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1. Introduction

Supply, demand, and trade at a market clearing price are the most fundamental concepts of
microeconomics. Marshall (1949} developed this analysis to describe properties of the outcome of
trading that he believed 1o be essentially correct regardless of the actual institution through which trade
is conducted. The supply-demand analysis is regarded in a different way in this paper. The
"Marshallian cross” is used here as the institution for determining the market price-quantity pair, and the
behavior of self-interested, imperfectly informed traders when confronted with this institution is
analyzed. We study a call market. i.e., a market in which bids determine a demand curve, asks
determine a supply curve, and all trades clear simultaneously at a market-clearing price.! This paper
describes the institution, summarizes our theoretical knowledge of it, and discusses how those theoretical

predictions may be confronted with experimental evidence.®

* Northwestern University. This material is based upon work supported by the National Science
Foundation under Grant No. SES 9009546.

' Such an institution is commonly used 1o arrange trade in thin markets and for price discovery in
more liquid markets at the opening of the rading day. See Schwartz (1988) for a discussion of call
markets.

2 While this paper mostly concerns our work and our joint work with Aldo Rustichini, we also
wish to cite Chatterjee and Samuelson (1983), Wilson (1985), and Gresik and Satterthwaite (1989), upon
which we built.



For simplicity, the theory is restrict to a trading environment consisting of m sellers and m
buyers.3 Each seller has for sale a single, indivisible unit of a homogeneous good and each buyer is
interested in purchasing one unit of the good. We assume that every trader has a reservation value for
the good--cost c; for a seller and value v; for a buyer--that represents the value in money he places on a
unit. Each trader privately knows his own reservation value. The assumption of private information is
critical, for as Hayek (1945) emphasized, assuming instead that some "single mind" possesses all
information relevant to trading trivializes the problem markets exist to solve.

The institution works as follows. At a set time each trader submits a sealed bid V; if he is a
buyer or offer C; if he is a seller.* The offers and bids (or asks) are arrayed to form “reported” supply
and demand curves, a market clearing price p is selected, and units are exchanged among those sellers
who offered less than p and those buyers who bid more than p. The market then disbands with no
opportunity for rcsc:ommcting.5 We cali this institution a double auction (or DA) because both sides of
the markets jointly determine the price through their offers/bids. In particular, for k € [0,1], the k-

double auction (or k-DA) is the particular instifution that selects kb + (1-k)a as the price when [a.b] is

the interval in which a market-clearing price can be selected.

Figure 1 illustrates the institution for the case of m = 3, k = 1, and a specific realization of
costs and values. What Marshall considered as the "true” supply and demand curves of the underlying
economic environment are depicted by the step functions SS and DD: the three sellers had costs c;
equal to 0.30, 0.57. and 0.90 while the three buyers had values v, equal to 0.73, 0.64, and 0.14. These

curves depict willingness to trade as given by the traders’ privately known reservation values. Sellers

3 The case in which there are different numbers of traders on each side of the market is considered
in Williams (1991) and Rustichini, Satterthwaite and Williams (1990). Henceforth the latter reference
will be referred to as RSW.

4 Because of the assumption of unitary supply/demand, there is no point to allowing traders in this
restricted environment to submit multiple offers/bids or offers/bids together with a quantity. The
institution--if not the theoretical results--described here is easily generalized to this richer form.

5 This is different from most real-world call markets in which some form of aftermarket typically
exists. The possibility of trade in the aftermarket could influence behavior in the call market.
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submitted offers C; equal to their costs ¢;. Buyers, however, attempted to manipulate the price by
submitting bids less than their values; these bids of 0.53, 0.45, and 0.10 are represented on the figure by
the dotted step function D'D’. Because k = 1 price is set at 0.53, which is the top of the interval of
market clearing prices.

Three points should be noted about the example of Figure 1. First, relative to the reported
supply and demand, the DA institution computes a market clearing price and assigns the available
supply of goods to the m traders who reported the highest values for the units. In the example the price
0.53 1s market clearing because the number of traders who submitted offers/bids of at least 0.53--thereby
expressing that they placed a value of at least 0.53 on a unit--exactly equals the tendered supply of three
units. Second, the first buyer with value 0.67 who bid 0.56 regrets ex post that he did not bid lower,
for if he had bid 0.46 he would have still received a unit, but at a price of 0.46. This possibility of
being able to influence price is what leads each buyer to bid less than his reservation value and causes
the reported demand D'D’ to lie below true demand DD.®  Third, the tendency of buyers to choose
their bids strategically may lead to inefficient outcomes. In the figure Pareto optimality requires two
units to be traded: buyers one and two with values 0.73 and 0.64 should trade with sellers one and two
with costs 0.30 and 0.57. Buyer two fails to trade because he attempted to manipulate price in his favor
by bidding 0.45. As illustrated by the crossing of the true supply and demand curves SS and DD at
quantity two, the outcome of trading would have been efficient if buyers had not acted strategically by
reporting the bids that generated the demand curve D'D’.

Figure 1 reveals the difficulty of the problem that a trading institution must solve. even in such
a simple setting. Because reservation values are private the institution must elicit traders’ values from
the traders themselves and then use those elicited values to allocate the units available for trade. But
because the institution must use traders’ reported values, traders may have an incentive to make

offers/bids that are self-serving rather than honest. Thus the institution must strike a balance between

® Sellers do not ask for more than their true value in this example because k = 1 and they can not
influence the price at which they trade. This is the special case of the 1-DA that is discussed below. If
k < 1, then sellers too would have an incentive to misrepresent their willingnesses to pay.
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providing incentives to reveal private information accurately and fully using the information that is
revealed to make the allocation.’

Theoretical research suggests that the k-DA makes this tradeoff remarkably well. This
research, which we review in Sections 2, 3, and 4, has focused on "equilibrium™ misrepresentation. It
shows that when the number of traders is small (m equal to one or two) both somewhat efficient and
very inefficient equilibria exist. No convincing theory has been developed that suggests which of these
equilibria are most likely to occur in practice. As the number of traders grows, however, the set of
equilibria shrinks, reported supply and demand quickly converge to true supply and demand, and the
outcome of trading converges to the competitive price and efficient quantity. Our research thus supports
Marshali's argument (1949, ch. I, 1-2) that true supply and demand essentially determines the outcome
of trade even though traders do not have "thorough knowledge of the circumstances of the market” and
thus try to obtain more favorable prices.

