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An economic system is a pattern of relationships among individuals
through which decisions are made concerning economic variables (goods and
services). A casual examination of existing economic systems reveals that
any economic system is a combination of a number of control subsystems,
each characterized by different types of relationships among the partici-
pants. Three such subsystems which economists have investigated are the
market, the planning and the voting subsystems. The purpose of this paper
is to investigate the properties of an economic system combining market
and planning subsystems.

Economic systems differ according to the importance of the decision
making role of each of these subsystems. In democratic market economies,
such as the United States, the voting and market subsystems have primary
importance. Nevertheless, a planning system also exists both at the cor-
porate level, where large integrated firms (such as General Motors) must
coordinate the decisions of subsidiaries so as to achieve the overall cor-

porate objective, at the government level, where decisions need to be
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coordinated between different branches of the executive, and at the cor-
porate-government level, where the govermment must procure goods and ser-
vices from corporations. In a "centrally planned" economy, such as the
Soviet Union, the planning system is most important. However, both voting
and market systems do have a role.l/ In the economic systems of Fastern
Europe, the market subsystem has played an increasingly important role in
decision making as reforms have been implemented. 1In the democratic so-
cialist economies, all three subsystems have important roles.

However, a survey of theoretical economic literature does not reveal
an impression of economic systems consisting of a mixture of different con-
trol subsystems. Rather, the impression is that economic systems are
either pure market or pure planning systems;g/ Fach subsystem is studied in
a ceteris paribus situation where external variables that influence deci-
sions within the subsystem in question are considered constant. The effect
of variables determined by the model on these exogenous variables through
other spheres of the economic system are ignored.

In each of these models of a pure subsystem certain desirable proper-
ties of the subsystem in question are established. For example, the ex-

istence of a competitive market equilibrium, the Pareto optimality of that

1/ Kornai and Martos [20] also have argued that both capitalist and socialist

economies combine market and planning subsystems. See [20', page 511.

2/ Kornai and Martos [20] is an exception as are Richter [p7], Foley
[10] and Fouregard [11], although the latter papers are not concerned with
the operation of the adjustment mechanisms of the component subsystems.



equilibrium, the convergence of a market adjustment process to that equi-
librium, informational decentralization and informational efficiency have
been shown to be properties of the market subsystem.i/ Convergence of the
planning adjustment process to a social optimum and the feasibility of the
plan at each stage in that process are properties possessed by many of the

proposed models of the planning subsystem.E/

These properties are shown to
hold if certain conditions on the economic environment (technology and pref-
erences) are present.

When these conditions are absent, then, it is argued, there are the-
oretical reasons for a mixed system combining planning and market subsys-
tems. The view of Western economists has been that whenever conditions of
market fallure exist--i.e., externalities and increasing returns--then gov-
ernment intervention is Jjustified. FEastern economists have taken the stand-
point that in general a planning system 1s preferred to the capitalist mar-
ket system. However, in view of the informational decentralization and the
informational efficiency of the market system, it may be desirable to com-
bine markets and planning in order to improve the overall economic system.
Both of these arguments for a mixed system are based on the belief that the
already established properties of markets and planning systems will continue

to hold under the new order, when the two subsystems are combined in a more

general system.

3/ See, for example, Debreu [5], Hurwicz [15], Arrow [2], Diamond [6],
and Fisher [9].

4/ Examples of planning mechanisms are found in Aoki [1], Arrow and
Hurwicz [3], Heal [13, 14], Malinvaud ({22, 23}, Weitzman [31', and Younes
f331.



However, without a model of a mixed system, such a belief may not be
appropriate. For example, consider an economy of n commodities. Suppose
inactivity is possible for each firm in the economy (that is, each firm
can produce a vector of net outputs all of whose components are zero). If
all n commodities belong to the market subsystem, then this condition to-
gether with profit distribution among consumers will establish Walras law
through the summation of individual budget constraints. But in the situa-

tion where n; of the commodities are allocated within the planning sub-

system and the remaining n-n_ goods are allocated by markets (for example,

I

the n. goods may be public goods) inactivity for marketed goods may not be

possible if the production of these n_ goods is fixed in the planning sub-

I
system at some non-zero level. Walras law in the market subsystem is then a
condition that holds at a market equilibrium, but not the familiar identity
holding out of equilibrium. Since Walras law is an important part of most
existence proofs of a '"general' market equilibrium, the possibility of a

mixed system once again poses the question of existence of an equilibrium for

the market subsystem.z/
In this paper we investigate whether a mixed system can be designed

that combines the properties of market and planning systems. We will
specify conditions under which existence of market subsystem equilibria,
convergence of the market subsystem and of the planning subsystem can be

demonstrated within the context of a mixed economic system. Furthermore,

5/ In their proofs of existence of an equilibrium in an economy with
public goods both Richter [27]) and Roberts [28] noted this difficulty

with Walras law. Dreze and de la Vallee Poussin [7] pointed out the diffi-
culty of integrating their mechanism for allocating public goods with a
market system that allocates more than one private good.



we shall show that the mixed system provides for some informational
efficiency over a pure planning system provided certain key commodities
are included among those that are allocated on markets. Thus, our mixed
system lends some support for the Fastern view towards combining market
and planning systems.

In designing a mixed system it is necessary that one be able to dis-
tinguish between the market and planning subsystems. One suggestion is to
base this distinction on the type of information flowing to individual
firms and consumers. If this information is prices of various commodities,
then the subsystem is a market subsystem. If this information consists of
quantity allocations of goods and services, then the subsystem is a planning
subsystem.é/ However, this distinction is not satisfactory. Suppose in both
systems these messages are adjusted in a centralized fashion., The inter-
pretation is that the agent who adjusts prices is the Walrasian auctioneer,
or helmsman, and the agent who adjusts quantities is the central planner.
However, an alternate interpretation could be that the agent who adjusts
prices is the central planner as in the Arrow and Hurwicz [3] and the
Malinvaud [22] planning models, and the other agent is the market auction-
eer who follows a Marshallian market adjustment rule. Hence,an inspection
of the kind of messages flowing to the periphal agents does not provide a
sufficient basis for distinguishing between the planning and market sub-

systems. Kornai (in Chapter 23 of [19]) has suggested a distinction based

6/
(14 ].

» Heal presents such an interpretation of his allocation mechanism in



on the direction of the flow of messages within the subsystem. The market
subsystem consists primarily of horizontal information flows involving two
peripheral agents (such as a firm and a consumer, or two different firms)

1

in "immediate and informative contact.” The planning system consists pri-
marily of vertical information flows between subordinates and superordi-
nates within a hierarchical organization of economic agents. Rather than
firms in contact with other firms or consumers, firms are in contact with
an industrial organization and these industrial organizations are in con-
tact with the central planning bureau.

In the mixed system we present here, the Kornai distinction between
market and planning subsystems is adopted. One consequence of adopting
such a basis for distinction Dbetween market and planning systems is
that the market adjustment process cannot be of the tatonnement variety
because tatonnement is based on vertical rather than horizontal infor-
mation flows. In the mixed system we consider, the planning system con-
sists of vertical information flows--prices computed by the central agency
on a class of commodites (called "planned goods'") and net production pro-
posals computed by firms for these planned goods. Allocations of the re-
maining commodites (referred to as "marketed goods") are determined by
communication among firms within the market subsystem.

In Section I we present a model of a "pure production" economy. There
is no consumption of commodities by private individuals. Rather, the
central planner has a preference ordering of final consumption of the

planned goods. Marketed goods are primary and intermediate products used

in the production of planned goods.



In Section II the adjustment mechanism for the planning subsystem is
presented. This process is similar to the decentralized planning pro-
cedure utilizing memory which Malinvaud introduced in Section 5 of [22}.

