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Author’s Note:

This paper examines the traditional Let’s Make a Deal
problem as well as a family of similar problems. It
introduces a possible bias in decision making that may
lead to the common mistake in Let’s Make a Deal and
summarizes the results of experiments testing this bias.
As will be elaborated in the paper, the Let’s Make a Deal
problem strikes a mathematical nerve in a predominantly
innumerate world. Debates over its solution enliven
mathematicians, probabilists, decision scientists and
laypersons alike.



1 Introduction

Thirty-two years ago Martin Gardner featured a mathematical
puzzle about three prisoners on death row in his popular Scientific
American column (Gardner 1959). He noted that it was "making the
rounds" in the academic community. Recently the prcblem has
resurfaced as the Let’s Make a Deal problem, the name being derived
from a television game show. Its return has merited among other
mentions a front page New York Times article (Tierney 1991), a
series of letters in Parade (Vos Savant 1991), and discussion in
nainstream economic journals (Nalebuff 1987, 1990). An encrmous
amount of informal evidence from elementary school classrooms,
graduate decision theory seminars, dinner conversations, and
perscnal experience supports a single conclusion: most people get
the wrong answer.

In its present form the Let’s Make a Deal problem (hereafter
LMAD) consists of three stages. 1In the first stage the contestant
randomly selects one dcoor from among three with the goal of
locating the one door which hides a prize. In the second stage,
the host, Monty Hall, opens an incorrect door from among the two
unchosen doors. Finally, in the third stage, Monty asks the
contestant whether she would like to switch from her initial choice
to the remaining unopened door. At the completion of the three
stages, Monty opens the remaining two doors awarding the prize only

if the contestant’s door conceals the prize. While the problem’s



formulation is simple enough, explaining its answer - 1if the
contestant knows all three stages of the game she should switch -
is not. Many people, at least initially, believe that switching
confers no advantage. Two doors remain. The correct door was
chosen randomly; therefore, both doors have egqual probability of
being correct. The error in this logic will be discussed later in
the paper.

Perhaps more confusing than LMAD’s answer is 1its appeal.
Mathematical story problems are almost universally abhorred. A
favorite FAR SIDE cartoon by Gary Larson depicts Hell’s Library as
consisting of two books, Story Problems and More Story Problens.
LMAD’s simple formulation well known by a generation raised on
television and its incorrect salient solution make it exceptional
and interesting. Moreover, the correct solution’s subtle proof
never convinces some of its veracity which adds to LMAD’s allure.
Finally, for those who grow exasperated as their logical arguments
fail to convince others of the solution, the problem provides a
hint as to how mathematicians can get so excited with just chalk
and symbols.

In light of LMAD’s rebirth, this paper investigates the
problem with the hope of gaining a better understanding of the bias
in decision making that causes people to get it wrong. The
remainder of the paper is organized as follows. It begins with a
formal mathematical proof and an exploration of the incorrect
"logic" that most people employ to arrive at the wrong answer. The

next section summarizes experiments on people previously unexposed



to LMAD. These experiments support two conclusiens; first,
increasing the number of doors makes the problem easier; and
second, people have difficulty 1learning LMAD. The paper also
considers problems similar to LMAD which elucidate the bias leading
to incorrect decisions. The paper concludes with a brief
recapitulation and an intriguing offer. Three appendices follow
which include proofs for some of the more complicated claims made

in the paper and a detailed explanation of the experiments.

2. And Behind Door #1...

LMAD confuses almost everyone. The fact that mathematicians
have difficulty shows that the error cannot be due to an inability
to update probabilities. Anyone who knows Bayes’ rule can
recognize the advantage of switching if provided with the correct
initial and conditional probabilities. Errors arise because people
misinterpret the information resulting from the revelation of an
incorrect door. Accordingly, mathematicians’ debates over LMAD
typically center on how to update and not on whether to update.
This improper updating represents a "systematic violation" of
rationality and leads Nalebuff (1987) to ask whether we "should
lock for alternatives to Bayes Rule."