The theoretical analysis of the k-DA is radically complicated if even minor modifications of its
rules are made so that it no longer uses a market-clearing price to mediate trade. Section 5 describes
such a modification, which Kagel and Vogt (1991) used during the pilot phase of an experimental
investigation of the k-DA, and discusses the analytical problems it causes. Finally, in Section 6 we
review the testable propositions that the theory implies and discuss the possibility of using experimental

methods to test these implications.

7 The k-DA takes the information traders reveal at face value and fully uses it in making its
allocation of the available supply. In the mechanism design approach, the institution is carefully crafted
for the specific trading environment so that traders are honestly reveal their private information. This is
achieved, however, by not fully using the information that s revealed, e.g., two traders may reveal that
they should trade, but the mechanism will not have them trade because to do so would destroy the
incentives for truthful revelaton. This characteristic of the mechanism design approach is illustrated by
the optimal trading mechanisms that are constructed in Myerson and Satterthwaite (1983) and Gresik
and Satterthwaite (1989).



2. Environment, Trader’s Decision Problem,
and the Bayesian Model of Equilibrium

Environment. There are m sellers and m buyers where m > 2, all of whom are risk neutral.?
If seller i succeeds in selling his indivisible unit of the trading good. then his utility is p-c; where p is
the price he receives and c; is the cost that he privately places on the unit. Otherwise his utility is zero.
Analogously each buyer’s utility is zero when he fails to trade and v;-p when he does, where v, is the
value he privately places on obtaining a unit.

Institution. Each trader submits a sealed offer (C;) or bid (V) that is conditioned on his private
knowledge of his cost ¢; or value v;. The offers and bids are arrayed in ascending order Sy S Sy S - -
< Seamy Sy 18 thus the kth order statistic of the 2m bids and offers. Price is set within the interval
(S{m)s Stm+1)) Of possible market clearing prices at p = (1K), + KS(n+1y Where k is a parameter
selected from [0, 1] that is fixed prior to the market being opened. Buyers who bid at least S(m+1) and
sellers who offer at most s, rade. The only exception is if S(m) = S(m+1y and the interval of market
clearing prices is degenerate. In this event the quantity supplied may fail to equal the quantity
demanded, and if necessary a fair lottery is run to determine who will trade among those traders who
bid or offered p and who are on the long side of the market.

Of special note are the cases of k = 1 (as in Figure 1) and k = 0. Because price equals Stm+1)
in the 1-DA, a seller cannot influence in his favor the price at which he actually trades. It is therefore
in his best interest to submit his true reservation value as his offer, and reported supply is the same as
true supply (Satterthwaite and Williams. 1989). Similarly, a buyer in the 0-DA has the incentive to
submit his true value as his bid. For k € (0,1), a trader on either side of the market can influence price

in his favor. He therefore has an incentive to shade his offer/bid away from his true reservation value.

8 RSW includes the case in which all traders on the same side of the market have the same,
possibly risk averse, utility function. Risk aversion of this form does not substantially complicate the
analysis.



The trader’s decision problem. Buyers and sellers’ decision problems are symmetric.

Therefore consider a specific buyer, buyer one, let v = v; be the value he places on the good, and let A
be the bid he is thinking about submitting. Buyer one’s decision is risky, for the A he submits affects
both the probability that he will succeed in trading and, if he does trade, the expected price he will pay.
Suppose he tests a value of A by calculating the change in his expected utility if he raises his bid by a
small amount AA. This calculation requires that he have a notion in the form of two probabilities
concerning how the other m sellers and m-1 buyers are likely to bid.

Let ¢1y £ ¢z €. .. S Gap.1y be the random array of the bids and offers of the traders other
than buyer one, noting in particular that ¢, is the kth order statistic from the restricted sample that
excludes buyer one’s bid. This contrasts with s, which is the kth order statistic of the full sample of
size 2m that includes his bid. To calculate the change in his expected utility buyer one needs to know,
first, the probability that increasing his bid by AX will cause his bid to jump over Gmy» for if he does
jump over ¢, he goes from not trading to trading and picks up a trade of value approximately v-A.
Second, he needs to know the probability that his bid A is bracketed by Gm) and Gy ). for if so. then
increasing his bid by AX will cause the price at which he trades to increase by kA to (1K) +

k(A+AA). His change in expected utility is therefore

(v-2) PAg, € (MA+AM)} - kAR PrA € G mypSeme1) (2.1)

where the first term is buyer one’s expected gain from switching from being an unsuccessful bidder to
being a successful bidder, and the second term is his expected loss from causing the price to rise by
KAA.

Buyer one may in practice estimate these probabilities from the empirical distribution of other
traders” bids and offers, and thence compute his optimal bid using (2.1). We return to this possibility
below in Section 6 when we discuss experiments concerning the k-DA. A second possibility, which is

more fruitful theoretically, is that buyer one deduces these probabilities from his knowledge of the



strategies of the other traders and his Bayesian prior beliefs concerning the distributions of sellers’ costs
and other buyers’ values.

The Bavesian game model. Some definitions are needed for this second approach. A strategy

is a function that maps a trader’s reservation value into the offer/bid that he submits. Let S(-) and B(+)
be the strategies that buyer one believes are being used by all sellers and all other buyers, respectively,
Thus if seller i has cost ¢;, he bids C; = S(c;). Since traders’ reservation values are private, buyer one is
uncertain about other traders’ costs and values. Let distribution F with density f represent buyer one’s
subjective beliefs concerning any seller’s cost ¢; and let distribution G with density g represent his
subjective beliefs concerning any other buyer's value v;. Assume buyer one regards the cost or value of
any other trader as distributed independently of his own value v and the values and costs of every other
trader. These assumption imply that the following three probabilities are well defined:
K(A) is the probability that if m-1 buyers bid using strategy B and m-1 sellers offer using
strategy S, then exactly m-1 bids/offers are less than A.
L(A) is the probability that if m-2 buyers bid using strategy B and m sellers offer using strategy
S. then exactly m-1 bids/offers are less than A.
M(A) is the probability that if m-1 buyers bid using strategy B and m sellers offer using
strategy S, then exactly m bids/offers are less than A. Note that M(X) = Pr{A e
(SmyS(m+1)) 1+ as used in eq. (2.1).
Formulas for these probabilities can be found in Rustichini, Satterthwaite and Williams (1990,
henceforth referred to as RSW).
Given S, B, F, and G, expression (2.1) implies that the formula for the marginal expected

utility of buyer one with value v and bid A is:

AU (. 1)

— " V-Mhg(R) - kMR (2.2)

where hg(A) is the density of ¢, If ¢ = () = S (A), ¢ = ¢’(A) = I/S"[c(W)], v = v(A) = B}(X), and

v = v'(A) = 1/B’[v(L)] are all well-defined. then



hp(X) = mK)ROE + (m-1LA) g v. 2.3)

The first term on the right-hand side, when multiplied by AX, is the probability that buyer one’s bid, if
he increases it by AA, will jump over the bid of one of the m sellers, whose bid happens to be Sy
while the second term is the marginal probability of passing one of the other m-1 buyers.?