At each iteration the center computes accounting prices for the planned
goods only. Taking these prices as given, firms, communicating in markets,
determine proposals for the planned goods and allocations of the marketed
goods. For purposes of Section II, these markets are assumed to adjust to
an equilibrium (existence i: shown in Theorem 1) consisting of prices and
allocations for marketed goods and proposals of planned goods that clear
markets and maximize firm profits at the combined prices provided by the
center and the market The equilibrium proposals are the firms' messages

to the center. These proposals are then used by the central planner to
compute new prices at the next iteration.

In Section IIT we consider the mixed system as a planning procedure in
its own right. It is demonstrated that the mixed procedure satisfies the
criteria established by Malinvaud for evaluating planning procedures. The
mixed procedure is well defined and generates a feasible plan at each itera-
tion whose utility value converges monotonically (Theorem 2) to the maximum
value attainable. In the next section we consider the mixed system as a
reform of the Malinvaud ''pure" planning system. The utilization of markets
provides for an extension of the class of environments considered by
Malinvaud and for some informational efficiency. Finally, in the last
section, we consider the procedure presented in this paper as the mixed

system described by Kornai. Here we provide an adjustment mechanism for the
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market subsystem which relies on the horizontal information flows of a
system of bilateral trades (convergence of this process is provided by
Theorem 3) similar to the model developed by Feldman in [8].

The appendices contain a dictionary of mathematical symbolization and

proofs to some useful lemmata.



I A Model of the Economy

The n commodities of the economy are partitioned into two classes:

n, goods allocated by the planning subsystem and n, = n-n

2 goods alloca-

1 1

ted by markets. Preferences of the central planning agency over final

consumption of the ny planned goods are represented by a utility function

U(x):X + £ where x 1is an n, vector of final consumption of planned

goods and X 1is the set of admissible consumption bundles. There is no
final consumption of marketed goods. Rather, these commodities are inter-
mediate products and primary inputs used in the production of planned goods.

Initial endowments of planned and marketed goods are denoted by wy and

g respectively.

There is a finite set X of K firms. An action of firm k 1is
an mn vector of net outputs, Vi (if an element of Vi is negative, then

it is an input). The set of vectors technologically feasible for

Vi

firm k 1is represented by Y Initial endowments of marketed goods, Wy

- - 7/

) where Z Why = Wae—
kel 2k 2

K

have been allocated among the firms so that Y, > (0O,w

k 2k

The objective of the economic system is to find a consumption programme

e S
0

x|

and a production programme II ;; that solve:
Max U(x) subject to
X - 2y =
1 1
ke¥ k
(1)
- I ¥, =0
kew 2k
x€ Xy T (IoVy) € Yo VREX.
77

The above definitions are summarized in Appendix A.
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The class of economic enviromments we consider is described by the

following assumptions.

Al Each production set, Yk’ is closed and convex.
A.2 The aggregate production set % = 2 Yk is smooth 8/
ke¥

and

has a non-empty interior.
iy e + +
A.3 (Irreversibility) (0 cly) N (0 cl -9 = {0}.
. 9/
A.4  (Necessary input) =
i %2 N Q 1is bounded

ii yl(yz) is bounded, whenever Yo = 0.

A.5 (Positive marginal product) Suppose yé,yg € %2 and

1 " n 1" > t !
Yy < ¥y Then for each vy € ’yl(y2 there is a vy € yl(yz)
t T
such that vy > vy

A.6 i X 1is closed, convex and bounded from below

ii U:X > ® 1is continuous, quasi-concave and increasing.

A.7 (Initial Knowledge) The central agency knows a plan

p° = [xo,ﬂ y%k} such that x° € int X, x0 -7 y?k = wy

ke X
and I yik € /7, where
ke X
72 {0 T oy 1 E V0D (Yq05Y,) €Y, and Iy, =0} (2)
ke ¥ 1k 2k 1k’7 2k k ke 2k

The definition of a smooth set is given in Appendix A, as are definitions
of other mathematical concepts and notation.

yl,yz,yl(yz) are projections of the aggregate production set Y. See

Appendix A for definitioms.
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A.8 (Dispersion of Information) Except as mentioned in A.7,
each firm only has information concerning its own production
set, and the central planning agent only has information
concerning its preference ordering U, the consumption set X
and the initial endowments of planned goods, W, -
A.1 and A.2 are standard assumptions implying non-increasing returns

and differentiability of the aggregate production function. Since each

Y. contains (0O,w,, ), irreversibility as defined in Debreu [5] implies that

k 2k

UnN-Y-= {(O,wz)l from which condition A.3 follows. A.4 is satisfied if,
among the marketed goods, there is a necessary input, g, such that once j

= 0), production (and

has been allocated among the firms ( 7 y2k£ = Yo, Z

disposal within plants) of marketed goods (A.4i) and planned goods (A.4ii)
is bounded. An example of such a commodity is labor. By A.5, a positive
"marginal product' relationship between marketed goods and planned goods is
postulated. 1If the level of production of marketed goods is reduced (level
of input is increased) then the output of planned goods can be increased (input
of planned goods can be reduced). Standard restrictions are placed on the
consumption set, X, and the utility function, U, in A.6. To guarantee feasi-
bility of the plans generated by the planning procedure, the central bureau-
cracy is assumed in A.7 to know a feasible plan, p°. 7 is the set of attain-
able planned goods production programmes.

For the problem (1) to be meaningful, it must have a solution. Since

U is continuous (by A.6ii), (1) will have a solution if the set

X N ({Zylk | 1 Y1y € 7Y+ {wl} -0) (3)
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is compact. Since, by A.6i, X 1is closed and bounded from below, this
intersection will be compact if 7 1is compact. Later we shall want 7

to be convex as well.

Lemma 1 Under A.1, 3 and 4, the set of attainable planned goods

production programmes, /7, defined in (2), is compact and convex.

Proof:

Let

o

7=y nom (4)

where

nk ,
= > .}
mE ANy Yy) €8 | 2 yy =01, (5)

By A.l, the cartesian product, HYk. is closed and convex. Since the

half space " 1is closed and convex, 7" is also. Notice that 7 1is the
image of 7x under the projection mapping 9; (see appendix A for definitionm).

Since & is a linear transformation 77 1is convex. Furthermore, if <7
1 ? ]

ot

is bounded, as well as closed then 7 1is compact by continuity of 91.

To see that a is bounded, we first demonstrate that the set
ni n2
REYN @ xp5 (6)

is bounded. Suppose y € 0%cl 5. Then there is an x € B such that

(x + Ay) €cl” for every X\ = 0. Since the projection map 92 is contin-
uous, 92 cl Rccl 928 = cl (yz N Q). Thus Xy + Kyz = 92(x+xy) belongs

to the closure of yz NQ for every X = 0. By the necessary input
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assumption A.41i, yz N 1is bounded. Hence the direction of recession

of # 1in the marketed good space, Yo is zero. Then ((x1 + xyl),xz) €clr

for every A = 0, where x, + Kyl is the projection @1(x+Ky). Clearly

1

n n
((x1 + .xyl),xz)e (clrnplx {xz}). But (clRNpelx {xz}) =
n, n
cl (RN R~ x {xz}) since R NP1 X {xz} # 0. Again, by continuity of

n n
£, @cl(®np 1 x Do el @ (P n el x {x,1)=cl Y (x,). Thus

1)
X + Xyl e cl yl(xz) for every A > 0. But, by A.4ii, the direction

of recession, yi» in the planned goods space is also zero. Hence, the

recession cone 0 cl A = {0} and /R 1is bounded by Theorem 8.4 in

Rockafellar [29].

