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Abstract

We investigate the effect of information about congestion on
participation and time-of-use decisions in a free-access delay system subject
to predictable and unpredictable fluctuations in capacity and demand
intensity. Expected welfare is greater with perfect than with zero
information, while optimal design capacity is greater if and only if demand
elasticity is less than one. Imperfect information can reduce welfare by
inducing concentration in the arrival times of users at the facility. This
suggests that route guidance systems for automobile travel and other public

information dissemination schemes must be designed and implemented with care.



Notational Glossary

Greek characters

o Unit cost of travel time

B8 Unit cost of arriving early

Y Unit cost of arriving late

rdd) c.d.f of days

) Scale factor for average cost function

[> Price elasticity of demand

n Elasticity of average cost wrt level of usage

e n/o

v Certainty-equivalent intensity of demand

pl(t) Density function of arrival times

- Ratio of realized capacity to design capacity

¢ N/s

o(t) Largest ¢ such that queueing never occurs at time t
¢* (L) ¢ such that user arriving at time t is served at t*

English characters

C(t) Cost for user arriving at facility at time t

CS Consumers’ surplus

d Index of days

e (superscript) denoting equilibrium value

F (superscript) denoting full information regime
Fy(n,o) Joint c.d.f. of n and ¢ on day d

G(n) c.d.f of n

H(c) c.d.f. of o

1 {superscript) denoting imperfect information regime
J(¢) c.d.f. of ¢ from perspective of users

k Marginal cost of capacity expansion

m Index of messages .

M c.d.f. of m

MCS Marginal consumers’ surplus from expanding design capacity
h Intensity of demand

N Number of users

P Price (= user cost) of using facility

Q(t) Number of users in queue at time t

Qlt,e) Number of users in queue at time t when N/s = ¢
r(t) Arrival rate of users at time t

R(t) c.d.f. of arrivals (integral of p(t))

s Realized capacity of facility

s Design capacity of facility

SB Social benefit

Arrival time
Preferred time of usage






Z(t)
zZe(t)
Z2H(t)

Full information regime: Arrival time for which user served at t*
Imperfect information regime: Latest arrival time for which user
is never served late

Earliest arrival time

Latest service time

Latest arrival time

Queueing time for user arriving at time t

Time spent using facility in absence of a queue

Total costs

(superscript) denoting user

Denctes event that an individual is a potential user
{superscript) denoting zero information regime

Rate of increase wrt arrival time in expected queueing time

Rate of decrease wrt arrival time in expected early time
Rate of increase wrt arrival time in expected late time






A little learning is a dangerous thing

{Alexander Popel]

1. Introduction

Congestion occurs when the social marginal cost of using a facility
exceeds the private marginal cost (Walters (1987)). Congestion is fundamental
to the theory of clubs and to peak-load pricing. Probably the most costly
form of congestion is on urban roads, as reflected in the voluminous
literature in economics and civil engineering on traffic congestion. But the
costs of congestion are also apparent at airports, sea ports and with other
modes of transport, at recreational facilities, in telecommunications, etc.

The purpose of this paper is to investigate how information about
congestion affects individuals’ participation and time-of-use decisions in
free-access congestible facilities. The paper contributes to the peak-load
pricing literature, which we now briefly review.

In the original peak-load model (Steiner (1957}, Williamson (1966),
Mohring (1970), inter alios) the timing and intensity of peak and off-peak
demands are assumed known. Demand uncertainty was introduced by Brown and
Johnson (1969), whose work encouraged a series of further papers. Uncertainty
about capacity has been relatively neglected.

Despite the inherently dynamic nature of the peak-load problem, most
thecretical models have been static. Empirical studies (notably of
electricity demand) typically divide the period of use into time intervals,
and capture intertemporal demand effects with parametric cross-price
elasticities. This approach has several ambiguities (Arnott et al. (1991b})

which derive from a failure to model explicitly user behavior and the



congestion technology of the particular facility.

The first systematic treatment of time-of-use decisions was undertaken by
Vickrey (1969) in the context of morning rush hour traffic. Vickrey used a
deterministic queueing model to describe the evolution of congestion. Though
a number of authors have applied and extended his modelz, they have continued
to work in a nonstochastic setting. Some work has been done in transportaticn
in developing probabilistic choice models of travel time (e.g. Alfa and Minh
(1979), de Palma et al. (1983, 1987)). Multinomial logit demand models have
been estimated by Cosslett (1977}, Abkowitz {1981a,b), Small (1982),
Hendrickson and Plank (1984) and Moore, Jovanis and Koppelman (1984). Naor
(1969) and De Vany (1976) have developed queueing models in which the service
time of individuals is random. However, all these models deal only with
stochasticity at the level of the individual. Stochasticity at the aggregate
level has been modeled by De Vany and Saving (1977, 1980), Kraus (1982) and
D’Quville and McDonald (1990), but in a steady-state framework that abstracts
from the peak-load problem. It is thus fair to say that the dynamic peak-load
problem under uncertainty has yet to receive a definitive treatment.

Another gap in the peak-load literature is a lack of focus on the effect
of information on individuals’ usage decisions, in either a static or a
dynamic setting. Where congestion is sensitive to the capacity utilization
rate of a facility, and where users have discretion over their intensity
and/or time of use, information can materially alter the time pattern of
congestion.

Our interest in information and congesticn derives from more than
intellectual curiosity. Research has been underway for over a decade on the

design and operation of Route Guidance Systems (RGS) for facilitating



vehicular travel. The main function of RGS is to provide information to
drivers on the location, timing and magnitude of congestion on the road
network they will be traveling on. The information can be historical, in the
sense that it concerns predictable patterns of congestion, or dynamic in the
sense of real-time information about current driving conditions. Information
can be conveyed in the form of a list of options amongst which the driver is
free to choose, or as directions on when to depart, which route to take, etc.

A number of field experiments have taken place at various sites around
the world on the impact of RGS information on congestion and accidents. 3
Simulation studies have also been conducted recently (Koutsopoulos and Lotan
{1989), Sullivan and Wong (1989), Gardes and May (1990), Hamerslag and Van
Berkum (1991), Mahmassani and Jayakrishnan (1991), inter alios). While these
early modeling efforts have been insightful, most suffer from one or more
limitations or conceptual problems. Some studies have focused on the impact
of information on test vehicles that receive it while ignoring the general
equilibrium effects of information on traffic overall. Other studies have
overlooked the incentive compatibility constraint that drivers will follow
advice only if they believe it will benefit them. A third problem is that the
traffic engineering models employed are complex and require numerical
solution, so that basic economic insights are obscured. The models are also
specific to traffic flow, so that lessons cannot easily be transfered to other
congestible facilities.

Given the very substantial costs of designing and implementing RGS or
information systems in other types of facilities it is highly desirable to
assess the potential benefits from them beforehand. One question that can be

asked is whether the benefits are necessarily positive. To answer this it is



useful to distinguish what traffic engineers call the user equilibrium and the
system optimum. The user equilibrium is a Nash equilibrium under free access
in which no driver can unilaterally do better by changing his behavior
(decision to travel, departure time, route, etc.}) The system optimum as
typically formulated entails minimization of the sum of travel costs of a
fixed set of users. Clearly, better information can only improve the system
optimum. But in user equilibrium congestion is an uninternalized externality.
It is conceivable that information induces changes in user behavior that
increase the deadweight loss associated with unpriced congestion. Information
is then welfare-reducing.

It is well known that the value of information to a single, rational,
agent cannot be negative in a decision-theoretic context (Marschak (1954)).
However, instances where better information can be disadvantageous, either to
the agent that receives it or to society at large, are known in the
literature. These can be grouped into psychological, strategic and
transactional situations. A psychological preference for ignorance exists,
according to Dréze (1987, p.108}, when "the psychological contents of a piece
of information ... prove so harmful as to offset the advantages of flexibility
in choosing a course of action”. The "Curse of Knowledge", whereby agents
with superior information are unable to ignore it when trying to forecast the
decisions of less well-informed agents (Camerer et al. (1989)), also fits this
category. A strategic preference for ignorance can arise in a game setting
when preplay communication would be harmful, or where ignorance enables a
player to commit to an advantageous course of action (see, for example, Gal-Or

(1988)).



Finally, information is undesirable when it destroys the opportunity for
certain transactions, such as risk-sharing. As Hirshleifer (1971) has shown,
all agents may suffer if the information becomes public, while if it is
private, the gains to the owner can be outweighed by the losses of others.

The mechanism that concerns us by which information may be welfare-
reducing is similar to Hirshleifer’s public information, although in free-
access facilities market forces are absent. In fact, there are two ways in
which information could be counterproductive. The first, termed overreaction
by Ben-Akiva and de Palma (1991), occurs when too many individuals react to
information, by switching routes for example. Such out-of-equilibrium
behavior has been produced in a simulation model by Mahmassani and
Jayakrishnan (1991) in the case of one-shot adjustments, and by Ben-Akiva et
al. (1986) in the case of oscillatory behavior. Information can also have
perverse results through conceniration when it induces users to make more
similar spatial and/or temporal choices in the equilibrium of a repeated game.
An example of concentration will be given in Section 3.

Before turning to the analysis it is useful to describe its scope and our
modeling approach. First, we are concerned with delay systems, in which all
users who desire service receive it, but at a quality that degrades with the
level of usage. Automobile transportation, indoor and outdoor recreational
activities, and interactive computer systems are examples of delay systems.
Depending on the facility and the circumstances, declining quality can
manifest itself in queues, flow congestion or crowding. By contrast, loss
systems provide all-or-nothing service at a (generally) constant quality.

Electricity, natural gas and telephone service are examples.



Travelers and recreationists may choose not to participate if congestion
is particularly heavy, and in this respect transportation and recreational
facilities may behave like loss systems. However, individuals often make a
substantial commitment in time and/or money to use a facility, and will follow
through with their plans even if they regret having made them. (Of course, in
a traffic jam drivers have no choice but to put up with congestion.) We shall
rule out balking, which means that individuals base their participation
decision on the (unconditional) expected cost of usage.

Second, wWe are concerned with free-access facilities. Roads and
recreational facilities are the main examples. Most roads are publicly
provided and free of charge, at least in North America. Despite numerous
studies in favour of road pricing, political opposition on distributional and
other grounds has prevented it. Electonic road pricing is now receiving
increasing support, and is being experimented with in several countries. But
it will be some years, if at all, before pricing is widespread. Similarly,
admission to recreational areas in the U.S. has traditionally been provided
either free, or at a nominal fee that remains constant for long periods.4
Resistance to price-rationing derives in part from concern about equity and
the cost of collecting fees at sites with low usage rates or multiple access
points (Walsh (1986)).

Since roads and recreational facilities are both delay systems and
{usually) free-access, our analysis is directly primarily at them.® In fact
there is a strong parallel between highways and recreational areas, both in
the physical interaction between users and in problems of operations
management (Sandler and Tschirhart (1980, Table 2)).© And in line with the

development of RGS attempts to promote efficient usage of recreational areas



have been made by disseminating information to users (Schechter and Lucas
(1978)).7

Finally, a word on modeling uncertainty. One approach is to assume that
nature is deterministic, but individuals are imperfectly informed about demand
and/or capacity. Information is assumed to reduce the variance of their
perception errors. Koutsopoulos and Lotan (1989) and Mahmassani and
Jayakrishnan (1991) took this approach in modeling route guidance systems.
Haltiwanger and Waldman (1985) adopted a variant in which there are two groups
of individuals: the “sophisticated", who have raticnal expectations and
correct beliefs, and the "naive", who have "pure limited RATEX" and hold the
same, incorrect, beliefs.

The alternative view is that nature is stochastic. In modeling RGS this
has been done either by assuming travel times on links of the road network are
variable (e.g. Tsuji et al. (1985)) or by modeling incidents and other shocks
explicitly (Gardes and May (1990)).8 For two reasons we have taken the
stochastic view. First, traffic studies have found that nonrecurring
congestion (due to incidents, traffic signal failures, etc.) contributes as
much or more to traffic delay than does recurring congestion (Ju et al.

(1987), Lindley (1987), OECD {(1988)). Second, regular users of a facility
{such as commuters) are likely to be familiar with patterns of recurring
congestion, and would not learn much from information broadcast about it.

Our analysis is a general one in allowing for fluctuations in both demand
and capacity, and for both predictable (recurring) and unpredictable
(nonrecurring) fluctuations. There are two limitations that deserve mention.
First, demand and capacity are assumed to remain constant during the period of

use, which means that there is is no role for, say, information received after



participation decisions are made but before time of use. Second, attention is
restricted to a single facility. There is no role for information received
after participation decisions are made but before choice of facility, or after
choice of facility but before time of use, and vice versa. Also bypassed is
the question of how policies adopted at one facility can affect the deadweight
loss from unpriced congestion at other facilities.