Buyer one’s best response strategy to (S,B) specifies for each of his possible reservation values

v a bid A that maximizes his expected utility conditional on v. With suitable regularity assumptions, if
sellers are using strategy S and other buyers using strategy B, then buyer one can select his optimal bid
by seiting (2.2) equal to zero and solving for A.

Bayesian Nash equilibrium. Following Harsanyi (1967-68}, the equilibrium concept that has

been used to study the k-DA theoretically is symmetric Bayesian Nash equilibrium. Suppose, exactly as
described above for buyer one, the subjective beliefs of every trader concerning the reservation values of
other sellers and buyers are described by the distributions F and G. and that this is common knowledge
among all the traders. Suppose further that traders’ reservation values are elements of [0,1], that F and
G are C! functions on {0.1], and that the densities f and g are strictly positive on (0,1]. Consider a pair

of strategies (S,B). Together they are a symmetric Bayesian Nash equilibrium for the k-DA if (i) for

each seller i strategy S is the best response strategy to the other m-1 sellers playing S and the m sellers
playing B and (ii) for each buyer i strategy B is the best response strategy to m sellers playing S and
the other m-1 buyers playing B. Asymmetric equilibria in which each trader plays a distinct strategy, B
or 5; may exist, but as of yet have proven intractable to analysis. "Equilibrium” in this paper thus

means "symmetric equilibrium.”

% Pick a particular seller i. The probability i’s offer C; is in (l A+AX) is f(c)c X AA because ¢ isa
random variable with density f, C; = S(c,), and C; has densxty f(c)c = flc(C)IC'(C;). Given C; e
(A A+AX), K(A) is the probability 1t 18 Gy Therefore KOf(c)A is the probabnhty (1) one’s bid
jumps over C; and (ii) C, is Sy



The reason for using the Bayesian Nash equilibrium concept in studying the k-DA institution is
that it models rational equilibrium behavior in a setting with incomplete information. Information is
incomplete in that each trader’s reservation value is private and other traders only have beliefs about his
value. Behavior is rational in that expected utility is maximized conditional on one’s information.

There are, however, at least two drawbacks of the Bayesian Nash equilibrium concept. First,
no well developed theory exists that explains how traders starting de novo jointly learn a set of
equilibrium strategies (especially if more than one equilibrium exists). In other words, the theory does
not include a process that results in the Bayesian Nash eguilibrium. This poses a problem for the
experimentalist, who receives little guidance from the theory concerning how equilibrium behavior is to
be elicited from subject traders. Second, though the Bayesian Nash solution concept was created to
model rational behavior in a setting with incomplete information, it makes the strong informational
assumption that F and G are common knowledge among the traders in order to support the rationality of
their behavior,

Elementary geometry of equilibrium strategies. Let C = lim ¢ Low S(c) and V = lim v 11 Bv).

RSW show that for a given equilibrium (S,B), there exists numbers € and v such that: (i) a seller with
value above T or a buyer with value below v trades with probability zero, while a seller with value
below ¢ or a buyer with value above v trades with positive probability; (ii) S is increasing over [0,T]
and B is increasing over [v,1]; (iii) lim Lvs B(vy=y=Candlim _;- S(c)=C= V. This
geometric relationship is depicted in Figure 2 for the case of a pair of continuous equilibrium strategies.
In words, (i) implies that a buyer with too low a value or a seller with t0o high a cost will never trade.
A trader with such a value feels no pressure to bid reasonably, e.g., a seller with cost c above T may
choose an arbitrarily large number as his offer. The intervals [0,E] and [v.1] are thus called the

intervals over which serious offers/bids are made.!®

10 On a more technical note, B must be differentiable a.e, in [v.1] and S must be differentiable a.e.
in [0,C] because they are increasing over these intervals. This substantiates the first order approach
outlined above for the case of arbitrary equilibria (S,B). The convergence result in the next section rests
upon these first order conditions.



3. Convergence of Equilibria to Ex Post Classical Efficiency
as the Number of Traders Increases

The introduction discussed the incentives of traders to try to manipulate the price in their favor
by overbidding in the case of sellers and underbidding in the case of buyers. This strategic
misrepresentation causes inefficiency because trades that should occur do not necessarily occur. The
economist’s intuition is that as the market’s size (measured here by m) becomes large traders become
essentially price-takers and the problems stemming from strategic misrepresentation vanish. Theorem 1
shows that this intuition is correct within the k-DA model. In particular, for every Bayesian Nash

equilibrium, misrepresentation as measured by S{c)-c and v-B(v) is O(1/m).

Theorem 1 (RSW, Th. 5.1). Consider any equilibrium (S,B) in which trade occurs with
positive probability, every seller always offers at least as much as his cost, and every buyer
bids at most his value. A number x exists, whose value is a function of F and G but not of m

or {($,B), such that, for all v € (v.1] and ¢ € [0,0),
S)-c < X 3.1)
m
and

(3.2)

In
S]x

v-B(v)

Additionally, v< x/mand T 21 - x/m.

Inequaliies (3.1-.2) bound misrepresentation for a serious offer or bid; the last sentence bounds
the intervals over which misrepresentation cannot be bounded. Together these bounds describe the rate

at which misrepresentation vanishes as the number of traders on each side of the market increases. It is
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worth reiterating that this theorem applies to all Bayesian Nash equilibria of the k-DA, including ones in
which S or B jump upward discontinuously at particular values of ¢ or v.