Now, suppose {Hyﬁ 1 is an arbitrary sequence in 7 Since, for
each q qu € 7 yq €Y for each k and 53 € 3. By
b4 1 k - 2 k k k AP I

boundedness of (3, Assumption A.3 and Lemma B.l, the sequence ({II yﬁ} is

bounded. It follows that ~ is bounded. qed
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IT The Mixed Market Planning Procedure

The algorithm for the planning subsystem is a variant of the
Malinvaud planning procedure utilizing central memory found in [22]. At
stage s 1in the planning process, the center has accumulated information
on the set of attainable planned goods production programmes, (7. This
information comes from the initially known programme Il yik in A.7 and
from the firms' proposals of planned goods production from previous iter-

ations, T =1,...,s-1. This information is used by the central

.
Y1k’
planner in the computation of a 'paper' plan p° = (;s, 1 ; ik)' Shadow
prices for plamned goods are then computed and sent to the firms. The
firms communicate among themselves via markets for allocations of the

marketed goods and production programmes of planned goods. The latter consti-

tute the firms' responses to the center. More formally:
P y

Center
At stage s the center solves the following problem:

Max U(x) subject to

(7
X -2 V., =W
K 1k 1
s
x ¢ X and Hylk €7
where s Knl s-1 . T s-1 +
a =rzch | z= = (Ilylk) 502 N e (8)

7=0 =0
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s
The set (7 represents the center's knowledge, at stage s, of the attainable

planned goods production set, &.

Let P° = f ES, I ;ik} solve (7). To see that P° exists, define the

sets

< S

5
"

s

o + } -0
1

Then (7) can be written as

Max U(x) s.t. x cXn FS

. s . . s | s .,
Since « 1is compact by comstruction, ¢ 1is compact and T© is closed and

bounded above. By A.61, X N FS is compact. Since U is continuous by

.. . S . .
A.61ii, the solution P exists. This proves

Lemma 2 Under A.6, the central problem (7) has a solution.

. . S . . .
Given the solution P, the center then finds the normalized price

s . e
vector, p; € # , that satisfies:

(@) pix > piis for all x € X such that U(x) > U(is),

S S s = s
(B) Py 2y =py 7Yy forallly, €7,
S
—S _-S
) P1 &7 -z Yik ~ wl) = 0,

s .
These prices, py, are proportional to dual variables of the resource

contraints in (7).

(9

(10)

(11)

(12)
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Lemma 3 There exists prices, pi &, satisfying (12).

Proof:

Sincez7s is convex by (8), FS is a convex set. Since P° solves (7,
r° does not meet the relative interior of the level set {x €X | U(x = U(is)}.
This level set is convex by A.6. Thus there is at least one hyperplane
through x> separating rs from the level set. pi is the vector normal to

one of these hyperplanes. qed

The '"paper" plan at stage s is the solution to (7), P°. The central

. . . s
price message to the firms is the vector Py

Firms
Taking the central price messages as constant parameters, the firms
. . s S .
find market allocations Yox? proposals Y1k’ and prices of marketed goods,

p;, such that:

(i) for each firm k, y> = ) maximizes firm profits at the (13
" p

(v yS
Y177 2k
combined prices pS = (pi,p;). That is psyi = psyk for alil
Y € Y-

(ii) Markets clear: = =0

s

Y2k
S <« .S _

Walras law holds: Py ¥ Vo = 0.

Theorem 1 If A.1, 2, 3, 4, 5 and 6 hold, then there is an

equilibrium (Hyi, p;/pi) satisfying the rules (13).

Proof:

Consider the problem:

Max p; b Y1k subject to (14)



- 17 -

(v ~
GpeYod € Yo Y ke
SV =0
S -
or Max p; 2 Yy S:t- MY € - (15)

By Lemma 1, @7 is compact. Thus (15) and (14) have a solution

s

_ S s . . . .
Vi = (ylk,ka). Associated with the constraint 2 Yor = 0 in (14) are

the dual variables p;. We will show that there is a price vector pz

proportional to p; such that (in;Ps) satisfies (13).

= -

Let yi =7 yik and yz = Since int% # ¢ by A.2, the

s

Yo"
n

interior of yz(yi) relative to p 2 is not empty. Thus, if yz(yi) meets

~ = ~ ~
int o there are vectors Yor ¥y € Wz(yi ) M such that Yo < Y- By A.5,

one can find a ;1 > yi such that (;1,§2) € %. Since, by Lemma 3, pi = 0,
S=

S_S we S S " s
5 > p,;y; contrary to (yl,yz) solves (14)." Thus yz(yl) does not

meet the interior of 0.

By A.1, 9 is a convex set. Its projection yz(yi) is also convex.
n
Since () is convex and yz(yi) N int O = @, there is a hyperplane in p 2

)

through yz separating yz(yi) and . Let p; be a vector orthogonal to
the hyperplane. Since () lies in the upper half space defined by the

hyperplane,

KR o
Pas

«~ S =
p, =0, pyy, =0. (16)
Wz(yi) contained in the lower half space implies

e )
w

s % s
PyY, = P,Y, for all Yo, 6'2,12(y1). (17)
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Furthermore, since (yi,y;) solves (14),
s s S S
Py, = Py, for all y, €% (y5). (18)

From (17) and (18), from convexity and smoothness of v (A.1 and
A.2) and from Lemma B.3, there is a hyperplane in Ep supporting % at
s s . . 2} B . . s . o
(yl’y2) containing hyperplanes in # = with normalization Py and in p
with normalization p;' Let p; be proportional to p; so that ps = (pi,pz)
is a vector orthogonal to this hyperplane in pn. Since Y is the vector sum of

the sets Y condition (i) of (13) holds. Condition (ii) of (13) follows

k)
from (16) and (1%4) because p; is proportional to p;.

qed

An example of a market exchange process through which the equilibrium
allocations and proposals can be found in a decentralized manner is pro-
vided in section five. The production programmes Y1k determined in (13i)
constitute the firms' messages to the center. Sending these proposals
completes stage s. At stage s+l, these messages are added to the memory

s s+l . . . .
7" to form 7 . The center then proceeds as in the previous iteration,

. s+1 . s+1 . .
computing a new plan P and new prices P - This process continues
until convergence occurs (convergence will occur when the total value of

. s . .S .
the firms proposals Py z Yix s the same as the value of the current plan

pi ) ?ik) or until the central agent decides to stop the procedure and

implement the current plan.
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Plan Implementation

To implement the plan PS = {ES,Hyik} at stage S, firms again
enter markets, this time taking both the production levels of planned
goods, ?ik, and the prices pi, as given. The market equilibrium

S § . .
(ﬂyk,pz) satisfies:

, S S S S .
(i) for each k ¢ %, (ylk,ka) Max (pl’pZ)(ylk’YZR) subject

s
Lo Oy €Y and iy = Yy
s
Y2k

™

=0 and p) = 0.

. 5 <. .S
(ll) 'P2 E O} < y2k
Firms are required to produce the quotas ;ik. For this and any excess

production of planned goods they are rewarded by the center according

to the prices pi.

The existence of an equilibrium satisfying (19) follows as a
corollary of Theorem 1. To see this, define the sets Zk = { i € Yk \

=S
Vi = ylkl and 2= 7 Z . If?% and the Y satisfy A.1, 3, 4 and 5,

k k
then the Zk and 2 will also. If A.2 holds, then 7 is smooth on the
. . =S n2
interior of the half space { Y12 2 Yip 1 x £ . Hence

Corollary 1 There is a solution to the plan implementation rules

(19) if A.1, 2, 3, 4, 5 and 6 hold.