Qur analysis consists of two parts. In Section 2 we adopt a static model
in which only the decision whether to use a facility is considered, not when.
This approach is reasonable if individuals lack strong time-of -use
preferences, or if service entails a ’batch’ operation, as is the case with
entertainment or sporting events, or once-a-year parades. As shown in Section
3 the static model also serves as a reduced-form of our dynamic model when
users have full information, so that all the results go through when time-of-
use is made endogenous.

On the assumption that user costs are homogeneous of degree zero in
demand and capacity and that demand is isocelastic we derive the optimal design
capacity for a facility, and show how it varies with the joint probability
distribution of demand intensity and capacity availability. We also show that
information is welfare-improving in the sense that expected consumers’ surplus
with information is greater than gith zero information. However, this result
is not robust to the functional form of the cost and demand curves.

In Section 3 we extend consideration to time-of-use decisions by adopting
Vickrey's (1969) model of queueing behind a bottleneck. Full information
again turns out to be welfare-improving but, in contrast tc the static model,

imperfect information need not be.



2. Static Equilibrium

2.1 The Model
The static equilibrium model is based on conventional supply and demand

curves. Following Arnott et al. (1991b) demand is assumed to be iscelastic:
N=np", (2.1)

where n is a parameter characterizing demand intensity and p is the ’'price’ or

full cost of using the facility. The constant price elasticity assumption is

crucial to the analysis. Though it is somewhat restrictive)it need only hold

within the range of price variation; not necessarily 'near the axes’. Average

user cost is assumed to be homogeneous of degree zero in the ratio of demand

to capacity:

7
AC = 6[li] , {(2.2)
)

where s is capacity and m > 0 characterizes the rate at which costs rise as
usage increases, capacity given.9 Capacity is presumed to be available in
homogeneous units. At this point we are agnostic as to whether rising costs
are due to queueing, flow congestion, crowding or some other type of
interference between users. Queueing congestion is treated explicitly in
Section 3.

N and s are assumed to fluctuate over time. The fluctuations can range
from being fully predictable to completely unpredictable. In the case of
recreational capacity, seasonal openings and closures of hiking trails and
campsites may follow a fixed timetable well known to prospective visitors.
Traffic lane closures due to maintenance and repairs are predictable if
publicized well in advance, and completed according to schedule. Seasonal

variations in lighting that affect travel and various outdoor activities are
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predictable to an extent, as is bad weather (rain, snow, fog, flooding etc.),
depending on the accuracy of weather forecasts and how speedily and widely
they are disseminated. In contrast, accidents, vehicular breakdowns and
signal failures are unpredictable, as are mechanical breakdowns in public
utilities and other facilities.

Turning to fluctuations in demand it is typically the case that the
demands for travel, communications, recreation, utilities and other services
have regular daily, weekly, seasonal and/or holiday cycles. Indeed, it might
be argued that demand should be fully predictable. On the one hand, if
individual usage decisions are statistically independent, then by the law of
large numbers fluctuations in aggregate demand will be insignificant in
proportional terms. 10 0On the other hand, if individual usage decisions are
governed by common causal factors, then knowledge of these factors should be
enough to predict total usage. In either case, there should be no demand
surprises.

Yet surprises do occur in reality. Previous attendance at annual events
can be forgotten, or become obsolete through changing demographics, incomes,
tastes etc. And for relatively rare or distinctive events such as transit
strikes, periods of gasoline rationing or epidemics, or for one-off events
such as world fairs, there may be little or no precedent on which to base
predictions.ll

To formalize these ideas we assume for concreteness that the day is the
appropriate unit of time measurement, and that demand intensity and capacity
are determined before daily participation decisions are made. The realized
values of demand intensity and capacity are assumed constant until the

~

following day. Fluctuatlions in capacity are modeled by writing s = ¢s, where
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~

s is design capacity (capacity under ideal conditicens) and ¢ = 1 is the
fraction of capacity available. Fluctuations in demand are captured through
changes in demand intensity, n. n and ¢ are thus random variables.

To allow for systematic fluctuations in n and ¢ we let d be an index of
’days’, with each d corresponding to a distinct frequency distribution of n
and ¢. In the case of commuting traffic, which has a predominantly weekly
cycle, a suitable choice for d is a discrete index with seven possible values,
one for each day of the week. In other applications it may be appropriate to
treat d as continuous. We let I'(d) denote the cumulative distribution
function of d, and Fd(n,o) be the joint c.d.f. of n and ¢ on day d. Both TI'(d)
and Fd(n,c) are assumed to be upper hemicontinuous {(they can have mass
points). The support of the distribution of n/¢ defined by Fd(n,a) is assumed
to have a finite upper bound. Finally, I'(d) and Fd(n,o) are assumed to be
common knowledge among users.

We will be concerned with three informational regimes: perfect (or full)
information, zero information and imperfect information. Under full
information, users learn the precise realizations of n and ¢ before making
their participation decisions. Under zerc information they learn nothing, and
have only Fd(n,o) to go on. Both full and zero information are limiting cases
of imperfect information, which we discuss next.

In the imperfect information regime there is a message system that
reports daily on demand and capacity after they are realized, but before usage
decisions are made. This message system is an idealized representation of
weather forecasts, early morning traffic reports, reports on ski conditions,
etc.1l2 Let m be an index of messages, and M(m[d,n,@) be the c.d.f. of m

conditicnal on d and the realization (n,c). The probability of message m,
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conditional only on d, is

dM(m|d) = J J dM(m|d,n,o) dFd(n,o). (2.3)
n e

(Where limits on the range of integration are omitted, the full range of
variation is implicit.) Messages convey, explicitly or implicitly,
information about n and/or ¢ in the form of a c.d.f. Edm(n,m). It is assumed
that this distribution coincides with the true probability distribution of n
and ¢ conditional on d and m, de(n,a):
F_(no) =F, (n0). (2.4)
Condition (2.4) can be viewed as a condition of unbiasedness, or
irrefutability, in the sense that the frequency that a given state occurs on a
particular day, when a particular message is announced, coincides with its
forecast frequency. This seems reasonable in the long run, once forecasters
have had the opportunity to correct biases in their forecasts, and users to
compare the frequencies of forecasts and realizations.
By Bayes’ theorem, the joint probability on day d of state (n,¢) and
message m can be written
Pr(n,o,m[d) = dM(m|d,n,c) dFd(n,o) = dde(n,o) dM(m|d), (2.5)

whence

dM(m|d,n,o) dFd(n,o)

dF (n,e) = . (2.6}
dm dM(m|d)

Substituting (2.6) inte (2.4) and using (2.3) one obtains
dM(m|d,n, o) dFd(n,a)

dFd (n,o) = dFd (n,o) = .
m " J J dM(mid,n’,c’) dFd(n’,G’)

n‘c’

This implies

dF (n,¢) = dF (n,co),
d d
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that is, states are forecast with the same probability they occur in reality.13
Since assumption (2.4) is maintained throughout the paper, the superscript -
is henceforth omitted.

The probability function dde(n,c) has been defined from the perspective
of the analyst or outside observer; that is, someone who monitors the facility
at all times and in all states. A subtle but crucial point is that this
distribution generally differs from the corresponding distribution dFZm(n,d)
of the user. This fact is well known in queuing theory.14 The reason in the
present context is that the number of users varies from day to day.

Before showing this formally it is helpful to consider a stylized
example. Suppose that buses on a certain route travel either full or half
full, with equal probability. From the perspective of an outside observer
(e.g. the bus company) the two states do indeed each occur with probability
1/2. But for bus riders, the respective probabilities of traveling on a full
bus and on a half-full bus are 2/3 and 1/3, because twice as many people
travel on full buses. The user’s probability distribution is welighted toward
high demand states. Of course, users may know which state is in effect
because of regularity in their travel behavior vis a vis other riders. This
can be captured in the model by making the probability distributions of demand
day-specific.

We now derive the relationship between the probability distribution of
the outside observer and that of the user. Let U denote the event that on a
given day a particular individual is a user (or, more precisely, a potential
user if demand is price-sensitive). If n, is the number of potential users in

the population then Pr(U|n,0) = —g— (which is independent of ¢). The joint
P
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probability of (n,c) and U is by Bayes' rule

Pr(n,c,Uld,m) = = dF (n,¢) = dF® (n,¢) Pr(U|d,m), (2.7)
n dm dm
P

where

Pr(U|d,m) = J J Pr(U|n,c) dde(n,a).
n o

Let ﬁd denote the expected value of n conditional on d and m. Then
m
n_ =n_ Pr(Uld,m),
dm P
and (2.7) can be written

dF¥ (n,¢) = 2~ dF (n,c). (2.8)
dm I—l dm

dm
As true of the bus example, the user’s probability distribution is weighted

toward high-demand intensity states. Of course, with perfect information ﬁd
m

= n, and the distributions of the outside observer and the user coincide.

2.2 Full Information

In this section we first solve for equilibrium price and level of usage
for given realizations of demand and capacity, on the assumption that the
realizations are known to users. Then we derive optimal design capacity.
Finally, we examine how optimal design capacity varies with the joint
distribution of n and o.

Let n and s be the demand intensity and capacity realized on a given day.
Absent admission charges, the average cost borne by users equals the full
price of usage, p. Equilibrium price, pe, and usage, Ne, can hence be solved
by equating p and AC, given respectively by the inverse demand curve defined

by (2.1), and (2.2):

e nyisc NeY T
p = [—} = AC = 6[—8—] . (2.9)
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This yields

1 n
1+E€N n 14ET
pe(n,s) =8 Fq , (2.10)
S
_ € 1 en
N°(n,s) = & LHER (1ER S1vEM (2.11)
Consumers’ surplus in state (n,s) is simply
CS(n,s) = J N{(p)dp.
e
p
Expected consumers’ surplus, taking into account both systematic and
unpredictable variations in demand and capacity, 1is
S (s) = f J j J np €dp dF (n,c) dr(d), (2.12)
e

dno o]

where superscript F denotes full information. The increase in consumers’
surplus from a marginal capacity expansion, which we call marginal consumers’

surplus, is

.~ dCS'(s)
MCS' (s) = ——.
ds

We now assume that Fd(n,o) is independent of design capacity.15 Then, from

(2.10), and (2.12}:

1-€ _(1+7) 1+7 m(e-1)

MCS' (8) = 1+2n S1HEN (g 1EM J J I 0" ¢ N GF (n,0) dr(d). (2.13)

dneo

If capacity costs are linear, with constant16 marginal cost k, then optimal

capacity is given by

s = argmax {CSF(S) - ks].

*

Using the first order condition MCS (s) = k and (2.9) one obtains
1+ 1-g
st = [¥%53 k] UF SIS (2.14a)

where
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1+€7
1+ nie-1) 1+7

v = J I J n'*®" o 1T GF (n,0) dr(d)]. (2.14b)
dno

v can be interpreted as a certainty-equivalent intensity of demand, i.e. the
constant demand intensity for which under ideal conditions (¢ = 1) design
capacity is ;f. In the limiting case where neither systematic nor random
fluctuations in capacity or demand occur, v reduces to n.

While the model underlying (2.14) is obviously a simple one, it has the
merit of incorporating both demand and cost parameters, as well as systematic
and nonsystematic fluctuations in demand and capacity. This contrasts with
some formulas, or rather rules of thumb, used in capacity design. A good
illustration of this is in the design of road capacity as described by the
Institute of Transportation Engineers (1982) - hereafter ITE, and the Highway
Capacity Manual of the Transportation Research Board (1985) - hereafter HCM. 17

According to HCM (Section 2) it is standard practice in the U.S. to
design roads to provide a given quality, or 'level’, of service (there are 6
levels, ranked from A to F) at a particular rate of usage. For urban roads
the usage rate typically chosen is that which occurs at the 10th or 20th
busiest hour of the year. For rural roads the critical hour is higher (e.g.
the 50th busiest hour) because of the relatively low traffic experienced on
such roads over much of the year. Short-term variations in demand, such as
those experienced during a rush hour, are accounted for by use of a peak-hour
factor (PHF}, defined as the ratio of the total volume occurring during an
hour to the peak flow (expressed as an hourly flow rate) during a shorter time
period, typically between 5 and 15 minutes (ITE, p.475)}. The PHF, which by

definition is = 1, is used to scale down the peak measured service volume to a
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more realistic measure of sustainable design capacity.