Some intuition for this rate of convergence is obtained by outlining a proof of (3.2) in the case
of a differentiable strategy B. Recall the buyer’s first order condition (2.2).  The first term in formula
(2.3) for hg(A) is the probability that the buyer by increasing his bid will jump over Gm) @nd that ¢\

1s a seller’s offer. Omitting this nonnegative term from (2.2) produces the inequality

kM(X)

R B VAT

(3.3)

where B(v) = A. Now imagine the graph of the increasing function X = B(v) in the v.A plane over its
domain [0.1]. It lies below the A = v diagonal, reflecting underbidding by a buyer. The amount of
misrepresentation, v-B(v), is the vertical distance between the graph and the diagonal. Misrepresentation
increases as v increases if and only if B'(v) < 1, or equivalently, ifv>1. Suppose v-B(v) is maximized

’

at v'. Then at v’ necessarily v = 1, for otherwise a v" > v’ would exist at which more misrepresentation

occurs. Thus

kM) < k ML) (3.4)

" -B < <
VB S I S D) IO

where A" = B(v) and v is also evaluated at v’. Recall the definitions:
L(A) is the probability that if m-2 buyers bid using strategy B and m seliers offer using strategy
S. then exactly m-1 bids/offers are less than A.
M(R) is the probability that if m-1 buyers bid using strategy B and m sellers offer using
strategy S, then exactly m bids/offers are less than A,
Unless m is quite small, these two probabilities are essentially indistinguishable and approximately
equal. This suggests that the ratio M(A)L(A) is bounded.!! This, together with the assumption that

g(v) is positive on [0.1], implies that v’-B’(v") € x/m for some x > 0, as Theorem 1 states.

' Proving this is the main work of a formal proof of the theorem.
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If each trader in a k-DA offered/bid his true reservation value (contrary to his self-interest),
then the resulting allocation would be ex post classical efficient: no gains from trade could remain
because a buyer would fail to trade if and only if his benefit v, were less than the cost ¢; of every seller

who fails to trade.!?

Theorem 1's result that as m increases the amount of misrepresentation

decreases as x/m therefore implies that in expectation the k-DA approaches--but does not reach--ex post
classical efficiency rapidly as the number of traders increases. Theorem 2 makes this implication
precise.

For given m, k, F, G, and equilibrium (S,B), and for given realizations of the traders’

reservation values, the gains from trade realized by a k-DA is
Yier, Vi - Xier, € (3.5)

where Tp and T are the sets of buyers and sellers respectively who successfully trade. The expected
gains from trade is the expected value of the realized gains from trade when traders’ reservation values

are distributed according to F and G. The potential expected gains from trade is the expected gains

from trade if each trader were to honestly report his reservation value rather than following his

equilibrium strategy. The relative efficiency of an equilibrium (S.B) is its expected gains from trade

divided by the potential expected gains from trade.

Theorem 2 (RSW, Th. 6.1). Consider any equilibrium (S,B) in which trade occurs with
positive probability, every seller always offers at least as much as his cost, and every buyer
bids at most his value. A constant § exists, whose value is a function of F and G but not of m

or (8,B), such that the relative efficiency of (S,B) is at least

12 See Holmstrom and Myerson (1983) for a taxonomy of standards of efficiency under different
informational assumptions.
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An upper bound on the relative efficiency of any equilibrium (S.B) can be computed by constructing an
optimal trading mechanism and calculating that mechanism’s relative efficiency. Gresik and
Satterthwaite (1989) contains an algorithm for constructing optimal mechanisms.

Theorem 2 is complementary to an important theorem of Wilson (1985): for sufficiently large
m, equilibria of the k-DA are incentive efficient, provided that the equilibrium strategies (S.B) are
differentiable and have bounded derivatives. An equilibrium of the k-DA is an incentive efficient
trading mechanism if "it is false that it is common knowledge that another rule would improve some
agents” expected gains from trade without reducing other’s expected gains"  (Wilson, 1985, pp. 1101).
Wilson’s theorem thus establishes that for large markets the k-DA’s allocations are optimal within the
constraints that the traders’ private information imposes. Our Theorem 2 establishes that these
constrained optimal allocations are in fact close to the classical, full information, optimal allocations.

Figure 3 provides a simple, supply-demand intuition for this result. In the figure the supply
and demand curves drawn in solid lines represent buyers’ and sellers’ true market supply and demand
with market clearing quantity q’ = 35. Suppose for the sake of this example that these curves have
slope 1 and -1 respectively. The dotted demand curves represent their reported aggregate supply and
demand curves: sellers have over-reported the cost of their units by x/m = 5 and buyers haver under-
reported the benefit of their units by an equal amount. If we assume that both supply curves have slope
1 and both demand curves have slope -1, then the market clearing quantity for the reported supply and
demand curves is ¢ = q" - k/m = 30. The gains from trade that are unrealized as result of trading q"

units instead of q” units is the area of the shaded triangle; consistent with Theorem 2 its area is
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(x/m)? = 25. This is only an analogy, of course, for Figure 3 reflects neither the discreteness nor the

incomplete information of our model.!?

4. Computation and Muitiplicity of Equilibria

The traders’ first-order conditions define a system of ordinary differential equations that can not
be solved in closed form, but are easy to solve numerically. Computation of equilibria is important for
three reasons, First, computation suggests that a continuum of smooth equilibria exist when k is in
(0.1), but at most one smooth equilibrium exists when k takes the extreme values of either 0 or 1. This
is important because we do not have general proof of existence of equilibria“ Second, numerical
examples suggest that a k-DA may be almost fully efficient with small values of m (e.g.. m = 6 in the
case of uniform F and G). Examples of such computations are presented in RSW and in Satterthwaite
and Williams (1989). The bounds in Theorems 1 and 2 only suggest rapid convergence to efficiency;
computation of k and § in the Theorems provides bounds on misrepresentation and inefficiency that
prove to very coarse in comparison to the actual performance of computed equilibria. Third, numerical
computation produces explicit predictions of bidding behavior in the k-DA, which is surely heipful for
experimental testing of this institution.