19
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III Properties of the Planning Subsystem

In this section, the mixed planning - marketing process defined
by (7), (12), (13) and (19) is considered as a planning procedure. This
mixed procedure has properties suggested by Malinvaud in [22] as minimal

properties of any practical planning procedure. These are:

Definition 1 A planning procedure is well defined if at

each stage there are solutions to the operations by which
the prospective indices (prices), the firm proposals and

the plan are determined.

For the mixed procedure considered here to be well defined, there must
exist solutions to the rules (7), (12) and (13). This was demonstrated

in Lemma 2, Lemma 3 and Theorem 1.

Definition 2 A procedure is feasible if the plan generated at

each iteration is both

(a) attainable--the plan satisfies the resource and technological
constraints of the economy, and

(b) implementable--there is a solution to the rules for plan

implementation.

From (2), (13) and assumption A.7, the previous joint proposals at stage
s, Hy{k (+=0,...,s-1), are elements of the feasible planned goods pro-
duction set, /7. By Lemma 1, 77 is convex. The memory set,<7s, defined

in (8) is formed from convex combinations of these proposals. Hence

ﬂs o7 for all s.

(20)
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By (20), (7) and (2), the plan at stage s, p° = {is,ﬂyik} , satisfies
the resource and technology constraints of the economy as outlined in
(1). Thus, P° is attainable at each s. By Corollary 1, P° is also

implementable at each stage s. Therefore, the procedure is feasible.

Definition 3 The procedure is monotonic if the utility value
of the plan is nondecreasing as the planning process progresses.
From (8) it is clear that

+
2 = for a1l s,

By the rule (7), therefore,
—s+1

U(is) = U(x )y for all s.

Satisfaction of feasibility and monotonicity will guarantee that

the actions specified by the plan can be carried out and that the current

plan is at least as good as any plan considered previously. Malinvaud
argued that these characteristics are important if it happens that the
central planner decides to stop the planning procedure after a finite

number of iterations but before convergence has occurred. It is also

desirable that the procedure is not prevented from eventually finding a

solution to the planning problem (1).

Definition 4 The procedure is convergent if the utility value

of the plan converges to the highest value achievable, given

complete information concerning resource and technology constraints.

(21)

(22)
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Theorem 2 Under assumptions A.1 - A.7, the planning procedure
defined in (7), (12), (13) and (19) is well defined, feasible

and monotonically convergent.

Proof:
From the previous remarks, all that remains to be demonstrated is

—s.,% = = . .
that the sequence {U(X )13 converges to U, where U is the maximum

=1
value of U(x) in the problem (1).

Notice that the problem (1) is identical to (7) when the set @° in
(7) is replaced by the set ¢. By Lemma 1, 7 is compact. Thus, by (7),
(20) and an argument identical to that used in the proof of Lemma 2, the
sequence {?S} belongs to a bounded set. Therefore, the sequence {U(iS)X
has a least upper bound, U*, by continuity of U. Furthermore, by the
monotone property, (22), U* is the accumulation point of [U(is)}. The
proof of the theorem is by contradiction of U* <T.

The structure of proof is as follows: (i) we first consider certain
bounded sequences generated by the procedure; next it is shown (ii) that
any joint firm proposal satisfying the rules (13) maximizes joint firm
revenue from planned goods on the set «; (iii) the limit point of the
sequence of price values of the production plans {pi Z yik}, is the
maximum value of joint firm revenue from planned goods on the feasible
set ¢ valued at the limit prices pi; (iv) Walras law for planned goods
holds at these limit points; and (v) in the limit, any final consumption
programme yielding higher utility than the least upper bound U* will have

a higher value in terms of the limit prices pi; (vi) finally, the contra-

diction is established.
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(i) The mixed procedure generates the following bounded sequences:

sequence reason why bounded limit point
{Esl from previous remarks above
{U(is)l continuity of U, {§S1 is bounded U
{pi} pi € .#; the simplex # is bounded p;
{piis} {pi}, {x°} are bounded, px is a
continuous
S —S —S S %
5 7
{p; 7 vyt My, €7 <7, by (20), (21) and b
Lemma 1
{ps 5 yS nyS e @, by (12) and Lemma 1 b
1 1k 1k < T

Since these are bounded sequences, subsequences that converge simultaneously
to the limit points indicated above can be chosen. Further consideration

is restricted to these subsequences.

<

. s S s . ‘
(ii) Py & Yy =P Y Vg for all Y15 €.

Suppose false. Then there is a programme H§1k € 7 such that
S o« 7 S s
Py % Yy 7 P Y iy (23)

and H;lk solves Max pi b subject to Hylk € 7. Associated with

Y1k
H;lk is a programme of marketed goods production, H;Zk’ and dual variables
52 associated with the constraint X Yor = 0 in the definition of &7 (see

(2)). Then, by duality theory, P, Z Yor T Py T You for all P, € Q. This

implies

s
0 =Py 2 Yy TPy 7 Yo (2%)
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. s S s . .8 s . 7 s .
From (i) of (13), Py b3 Y1k + Py 7 Yo Z P 7 Y1k + P, % Vo1 But (23)
. . s s S « ~ s S o 7 .
then implies P,y Z Y o1 > Py~ Yo By (ii) of (13), Py z Y o < 0 which
contradicts (24).

(iii) b Py z Y1k for all Hylk c .

1%

By compactness of 7 (Lemma 1), by (ii) above and by the Maximum

Theorem (Berge [4], p. 116)

R K3
W<

b = pi Z Yy for all My € 7- (25)

From (B) of (12), pi 7 yik = pi 5 ?ik for all q < s. Since Hyik

belongs to the bounded set ¢, in the limit, b = b . (iii) then

follows from (25).

(iv) aA - E’\ - p‘l‘ml = 0.
This follows from (y) of (12).

(v) pix > a for all x ¢ X such that U(x) > u.

At e P

From (iii) and A.7, b = P; b} yik. (iv) then implies that a =

p;(Z yik + wl). But, again by A.7, % yik + wy = x°. Thus, a = pIXO,

where x° € int X. (v) follows from A.6, A.7, (o) of (12) and Lemma B.4.

(vi) Now suppose there is a feasible programme p = {%, H;lk} such that

U(x) > U . But then, from (iii), (iv) and (v), p;(; -2y - ) 70

which contradicts pI =z 0 and x - Z ;lk =y ged



The Mixed System Considered as a Reform of Pure Planning Procedures

Utilizing Central Memory.

The mixed market planning procedure is a member of a family of planning
procedures that utilize central memory and operate within a discrete time
framework. Other members of this family include the Malinvaud (section 5
of [22]) and the Younes [33] procedures. It is interesting to compare the
mixed procedure with other members of this class. In order to compare two
procedures, it is necessary to compare them within the same class of economies.
In Theorem 2, it was shown that the mixed procedure performs well by one set
of criteria within the class of economies for which commodities can be par-

titioned into final consumption goods and for which A.1 - A.8 hold.

Remark  The mixed procedure performs as well as the Malinvaud
procedure, by the criteria defined in Definitions 1 - 4, when
the hypothesis that commodities can be partitioned into final

and non-final goods and the property of smoothness of the aggre-
gate production set, 9/, (A.2) are added to Hypotheses 6, 7 and
8 in [22] (A.3, 4 and 5 are not required by the mixed procedure
when individual production sets are bounded, as in Malinvaud).
The mixed procedure performs as well as the Younes procedure
when goods can be partitioned, smoothness of Y (A.2), necessary
input (A.4) and positive marginal product (A.5) are added to the

Younes assumptions.