This procedure for capacity design is flawed in several respects. First,
it allows for demand variability only to the extent of considering a
particular fractile of the demand distribution. In contrast, the formula
given in (2.14) indicates that the whole demand distribution is relevant.18
Second, there is no clear indication in ITE or HCM how the target level of
service 1s chosen. Third, the design procedures ignore capacity fluctuations.
Incidents are a major cause of road capacity reductions, and as noted may
contribute more to delay than recurrent peak period congestion. Yet the
design of roads to meet a given level of service is based on the assumption of
no incidents (HCM, 6-10). Road capacity is also affected by weather. Several
studies have found that precipitation reduces effective capacity appreciably.
To a lesser extent, so does poor visibility. Yet the HCM procedures do not
take weather into account, though the manual doces recommend this be done in
areas where bad weather is common (HCM, 2-10, 6-15).19

The effect of capacity and demand fluctuations on optimal design capacity
as given in (2.14) is summarized in the following proposition (for a precise

statement and proof see Appendix 1):

PROPOSITION 1: If € < 1 then, for any mean demand intensity, optimal
design capacity is greater with variable capacity availability than when
full capacity is always available. Furthermore, optimal design capacity
is the larger: a) the greater the variability in demand, b) the greater
the variability in capacity availability, c¢) the lower the ratio of mean
capacity to design capacity, and d) the lower the correlation between

demand and capacity. The opposite is true of all the above when £ > 1.
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Prop. 1 establishes that if demand for trips is relatively inelastic
{which is the case in most commuting contexts)20 greater investment in capacity
is warranted if loss of capacity can occur. There are two opposing forces at
work. On the one hand, since only a fraction of design capacity is sometimes
available, the marginal cost of constructing working capacity is greater in
the stochastic case. On the other hand, the expected marginal benefit from
working capacity is greater if the marginal value of usage declines with level
of use. 1If € < 1, the second factor dominates, and optimal design capacity is
greater in the stochastic case. 21

Prop. 1 also states that, if € < 1, optimal design capacity increases
with a mean-preserving spread (MPS) in the distribution of demand intensity22
or a MPS in the distribution of capacity availability. Capacity is also
greater the more states of high demand tend to coincide with low capacity, and

vice versa.

2.3 Imperfect Information

In the preceding section it is assumed that users learn the exact
realizations of demand and capacity before making decisions. 1In this section
we consider the more realistic situation in which they know the systematic
fluctuations, but have only imperfect information about nonsystematic
fluctuations. First we solve for the expected equilibrium price on a given
day with a given message. Next we solve for optimal design capacity, and
recover the limiting cases of full information and zero information. Finally,
we rank optimal design capacities and consumer welfare under imperfect

information and zero information.



19

Let ﬁ: denote the price expected by a preospective user when message m is
m
received on day d. If the realized demand intensity is n, the number of users
is
-£
N = n[f)u] ) (2.15)
m
Let p(n,old,m) be the resulting price given realizations n and . By (2.9)
this is
p(n,o|d,m) = S[S]H, (2.16)

which depends on d and m because N does (viz. equation (2.15)). Substituting

-
p(n,cld,m) = & = ) (2.17)

~

(2.15) into (2.16):

s
Now by (2.8)
p, = I J p(n,c|d,n) dF. (n,c) = J‘ J' p(n,oid,m) Z—dF (n,¢). (2.18)
dm dm = dm
no no ndm
Substituting (2.17) into (2.18)
~ -
i nBs) 17
pt = J I S i — dF  (n,eo),
dm - dm
os n
no dm
which resolves to
1
v _ | n)" 1+EM
P, = = J J n {&} dde(n,o) . (2.19)
dm no

Consumers’ surplus is more tricky to evaluate than under full information. The
number of users, given by (2.15), is proportional to n, and independent of .
Gross social benefit SB equals the area under the inverse demand curve for
demand intensity n, which is the sum of the areas above and below 53m.

Integrating, one obtains
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' - J J‘ JJ{an_Cdp + n[fa:mJl_e} dF_(n,0)| dM(m|d) dr(d), (2.20)
dn no

pdm

where the superscript I denotes imperfect information. Frem gross social
benefit must be deducted expected costs, TCI, to arrive at net expected

consumers’ surplus. Now

c' = j I TC, dM(m|d) dr(d), (2.21)
d m

where

T@;m = J J TCdm(n,ald,m) dFAm(n,G) = J J p(n,c|d,m) N(n,o|d,m) dde(n,o)
n o

no

-£
= J J p(n,o|d,m) n{ﬁ;m] dde(n,w)

n o
- -E - u
- J J' p(n,o[d,m) [pdm] n_dFY (n,0) (by (2.8))
noc

or by (2.18)

. _ (.. 1€
¢ =n [p“ ] i (2.22)
dm dm dm

Substituting (2.22) into (2.21) and subtracting the result from (2.20) yields

finally

! = JJ J { an_cdp} dF_(n,0)| dM(n]d) dr(d). (2.23)

=-u
dm no p
dm

Define expected marginal consumers’ surplus with imperfect information as

—1 ~

g~ dCcs” (s)
MCS (s) = ————. Differentiating23, and using (2.19):

ds

o 1 T

MCS (s) = "__A_J _[ n [p“} dM(m|d) dr(dj. (2.24)

1+EM 5 dm|" dm
dm

Following the same procedure as earlier, optimal capacity is found to be

1+€M  1-¢

~ + =
s = [1178“ k] LA S (2.25a)
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1+€7
1-€ 147

n
v = JJﬁ ( ]““’{J'J' ["_) ndF (n,o)}“e” dM(m|d)dr(d) |. (2.25b)
dm o dm

dm

As before, v can be interpreted as a certainty-equivalent demand
intensity. In the case of perfect information, (2.25b) reduces to the
corresponding formula for full information, (2.14b). To see this, note that a
perfect message system maps messages into unique states M(m]d): m-> (n,o).

The integral with respect to m in (2.25b) is thus replaced by a double
integral with respect to n and ¢, while the double integral inside the braces
disappears.

The opposite extreme of zero information obtains when messages are
completely uninformative. Optimal design capacity is given by (2.25) with the

integral with respect to m removed:

1+E7
1+€M 1-¢€ 1-€ 1+7

. - — n
¢ = {1;‘3” k} 147 a“”J [ J“CT’U J[(’;—] ndFd(n,O‘)]“endI‘(d) , (2.26)

o

where the superscript Z denotes the zero information regime.

2.4 Comparison of the Information Regimes

In this subsection we rank information regimes with respect to optimal
design capacity and efficiency. Regime A is said to be more efficient than
regime B if

cst(s) > cs®(s) v s > 0.
To rank efficiency, use is made of the following proposition (proved in

Appendix 2):
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PROPOSITION 2: If £ < 1 (resp. € > 1) the more efficient information
regime has a lower (resp. higher) marginal consumers’ surplus for any

design capacity.

Since a lower marginal consumers’ surplus implies a lower optimal design
capacity, with € < 1 (resp. € > 1) the more efficient regime has the lower
(resp. higher) design capacity. Both the efficiency and optimal design
capacities of two information regimes can thus be ranked by comparing the
respective marginal consumers’ surpluses from capacity expansion.

It turns out that an unambiguous ranking obtains when one of the regimes

is zero information. This is formalized in:

PROPOSITION 3: Imperfect information increases efficiency relative to
zero information. Furthermore, if € < 1 (resp. £ > 1) then optimal design

capacity is smaller (resp. larger) with information than without it.

Prop. 3 is proved in Appendix 3. It establishes that if demand is inelastic,
information reduces the benefit from capacity expansion. As is the case with
Prop. 1 there are two opposing forces at work. The fact that information
increases efficiency relative to zero information tends to lower the benefit
of investment. But information also reduces the efficiency loss from latent
demand due to unpriced congestion. If € < 1 the first factor dcminates, and
if € > 1 the second does.

Prop. 3 is analogous to a result derived by Arnott et al. (1991b).
There, we applied the Vickrey queueing model (see Section 3) in which users
choose when as well as whether to use a facility. For a deterministic setting

in which capacity and demand are nonstcchastic we considered four pricing
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regimes; in order of increasing efficlency: no toll, a time-invariant toll, a
step-function toll and a continuously time-varying toll. We showed that
optimal design capacity decreases with the efficiency of the pricing regime if
€ <1, and vice versa if € > 1.

Pricing in that paper serves a role similar to information here as a
means of improving the efficiency with which a given facility is used.
Pricing and information both reduce the return from capacity expansion when

demand is inelastic, and increase it when demand is elastic.

2.5 Robustness

We have assumed that user costs are homogeneous of degree zero in demand
and capacity, and demand is isoelastic. If either assumption is relaxed, the
results do not go through. In particular, Prop. 3 does not hold up:
information is not necessarily welfare-improving. To see this in the case of
full information, let N(p) be an arbitrary demand curve and AC(N,s) the
average cost curve. Using (2.23), the welfare change in going from zero to
full information can be written

I—)u

— — d

csF - TS = J J j J N(p)dp} 9F (n,e) drd). (2.27)
dne

p(n,o)
Consider a simple example in which there are no day-specific
fluctuations, demand intensity is fixed, and capacity is either high, S, or

low, s, with equal probability. Then p = (p(s) + p(s ))/2, and (2.27)

reduces to
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I—)u p(SL)

==F =z 1

s - s = J' N(p)dp - J N(p)dp]|,
p(SH) I—)u

which is one half the difference between the diagonally shaded area and the
vertically shaded area in Figure 1. In panel (a), with homogeneous costs and
isoelastic demand, the difference is positive. But in panel (b) with
nonhomogeneous costs, and panel (c), where the demand curve is sharply curved
in the neighborhood of p", the difference is negative. In (b)), p(sH) is
relatively high because the cost curve is steep to the right of N(Eu). In
(c), p(sH) is relatively high because the demand curve is relatively elastic
below EU. In both cases, the message that capacity is high induces extra
usage that drives up costs appreciably.

The welfare effect of full information in the example is considered
another way in Figure 2 (the average cost curves are made linear for
simplicity). The marginal cost curves for the high and low capacity states
are MC(N,SH) and MC(N,SL). The deadweight loss with zero information from
overuse in the two states is indicated by the heavily bordered areas
(underusage is possible with high capacity). With full information, usage
expands to NH with high capacity and falls to NL with low capacity. The
corresponding efficiency loss and efficiency gain relative to zerco information
are indicated by the vertically and diagonally shaded areas. Again, the
shapes of the cost curves and the demand curve determine whether the net gain

from information is positive or negative.

3. Dynamic Equilibrium

In this section we endogenize individuals' time of use by adopting a

variant of Vickrey’'s (1969) bottleneck queueing model.24 The facility is
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assumed to have a bottleneck with a maximum service rate of s users per unit
time. In the commuting context the facility is a road or freeway, and the
bottleneck a bridge, tunnel, lane drop, etc.25 If the arrival rate of users at
the bottleneck exceeds s, a queue develops. The time taken to use the

facility for a user arriving at time t is

- Q)
T(t) =T + s
s

where T is usage time in the absence of a queue. Without loss of generality

we assume T is zero. Q(t) is the length of the queue, equal to

t
Qlt) = j r(t)dr - s(t-t), (3.1)

t

~

where t is the time at which the queue was last zero, and r is the arrival
rate at the bottleneck.26

If individuals are indifferent about when they use the facility, capacity
is encugh to serve everycne during the period of operation, and queueing time
is unpleasant, then queueing will not occur in equilibrium. However, in most
real world situations time of use does matter. For example, commuters
typically incur penalties from arriving at work after the official starting
time. They also prefer not to arrive very early, with the associated costs of
an early morning rise and wasted time before work begins. Non-work activities
are better scheduled at certain times to conform with work and household time
constraints, and individual bicrhythms. And outdcor recreational
opportunities are influenced by diurnal, weekly and/or seasonal cycles that
determine when usage is best, or even possible.

To model time-of-use preferences, we assume that individuals have a

*
common preferred time, t , for being served - that is, for ending usage of the
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facility, and incur a ’'schedule delay cost’ (SDC) if served at a different
time.27 For an individual arriving at the facility at time t, queueing plus

schedule delay costs are assumed to be
*

Q(t) . Qlt) 4 Qt) .
Clt) = « + B Max[O0,(t -t - )] + ¥ Max[O, (t + -t )] (3.2)
S S S

The parameter « measures disutility (inclusive of any monetary, such as
vehicle operating, cost) of queueing time. B8, ¥ and 1 determine the shape of
the SDC function. If n = 1, as has been assumed in most of the theoretical
literature, C(t) is piecewise linear; B is the unit cost of being early and ¥y
the unit cost of being late. If » > 1, the marginal disutility from schedule
delay increases with the size of the delay.28 For reasons described below we
rule out # < 1. To admit differences in the cost of earliness and lateness we
allow 8 # ¥; for morning commuters with fixed work hours one expects B << 7.
The power factor m is assumed the same for early and late service to admit a

closed-form solution; see below.