Svstem of Equations Determining (é.i.(f). Pick a point (c,A,v) that satisfies the inequalities 0 <

¢ < A <v< 1. Suppose (perhaps counterfactually) that equilibrium strategies (S,B) exist such that S(c)

B may be possible to deepen this analogy between our convergence to efficiency result and the
area of the Harberger triangle by following Bulow and Roberts (1989) who showed that results of
auction theory concerning a single seller and potential bidders with unknown reservation values have
direct parallels in the theory of a discriminating monopolist in standard price theory. Their analogy
replaces a bidder whose value is drawn from a distribution G on a continuum with a continuum of
buyers whose values are distributed according to G.

14 For generic (F, G} Williams (1991) proved existence in the 1-DA of a piecewise smooth
equilibrium.
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= A and B(v) = A. Pick a representative buyer i. Given that (§,B) is an equilibrium, then the bayer’s

first order condition dUg(v,A)/dA = O from eq. (2.2) and (2.3) is satisfied at (c,A,v):

; kMO
K ;L. + —1 L l ) - (4.1
mKMAc) ¢ + (m=-1DLA)gH) ¥ o |
or, in matrix form,

1%

[DBS(CJ"V) DpglcAy) 0| x (¢} = kM) (4.2)
V-
A

where A = 9/dk = 1. The first order condition of a representative seller is similar. Putting the two

together with the tautology k = 1 gives a system of ordinary differential equations:lj

DBS(C,X,V) DBB(C,;\,,V) 0 v kM(;L)/(V—A.)
Ddleaw) Dggledw) Ofx (&1 = [(1-BNGI-c) -3
0 0 1] & 1

A smooth equilibrium (8.B) defines a solution curve to this ordinary differential equation by the formula
(cAv) = (S A, BOW).

Computing Equilibria. The system (4.3) may be numerically integrated to obtain a solution

using any of a number of standard techniques.”’ A simple approach to computing solutions that
represent an equilibrium is as follows. Pick an initial point Py = (c,Aq,vp). Solve (4.3) at P, for the
vector of derivatives Py = (f:l.il,\'}'l) and pick a small, positive step AA. Compute a new point P, =
(c0+<':1Ak, 7\.0+i1A7\., v0+;rlAl). At P, solve (4.3) to obtain P; and then to compute P,. Continue this
iterative process in the positive direction generating points P, P3, P,.... as long as neither event E, nor

event €, OCCUTS:

15 Formulas for Dgg, Dgp, and N can be found in RSW.
16 See Press et. al. (1986, ch. 15) for a sampling of effective numerical algorithms.
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Event E_ occurs at point P = (c -A v, ) if the inequalities 0 < ¢ < A < v < 1 are violated.

Event e_ occurs at point P, if the vector of derivatives P, | = (én» +l'in'+l'\.rn'+l) violates either

Cprey > Oor ‘:’n'+1 > 0.

If event e, occurs at point P, then, because equilibrium strategies must be increasing, no smooth
equilibrium goes through the initial point P,. Select a new initial point at which to restart the
algorithm. If event E+ occurs, return to Py, reverse the sign of AA so as to generate points in the
opposite direction, and iteratively generate points P_;, P ,, P 5,... as long as neither event E_ nor event ¢,
occurs. Events E_and e_ are defined exactly as E,_ and e, except in the definition of e_ the vector of
derivatives P;_l is tested against the inequalities.

If the process terminates at point P . with event E_ occurring, then the points
{CqmdAnmsndCourghienCoriy )] and {(Vo A ) (Vg Ag)e (V- A, ) ) numerically describe equilibrium
strategies S and B respectively that go through the initial point Py, provided that at each of the points
satisfaction of the first order conditions are sufficient for maximizing traders’ expected utilities. A
condition that guarantees that the first order conditions are sufficient for utility maximization is that F/f
and (G-1)/g are increasing functions on [0,1) (Satterthwaite and Williams, 1989).

If event E, occurs at point P = (c,-A,~v,). then ¢ . approximates the upper endpoint T of the
interval over which a seller makes serious offers. Similarty, if E_ occurs at P; = {CymAyr V), then v .
is approximately v, i.e., the lower endpoint of the interval over which a buyer makes serious bids.
Consequently E_and E_ are the correct tests at which to terminate the construction of (S.B).

Figure 2 above graphs S{c) and B(v) for an equilibrium (S,B) for the case of m = 2, k = 0.5,
and F and G are both the uniform distribution. The diagonal, ¢; = C; and v, = V, is drawn into the
graph so the amount of mistepresentation that (S,B) involves can be judged by eye. If S and B
involved no strategic misrepresentation, then the graphs of S and B would be congruent with the
diagonal. Consequently the vertical distance between the diagonal and a point on the graph of S or B is

S(c;) - c; or v; - B(v)) respectively.
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Muitiplicity and convergence of equilibda. For a given m, k. F. and G, the entire set of

smooth equilibria can be represented by using the following computational strategy. Fix A at the
expected equilibrium price A (0.5 when the F and G are the uniform distribution). Construct a grid
initial starting points (c,A.v) by selecting the cost ¢ from the interval (0.A) and the value v from the
interval (7:,1). Calculate solutions to the system (4.3) for all the starting points and discard those
solutions that are not equilibria. If the grid is made fine enough, then the resulting set of equilibria
approximates the set of smooth equilibria.

Figure 4 shows the bundles of strategies S and B that result when this procedure is carried out
for the case of m = 2, k = 0.5, and uniform F and G. Figure 5 repeats the procedure for m = 4.
Comparison of the two figures makes obvious what Theorern 1 states must be the case: the maximal
amount of misrepresentation of any of the strategies graphed for the is the m = 4 case is approximately
half that in the m = 2 case.

Consider briefly the special case of the 1-DA. As noted earlier, a seller’s dominant strategy in
the 1-DA is honest reporting, i.e., $*(c) = c. Here there is at most one smooth strategy B such that
(5*,B) is an equilibrium in the 1-DA (Williams, 1991). If F and G are the uniform distribution (for
instance}, then this equilibrium takes the simple form S$*(c) = ¢ and B(v) = mv/(m+1). Uniqueness
holds because, in addition to the first order conditions, there is an initial condition that B must satisfy--
B(0) = 0. A similar result holds for the 0-DA. A two dimensional bundle of equilibria exists when k is
in the interval (0,1) because there is no well-defined initial condition for such k. Bayesian game theory
thus provides a much more precise prediction for bidding behavior in the 0-DA and 1-DA than in the k-
DA with k € (0,1). Nevertheless, as Figures 4 and 5 show, the rapidity with which the equilibrium set

shrinks as m increases essentially resclves, for large m, this indeterminancy.