Does the mixed procedure have better performance than other memory pro-

cedures such as Malinvaud and Younes, under some other criteria? A natural
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criterion to consider is efficiency. Efficiency of the information
exchange process can be considered from two points of view -- from the
standpoint of the central planning agency and from that of the entire

economy .

Computational Burden at the Central Planning Agency

The Malinvaud - Younes Procedures both require the solution, at each
stage s, of a mathematical programming problem, similar to (7). The

Malinvaud and Younes problems both have (n1 + n, + K) constraints and

2
(n1 #+ sK) variables. The problem (7), however, only has (n1 + 1) con-

1o/ Thus, the introduction of markets

straints and (n1 + s) wvariables.
into the Malinvaud - Younes planning framework reduces the computational
burden placed on the central agent by a factor of (n2 + K -1) constraints
and (K-1) variables.

How large is this reduction? This depends on the size of n, and the
structure of the firms. TIf the firms are large and vertically integrated,
then the size of n, (the number of '"marketed" goods, or the number of
primary and intermediate goods) is not likely to be very large. On the other

hand, if the firms are small and not vertically integrated, them n, may be

2

10/ (7) can be written as Max U(x) s.t.
s-1
T LT .
X, - X >N Y £ w,.,, 1=1,...,n
I oyev 120 1ki i 1
s-1 -1
hX ?\.T -
7=0
< ¢ X 3T =0, 1=0,...,s-1.
2

The X, and the X' are the variables in this problem.



quite large. For example, marketed goods may include all the different
varieties of steel products (ingots, rods, sheets of various dimensions
and alloys). The planned goods, on the other hand, will include a rela-
tively small number of final products (automobiles, tanks and missiles).

Furthermore, a substantial saving in communication costs resulting
from the integration of markets is not reflected in the size of n,. The
actual number of firms in communication with the center may be reduced as
well. The mixed system does not require any communication between the central
agent and firms specializing in the production of marketed goods and using
only marketed goods as inputs. For example, the central government may
communicate with major defense contractors for planned goods, such as
missiles. There are, however, a large number of firms specializing in
different electrical and chemical components with whom the major defense
contractors must negotiate. The central government need not be involved in
this subcontracting process.

Hence, there can be substantial savings for the central agent in terms
of computation and communication resulting from the utilization of markets.
However, this savings results from a shift in computation from the central
planning agency to the firms themselves. Whether the net impact of markets
on a memory procedure such as the Malinvaud system is a reduction in compu-
tation and communication costs depends on the nature of the market adjustment

mechanism.

Informational Efficiency of the Mixed System

Without considering specific technologies used in communicating and



computing, systems can be compared using the concept of informational
efficiency introduced by Hurwicz in [16]. Recent work by Hurwicz [17],
Mount and Reiter [25] and Reiter [26] has shown that, when the message space
utilized by an adjustment process is Euclidean, a comparison of adjustment
process according to the Hurwicz notion of informational efficiency is
equivalent to a comparison based on the dimensionality of the message space.
Thus, when individual production sets are bounded, the Malinvaud and
the mixed procedures perform equally well in terms of informational efficiency.
The message space of the Malinvaud procedure consists of vectors of n
prices and n proposed production levels by each of K firms. The dimen-
sion of the message space is thus (K + 1) n. Similarly, the message space
of the mixed procedure consists of vectors of n prices (n1 centrally com-

puted and n computed by markets) and n proposed production levels

2

(n1 sent to the center, n, demands in the markets) by each of K firms.
When individual production sets are not bounded, but A.3 - A.5 hold, the
mixed procedure still has a message space of size (K + 1) n. The Younes
procedure, however, requires that the center communicate both prices and
production quotas for each firm. The size of the message space is then
(2K + 1) n. Hence, the utilization of markets and the inclusion of labor
(or some other esssential input) among the marketed goods results in some
informational efficiency over the Younes planning system when the class of
environments includes unbounded production sets.

This result should be qualified, however. Whether there is in fact a
market adjustment mechanism whose message space has dimension (K + 1) n, to

complement the planning adjustment mechanism whose message space has

dimension (K + 1) ny has not as yet been shown. Indeed, for the market



mechanism we are about to consider, the class of enviromments described by
assumptions A.1 - A.7 will be restricted to a smaller class. While this
smaller family will include unbounded production sets, it will not cover
constant returns to scale production functions.

In any case, the utilization of markets as a reform of the Malinvaud -
Younes planning systems does considerably reduce the computational burden
on the central agent, and does allow unbounded production sets without the
requirement of central quantity directives. As a guide for reformers,
these markets must include markets for labor (or some essential input).
Furthermore, when markets are allowed to operate during the planning process,

it must be recognized that the responses, of the firms are not inde-

S
y].k’
pendent. Thus, rather than forming individual memory sets for each firm

(as is done in Malinvaud and Younes) the reformed center must keep track of

. . . S
this dependence by forming a memory set of joint proposals, as the set 7

in (8).
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V  The Mixed Procedure Considered as an Economic System Combining

Vertical and Horizontal Information Flows.

In the presentation of the mixed procedure of section 2, the market
subsystem was assumed to be self equilibrating. In Theorem 1,
the existence of that equilibrium was demonstrated. Two important questions
remain. The first concerns the existence of a market adjustment process.

The second asks whether there is an adjustment process that relies primarily
on horizontal information flows. If this second question is answered affirma-
tively, then the mixed market planning procedure is a description of the mixed
system Kornai suggested, with vertical information flows in the planning
subsystem (central price indices, plans and firm proposals of planned goods)
and horizontal information flows in the market subsector (rates of exchange
and offers).

The answer to the first question, whether there is an adjustment mechan-
ism for the market subsystem, is not obvious. Walras law does not automati-
cally hold on a subspace of the commodity space. Yet Walras law is important
for stability of the Walrasian tatonnement process. Thus, the common des-
cription of market adjustment, tatonnement, is by no means an obvious answer
to the question of existence of an adjustment process in the market subsystem.
Nor is the tatonnement process an answer to the second question. The tatonne-
ment mechanism is not a description of a market process based on horizontal
information flows. Information flows are vertical, between a firm and the
auctioneer, but not between two firms.

The process investigated here is one of bilateral exchange. Given the

; S . , .
central prices, Py each firm has an induced preference ordering of marketed



goods. Two bundles of marketed goods are compared according to the revenue
from planned goods attainable. Clearly, if all marketed goods are primary

inputs, then, given the initial distribution of resources the pure

® Zk)
production model collapses into a pure exchange model. By exchanging
contracts to deliver goods rather than the goods themselves, intermediate

L/

products can be exchanged as well in a bilateral process. il

The Restricted Class of Environments

In order to make use of the Feldman [8] model of bilateral exchange,
the induced preferences must exist, must be strictly convex and monotone in
some common component and must be representable by a continuously differen-
tiable function. 1In order that these conditions hold the following restric-

tions are placed on the individual production sets.

A.9 Each Yk is a strictly convex and smooth set.

By this assumption, constant returns to scale production functions are not

considered, though unbounded strictly decreasing returns are.

A.10 There is a marketed good, 4, such that for each firm k ¢ ¥,

€ Y stand in the relationship yék = and

. ' 1" "

Yoo Yo & Yok Yox
t " " C " s

Yok <1y2k£, then for each Yk Y1k (y2k there is a

! ! ! "
Y1 € Yp ) such that yi, < yi.