3.2 Equilibrium with full information

In deciding when to use the facility, individuals face a trade-off
between queueing time and schedule delay. With full information they know the
distribution of arrival times. In equilibrium, no one can reduce usage costs
by arriving at a different time. With identical individuals this means that
costs are constant during the period when usage occurs.

Equilibrium for the Vickrey model in a deterministic setting, which is
equivalent to that under full information, has been exposited elsewhere (e.g.
Hendrickson and Kocur (1981), Arnott et al. (1990a, 1991b)) for n = 1, and
requires only minor modifications for the more general specification given in

(3.2).
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Equilibrium for # > 1 is shown in Figure 3. The number of individuals in
the queue is measured by the vertical distance between the curve depicting
cumulative arrivals at the facility, and the straight line with slope s
depicting the cumulative number served. Arrivals occur over the time interval
[to, t1]. A derivation of the equilibrium arrival rate and number of users,
follows.

Let tn be the arrival time for which an individual gets served at t'.
During [to, tn), individuals are served early. Setting the derivative of

(3.2) with respect to t equal to zero, one obtains for the equilibrium arrival

rate

os
r(t) = , t e (to, t ). (3.3)

a-Bn(t -t-q(t)/s)) ! "

If 7 < 1, r(t) becomes infinite before t + Q(t)/s reaches t*. To avoid this
we assume {as noted above) that n =2 1. If n =1, r(t) = as/(x-B), which is
positive and finite if a > 8. We assume henceforth that this coendition

holds.292 If o > 1, r(t) is strictly decreasing for t € (to, t ). At to’
n

us
r(t) = . (3.4)
1/
¥ n
a-Bn(—
1/ 1/M S
B8 n+7 n

-t

This is positive and finite provided

1/(M-1)
« Bl/n+71/n
<

nl =

1/
Bn 177

which we assume is satisfied for the equilibrium value of N.

Over the arrival interval (t , tl), individuals are served late. Setting
n

C(t) = 0 as before, one gets

s
r(t) = , te (¢, t). (3.5)
n 1

aram (t+Q(t)/s-t )Tt
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which is positive and finite.

The first user to arrive naturally encounters no queue, and suffers only
the cost of being served early. The last user also escapes queueing. (Proof:
If he did encounter a queue, he could arrive slightly later and reduce
queueing time without any change in schedule delay cost.) Equating the
schedule delay costs of the first and last users:

Bt'-t )T =yt -t (3.6)

Since the bottleneck operates at capacity throughout (to, tl),
N
t =t + —, (3.7)
1 0 s
Solving (3.6) and (3.7) for to’ t1 and the equilibrium user cost, C:

1/ 1/7

. ¥ N - B N
t =t - — -, t =t 4 ——— (3.8)
0 Bl/n+71/n s 1 Bl/n+71/n s
By N T
C= —— ( - ] . (3.9)
s

(61/n+71/n)n
Comparing (3.9) with (2.2) it is evident that the equilibrium cost, for a

given number of users, is as given in the static model, with

By
= —
(8" ey’ ™7
The equilibrium number of users can hence be solved as in Section 2.2, and the
analysis of that section, including Prop. 1, goes through for the dynamic

model when users have full information.30

For the linear SDC function, n» = 1, (3.8) and (3.9) reduce to

- 3 N * N
t =t - — —, t =t + -, (3.10)
(o] BS 1 ¥ s
N
C = 6(~}, (3.11)
S
with
By
S = —
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(3.10) and (3.11) will be compared with the imperfect information equilibrium,

considered next.

3.3 Equilibrium with imperfect information

In the imperfect information regime, individuals face uncertainty about
the capacity of the facility and/or the number of users. The equilibrium
arrival rate is more difficult to compute than under full information, for
several reasons: (1) the bottleneck may not operate at capacity throughout the
arrival period, (2) depending on when they arrive, users may not know whether
they will be served early or late, (3) if the number of users is uncertain,
the arrival rate itself is unknown.

To simplify the algebra we assume henceforth that schedule delay costs
are linear; that is, n =1. We first show by construction how to solve for
the dynamic equilibrium under uncertainty. We then establish that imperfect
information can ralilse expected user costs, even though full information is
necessarily welfare-improving. In this sense there is a nonconcavity in the
value of information. This result stands in contrast toc that of the static
model, where both perfect and imperfect information improve efficiency.

With capacity and/or demand unknown, costs will vary according to when
users arrive. We shall characterize equilibrium by a normalized arrival rate,
p(t), where p(t)dt is the fraction of users who arrive between t and t+dt.
p(t) will in general depend on the type of day and on the message received.

To economize on notation)d and m subscripts will be suppressed where
unnecessary for clarity. If there are N users, the arrival rate at time t is
Np(t). The assumption that p(t) is invariant from day to day can be justified

by the law of large numbers if there are many users choosing arrival times
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independently.31

To derive the equilibrium some additional variables are required. Let
R(t) be the c.d.f. of arrivals, and t. the time at which the last user
arrives, which may be before he is served, t,. By definition, R(ty) = 0 and
R(t.) = 1. Let ¢ = N/s. Given the assumption that n/c has a finite upper
bound, so does ¢; call it ¢4. The c.d.f. of ¢, from the perspective of users,
is denoted J(¢).32 Let Q(t,¢) be the length of the queue at time t when N/s =
¢. Define ¢{t) = Max {¢]| Q(t,¢)} = 0} as the largest ¢ such that there is no

queue at time t. A user arriving at t thus queues iff ¢ > ¢(t). Define ¢*(t)

Qlt,e¢*(t)
+ —_—

s

by t = t* as the ¢ such that a user arriving at t gets served at

t*. (¢(t) and ¢*(t) may or may not be elements of the support of J(¢).)
Qt, ¢y)

Finally, define t by t 6 + ———— = t* as the latest arrival time for which a
S

user is never served late.

The qualitative characteristics of equilibrium are shown in Figure 4.33
There are 4 regions, defined by whether or not users queue, and whether they
are served early or late. In regions NE and QE users are served early, in
regions NL and QL they are served late. In regions NE and QE they do not
queue, whereas in QE and QL they do. If there is no queue, a user is served
early if t < t*, and late if t > t*. Regions NE and NL thus abut at t = t*.
The boundary between regions QE and QL is defined by the locus ¢ (t). Regions
NE and NL are separated from QE and QL by the locus ¢(t}. ¢(t) < ¢y for all t
€ (ty,t,.), since otherwise the last user would never queue, and could reduce
his cost by arriving earlier. Moreover, ¢*(t) > ¢(t) for t < t* and ¢*(t) <
¢y for t > t. .

Expected costs in each region are:
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CME(t,¢) = B(t*-t), (3.12a)
Qlt,¢) Q(t,¢)
COE(t,¢) = B(t* - t - ¢ ) + oc—¢, (3.12b)
s s
CNL(t,¢) = y(t-t"), (3.12¢)
Q(t,¢) Q(t,¢)
COL(t,¢) = 7(t + ————?— - t*) + a————?—. (3.12d)
S S

As is clear from Figure 4 there are 3 departure intervals to consider:
t e (ty, t,} in which users are always served early,
t € (tn,t') in which, depending on ¢, users may be served early cor late,

t € (t*, t,.) in which users are always served late.

In equilibrium, C(t) must be independent of t in each of these intervals,

t e (tg, t,)

To see that this interval is non-empty, note that the first user must
arrive before t*, since otherwise he could arrive at t*® and escape both
queueing and schedule delay, which is not possible for all users. By
continuity of R{t) there is a nonzero time interval over which users are
always served early.

Given (3.12a), (3.12b) and Figure 4, expected costs are

$(t) by
c) = g I (t*-t)dJ($)+ J -2 4 ) Jre J' —~d ($)
$(t) o(t)
by
t,¢)
= B(t*—t) + (0-B) J 4d (¢). (3.13)
$(t)
Given Q(t,¢(t)) =
u
t,¢)

C(t) = -B + (a=B) j ——dJ(qb)
$(t)
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Given Q(t,¢) = Np(t) - s for ¢ > ¢(t), we have as a condition for equilibrium
C(t) = aZ(t) - B(1+2(t)) = 0O, (3.14)
where
Pu
Z(t) = I (p(t) - 1)dJ(4). (3.15)
o(t)

Z(t) is the rate of increase wrt t in expected queueing time. A user who
postpones arrival by dt incurs an increase in expected queueing time cost of
aZ(t)dt, which is the first term on the RHS of (3.14). Since users are also
served early, arriving dt later decreases expected schedule delay cost by
B(1+Z2(t))dt, which is the second RHS term of (3.14). In equilibrium the two
terms must balance. Appendix 4 establishes that (3.14) defines a constant

).

value of p(t). The departure rate is thus constant over (tg, t,

t e (t,, t%)

In this arrival interval, users are sometimes served early, and sometimes

late. Given (3.12a), (3.12b}, (3.12d) and Figure 4, expected cost is

$(t) ¢"(t)
. . Qlt,e)
c(t) = B{ j (t*-t)dJ(¢)+ J (-2 )d(9) } (3.16)
S
0 $(t)
. .
(t,¢) Q(t, )
.y J (t+u-t")dJ(¢) + j —¢—dJ(d))-
S S
o' (t) ¢(t)
Clt) = aZ(t) - BZ°(t) + 2" (t) = 0, (3.17)
where
¢ (t)
2°(t) = I (gp(t) - 1)dJ(¢) + J(p*(t)) (3.18)
#(t)

is the rate of decrease in expected early time and
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oM
z'(t) = J (¢p(t) - 1)dI(¢) + 1 - J(¢" (L)) (3.19)

¢t (t)

is the rate of increase in expected late time. Equation (3.17) has an
interpretation analogous to (3.14). Appendix 4 establishes that p(t) is
weakly decreasing for t € {tg, t*)
t e (t* t,.) (if t. = t* this interval is degenerate)

In this arrival interval, users are always served late. Given (3.12c¢),

{3.12d) and Figure 4, expected costs are

¢(t) Pu Pu
. Qlt,¢) Qt,¢)
c) = of J (t-t*)dJ($)+ j (t+——" -t)aJ(9) } + @ J = i),
s s
0 $(t) #(t)
Py
. Qlt,¢)
= y(t=t") + (a+y) J haASHRTPLY (3.20)
S
6(t)
C(t) = aZ(t) + y(1+2(t)) = 0. (3.21)

(3.21) has an interpretation analogous to (3.14) and (3.17). Again, p(t) is
weakly decreasing on the interval (see Appendix 4).

Conditions (3.14), (3.17) and (3.21) ensure that expected costs are
constant in each arrival interval. Since ¢'(tn) = ¢y, and ¢(t*) = ¢*(t*),
expected costs are also continuous at t, and t*, and hence constant over the

whole interval [t,,t.]. It is now possible to state:

PROPOSITION 4: The normalized arrival rate p(t) is weakly decreasing over

the arrival period, and the cumulative arrivals distribution R(t) is

concave.

Prop. 4 follows from the fact that p(t) is constant on (t,,t.) and weakly
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decreasing thereafter. To see why, note that after t, the later a user
arrives the more likely he is to be served late, and to suffer increased
lateness from marginally postponing arrival rather than reduced earliness. To
compensate, expected queueing costs must grow at a decreasing rate and
eventually decline, which requires that the arrival rate decrease over time. 34
Given concavity of R(t) it follows that if queueing occurs on a given day

it must be over a continuous time interval beginning at t;. Queueing time is
Q(t,¢)

= Max [0, ty + ¢R(t) - t]. (3.22)
S

t, is defined implicitly by the condition
tg + ¢yR(t,) = t7,
while
¢(t) = (t-tgy)/R{t), {3.23)
" (L) = (t™-ty)/R(L). (3.24)
With regard to the timing of arrivals it turns out that there are two

possibilities: t. < t* and t. = t*. To establish which occurs define:

Py

¢ = Iq&dj(cﬁ},
0

g = J-l i ,

aty

o
and the mean of ¢ for values greater than the {—} fractile:
o+y

¢H ¢H
aty

J¢dJ(¢) /(1-J($)) = —J¢dJ(¢). (3.25)
Y

¢ ¢

The case t, > t* is described in Lemma 1 (for the proof, see Appendix 5)

H

©
1]
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LEMMA 1:
~ S
If ¢ > — ¢ (3.26)
B+y
then the first and last arrivals occur at
L] 6 "
tg = t7 - = ¢, (3.27)
B
t, = tg + & > t" (3.28)
Expected costs are
C = Clty) = Blt*-ty) = & ¢. (3.29)

As true of the full information equilibrium, arrivals occur both before and
after t*. It follows from (3.10) and (3.27) that the first arrival is earlier
on average with imperfect information than with full information.33 By (3.11)
and (3.29) expected user costs are thus greater with imperfect information
than full information.