5. A Modified Sealed Bid Double Auction
Kagel and Vogt (1991) introduced a subtly modified version of the sealed bid 1-DA. On initial

analysis the changes seem innocuous, even helpful, for the purposes of experimental work. Further
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analysis shows that this modified DA (MDA henceforth) has quite different properties than the standard
1-DA. Most notably, the price in the MDA may not clear the market; as a consequence sellers’
incentives in the MDA are counterintuitive. We discuss the MDA here to highlight the virtue of the k-
DA,

Rules of the MDA. The rules of the MDA are identical to the rules of the 1-DA except for

one change in the algorithm for selecting the price. In the 1-DA, price is set at s,y whether the
trader whe offered/bid s, ) is a seller or a buyer. The MDA sets price at 5, if it is a buyer who
bids s,,1y. If it was a seller who offered s, . then price is set equal to the bid of the buyer whose
bid exceeds s,y by the smallest amount. In other words, the price is set equal to the smallest of the
bids of those buyers who get to buy. Trade stll occurs between buyers who bid at least S(m+1) and
sellers whose offers were no more than s,

For example, suppose m = 3, sellers’ offers are 0.43, 0.49, and 0.81. and buyer’s bids are (.64,
0.32, and 0.11. The MDA sets price at 55y = 0.64. This contrasts with the 1-DA, in which price would
equal s, = 0.49. Both mechanisms prescribe that the only trade is between seller one with C; = 0.43
and buyer three with V, = 0.64. The price 0.64 is not a market clearing price, for seller two who
offered 0.49 is not allowed to trade at the price 0.64 even though his offer indicates that he would earn
a positive return at that price.

Incentives to misrepresent. While a buyer in the 1-DA sets the price only if his bid equals

S(m+1) iN the set of all 2m bids and offers, his bid is the price in the MDA if it equals S(m+j) forj=1
and no bids lie between s, and S(m+j)- Lhis increased likelihood of setting price increases the expected
reward from underbidding, which means that a buyer in the MDA has an incentive to bid further below
his value v; than would be the case with the 1-DA.

The change in rules also affects sellers’ incentives. The MDA eliminates truthful reporting as a
dominant strategy and gives a seller an incentive to make an offer C; below his cost ¢;. As in the 1-
DA, a seller has no incentive to overbid because he can not affect the price at which he trades. Sellers

have an incentive to underbid, however, because the MDA's price is not market clearing. When a price
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is chosen in the MDA that exceeds a value that clears the market (i.e., whenever Stm+1) 18 @ seller’s
offer), there is an excess supply available at the price, with only those sellers whose offers were below
S(m+1) DeIng able to trade. This possibility of an excess supply provides a seller with an incentive 1o
underbid so as to include himself among those sellers who get to sell. To see this, consider again the
example above in which sellers’ offers are 0.43, 0.49, and 0.81, buyers” bids are 0.11, 0.32, and 0.64,
price is set at §;5) = 0.64, and seller two who offered 0.49 is excluded from trade. After the bids/offers
are opened seller two regrets that he did not underbid by making an offer less than 0.43. for if he had
done so, then he would have traded profitably at the unchanged price of 0.64. Underbidding, of course,
also includes the possibility of trading at a price below one’s value; in equilibrium, a seller in the MDA
weighs these two effects in determining the optimal amount by which he underbids.

Characterization and computation of equilibria. Characterization and computation of equilibria

is straightforward for the k-DA. it is quite the opposite for the MDA, which implies that it is hard to
obtain testable predictions. The source of the difficulty is that a seller (and similarly, a buyer) who
checks that his offer A is optimal must compute not only the likelihood that A is less than G(m)» but also
the likelihood that price will be set equal to Sm+1y Sm+2)-+OT Gam.1) This implies that each trader’s
first order condition requires global knowledge of other traders® strategies, not just their local properties
around the offer/bid A he is testing. This contrasts with the k-DA in which each trader’s first order
condition uses only local information about other traders’ strategies (as shown by (4.3)). Consequently
no simple characterization of equilibria through the first order conditions is possible and the
computational technique we used for the k-DA of constructing traders’ equilibrium strategies through a
series of small steps fails for the MDA,

Our experience in attempting to compute equilibria for the particular case of uniform F and G

has caused us to question whether pure strategy, symmetric equilibria even exist in the MDA.17

17 We were able to compute e-equilibria for the MDA by constructing a sequence of buyers and
sellers’ strategies through myopic adjustment. Specifically, we began with Sp and By, which were not
an equilibrium pair. We computed §,, the best response of a seller to other traders playing Sg and By,
To construct S, we computed the seller’s optimal offer for a variety of costs and then fitted a
Chebyshev approximation to the resuiting cost-bid pairs. Given S, we computed B, a buyer’s best
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Computationally we found that if S(-) has the property that, for all ¢ > 0, S(c) is strictly positive, then
the best response S*(-) of a seller to (§,B) is, for ¢ sufficiently close to zero, to offer S*(c) = 0. But if
S(-) has the property that, for ¢ sufficiently close to 0. S(c) = Q. then the best response $*(-) to (§,B} is,
for all c, to offer S*(c) > 0. Hence no symmetric pure strategy equilibria appears to exist.'® We are
uncertain if mixed strategy equilibria exist.

Comments. Despite the similarity of the MDA with the 1-DA, it appears to be substantially
more difficult to analyze. It is not obvious that results conceming the 1-DA have analogues for the
MDA. Our lack of theoretical or computational results cripples the MDA’s usefulness as an institution
to be tested experimentally, for there are no solid predictions concerning what behavior it should induce

from subjects.