=" These latter intermediate products, as pointed out earlier, are
responsible for a substantial reduction in central computation and
communication achieved by integrating markets into a planning pro-
cedure such as Malinvaud or Younes. However, in order that every
firm possess induced preferences over marketed goods, no firm can
specialize in marketed goods production and consumption. Hence,
bilateral exchange is not an ideal model of market adjustment.
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By A.10, there is a positive 'marginal product" relationship between levels
of input of a marketed good ¢ and levels of output of some planned good.
This market good ¢ for which there is a positive marginal product must be
the same commodity for all firms (An example is labor). Implicitly, by
A.10, we require that each firm either produces a planned good or uses a
planned good as an input in the production of a marketed good. No firm is
allowed to specialize in marketed goods only. This assumption is necessary

for each firm to have an induced preference ordering on marketed commodities.

A.11 pi'> 0 for all s.

This condition will be satisfied if the utility function U(x) 1is strictly

monotone increasing in all arguments.

The Induced Preference Orderings

The kth firm's preferences on marketed goods are determined by the

revenue that can be obtained from planned goods, given the central prices

s
Py -
. e th .. . .
Definition 5 The k firm's revenue function is
k ) s
n (ka) = Maximum P1Y1ye
Y15 )

wk is defined on the projection of the production set, From

Yo = @20k

A.9, is strictly convex and from A.1l1, pi > 0. Thus nk is

Y o)
well defined.



Cefinition 6 The kth firm's induced preference ordering ?k is

such that, for any pair y) ., vy € Yy, ¥y 7 ¥y ('gp >k vy if

. k [] k (1} k 1 k 1
and only if mi(yy) = (v"y) (m (yy) = m (y75)) .

These preferences have properties, given A.9 - 11, that insure the conver-

gence of a bilateral exchange process to the equilibrium defined in (13).

k .
Lemma & Under 4.1, o is a continuous function on the set Y2k'

proof:

q 4 . o .
Let {yzk be a sequence in Y2k that converges to Yo Since the

sequence converges, there is a 0 = M < ® such that €B, for each q.

q
Yok .

(B is the closed Euclidean ball centered on the origin with radius X\.)

A

Define the truncated production set Yk(k) = Yk N Bx. Since, by A.1,

Yk is closed and convex, Yk(x) is a compact and convex set. By Lemma

Y UM =y | oy €Y OO (26)

is a continuous correspondence on the projection QZYk(k). Then, by

the Maximum Theorem (Berge [4], p 116), nk is a continuous function on
k, q k, o k .

the set QZYk(k). Hence (ka) et (y2k). Thus 11 is continuous on

the set Y2k' qed

Lemma 5 Under A.9, >k is strictly convex.
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proof:

- Y such that

I1f, for every pair yék, ygk < Yo Yék >k ng:

= ' - n " € > .
ka(O) Y o + (1 o)y2k > Yox for every ¢ € (0,1), then K s
strictly convex.

Define so that (yik’ yék) and (y{k, ygk) belong to

] 11
Y1k’ Y1k

Y and p

Kk = nk(yék), piy”1k = ﬂk(ygk . Since Y, 1is strictly convex,

s )
1¥1k k

(ylk(o), y2k(o)) € int Yk for each ¢ € (0,1). Thus there is a Y1 > ylk(c)
~ S~ s s .
such that (ylk: y2k(o)) €Y . Hence, py;, >»p1y1k(c) = pyyy, since
PSY' = PSY" This implies ﬂk(y @) = ps§ > wk(y” ). Hence, by
171k — "171k” ‘ 2k = P11k 2k ’

Definition 6, >k is strictly convex. qged

Lemma 6 Under A.10 and A.11, >

7k is monotone decreasing in the

component /.

proof:

1 ! 1 < (3] 1 11
Choose Y1 ka & Y2k so that Yor T Yor and kaz < kaﬂ. Take

I

s 11 ‘rrk n .
so that P1Y1k m (y2k . Then, by A.10, there is a

T "
Ve € Y Oy

' t 1" 3 S S t
Y1k € Ylk(ka) such that Y1k = Y1k Since 1 >0 by A.11, P1Y 1k >

S _n ' 1 . . k LN S Son = k "
P1Y1r Y1k € Y1y Tmplies m(y 3= pyyyy > Pyyyy = (yh ). Hence
LS g a
Yok "k Yok ae

Lemma 7 If A.1 and A.9 hold. then nk has continuous first

partial derivatives on the set sz.
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proof:

Let f:W - pl be a proper, closed, convex function. As in Rockafellar
[29, pp 214 - 215] a subgradient vector of f at xe W 1is a vector v
such that

f(z) = f(x) + v(x~-z), for all 2z ¢ W. (27)

The subdifferential of f at x, Bf(x), is the set of all such subradients.
From Theorem 25.1 in [29], if f has a unique subgradient vector at x,

then f 1is differentiable at x. 1In this case, the unique subgradient is
also the gradient of £, where the gradient vf is the vector of first

partial derivatives. That is

dE(x) = {vE(x)) (28)
where

vE(x)

0

(af/axl,...,af/me),

Of/dx. £ 1lim f(x + 2e.) - f(x)
0 1

IS
and ej is the characteristic ve - tor.

Furthermore, from Theorem 24.4 in [29], Of(x) 1is an upper semi-
continuous correspondence on the set W. Thus, if f has a unique sub-
gradient at every point x £ W, then Of(x) 1is a function and
vE(x) = Of(x) 1is continuous on the set W. Now consider the function
g(x). If g(x) 1is a concave, continuous function that is finite for
every x £ W, then -g(x) 1is a proper, closed, convex function. Moreover,
if g(x) 1is such that -g(x) has a unique subgradient at every x ¢ W,

then vg(x) = -(v-g(x)) 1is continuous on W.
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k. . k
From Lemma 4, - is continuous on Yk and, from Lemma 5, is

. s . . k . ..
concave. Since 12 >0 and Y is strictly convex, is finite on

k

k , , , . , ,
Y2k' Thus, for to have continuous first partial derivatives, it

k
suffices to show that -n has a unique subgradient at every Yor € Y2k'

This will follow from A.9 (Yk is smooth).

By (27), for every v ¢ 5(—nk)(;2k)s

k k ~ ~
m(Yg) T Wy E (Yg) - WYy forall iy, €Y.

From (29), if Yo cY is such that wk(ka) = nk(;Zk) then

2k
VYo = VYo - Hence vy, = VY o1 for all Yor € U(ka), where U(ka)
. k k

is the level set fy, €Y, |n (yy) =1 (y,01.

Since Yk is convex, closed and smooth (A.1 and A.9), U(;Zk) is

smooth by Lemma B.6 and by Definition 5. Therefore, the subgradient v

is unique and vf(ka) is a continuous function at every §2k € Y2k'

qed

A Market Adjustment Process

The market adjustment process we utilize consists of sequences of
bilateral trade moves between pairs of firms. These trade moves are ex-
. th . .
changes of contracts to deliver goods. The k enterprise manager promises
to deliver marketed goods to the manager of k'. This promise is based on

his current net position due to accumulated contracts from past trade moves,

(29)
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his knowledge of the production set Yk and the revenue from planned goods
that can be obtained by exchanging marketed goods. Feldman [8] has shown that
if we restrict attention to sequences of bilateral trade moves such that
each pair of traders meet every so often and each trade camnot be blocked
by the pair trading and if certain other conditions hold, then every limit
point of such a sequence is the market equilibrium described in (13).

An allocation is a vector 2z = (y21,...,y2K) of marketed goods. A
trade is a move from an allocation 2z to an allocation w. The set of
= 0}.

feasible allocations is A= {z = (y21,. e Y

vV | Yo € Yous Ty

It is contained in a projection of the set 7% of (4). Since 7 was
shown to be bounded in the proof to Lemma 1, A is bounded and. since Y, 1is
closed (A.1), A is compact. The set A corresponds with the set A(w)

in Feldman [8], page 464.