Both the arrival interval and expected user costs are independent of the

o
distribution of ¢ below the {——} fractile. To understand this, as well as
oty

(3.28), suppose the last user arrives at t, + ¢. for some ¢.. The user
escapes queueing with probability J{¢.). If he delays arrival by dt his
expected cost changes by [J(¢.)y - (1-J(¢.))aldt. In equilibrium this must be

1]« 4| « 1| o«
zero, which is why ¢, = J {—>%) and t = t5 + J {—>. If ¢ < J {— the
aty aty o+y

last user escapes queueing and incurs a late arrival cost determined by the

o N
—— fractile of the J(¢) distribution. 1If ¢ > J " his costs are
a+y at+y

determined by the shape of the J(¢) distribution above this fractile. In

ol
either case, costs are independent of the distribution below the —
at+y

fractile. Since in equilibrium all users incur the same cost, this is also
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true of the system.

The case t_ = t* is described by Lemma 2 (for the proof see Appendix 6):

LEMMA 2:
~ Yy
If o= — ¢ (3.30)
B+y
then t, is defined implicitly by the equation
Py
a+B+y
J(t*-ty) + J $dJ(¢) - = 0, (3.31)
t*-t, oy
t*-t,
t, =t
and
C = Clty) = B(t*-ty). (3.32)

By (3.31) the equilibrium is again independent of the left-hand tail cof the ¢
distribution.

Since conditions (3.26) and (3.30) in Lemmas 1 and 2 are complementary,
there are no equilibria with t_ < t*. To see why, suppose t, < t* and
consider t e (t., t*). If ¢ < ¢(t) there is no queue at t and a user is
better off arriving at t than t_, since he is served less early. If ¢ > ¢(t)
he is also better off, since he is served at the same time as when arriving at

t but spends less time queueing. Thus, 1if t < t*, arrival after t. is

r*

preferable to arrival at t_, a contradiction. This yields

PROPOSITION S: With imperfect information the last user arrives no earlier

than t*.
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3.4 Comparison of the Information Regimes

Prop. 2 of Section 2 concerned the relationship between consumers’
surplus and marginal consumers’ surplus for the static model. The Proposition
carries over without alteration to the dynamic model (Proof: see Appendix 7).

For completeness we repeat the proposition here as

PROPOSITION 27: If € < 1 (resp. € > 1) the more efficient information
regime has the lower (resp. higher) marginal consumers’ surplus for any

design capacity.

In place of Prop. 3 we have a weaker result (Proof: see Appendix 8]}.

PROPOSITION 37: Full information increases efficiency relative to zero
information. Furthermore, if € < 1 (resp. > 1) then optimal design

capacity is smaller (resp. larger) with full information than with zero

information.

Prop. 37 differs from Prop. 3 in that only full information is necessarily
welfare-improving relative to zero information.

We now show by example that imperfect information can be welfare-
reducing. Suppose there are no day-specific fluctuations (the subscript d is
redundant), and demand intensity is fixed, but capacity fluctuates with an
{(unconditional) p.d.f

; with probability 1-=

< = (3.33)

os with probability =, c < 1.
In the case of commuting, w can be interpreted as the probability of events

(e.g. road repairs, bad weather, accidents) that reduce freeway capacity below
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its design level for the duration of the morning commute. In Appendix 9 we

. 4 -, 1-€ . . s . 36
show that, if ¢ < g——, then (p) varies with m as shown in Figure 5.
+Y

Now, with n fixed, no systematic fluctuations, and n = 1, we have by

(2.24)
. “ 1-£ 1-€
MCS'(s) - MCS (s)= Iic? “ [f):] dM(m) - [;3“] ] (3.34)
s
m
By Prop. 2
tsl(s) J TF(s) if [M@I(;) - Mféz(;)](e -1 7 o. (3.35)

With zero information, the probability from the users’ perspective of
reduced capacity is m every day. With full information, it is O with
probability 1-m and 1 with probability w. It is clear from Figure 5 that
{3.34) is negative if € < 1 and positive if € > 1. By (3.35), full
information is thus welfare-improving.

With imperfect information, the probability of low capacity conditional

Bo

on the message received fluctuates around wm. At m; = ——, there is a
(a+y) (1-0)

kink in the function [5u}1“€(n)‘ Suppose ™ = m_, and messages are hot very
informative, in the sense that the probability of capacity reducticn
conditional on a message rarely differs much from m. By the unbiasedness of
the message system and Jensen’s inequality (3.34) is then positive if € < 1
and negative if € > 1. Imperfect information is welfare-reducing; there is a
nonconcavity in the value of information.37 This is the inspiration for the
quote from Alexander Pope at the head of the article: "A little learning is a

dangerous thing".38

1-€
A somewhat brute-force explanation for the kink in the [ﬁu] (n) is

possible with the aid of Figure 6. Suppose, to consider a general bivariate
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N N
distribution, that — = ¢ with probability 1-mw and — = ¢/ > ¢ with probability
s s

n. If w = 0, then in equilibrium with the linear SDC function (panel (a) of

.4
Figure 6) the first user arrives at t, = t* - —¢ and the last user at t,

B+y
B
t* + —¢. The times at which the two users are served, and their usage
B+y

costs, are depicted by the points Ay and A;. Both users avoid queueing and
incur the same schedule delay cost.

Suppose now that n > 0. With the original arrival schedule the last user
would incur an extra cost (at+y)(¢’-¢) with probability m. To maintain

equilibrium, arrivals must begin earlier. This reduces the expected cost of

the last user, since if — = ¢ he still escapes queueing and is served earlier,
s

N
while if — = ¢’, he suffers both less queueing and less late cost. The first
s

user ends up at point By, and the last user at B; or B; according to whether ¢
or ¢’ is realized.

The shift toward earlier arrivals continues as w increases until t_. = t*.
The last user does not arrive any sooner if m increases further, as explained
earlier. The last user thus bears the full brunt of the increase in expected
costs, so that the expected price of usage rises more sharply as n increases

above mu_.

- Y
The fact that pu(n) in Figure 5 is constant for m €¢ [—, 1] follows from
oty

the fact, also explained earlier, that equilibrium is invariant to the

o
distribution of ¢ below the {— fractile. Changes in w within this range
oty

induce changes in the arrival rate, but not the arrival interval.

- N
Furthermore, p = 8¢; expected costs are the same as if — = ¢’ with certainty.
S
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Attempts by a facility manager to increase welfare by improving the
reliability of the facility through reductions in m or reductions in ¢
(holding ¢’ fixed) would be defeated by offsetting changes in user behavior.
The fact that imperfect information necessarily increases welfare in the
static model, but can decrease it in the dynamic model, illustrates the
importance of modeling all margins of user behavior. Neglect of users’
time-of-use decisions can lead to qualitative errors in analysis, as well as

overlooking of interesting and counterintuitive behavior.

3.5 Robustness

The kink in p (mw) at m = m, derives from the fact that the linear SDC
function has a kink at t*. However, nonconcavities in ﬁu(n] can arise even if
schedule delay costs are everywhere differentiable. Consider the SDC function
D(t-t*) = B(t-t*)", » > 0. It is possible to construct examples with a
bivariate capacity distribution in which 5u(n) is strictly convex over a range
of m for any n =z 1. Some intuition for this can be gleaned from panel (b) of
Figure 6. Again, the equilibrium service times and costs of the first and
last users are shown for m = 0 by A; and A;, and for w > 0 by By, B; and B{.
As m increases, the shift toward earlier arrivals slows progressively as the
first user is driven up the increasingly steep early arrival branch of the SDC
curve. The expected cost of the last user (and in equilibrium all users) thus

increases at an increasing rate.

4. Summary and Concluding Remarks

Most congestible facilities are subject to nonsystematic fluctuations in

demand and/or capacity. In the case of transportation, recreational areas,
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telecommunications and other facilities, real-time or near real-time
information may be available on the state of the system. Where the provision
of information is a policy decision, as will presumably be the case with route
guidance systems for automobile travel, it is important that the welfare
effects of information be understood.

In this paper we investigate the effect of information on usage of a
congestible facility under free access. We consider three informaticn
regimes: zero information, full (perfect) information and imperfect
information, which contains as a limiting case the other two regimes. We
begin with a static model in which only the aggregate level of usage is
endogenous. We assume average user cost (price) is homogeneous of degree zero
in usage and capacity, and demand is isocelastic. We then consider a dynamic
model in which individuals’ time of usage as well as their participation
decisions are endogenous. In the case of full (perfect) information the
reduced-form equilibrium cost function of the dynamic model is a special case
of the static model.

For the static model with homogeneous costs and iscelastic demand both
imperfect and perfect information are welfare-improving relative to zero
information. Full information is also welfare-improving for the dynamic model
with full information, but not necessarily with imperfect information. And
neither perfect nor imperfect information need be welfare-improving in either
model for arbitrary user cost and demand functions. These results suggest
that a cautious approach be adopted in designing and implementing information
dissemination schemes, at least absent tolls or other means of regulating
usage.

There are several directions in which the analysis could be éxtended. We
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have assumed the facility is a delay system, in which users are neither turned
away nor balk when congestion is heavy. This is reasonable for travel because
of the substantial sunk costs and commitments generally invelved. With other
facilities, such as the telephone, the cost of attempting usage may be quite
low, so that users can balk and try again later.

We have considered a single facility in isolation. This is
unsatisfactory if the facility is part of a system, such as one road in a
corridor with several roads, or a ski area close to competing facilities.
Information may affect users’ choice of facility as well as their decision
whether to participate and when. Furthermore, with unpriced congesticn,
capacity expansion or other policies adopted at one facility will affect the
efficiency loss due to congestion elsewhere in the system.39

It has been assumed that all users have the same information. For
various reasons some individuals tend to be better informed than others:
greater experience, preferential access to information, superior cognitive
capabilities, etc. Haltiwanger and Waldman (1985) have shown that informed
decision makers have an impact disproportionate to their fraction of the
population in determining equilibrium in congestible systems. This would
suggest that assuming all users know the available information may be
reasonable. In the case of automobile travel, however, it has been theorized
as well as observed in the field that overreaction (as defined in the
introduction} to information can occur if too many drivers are tuned in and
respond (Ben Akiva and de Palma (1991), Mahmassani and Jayakrishnan (1991)).
Given this, and the costs of installing and operating route guidance systems
in individual vehicles, the fraction of drivers to equip becomes a policy

issue.
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In the dynamic model used here, queue discipline is FIFO. This is
reasonable for transportation and some recreational facilities. Other
facilities have different congestion technologies and service disciplines.
With time sharing, computer users are served quasi-simultanecusly. On a
telephone network, capacity 1s determined by the number of telephone lines,
while the completion rate of calls is governed by the average length of a
call. Too, in some exchanges users gain access to a line at random rather
than in order of placing a call. In other facilities the quality of service
may degrade with cumulative usage; e.g. due to buildup of heat in a museum, or
wear and tear on nature trails over the course of a season. It remains to be
seen whether the welfare effects of information are sensitive to these
considerations.

The probability distribution of demand intensity (n) and capacity
availability (¢} has been assumed independent of design capacity (;). In
practice, there may be a tradeoff between the utilization rate of a facility
and the probability or magnitude of loss of capacity. For example, if highway
shoulders are used as travel lanes during peak hours, which effectively
increases design capacity, they will be unavailable for stalled vehicles and
rescue equipment, so that the average capacity utilization rate may fall.
Furthermore, ¢ may depend on demand, as is the case for road traffic to the
extent that the probability of incidents increases with traffic volume
(Newbery (1990)). And demand may be a function of service reliability (Kay
(1979), Saving and DeVany (1981), Coate and Panzar (1988)). A definition of
capacity ought thus to include a reliability coefficient, which would be a
factor in determining optimal design capacity, as well as maintenance and

repair policy.
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Perhaps the most important next step is to consider the use of pricing in
conjunction with information as a policy tool. For the dynamic model it is
necessary to derive the optimal time-varying toll under imperfect (or zero)
information about demand and/or capacity. In the case of the bottleneck
queueing model with full information it has been shown (viz. Arnott et al.
(1990a, 1991b)) that time-varying tolls can provide substantial efficiency
gains through induced changes in time-of-usage decisions. It remains to be
seen how large these gains are in a stochastic environment, and how they vary

Wwith the quality of information.
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APPENDIX 1
PROOF OF PROPOSITION 1

Proposition 1 concerns the ratio of optimal design capacity with

~

anticipated fluctuations in capacity and demand, si given in (2.14), to

~

optimal design capacity, s_, when capacity remains at its design value and

demand intensity is fixed at its mean value.

