose when

to travel. Specifically, a capacity expansion can increase travel costs,
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defined as the sum of travel time and schedule delay costs. Costs rise when
drivers alter thelir travel times in such a way that the efficlency loss due to
mispriced travel increases by more than the direct benefit of the capacity
expansion.

To demonstrate this we consider a Y-shaped highway corridor with one
bottleneck on each arm and a third bottleneck downstream. Two groups of
commuters use the corridor, each passing through one of the upstream
bottlenecks and then the bottleneck downstream. We show that expanding
capacity of one of the upstream bottlenecks can ralse total travel costs
because reduced congestion upstream is more than offset by increased
congestion downstream. Metering access in order to reduce effective upstream
capacity can thus improve efficiency. If neither group is initially
constrained by upstream capacity then it is efficient to meter the larger
group.

In the static setting considered by Braess, a capacity expansion may
increase travel time cost if at least two travelled routes between the same O-
D palr share a link. In our dynamic framework, drivers have no cholce of
route in geographlc space. However, each departure time can be seen as a
temporal 'route’, and similar to Braess we find that travel cost inclusive of
schedule delay costs may lncrease as capacity is increased.

Regarding optimal capacity we show that for user equilibrium the upstream
bottleneck should be no larger than the one downstream. In [4] we have shown
that for the system optimum the discrepancy is sharper: optimal upstream
capaclty per user living upstream is strictly smaller than downstream capacity
per person in both groups.

We also proved that, assuming bottlenecks of optimal capacity and

constant capaclty expansion costs, total construction costs equal total
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variable travel costs. This follows from the result that variable travel
costs are homogeneous of degree -1 in capacity, which derives from the
assumption that congestion entalls queueing behind bottlenecks.

The paradox identified here is robust to relaxation of some limliting
assumptions. In particular, one can show that expanding upstream capacity can
still raise travel costs when (a) there is a distribution of desired arrival
times (the same for the two groups), and (b) late arrivals are permitted.

This 1s to be expected since costs are a contlinuous function of the
distribution of desired arrival times (assumed degenerate in our analysis) and
of the penalty for late arrival (which we assumed to be infinite).

While the corridor consldered here is very simple, the results and
insights derived from it should ald in the study of more complex networks.

For example, the congruence of constructlion and travel costs should apply to
any network under the aforementioned assumptions on technology. It may be
possible, by comparing total travel costs on a network to its total capacity
costs, to determine whether there is over- or under-investment in capacity for
the network as a whole. It may alsoc be possible to identify general rules
under which capacity expansion raises costs, as did Sternberg and Zangwill
[27]) for static equilibria in which drivers choose routes. The analogy
between dynamic models and static models within a space-time framework would
be one line of attack. There ls a clear need, when congestion is underpriced,
to model the entire traffic network and all behavioral margins of adjustment

when consldering a capacity expansion, or indeed any other policy.
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Table 1: Total travel costs in user equilibrium
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a=6.00, B=3.66, 6=B/a=0.61, y=n1/n2=0.8

Metering s, beneficial Metering s, beneficial

Figure 6. Conditions under which metering reduces travel costs
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