A bilateral trade between k and k 1is a movement from an allocation

z' € A to an allocation =z'" € A such that for all but at

' = N
Yo ~ Yok

it

. K
most two firms (i.e., for all k €% ~ f,k}) and such that ﬁk(yék) n (ygk)

for all k. The trade is optimizing if there is no allocation z° € A

such that for all k £+~ [k} and = (y5) > (yp) for

Yor ~ Yok
some k ¢ {R,ii.

A sequence of trade moves is described by the sequence of allocations
{zq}. A round of trade moves is the interval {q'. q' +1,...,q' + m}.
]

The sequence is a rotating sequence if for every gq' and every pair of

firms {E,i} there is a qe {q',...,q" + m} at which time the pair

{k,i? meet. In order that every possible pair meets in each round,

m = K(K-1)/2.
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The following Theorem gives sufficient conditions under which

sequences of bilateral trade moves lead to an equilibrium satisfying (13).

Theorem 3 Suppose A.l, 3, 4, 9, 10, 11 hold and each firm has a
strictly positive initial endowment of the good £, Wop g ? described
in A.10. Also, suppose {zq} is a sequence of allocations resulting
from a rotating sequence of optimizing bilateral trade moves and

suppose that for some ¢, the set {z € A i nk(zk) = nk(zg) Y k € v}

is contained in the interior of A. Then any limit point of {z1} is

an equilibrium satisfying the conditions of (13).

proof:
As noted above, from A.l, 3, 4, the set A 1is compact and convex.
; . k .
Lemmas 4, 5, 6 and 7 state that each revenue function n has continuous

first partial derivatives, represents preferences >k that are continuous,

strictly convex and are monotone decreasing in at least one common componsznt,

f. From Theorem 3 in Feldman [8] any limit point z* of {zq1 is Pareto
Optimal (and hence all such limit points are valued equally by each firm
since the sequence {nk(zg)} is non-decreasing by the definition of an
optimizing bilateral move). That is, there is no allocation z € A such

that
nk(zk) = ﬁk(zi), > for some k £%v.

Since z* €A, ¥ zz = 0. Define the level set

% : k - k, =«
Ur = {zk Yo 1 T (zk) oo (zk)} for each k € ¥.

(30)

(€)Y
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b k
From (30), 0O ¢ Bd Z,Uﬂ. Since each ¢ is continuous and concave by

Lemmas 4 and 5, Uﬁ is convex and closed. Thus there is a hyperplane

.
Py

% supporting Z U~ at 2 z¥ = 0. Let the vector p; be normal to &.

k k

k
Since 11 is decreasing, it follows that, for each k ¢ %,

P > % *
P52 Z Py for all z, € Uk'

o

Let yik e Y1k so that piyik = nk(zi). Then

S:‘:ZS *
P1Y K = PV qx for all Y1k € Ylk(z ).

k

Now suppose that Then, by definition of 1,

You € Yo )
K Ko
T (ka) =17 (zk). Thus

Y2k(y1k) o Uk for all k & %.

From (32) and (34)

. L )

Poz ZE Py¥y Ffor all yo & ¥y (yy)-

(33) and (35) imply

P, b 2, E PV, for all y, € yz (z ylk)
and

s P S *
> 2 .
p1 z Y1k = ply1 for all Y1 e fl (@ zk)

Since 9 1is convex and smooth by A.9 there is a hyperplane Nﬁ

L

supporting Y at (2 y;k, Z zi) with normalizations pi & Epl and

p; . Epz by Lemma B.3. Define p; to be proportional to p; so that

(32)

(33)

(3%

(35

(36)
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Al
w

(pi,p;) is normal to Nx, and define yik = y;k, yzk =z for

Il

each k € ¥v. (p;, yik, y;k) is an equilibrium satisfying (13).

In the same manner, a bilateral trade process will lead to the
equilibrium defined in (19) by substituting the sets Zk defined in the

Corollary to Theorem 1 for Yk in Lemmas 4 - 7 above and in the above

Theorem.

Corollary Every limit point of a rotating sequence of optimizing
bilateral trade moves, in which firms take the plan quotas yik as

given, is a solution to the plan implementation rules (19).

qed.
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Conclusion

Combining Section 5 with S:ction 2 we have an economic system con-
sisting of planning and market subsystems. The planning and market sub-
systems are distinguished by the nature of the information flows. In the
planning subsystem information flows vertically, between a firm and the
center. Information flows horizontally in the market subsystem between
individual firms. The planning subsystem satisfies the Malinvaud criteria
for evaluating planning procedures, and involves less computation and
communication than other memory based planning procedures. The market sub-
subsystem, consisting of a bilaterial exchange process among the firms con-
verges to a market equilibrium. The mixed system enjoys some informational
efficiency over a pure planning system when production sets are not bounded,
provided labor (or some other essential input) in included among the marketed
commodities.

The model is limited in that it does not take into account final con-
sumption by private individuals. Lange. in his discussion of the role of
markets in a socialist economy in [21] emphasized the need for the inclusion
of labor among marketed goods in order to insure freedom of consumer choice. Our
result is that there is a technological reason, based on communication costs,
for labor to be allocated by markets, without considering private consumption

of individuals.
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APPENDIX A
Summary of the Model
n the number of commodities
ng the number of planned goods
n, the number of marketed goods; n, =n - ny
X ng vector of final consumption of planned goods
n
X admissible set of final consumption vectors: X C g !
U Central agent's utility function; U: X R
4 index set of firms
K cardinality of the szt %
Vi an n vector of net output by firm k
Y1k the planned goods component subvector of Vit Vi T Qlyk
Yok the marketed goods component subvector of Yt Yor T QZyk
Yy the set of producible vectors Vi by firm k1
Y1y the set of firm k producible planned goods vectors: Yo QIYk
Yo T oYy
Ylk(y2k) The set of planned goods vectors producible by firm k

when marketed goods are fixed at the level Yor:

n
] . 1
YO0 = Dy b Oeyg) © [t =210 e x fyyh.

= 2

the aggregate production set: =7 Y
P

n
- N 1
Y EOY Uy = e e Tx {y,1)
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n

2
Uy B0 5 YUpy(y) = 0,0 [y dx 27

W, initial endowment of planned goods

Wy kEE firm's ownership of marketed goods endowments.

Mathematical Notation

pn the n dimensional Euclidean space

n . .
Let x and y be vectors in » . Define the relations >, =, and

1]
—
j=]

x>y if X, > y; for all 1

- . - .
x =y iff X, 2V, for all i

1l
—
.

.,0

x >y iff x= y but x # y.

x y the Cartesian product of the vectors x and vy

jed

A

II v, an abbreviation of T y..
] j€g

R !
91 the projection mapping of g into R ;-91(y1,y2) = vy

nl+n2 n

2
&y: P ? P8,y Ty,

T vy. the Cartesian product of the vectors yj for all j in the index set



bl -

- K(n1+ n2) Knl “
PR + P ;91(kgK(ylk,y2k)) = kénKylk
S R T ) =

2° b k?}( Y1k Y2k ol T2k

n
Py the nonnegative orthant of &

(0 the nonnegative orthant of a Euclidean Space whose dimension can be

determined from context

x, =1 }; the unit simplex

o

4= {x €ep|

X +yY =x+y for all x £ X and all y € Y}

m
~
N
N

X-Y={z|z=x-yforall x¢ X and all y¢€ Y}

X~Y={x€eXx|xdY}
Iz the Euclidean norm (distance)
B, = {x | I'xll< 8 1; the Euclidean ball of radius &

clC= N (C+ B ); the closure of the set C
50 8

int C={xeC |d6>03 {x} +B cC}; the interior of ¢

8

Bd C cl C ~ int C; the boundary of C

ri C the interior of C relative to the affine hull of C

+
o0ce {y ] (x +y) € C for every A= 0 and x € C} ; the recession cone of C

smooth The convex set C 1is smooth if, for every c¢ € Bd C, there is one

and only one hyperplane through ¢ supporting C.
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APPENDIX B

Lemma B.1 Let { T aq} be a sequence such that al £ 7 for all q and
R ) 4 4 £

. . . m . ..
for each ¢ in <, where VL is a set in p and # 1is a finite set of

+ +
integers. Suppose (0 ¢l = ﬂﬂ) N0 el - Zﬁz) = {0} and the sequence
£ £

{= azl} is bounded. Then the sequence {T] azl} is also bounded.
£

Proof: (From Hurwicz and Reiter [18], Theorem 1.)