Define F(n,o) = J Fq{n,e) dr(d). Then

d
1+€7M
147 nie-1}) 1+
“F " = 1+€ 1 -
s,/s, = v/n = J J ntteN s 1rEN dF(n,c) /n ,
no

where n is mean demand intensity. The various statements in Proposition 1

are proved by a series of lemmas.

LEMMA 1:

v n as t 1.

AV
VIIA

PROOF: Let x and y be variates. By Holder’s inequality

a 1-w < - -1 e (0,1)
JJX y TR Gy) S %) as « { -0 1
<Qor >1

where F(x,y) is an arbitrary nondegenerate joint c.d.f. Replacing x with o,

y with n, o« with »n(e-1)/(1+en) and F(x,y) with F(n,¢) yields

nie-1)

- 1+ — -
v (o) T oa n as €

ANV

Al

VHA
=

QED.

Thus, optimal design capacity is greater in the stochastic case if € < 1. The
reason is that, with € < 1, marginal consumers’ surplus is a convex function
of n and o, so that by Jensen's inequality expected marginal consumers’

surplus from capacity expansion is greater. 1If £ > 1, marginal consumers’
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surplus is concave in n and ¢ and the inequality is reversed.

LEMMA 2:

Let H{c) be the c.d.f. of ¢ and G(n]o) be the c.d.f. of n conditional on
o. Then if € < 1, v/n increases with a mean-preserving spread to G(n|@) for
any set of o of nonzero probability measure. The opposite is true if ¢ > 1.

PROOF: From (2.14b)

1+4EMN
nie-1) 1+7 1+7n

v = I o 1TEN v(c)dH(o) , where v(c) f n'*EN dG(n|¢).

o n

Let 11 and 12 be indexes. Assume that, for all o, G(n|o,il) either coincides
with G(nl@,iz) or can be obtained by a mean-preserving spread, with the latter

true for a subset of o of positive probability measure.

147
If € < 1, n1+€n is strictly convex in n, so that by Rothschild and Stiglitz

(1970), v(a,il) = v(a,iz) for all ¢, with a strict inequality for ¢ of nonzero

14

measure. Then V(il) > v(iz). If £ > 1, n!tEN

is strictly concave in n, and
by analogous reasoning v(il) < v(iz). The proof is completed by noting that

the construction holds n fixed. QED.

LEMMA 3:
Let G(n) be the c.d.f. of n, and H(aln) be the c.d.f. of ¢ conditional on
n. Then if € < 1, v/n increases with a mean-preserving spread to H(c|n) for

any set of n of nonzero probability measure. The opposite is true if £ > 1.
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PROOF: By (2.14b)

1+€7
1+7 1+7 nie-1)

v = j n 1+£7 w(n)dG(n) , where w(n) = J ot tEN dH(¢|n).

n [0
nie-1)
1+€7

If ¢ <1 (resp. > 1), o is strictly convex (resp. concave) in o¢. The

proof follows by analogy with the proof of Lemma 2. QED.

To establish the two remaining lemmas some preliminaries are required.

Let x and y be variates with joint c.d.f. F(x,y) and marginal distributions
H(x) and G(y). Define

1/ 1/
Ma(X) = { JxadH(x)} , Ma(y) { IyadG(y)} ,

ijayl_adF(x,y),

Ma(x,y)

{ = 1-a}_ 1. (A1.1)
(M {(x))" (M (y))

04 1-¢

ill

Ma(x,y)

and

pa(x,y)

Ma(X)’ Ma(y) and Ma(x,y) are generalized means, and pa(x,y) is a
generalized correlation coefficient. If x and y are independent then:
_ 1- o _ o 1-0
M_(x,y) = Uy dG(y)] [J.x dH(x)] = (v,

so that pa(x,y) = 0. From (2.14b) and (A1.1)

o 1-a 1/(1-)
v = [(M (¢)) (M. {n)) (1 +p (a,n))] , (A1.2)
o 1-0 o
where
_omee-n
1+€7

We can now proceed to lemmas 4 and 5.

LEMMA 4:

If € <1 (resp. > 1), v/n is larger the smaller (resp. larger) the a-mean
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of o.
PROOF: Fix M1—a(n)' n and pa(o,n). By (A1.2) v/n is larger the larger is
(Ma(w))a, and hence with € < 1 (ax < 0) the smaller is Ma(al. If ¢ > 1, v/n is

larger the larger is Ma(a). QED.

LEMMA 5:
If ¢ <1 {resp. > 1) v/n is larger the smaller (resp. larger) the
correlation between n and o.

PROOF: Fix Ma(m), M a(n) and n. By (A1.2), v/n is larger the larger is

pa(o,n). If ¢ <1, a < 0, and v/n is larger the smaller the correlation

between ¢ and n. If € > 1, « > 0, and v/n is larger the larger the

correlation. QED.
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APPENDIX 2
PROOF OF PROPOSITION 2
Consumers’ surplus with imperfect information is given by (2.23), which

we write here with the order of integration altered:

J J J j { J np dp} dM(m|d,o,n) dF (n,o)dr (d).

dno tm
Let I and I’ be two imperfect information regimes with message distributions
M(m|d,e,n) and M’ (m’|d,c,n) respectively. The difference in expected
consumers’ surplus between the two regimes is

cs' - J- J- J- J { an_cdp} dM(m|d,n,o) -

dno
dm

ml

J { an’gdp} M’ (m’|d,n,o) |dF (n,c)dr(d).
511

’

= J I J j I { np dP‘J np dp}dM’(m’|d n,c)dM(m|d,n,c) dF {(n,e)dr(d).
dnobtmm’ ﬁ 5

{m

d

fil

Define S(m)

} Then
i

P
cs! I j J j J np dp dM’ (m’ |d,n,c)
p !
dno m €S{m) pzm,
-u
pdm’
- J an_cdp dM’ (m’ |d,n, o) ] dM(m|d,n,e)| &F (n,¢)dr(d).

m’e¢S{m) p.
dm

1] [ J o [5;1]1_? [f,:m,]l'e M (n|d,n,o) (A2.1)
dn

clm m’eS(m)

dm’ dm

1-¢ 1-€
- J n [ﬁu } —{ﬁu] dM’(m’|d,n,0)]dM(m|d,n,0) dFd{n,o)dF(d).
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. - . .
Now MCS' (s) - MCS' (s) = q;—[csl(s) - cs' (s)]
ds

=JJI J [ I 113_9:? [f’;‘m]bf [‘_’:m']l-e dM’ (m” |d,n,0) (A2.2)

dnolm m’eS(m)

d 1-¢€ 1-¢
- J n_oq_ [5“ ,] -[5“] dM'(m'|d,n,a)]dM(m|d,n,¢) dF (n,c)dr(d).
ds dm dm d
m’eS(m)

(By Leibnitz’s rule terms involving derivatives of the limits of integration

cancel.) Now by (2.19)

dp, s
~ _ = - 1+2“: (A2.3)
ds pu n
dm
whence
1-¢£ 1-£
d -u __nll-e) 1 (-u
— (pdm} = Tren =~ [pdm] . (A2.4)
ds S

Substituting (A2.4) and its counterpart for m’ into (A2.2) and using (A2.1)

one finds

n(e-1) 1

_I‘ __
MCS'(s) - MCS! (s) T+en

——-.A _.’A
[csl(s) - ¢! (s)].
o~ g -~ - _qr o~
If ¢ >1, MCS'(s) - MCS' (s) and CS'(s) - C5' (s) have the same sign. If ¢ <

1, they have the opposite sign. Furthermore, by (2.24)
Mg (s) = AL J I n [' J dM(n|d) dr(d).
1+en :
dm
3

Differentiating and using (AZ2.3)

~

aMcs’ (s) s __ 1+
ds MCS! (s) lvem

Since the elasticity of marginal consumers’ surplus is constant, the ranking
1. " — 17 " ~
of MCS'(s) and MCS' (s) is independent of s, so that the relative efficiency

of the two information regimes can be established by examining any level of

design capacity. QED.
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APPENDIX 3
PROOF OF PROPOSITION 3

From (2.24) in the text

~ 1-¢
MCS'(s) = 1 Ifndm[ﬁ;’nj dM(m|d) dr(d).

This reduces in the case of zero information to

o 1 1-€
MCS“(s) = =—— 2| n [5"} drd).
1+en 7 altd

It follows that

MEST (o) - MCEZ(a) = HME;(;) - M@j(;)]dr(d), (A3.1)
d
where
_ 1.~ o~ 1 1-& 1-£
MCS'(s) - MCS(s) = 2 _ — Jﬁ [{:“} dM(m{d) - n [{:“] . (A3.2)
d d 1+E€7 dm dm d d
S m
Now n = J J ndF (n,co), {A3.3)
dm dm
noc
nd = J J ndFd(n,G), (A3.4)
nao

and from (2.19)

1

-n ~ n 1+€7M
-u _ |&(s) f n
Pam = - N n[@—] dde(n,cr) ' (A3.5)
L "dm n o
_ BN
JIRER /IR n 1+€7
-u 3(s) r (n
P, = — ] ] n[&-] dFd(n,o) . (A3.6)
L d no

Substituting (A3.3) - (A3.6) into (A3.2) and using the identity

dF (n,0) = Jdde(n,a) dM(m|d)
m

we have
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. £(1+mMm) 1-€
MCS (s) - MCS_(s) £ H J’ J.ndde(n,O‘)] rem [H‘[ ] ndf_(n,c) ]‘ “TaM (m|d)
m nao

n o

E(1+7) n 1-¢
” JndF (n,o)dM(m|d)] Leem JJ’ Hn_] ndF (n,rr)dM(m|d)]“°". (A3.7)
dm o dm
G n

m

The RHS of (A3.7) has the form

J IxayluadF(x,y) - )%t

where
X = J In dF (n,e) , x = j x dM(m|d),
dm
m
n )" -
y = J J L;] n_dFAm(n,a) , ¥ = J y dM(m|d),
noe m
— £(1+Mm)
T 1+gem

and the integration with respect to x and y is taken along the curve

(x(m),y(m)).
Applying Holder’s inequality as in Appendix 1 we have

[ S SN T
MCSI(S) = MCSZ(S) as ¢ 1.
d < d

AlTvV

Combining this with (A3.1) and Proposition 2 yields
TS'(s) = T5°(s),
and

as £

QED.

%]
AllV
w
Al
—
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APPENDIX 4
PROCOF OF PROPOSITION 4
We prove that p(t) is constant for t € (t,, t,) and weakly decreasing for
t € (t,, t.). The proof begins with two lemmas.
Lemma 1 p(t)p(t) =1
Proof A necessary condition for there to be no queue is r(t) = s, or p(t) =

1/¢. By definition, this is true of ¢(t), hence ¢(t)p(t) = 1. QED.

1A

Lemma 2 [¢p(t)p(t) - 1]¢(t) 0.

il

Proof Immediate if ¢(t)p(t) i. By Lemma 2 we need only consider ¢{t)p(t) <
1. By definition, ¢(t) is the largest ¢ such that there is no queue at t, so
with p(t) < 1/¢4(t) the queue must be positive just before t. Let t be the

last time when the queue was zero. By (3.1) in the text
t
[ectrpcrar = ¢ - &

t
Differentiating,
. 1-¢(t)p(t)
p(t) = — > 0,
t
Jp(r)dr
t

and hence [¢(t)p(t) - 11¢(t) < 0. QED.
We now consider each of the 3 arrival intervals in turn.
(a} t e (ty, t,)

By (3.14), Z2(t) defined in (3.15) is constant. Differentiating, we find

Py

- aJ(¢) .

p(t) f $UB) = (BLIp() = D= o) (Ad.1)
#lt)

By Lemma 2, the RHS of (A4.1) is nonpositive. The integral term on the LHS is
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strictly positive if J(¢(t)) < 1, which is the case since otherwise there
would never be a queue at t > t;, and arrival at t would be preferable to
arrival at t,. Hence p(t) = 0, R(t) is concave and ¢(t) = (t-ty)/R(t).