6. Experimental Testing of the Bayesian Nash DA Theory

From an experimental viewpoint the theory of the k-DA has at least three virtues. First, the
theory is mainstream in that the Bayesian-Nash solution concept is (for better or worse) currently the
most widely accepted method for modeling strategic behavior when information is incomplete. Second,
the model on which the theory is based is easily translated into the lab for it fully specifies the
generation of preferences, the information traders receive and the actions they may take. and the
algorithm for computing price and making a final allocation. Third, the theory generates a number of
testable hypotheses about buyer and seller behavior in symmetric equilibria and how it changes as m,
the number of traders on each side of the market, increases. The three most obvious are (i) sellers offer

no less than their reservation values and buyers bid no more, with offers strictly less when k < 1 and

response to other traders playing S, and B,. We continued this process unul it converged to an €-
equilibrium, which in our very limited experience occurred quickly. We do not report these
computational results here because the results of our computations indicate that no pure straiegy
equilibria exist for the MDA,

18 This nonexistence conjecture may have little or no relevance to experimental investigations of
the MDA because e-equilibria do appear to exist that fail to be best responses only for values of ¢ close
to zero. A seller with such a value of ¢ is almost certain to sell his unit. Thus an experimental subject
is unlikely to worry much about his offers for such values of c.
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bids strictly more when k > 0; (ii) the maximal amount by which sellers overbid and buyers underbid
relative to their reservation values is proportional to B/m where B > 0, and (iii) the relative efficiency
of any equilibrium must be greater than | - Y/m2 where vy > 0. Moreover, given the distributions F
and G, the constants . v, and ¥ are calculable as is the entire set of equilibria with smooth strategies
(S,B). If the theory is true in the positive sense, then the behavior of experimental subjects should
conform to all three implications.

A difficulty in devising a credible test. Despite the cleanness of the model, the directness of its

transfer into the laboratory, and the precision of the predictions, it is unclear how to falsify the theory.
The problem is this. The Bayesian theory of double auctions posits sophisticated behavior on the part
of traders within a game of incomplete information. How 1o behave in a k-DA 1s unlikely to be
transparent to an inexperienced participant. He must make careful inferences from noisy data about
other traders’ strategies and then optimize his own bidding behavior against their (imperfectly
understood) behavior. As a consequence an experimental subject may need to participate in a k-DA a
very large number of times before he can accomplish the learming necessary to play in accordance with
the theory's predictions.

During the early stages of an experimental subject’s experience with the k-DA, he almost
certainly does not understand what is his optimal behavior. He may therefore fall back on his life
experience with economic institutions and adopt a behavior that, by analogy, seems appropriate. This
initial, rule-of-thumb behavior does not falsify the theory because the possibility remains that the subject
will with sufficient experience change his behavior in a way that brings it into conformance with the
theory. Real traders, as opposed to experimental subjects, have enormous experience and therefore may

consistently behave in agreement with the theory even though their learning was in fact painfully slow.

1% In addition, for any m and any (F,G), an upper bound on the relative efficiency can be computed
by constructing an optimal mechanism and calculating its relative efficiency. Gresik and Satterthwaite
(1989) describe the construction of an optimal mechanism. Computations they present suggest that, for
any (F,G), a positive Y < v exists such that the relative efficiency of the optimal mechanism (and thus
of any equilibrium of the k-DA) can not exceed 1 - y’/mz.
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Consequently the question any experimental test of the theory must confront, particularly if it obtains
negative resuits, is: How much experience must subjects have for the test to be credible?

As an example of this, Kagel and Vogt (1991) had subjects play the MDA that is described
above in Section 5. Sellers have an incentive in the MDA to make offers that are less than their
reservation values. They in fact made offers that were greater than their reservation values and thus
acted in accordance with the standard intuition most individuals carry into trading situations in which
price is negotiated: a seller should ask for more than what the object is worth to him.*°

Experimentalists understand that learning is critical, but have not made much progress in
defining its magnitude or specd.21 Nevertheless at least three complementary approaches may be
taken to improve the likelihood that experimental results contradicting k-DA theory will be regarded as
credible. First, theory may be developed that gives a sense of how many repetitions a subject would
have to play a particular k-DA situation in order to at least have a reasonable chance of leaming
equilibrium behavior. Second, the experiment may have to be designed to make the leaming process for
the subjects easier. Third, subjects can be matched against computer players in order to allow controlled
measurements of how fast learning proceeds in the k-DA environment.

Theorv-based approaches to improved credibility. To our knowledge even the most elementary

notions of how long learning should take in the k-DA settings have not been developed. For example,
suppose a seller has reservation value ¢ and is trying to ascertain if changing his bid to A" from A’
would increase his expected utility. How many repetitions of the DA would he have to play in order to
reject the hypothesis that A" and A" yield identical expected utilities? Answers to questions such as this

would give a some sense of how quickly a fully rational double auction participant could correct

20 Kagel and Vogt also had subjects participate in the 1-DA. Though sellers have a dominant
strategy in the 1-DA of truthful reporting, they also tended to follow the standard intuition of asking for
gy porting
more than their reservation values.

i gee Kagel’s review (1991, Section 1.6) of learning within private value auctions. The evidence
is weak and he comes to no firm conclusions concerning either its speed or its effectiveness. More
definitely, within a series of public goods experiments Palfrey and Rosenthal (1991) report that subjects
demonstrated a very limited ability to learn implicitly critical statistics describing other players’
strategies.
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nonequilibrium behavior and would place a lower bound on the number of repetitions an actual,
boundedly rational, experimental subject would have to play the k-DA before he could be expected to
play in accordance with equilibrium predictions.??

An experimental design that aids learning. The simplest way to design a k-DA experiment for

a market with m traders on each side of the market is to take 2m experimental subjects, assign half to
be sellers and half to be buyers, and have them play n repetitions of the k-DA. Each repetition played
is an independent event in that each time every trader independently draws a new reservation value from
the appropriate underlying distribution F or G. In this setup each seller implicitly defines his entire
strategy S(+) as he selects offers C; in response to different values of his cost ¢;. Simultaneously each
buyer is implicitly defining his entire strategy B(?). This is clearly a difficult task for traders to do:
discover an optimal S or B even as other traders are changing their strategies as they too search for an
optimal strategy.

One way of making the learning task easier is to ask each experimental subject to define only
one point of his strategy. Specifically, assemble a large group of 2M subjects, with M >> m, assign
half to be buyers and half to be sellers, and give each one a permanent reservation value so that the
distribution of the M sellers’ costs approximates F and distribution of M buyers’ values approximates G.
Conduct n repetitions of the k-DA by drawing independently for each repetition a random market of m
buyers and m sellers from the two large pools of M sellers and M buyers. Within each repetition the
individual trader faces a market of 2m-1 other traders whose reservation values are distributed precisely
as they would be if new reservation values were drawn for each repetition. Since each individual seller
keeps the same cost ¢; for all n repetitions of the DA, he is required only to choose a single point S(c;)
on his strategy, a much easier task than computing the entire function S(-). Similarly, each buyer only

has to choose the optimal bid for one value.