Suppose that, for some £ ¢ £, {HaSH + o as q -+ . Define

2.,
y/ fed ~{}

Since az € dﬂ, for all 4 e &£, ul € Fﬂ‘,@ and v4 € Zdﬂ . Let

2 2
U= {ul,u ...} and V= {vl,v s...}. Then U and V are contained in 24,
Hurwicz and Reiter show that i azll + » implies that there is an a # 0
such that - a € 0clVvand a € 0 ¢l U. This implies that

* +
a € (0+ cl Tﬂz YN (0 cl - 27‘2 ), which contradicts the hypotheses of the

Lemma.
Q.E.D.

Lemma B.2 Let Z be a convex set in £ P with non-empty interior and let

z = (X,y) € Bd Z. If uc¢ P" is a vector such that uX = ux for all (x,y) € Z,



A

-
then there is a hyperplane in & P with normalization u in Em such

that the hyperplane supports Z at =z.

Proof:
. . . . , rHp
By hypothesis, int Z 1is relatively open in #& . The set

i p

M= {(x,y) | ux = ux} is a nonempty affine set in P that does not meet

int Z. By Theorem 11.2 1in [29], there is a hyperplane ¥ containing M such
that Z 1is bounded by #. Since & contains M, % must pass through =z.

Thus % 1is a supporting hyperplane for Z at z. Furthermore, since ¥

m
contains M, % must have the normalization u in £ .

Q.E.D.

-
Lemma B.3 Let Z be a smooth convex set in g P yith nonempty interior,

and let z = (;,;) € Bd Z2, 1If u¢€ pnl is a vector such that ux = ux for
all (x,?) € Z and if v € pp is a vector such that vy = vy for all

mrtp . /?m

(x,y) € Z, then there is a hyperplane in g with normalization u in

and v in pp such that the hyperplane supports Z at z.

proof:

By Lemma B.2, there are two hyperplanes supporting Z at =z, one

m . . . .
with normalization u in # the other with normalization v in Ep. But

Z 1is smooth. The two hyperplanes must be identical.

Lemma B.4 Let {ps} be a convergent sequence in the simplex ./ with limit
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At

i s
point p and let {p°x } and {U(x®)} be convergent sequences with

v * S
limit points a and U such that for each s x € X,

(1) psx > psxS for all x € X such that U(x) > U(xs). and

S s s 0 o )
(ii) px = p x where x ¢ int X.

1. . .
If U: X» P is a continuous function on the closed, convex set X,

) N

(iii) pwx > ax for all x € X such that U(x) > UW.

proof:

Suppose x 1is an element of X such that U(x) > U, Then, by

of U, there is an so > 0 such that U() > U(Xs) for all s > SO

~ o~

iy, psx > psxs for all s > so. In the limit, p“ X = a . Hence

e KN )
<

P X = a for all x € X such that Ux) > UW.

A

Since ps €/ and o 1s compact, pA € . Thus

o g o, oo

Since psxs = psx (by (ii)), a’ = pﬁ)<o. Since x° € int X and p“

a # minimum p x.
X

From (1)

At ot oo
W W

U(x) = U for all x € X such that p x < a

then

continuity

From

(D

(2)

> 0,

(3)

%)
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A an L ~

By (3), there is am x ¢ X such that P X < a . Suppose x £ X 1is

(e N
i<

such that pKX = a . Let {eq} be a sequence such that §% ¢ (0,11 for
all q and 694 0. Take x%9=0%+ (1 -89 x. For each q, pwifl <a

so that U(xq) =y (by (4)). By continuity of U, U(xq) + U(x). Hence

-~ O

U(x) = U . Therefore,

e

U(x) = U~ for all x € X such that pwx =a . (5)

(iii) follows from (4) and (5).

Lemma B.5 Let Z <@

be a convex, compact set with elements of the
form (y,x) where y & pm and x G,QP. Then the correspondence F from

QXA to QyZ such that
F(x) = {y e " | (y,%) € 2]

is continuous, where Qx and @y are the projection mappings

Qx(y;x) = X, Qy(y:x) =Y.

Proof:
The graph of F(x) 1is the compact set Z. Thus F(x) is upper semi-
continuous. It remains to show that F 1is lower semi-continuous.

Let C be an open set in Qyz- Then

-1

Fc={xep’ | Fx)NC+ 8}

-1
2, L@ o) nzl.
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Suppose C 1is also convex. Since C 1is open, ri C = C. Clearly,<9-lC # 0
y

and <9y is a linear transformation. Hence, by Theorem (.7 of {29],

-1 -1 -1
ri 2 C=_"C and Qy C 1is an open set. By Theorem 3.4 of [29],

Q;IC is also convex. Therefore, since C C 2 Z,<Q;IC N Z 1is a nonempty,
y

convex open set in Z. Thus, by Theorem 6.6 in [29], ri QX[GQ;IC) nzy =

-1 -1
QX[Q?Y C)N Z]. Thus F "C 1is an open set. If C 1is not convex, then there
is a covering of open convex sets C; such that Ci = C (namely, the open
Euclidean balls of selected rational points in C ( Berge [4], Theorem 1,

page 93). For each of these open convex sets, F Ci is open. It is easy

-1 - -
to show that F C=UF 1Ci. Thus, F 1C is an open set. Hence F is

lower semi-continuous, by Berge [4}, Theorem 1, page 109.
Q.E.D.

Lemma B.6 Suppose Z is a smooth, closed,convex set in g , and f 1is

a function on ‘Qy Z, the projection of Z into @n, such that

f(y) = Maximum px

X(y)

where X(y) 1is the mapping X(y) = {x € Pm | (x,y) € 2} . Then the level

il

set U(y) {y € QyZ . f(y) = f£(y))? 1is smooth at each y ¢ 9yZ.
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Proof:

Suppose false. Then for some 7y € QyZ there are vectors u, v € o/ such

that u is not proportional to v and
vy = vy for all y € U(y), and (1)

uy = uy for all y € U(y). (ii)

~ ~

Define x € Rm so that x € X(y) and px = f(y). Then

~ ~

x maximises px subject to x € X(y). (iii)

Consider the set Y(x) = {y € Pn | (x,y) € Z}. For every y € Y(x),

there is an x € X(y) such that px = px, since x € X(y). Thus, for every

y € Y(;), f(y) = f(;). Hence Y(;) c U(;). But, from (i) and (ii),

vy =2 vy for all y € Y(x), and (iv)
uy = uy for all y ¢ Y(x). (v)

From smoothness of Z, from (iii), (iv) and {v) and from Lemma B.3, there

are distinct hyperplanes % with normalizations p and v in ?m and in

n ww . . - . . n .
R , and ¥ with normalizations p and u in Rm and in g supporting

Z at (x,y). This is a contradiction, since, by the smoothness of Z, there

can only be one such hyperplane. Thus U(y) 1is smooth at all y € QyZ.

Q.E.D.
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