(A4.1) thus has a solution b(t) = 0, which establishes that the arrival rate

is constant for t e (ty, t, ). QED.

n

(b) t e {t,, t%)

Differentiating (3.17) and cancelling terms:

¢*(t) P
(a-B) f ¢dJ(4) + (o+y) I ¢dJ(p)} p(t) = (A4.2)
$(t) ¢*(t)

. dJ(¢(t)) . o, dJ(@"(t))
(a-B)[¢(t)p(t)-1](t) e + (B+y)¢ (t)p(t)e™ (t)————ro.

The term in braces on the LHS of (A4.2) is strictly positive if J(¢(t)) < 1,
which is the case by the reasoning given for t e (t;,, t. ).
[¢(t)p(t)-11¢(t) = O by Lemma 2, so the first term on the RHS is nonpositive.

The second term on the RHS is nonpositive iff ¢*(t) = 0. By definition of

t, 0" (t
- Qlt,e (L))

S

¢ (L), = t*. Differentiating and setting ¢ = ¢*(t) one has

*(t)p(t)
alQ(t,¢)/sl/0¢"

Pt (t) = -
The RHS of (A4.2) is thus nonpositive, which establishes that b(t) = 0 for
t e (t,, t%).
(c) t e (t*, t.)

r

Differentiating (3.21):
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Py
I ¢dJ($) b plt) = [P(t)p(t)-1]1¢(t)

$(t)

dJ(¢(t))
_ (A4.3)

Since the LHS term in braces of (A4.3) is positive and the RHS is nonpositive
p(t) < 0. QED.

By arriving after t* a user is always served late, so the late service effect

operating through changes in ¢"(t) is absent, leaving only the queueing effect

operating through changes in ¢(t).
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APPENDIX 5
PROOF OF LEMMA 1
Using (3.20}) and (3.22), and the fact that with t > t_, R(t) = 1 and hence

¢(t) =t - t,;, expected costs for arrival after t. are

t-tp Py ¢u
clt) = 7 J (t-t")dI(¢) + J (to+é-t)dI (P} + a J (to+p-t)dI(g).  (AS.1)
0 t-tq t-tg

If t. is indeed the last arrival time, then C(t) must be nondecreasing after

t.. Since C(t) is a continuous function of t it suffices to consider C(t)

after t.. From (3.21) and (3.15) the left-hand derivative (which is zero by

construction) is:

Lim C(t) = y(1+Lim Z(t)) + « Lim 2(t)

tatr tot, tot,
by
= 7 = (a+y) (1-Lim J(t-ty)) + (a+y)Lin J~ ¢p(t)dI(¢) = 0. (AS5.2)
tat, tote
t*-t,

From (A5.1), the right-hand derivative is
Clt) = v - (a+y) (1-J(t -ty)). (AS5.3)

Since C(t) is nonincreasing in t, a necessary and sufficient conditiocn for

equilibrium is

Lim C(t) = ¥ ~ (a+y)(1-J(t.-t5)) = O
tht,
or
o
J(t-ty) = —. (AS.4)
oty
But since the last term in (A5.2) is nonnegative

[ 4
Lim J(t.~ty) = —. (A5.5)
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Thus

t. =ty +J {—¢, (AS.6)
oty

which is (3.28) in the text. A solution for ty; and t. now follows directly.

From (3.13)
Clty) = Blt*-ty). (A5.7)
From (3.20) and (3.22)
Py
Clt,) = a(t -t*) + (a+y) f (ty + ¢ - t,)dJ(e)
t-to
Py
= g (t-t") - (a+y) (t,-tg) (1-J(t,—ty)) + (a+y) J $dJ(¢)
t-to
Py

= - 2(t'ty) + (a+y) f ¢dJ($) (using (A5.6)).

J_l _E_
a+y
Setting C(ty) = C(t.) = C:
Pu
* a+'f
C = B(t"-ty) = p—0b J $dI (), (AS.8)
B+y
J_l _E_
a+y

which is (3.29), and immediately yields (3.27). The initial premise that

t, > t* is satisfied provided:

Pu
) « oty
bty > t'tg e JT{—L > —° J $dJ (),
a+y B+¥
_ a
T —
a+y

which is condition (3.26). This completes the proof of Lemma 1.



58

APPENDIX 6
PROOF OF LEMMA 2
If t. =t*
p(t.) = ¢(t*%) = ¢*(t,) = ¢*(t") = t*-ty and R(t*) = 1. (A6.1)
As in Appendix 5 a necessary and sufficient condition for equilibrium is

(A5.4):

44
J(t~ty) = p— (A6.2)

Using (A6.1) and (3.16) one also has
Py
Clt) = C(t*) = (a+y) J (torp-t*)dI (). (A6.3)
t*-t,
As before, C(tgy) = B(t*-t,), which is (3.32). Equating C{ty) and C(t") yields

(3.31):

Py
1 a+fB+y

j $dI($) - = 0. (A6.4)

oty

J(t._to) +
t*-t
0 .«
t*-t,

Now the LHS of (A6.4) is strictly decreasing in t"-ty,. Since J(¢) is

monotonically increasing, (A6.2) is satisfied if the LHS of {(A6.4) is

nonnegative with J(t*-ty) = —:

-1 14

B Sl i I ¢dJ (), (A6.5)

which 1s condition (3.30).
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APPENDIX 7
PROCF OF PROPOSITION 27

The proof of Prop. 2 for the static model given in Appendix 2 carries
overly largely unchanged to the dynamic model. Expected consumers’ surplus is
still given by (2.23). The only difference is that expected user cost, given
by (2.19), must be replaced by its dynamic counterpart. To reduce the
notational burden, subscripts d and m denoting the day and message, and
superscript u denoting the user are suppressed. By Prop. 5 there are two
> t* and t, = t*. These must be considered separately.

possibilities: t,

(a) t. > t*

From (3.25) and (3.29)

P
- . oty
P =C=B(t-t,) = g j $dJ(4).
B+y
N
N
aty
n N n(p)* (p)°©
Define 8 = -, Then ¢ = — = ~ =80 —. Let Je be the c.d.f. of 6 from
¢ s s s
users’ perspective. Then
1
s b 1+8
ety 1
_ oty (};)-C —T - ‘[ edJe(e)
b= p’ J 0 dJ () = s L (A7, 1)
B+y - 6 -1 &
S J {—
= B 9 |a+y
J
3] oty . J
dp  J 1
Furthermore, =~ =" {3 which establishes that (A2.3) and (A2.4) in
ds p

Appendix 2 hold with n = 1.
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(b) t, = t*
In this case
p = B(t*-ty) = B’ (A7.2)

with ¢/ defined implicitly by (3.31)

by
1 a+B+y
J($r) + — J'gscu(w - = 0. (A7.3)
o by at+y

Making the change of variable from ¢ to @ and defining 6’ = (p)€s¢’, (A7.2)

and (A7.3) can be rewritten

1+c
_ pe’
p = - s (A7.4)
S
Py
1 at+f+y
Jer) + = JedJ(e) - = 0. (A7.5)
6’ , o+y
2]

-~

Since the distribution of ¢ is assumed to be independent of s, so is the

dp °~
distribution of @, and 6’. Thus, from (A7.4) —-—> = - f%g"» and (A2.3) and
ds p

(A2.4) again hold with n = 1.
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APPENDIX 8

PROOF OF PROPOSITION 3f

The proof follows closely the proof of Prop. 3 in Appendix 3.

With full information and n» = 1, (2.24) yields

MCS (s) =
1+&

{n>|b—=

I I J n p'™F dFy(n,e) drd),
dn

a

Substituting for p with (2.10)

1-g

_ 1-¢

1+£ —
£

- 1+
I { ndf 6 dlg(0) } ar).
i e

1, (2.24) yields

MCS' (s) =
1+£

m>lr—a
nol »

With zerc information and 7

il

2 1 1 (- (-"°F
MCS"(s) = — = n [p] dr(d).
1+€ dl{ d

s
Then
MCS (s) - MCS-(s) = J[MEZ(S) - Mﬁj(s)]dr(d),
d
where
1-€
1-g
ME:_S_F(A) — " _ E 1+& 1+€ _ 1-€
,(s) - MCSd(s) =n, " I 2] deB(G) - [ ]
s
6
(a) t, > t*
From (A7.1)
1
( Y1+¢
a+y 1
ol I 6dJ (@)
- 3' -~ d6
p, = A S -
d |«
a8 |ty
\ /

Thus

(A8.1)

(A8.2)



MCS (s) - MCS“(s)
d d

If € <1
MCS' (s) - MCS%(s) 2
d d
But
1-&
1+€
1-¢
1+& =<
I e dee(e)
6
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1+&
J 6  dJ (6 -

[s]

1-€

1+€
I o dJ

de(e)

[+]

J 6 dee(e) =
0

oty

i-€

1+€

o+y J'
r's

-1
Jd9

1-¢&
Y1+
J edes(e)
S
4] =«
J
i J J(8)
- 6d a).
¥ 46
-1 o

edJ (8) for € > 0O,
da

o

oty

(A8.3)

where the first inequality follows by Hardy, Littlewood and Polya (HLP) (1934,

Prep. 2.9.1), and the second because the last expression is a mean with the

left-hand tail of the distribution truncated.

and therefore

MTS (s) < MCS%(s)
d d

Thus, if € < 1

v d,

MCS (s) < MCS°(s) by (A8.1),

TS (s) > T5(s)

by Prop. 2,
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s < &2,
* *
If ¢ > 1
1-¢
1-¢ 1+
g~ =z s oY 1+€
MCS, () - HCS[(s) 2 — I 6dJ__(0) J- U (e)
do
-] «
48 | oy
The proof concludes as for £ < 1.
(b) t,. = t*
By (A7.4}) and (A7.5)
1
) 1+e
_ BB 4
Pa =1 —— ’
s
with
Py
1 oa+3+y
Jgleq) + — | edJ (6) - =
84
Now
14
w 84
By od) (8) =1 +° B y 1
- = -~ "3l + — =-J (6;) + — edJ (@)
¥ ‘ a8 e a9 4 ’ 40
64 0 oty 0, 5
I
04
Ba p 1
= — + J (8;) - — odJ (@) > 0.
7 (at+y) a0 g:’ a0

(A8.4)

(A8.5)

(A8.6)
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If € <1
1+
1-¢
1-¢
=eF oy _ wFeZiay S 1+€ _ Bty ,
MCSd(s) MCSd(s) J o 4J () —;— 84
8
o
But
1+g
1-€
1-¢
T otee T
+ < =
Je a7 (8) = Je dJ g(8) = 64,
0 0

where the first inequality follows again by HLP (Prop. 2.9.1) and the second
from (A8.6). Therefore ME§Z(S) < Mﬁgj(s), and the proof concludes as for

t, > t*. The proof for &€ > 1 is analogous.
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IX 9

APPEND

In this appendix we show that for the bivariate distribution of capacity

given in (3.33), (}_))1—€ varies with w as

shown in Figure 5.

The first step is to determine when t. > t*. The condition given in
~ r S .
(3.26} is ¢ > — ¢, or in terms of @
B+¥
Y oty
DD el Gl J 0dJ__(0). (A9.1)
O Ja+y| By d6
1| @
g e
1| « n ¥
If t > — then J {—) = — and (A9.1} is always satisfied. If m = — then
oty oty o o+y
-1 «
J {——% =n, and (A9.1) reduces to
8 |ty
B Loy
<, — — (A9.2)
a+y 1-o
. < L4 . v
Thus, t. > t* if n ¢ [0, n,) U (—, 1}. The complementary interval (mw , —]
oty oty
¥
within which t. = t* is nonempty if ¢ < é__' a condition we assume holds.
+
Now for t,. > t* we have by (A8.2)
1
[ Y1+e
oty 1
— - I GdJe(B)
p=4 ¥ s g (A9.3)
1] @«
J
8 oty
\ J
If 1 < m_, (A9.3) reduces to
1 1
. |em|™t (1-10) (aty) 1+e
p =4 1 - (1-0) , (A9.4)
s ¥

. ¥
and if m > —
aty



sn|1+€
P=4r (A9.5)
so
If t e [n, ], t, = t* and by (A8.4) and (A8.5)
a+y
1
Bel 1+€
p =42 ,
where
1 a+fB+y
J(G’)+—J8dJ(6)— - 0.
9 el 9 a+a,
9’
(A9.3) reduces to
1 1
EE ) Rl (N7 T T = B
so 7B+ (a+y)n]
Figure 3 follows by plotting (A9.4), (A9.6) and (A9.5) over the three
respective intervals [0,n.), [n., —] and (—, 1]. It is straightforward to
oty oty
establish
g dp)'* > L d(p)' <
mbm, dn 1(A9.6) < mn T g I(a9.4) 2T F> b

so that the curves in Figure 3 are kinked at m = w_ as shown.
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ENDNOTES

lIn Nims (1981, p.202).