22 Such calculations may be particularly illuminating for the k-DA because in it trade occurs at a
uniform price that is determined by at most two of the 2m bids and offers. Consequently a nonoptimal
bid/offer only occasionally affects a trader’s realized payoffs, i.e., the k-DA’s feedback to traders is
generally weak and sporadic.
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Computer simulated players and learning best responses. A more tightly controlled approach

can be taken to investigate how rapidly--if at all--a trader learns an optimal strategy. Suppose, for
instance, a seller played the k-DA against a set of 2m-1 computer simulated players who are
programmed to play equilibrinm strategies. Each repetition he would submit an offer simultaneously
with the computer submitting the other 2m-1 bids/offers that it calculates by substituting randomly
generated reservation values into equilibrium strategies (S,B). The subject could be assigned a new,
independently drawn cost ¢; each repetition as in the standard design discussed above, or he could keep
a single c; across all repetitions as in the modified design.

The main advantage of having the subject play against a computer is that the subject faces a
stationary problem, i.e., the subject does not face a distribution of bids and offers from the other 2m-1
traders that 1s changing as they revise their strategies on the basis of their own leam'mg.23 Positive
results from running this tightly controlled design would not establish that traders tend to play Bayesian
equilibrium strategies in the k-DA. for this design does not address how a group of traders can
simultaneously learn equilibrium behavior. Negative results, however, would be evidence against the
theory’s positive validity because the ability of a single trader to learn his best response against

equilibrium behavior is certainly a necessary condition for a set of traders to learn equilibrium behavior.

7. Concluding Comment
The Bayesian Nash equilibrium theory of the k-DA provides some theoretical justification that
the predictions of supply/demand analysis may be valid even in small markets with imperfectly
informed, strategic traders. This is consistent with experimental research on a variety of other
institutions for organizing trade. Unestablished, however, is whether or not this theory positively
describes the behavior of experimental subjects in the k-DA. Testing the theory is difficult because

optimal behavior in the k-DA is far from transparent 10 experimental subjects. Only if experienced

3 A disadvantage of unknown importance is that a subject may play differently if he knows that he
is playing against computer simulated traders as opposed to real traders.
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subjects fail to behave in accordance with the theory’s predictions will it be falsified. But no criterion
exists to decide if a group of subjects is sufficiently experienced that data from their actions can falsify
the theory. A convincing test of this theory thus seems to require a more detailed theory of leaming in

Bayesian games.

References

Bulow. J,, and J. Roberts. 1989. The simple economics of optimal auctions. J. of Political Econ. 97:

1060-1090.

Chatterjee, K. and Samuelson, W, 1983. Bargaining Under Incomplete Information. Operations Research

31: 835-851.

Gresik, T. and M. Satterthwaite. 1989. The rate at which a simple market converges (o efficiency as
the number of traders increases: An asymptotic result for optimal mechanisms. J. of Econ.
Theory 48 (June): 304-332.

Harsanyi, J. 1967-68. Games with incomplete information played by Bayesian players, Parts I, II, and

III. Management Science 14: 159-182, 320-334, 486-502.

Hayek, A. 1945. The use of knowledge in society. The American Economic Review 35, 519-530.

Holmstrom, B. and R. Myerson. 1983. Efficient and duirable decision rules with incomple information.
Econometrica 51: 1799-1819.
Kagel, J. 1991. Auctions: A survey of experimental research. Xeroxed, March. To appear in the

Handbook of Experimental Economics.

Kagel, J. and W. Vogt. 1991. Buyer's bid double auctions: preliminary experimental results. mimeo.,
University of Pittsburgh.

Marshall, A. (1949). Prnciples of Economics. London, The MacMillan Press.

Myerson, R. and Satterthwaite, M. 1983, Efficient mechanisms for bilateral trade, Journal of Economic

Theory 29: 265-281.

25



Palfrey, T. and H. Rosenthal. 1991. Testing game-theoretic models of free riding: New evidence on

probability bias and learning. In Laboratory Research in Political Economy, ed. T. Palfrey, pp.
239-268. Ann Arbor: University of Michigan Press.

Press, W., B. Flannery, S. Teukolsky, and W. Vetterling, 1986, Numerical Recipes: The Art of

Scientific Computing. Cambridge, England: Cambridge University Press, 1986.

Rustichini, A., M. Satterthwaite, and S. Williams. 1990. Convergence to price-taking behavior in a
simple market. D.P. 914, Center for Mathematical Studies in Economics and Management
Science, December.

Satterthwaite, M. and S. Williams. 1989. The rate of convergence to efficiency in the buyer’s bid

double auction as the market becomes large. Review of Economic Studies 56, 477-498.

Schwartz, R. 1988. Equity Markets: Structure, Trading. and Performance. New York: Harper &

Row, 1988.
Williams, S. 1991. Existence and convergence of equilibria in the buyer’s bid double auction. Rev.

Economic Studies 58, 351-374.

Wilson, R. 1985. Incentive efficiency of double auctions”, Econometrica 53: 1101-1115.

26



Captions to Figures

Figure 1. An example of a DA withm =3 and k = 1. SS and DD are the true supply and demand
curves and D'D’ is the demand curve strategically reporied by buyers. Sellers report their true supply
curve because k = 1. The price relative to reported supply and demand is 0.53; one unit is traded at

that price.

Figure 2. Equilibrium strategy pair (S.B) form = 2, k = 0.5, and (F.G) uniform on [0,1]. Note that c

=v=0172and T =V = 0.828.
Figure 3. True supply and demand are the solid lines S and D. Reported supply and demand are the
dashed lines S* and D’. The shaded triangle represents the gains from trade lost because S’ and D are

reported.

Figure 4. Equilibrium strategies (S,B) for m = 2, k = 0.5, and (F.G) uniform. The equilibrium (S,B)

pairs here approximate the full range of equilibrium behavior for m = 2.

Figure 5. Equilibriom strategies (S,B) for m = 4, k = 0.5, and (F.G) uniform. The equilibrium (S,B)

pairs here approximate the full range of equilibrium behavior for m = 4.
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