2Henderson (1977, 1981), Hendrickson and Kocur (1981), Hurdle (1981), Fargier
(1983), Mahmassani and Herman (1984), Newell (1987), de Palma and Arnott
(1990), Braid (1987, 1989), Arnott et al. (1988a, 1990a, 1990b, 1991a, 1991b,
1991c).

3Among these can be mentioned the Autoguide project conducted in London, the
Comprehensive Automobile Traffic Control (CACS) study carried out by MITI in
Japan, the ALI-SCOUT Destination Guidance System in (formerly) West Germany,
the European PROMETHEUS and DRIVE projects, and the U.S. ETAK system which is
being tested in the San Francisco and Los Angeles areas. Descriptions of
these projects, and of the RGS technologies, are found in Boyce (1988), OECD
(1988) and Hoffmann (1991).

4peak-load pricing is more common in private sector facilities.

SAs shown by Wilson (1989), efficient rationing can sometimes be effected by
priority service pricing without need for either a spot market or for users to
be informed in advance of consumption. Priority pricing is more suited to
loss systems such as electricity service, where supply can be interrupted
instantaneously and temporarily, than delay systems, where individuals often
incur costs of commitment to usage before learning what state has been
realized, and where the set of individuals using the facility and their
relative preferences for service reliability are less stable over time.

6The computer model used by Smith and Krutilla (1976) to simulate movements of
users through recreational areas has been described as a “traffic simulation
model" (Cicchetti and Smith (1976, p.199)). Flow congestion occurs on
highways when vehicle densities exceed a critical level, whereas queueing
occurs at bottlenecks. Flow congestion occurs on ski slopes and nature trails
when hiking and backpacking parties meet or overtake each other. At entry
points and other locations where usage is concentrated, bottlenecking and
delays can occur. Long waits may also develop where access is rationed
first-come-first-serve by authorities, or by the capacity of parking lots.

TFor example, state wildlife management agencies maintain data bases on
hunting and fishing success rateSby region. The U.S. National Weather Service
keeps extensive historical data on wind patterns, temperatures, cloud
formations and rainfall that can be used by recreationists to make long-range
travel plans.
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8These two views corresond roughly to 'market uncertainty’ and ’'event
uncertainty’ as defined by Hirshleifer and Riley (1979, p.1377).

9n most of the peak-load pricing literature it is assumed that the quality of
service is constant up to ’'capacity’, and that output beyond this is
impossible. The formulation here, in which the quality of service degrades
smoothly with the level of usage, is consistent with Panzar (1976) and Burness
and Patrick (1990).

10rnis peint is raised by d’Ouville and McDonald (1990).

11 As Bowden (1985) has noted, accurate forecasts may be impossible even if
potential attendants are interviewed repeatedly about their intentions.

12The form of the message system is similar to that considered by Nelson and
Winter (1964) and Marschak and Miyasawa (1968). If demand or capacity is
serially correlated, users can update the respective probability distributions
using the recent history of realized states. Autocorrelation will not be
treated explicitly here.

13proof: dﬁd(n,w) = J dﬁdm(n,o) dM(m|d) = J dde(n,a) dM(m|d)
m m
= I dFd(n,o) dM(m|d,n,e¢) = dFd(n,w) J dM(m|d,n,o) = dFd(n,o),

m m
where the second equality follows from (2.4) and the third frem (2.5),
While unbiasedness would appear to be a sine qua non of a message system, it
does not always hold in practice. For example, it has been observed that
weather forecasters often over-forecast precipitation. Broadus and Solow
(1988) suggest that this could be because forecasters apply an asymmetric loss
function to their forecast errors.

14 See, for example, Cooper (1981, p.57). This point initially escaped us,
which led to errors in an earlier version of the paper (Arnott et al.
(1988b)).

15This is at best an approximation if capacity comes in discrete units (e.g.
traffic lanes) and if each unit is working either fully or not at all. This
problem is bypassed here by assuming capacity is a continuous variable,

1615 the case of electricity demand, which has strong and regular cycles, it is
optimal to have a ’diverse’ technology (Chao (1983)). The base load is served
by capacity with high fixed costs but low marginal cost, whereas demand peaks
are met with capacity having low fixed but high marginal costs. The same may
be true of other facilities. Our assumption of a constant marginal capacity
cost is for simplicity.
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17 We are grateful to Professor Stan Teply of the University of Alberta Civil
Engineering Department for clarifying the rules used by traffic engineers for
road capacity design.

18)se of such a rule of thumb might be justified by data collection and
processing costs. However, data on the complete distribution of traffic flow
is often assembled (viz. HCM, Section 2).

1%Rules analogous to the nth busiest hour of the HCM are used in the design of
parking facilities: see Frantzeskakis (1982, p.22) and Smith (1983, p.441).
Analogous rules are also used to choose reserve levels for storable outputs.
For example, British Gas holds sufficient gas reserves to meet demand in a
cold winter occurring once in 50 years (Cannon (1987)). Similarly, water
utilities may construct sufficient reservoir capacity to meet a once-in-50-
years drought {Crew and Kleindorfer (1986, p.260)). In cases such as these,
where only extreme values of the distribution matter, decision rules based on
a particular fractal of the distribution may be justifiable.

20york by McFadden (1974), Pucher and Rothenberg (1976) and Small (1983)
suggests that the elasticity is about 0.2.

21p similar result was derived by Kay (1979), who considered optimal capacity
under demand uncertainty for an electric utility which sets welfare-maximizing
rates paid conditional on service. Kay showed (p.611) that, with iscelastic
demand, optimal capacity under uncertainty is greater than riskless capacity
if, but not only if, € < 1. Capacity may be lower under uncertainty if € > 1,
if the load characteristics of incremental demand and poor and the costs of
denied service modest.
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22This result may be compared with that of Brown and Johnson (1969), who
considered a public utility which sets price before demand intensity is known.
In their model, output is adjusted to meet demand at the set price, but only
up to the capacity limit. If demand exceeds capacity, rationing necessarily
occurs since capacity is fixed. (Thus, theirs is a loss system, whereas ours
is a delay system.) On the assumption of a linear demand curve, and that
supply is rationed to users with the highest willingness to pay, Brown and
Johnson showed that optimal capacity is unambiguously increased by demand
uncertainty. Visscher (1973) later showed that with random rationing, or
rationing to users with the lowest willingness to pay, optimal capacity may be
lower with demand variability.

Prop. 1 may also be compared with Kraus (1982), who considered a
situation in which travel demand is constant but known only imperfectly to a
planner. On the assumption of a unitary demand elasticity he showed that
optimal road capacity is increased by the planner’s uncertainty. By contrast,
d’Ouville and McDonald (1990) assumed that individual travel demand is
stochastic. On the assumption that individual travel costs are a quadratic
function of the number of drivers they show that optimal capacity is increased
by demand variability.

23In Section 2.2 it was assumed that Fy(n,o) is independent of s. We now

assume this is true of Fg,(n,c) and M(m|d).

24Queueing models has been used to consider various aspects of peak-period
traffic congestion; e.g. the morning rush hour (Hendrickson and Kecur (1981)),
the afternoon rush hour (Fargier (1983)), heterogeneous drivers (Cohen (1987),
Newell (1987), Arnott et al. (1988)), tolling (Arnott (1990a, 1991b}) and
simple networks (Braid (1987), Arnott et al. (1990b)).

25[f there are no such restrictions, the whole road is in effect the
bottleneck. If there is more than one bottleneck, but only one entry and exit
point, then with pure queueing congestion the flow capacity is the capacity of
the smallest bottleneck.

261t is more common in the traffic engineering and transport economics
literatures to assume flow rather than queueing congestion. However, several
recent empirical studies have found that travel speed on freeways declines
only slightly with flow until capacity is approached, and that the discharge
rate of vehicles from a queue is equal to or only slightly below free-flow
capacity (see, for example, Hurdle and Datta (1983), Hurdle and Solomon
(1986), Banks (1990) and Hall and Hall (1990)). This is consistent with the
properties of the bottleneck model that travel time not spent in queues is
constant, and that the maximum service rate of a bottleneck is the same with
and without a queue.
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27he term ’schedule delay cost’, which is standard in the literature, is
perhaps misleading in that it refers to the cost of being early as well as
late. An insightful discussion of schedule delay in air travel is found in
Douglas and Miller {1974); for a welfare analysis see Panzar (1979).

In the case of commuting to work it is natural to express time-of-use
preferences in terms of arrival time, when use of the road ends. In other
contexts, e.g. the afternoon commute and perhaps long-distance telephone
calling, preferences may be more strongly associated with the time use is
initiated.

The assumption that everyone has the same t. is for simplicity. While

the shape of the distribution of t‘ affects equilibrium schedule delay costs,
it does not affect the evolution of the queue provided the distribution is not
too spread out; see Vickrey (1969), Newell (1987) and Arnott et al. (1988a).

28he schedule delay cost function (3.2) is (once) differentiable at the point
of zero schedule delay iff n > 1. If individuals are indifferent as to time
of use within some time interval, and incur linear schedule delay costs
outside it, the nonlinear specification with 7 > 1 may serve as a better
approximation than n = 1. Small (1982) found that some commuters in his
sample did indeed experience such a threshold effect for lateness.

2%he case « = B, for which an equilibrium can exist only when users arrive en
masse, is discussed in Arnott et al. (1985).

30The full information equilibrium of the dynamic model can be treated using a

static model whatever the form of the SDC function. Let D(t—t‘) be an

N
arbitrary SDC function. In equilibrium, C = D(to—t*) = D(to+——t*), which can
s

be solved for t; and an equilibrium cost function C(-).
s

3lpyre strategies are more realistic than mixed strategies if individuals
prefer a routine (conditional on the day and message) such as to arrive at
work early every day.

(3)S¢s0 (p)Epsc
N e - v N
321(¢) = Pri- = ¢} = Prin = (p)Cpsc) = I J dF (n,o) = J' J Z 4F(n,o)
S o n=0 oc n=0 N
(5)8¢SG . (5)8¢SU
- J' J n(p) SdF(n,o) / J' J' n(p) SdF(n,c) = — J I n dF(n,c).
c n=0 noc ¢ n=0
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33In Figure 4 it is assumed that t. > t , although as will be shown t_ = ' is

possible.

341t can be shown that p(t) is concave for any convex SDC function. While the
proof for the general case is in fact quicker than for the linear case it is
not possible to carry through the subsequent calculations for the general
case; moreover, the intermediate steps for the linear function are required to
solve it.

3§Restoring the d and m subscripts we have for day d

¢H
N a+y
J¢ aMimld) = [ = j ¢ dJ_(¢) dM(m|d)
dm ¥ dm
m m o
=
dm a+.a,
¢H ¢H ¢H
>I f¢cumg¢)dmmud)= J¢ f<um5¢)dmmud)= I¢dJJ¢L
m O 0] m 0

365mall (1982, Table 2, model 1) reports estimates of B/a = 0.61 and 3/« =

¥
2.38, which yield E__ = 0.796. The behavior shown in Figure S thus results if
+Y
more than about 20% of design capacity is lost in a capacity reduction.
3he nonconcavity here is sharper than that identified by Radner and Stiglitz
(1984), where the value of information gross of cost is convex but
nonnegative.

381f ¢ > 0, and |n-m,| is small but positive, it is possible that both weakly

informative and fully informative message systems improve welfare, but a
moderately informative system reduces it. The value of information can thus
be multiple-peaked.

3% conceptual analysis of multiple congested recreational areas has been
undertaken by McConnell and Sutinen (1984). We have extended the bottleneck
queueing model to a travel corridor with two routes in parallel in Arnott et
al. (1990b), and to two routes and heterogeneous users in Arnott et al,
(1991c}.






FIGURE 1

Welfare comparison of full information
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FIGURE 2
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FIGURE 3

Dynamic Equilibrium with Full Information

(n>1)
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FIGURE 4

Queue Encountered and Time of Service

as a Function of Arrival Time
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FIGURE 5
Welfare Effect of Imperfect Information

(Demand fixed, capacity stochastic)
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FIGURE 6

Time of Usage with Two-point ¢ Distribution
in Zero Information Equilibrium
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