In defense of those people who arrived at the incorrect
answer, imprecise wording of LMAD may make switching no better than
standing pat. As will be formalized later, slight changes in the
wording affect the updating and the optimal strategy. The proper

formulation of LMAD and its solution are given below:
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LMAD: There are three doors, one of which was chosen randomly to
conceal a prize. A contestant is asked to select which door she
thinks hides the prize. After the contestant selects, Monty Hall
randomly reveals one door from among those doors she did not choose
which do not conceal the prize. After revealing an incorrect door,
Monty Hall offers the contestant the opportunity to switch to the
remaining unchosen door. If the prize is behind her selected door,
she receives it. If the contestant knows all of the stages of the
game should she switch?

To best analyze the problem, each stage will be analyzed

individually.

There are three doors, one of which was chosen randomly to
conceal a prize.

The correct door was assigned randomly; therefore, the

probability that any given door is correct is one third:

DOOR #1 DOOR #2 DOOR #3
p(l) = 1/3 p(2) = 1/3 p(3) = 1/3
where p(1i) = probability that door i is correct.

A contestant is asked to select which door she thinks hides
the prize.

Let door 1 be the door that she chooses. can write the

probabilities that she is correct and incorrect as:

DOOR i DOOR j and DOOR k
p(i)= 1/3 p(3) + p(k) = 2/3
(Correct) (Incorrect)



After the contestant selects, Monty Hall randomly reveals one
door from among those doors she did not choose which do not conceal
the prize.

We provide two explanations of how to correctly update the
probabilities. The first uses Bayes’ rule and the second a

reversal of ordering argument.

Bayes’ Rule: There are two possible cases, either Monty reveals
door j or he reveals door k. Without loss of generality assume
that he reveals door j. There are two events that could have led

to door j being revealed.

Event 1: Door i conceals the prize (probability 1/3) and Monty
randomly chose door Jj from among from door j and door k
(probability 1/2). The probability of this event is (1/3)-(1/2) =

1/6.

Event 2: Door k conceals the prize (probability 1/3), forcing Monty
to reveal door j (probability 1). The probability of this event is

(1/3)- (1) = 1/3.

The conditional probability that door i, the initially chosen door,
is correct given that Monty reveals door j is: (1/6)/[(1/3) +1/6)]
= 1/3. The probability that door k, the unchosen unopened door is

correct is 2/3.



Reversal of ordering: In LMAD, Monty Hall shows the contestant the
incorrectness of one of the two unchosen doors before offering the
switch. Suppose instead that he offers the contestant both
unchosen doors before revealing an incorrect door. Clearly, the
contestant should switch. She doubles her odds. After switching
she knows that both of her doors cannot conceal the prize. If
Monty (knowingly) reveals an incorrect door from among her two
doors, he does not alter her probability of winning. The timing of
the revelation, specifically whether it occurs before or after the
offer to switch, does not effect the optimal choice. In either
case she should choose both dcors, even if one has been shown
incorrect.

After revealing an Iincorrect door, Monty Hall offers the
contestant the opportunity to switch to the remaining unchosen
door. If the prize is behind her selected door, she receives it.
If the contestant knows all of the stages of the game should she
switch?

The probability that the door she chose, door i, is correct is
only 1/3, and the probability that the other unopened door is
correct is 2/3. Switching doubles her odds of winning, so yes she
shculd switch.

As mentioned earlier, even students of probability theory can
believe that switching affords no advantage. The error in computing
probabilities occurs not because of an inability to update but
because of improper updating. The probability that the initially
selected door 1is correct is updated when it should not be. The
opening of an incorrect door should only be seen as a signal as to
which, if either, of the unchosen doors is correct. Instead, the
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revelation causes an (unwarranted) increased belief that the
initial choice is correct. An examination of the canonical
incorrect argument clarifies the point.

The Incorrect Argument: Originally there were three doors, each
equally 1likely. One door was shown not to conceal the prize,
therefore, the two remaining doors each have probability 1/2 of
bging correct. Switching does not IiIncrease the probability of
winning.

This argument misinterprets how the information affects the
probabilities of the two remaining doors. At the point in the game
when Monty offers the contestant the switch, one of the unchosen
doors has not been revealed. Remember that according to the rules,
the initially chosen door could not have been opened, while the
remaining unopened door could have been, but only iIf it was
incorrect. Therefore, the unchosen door has survived a test of
revelation which the initial door has not. The LMAD bias can be
characterized as an inability to recognize that the revelation only
tests the likelihood of the unchosen door. The revelation does not
test the likelihood of the initial door which could not have been
opened in stage two.

The LMAD bias should be distinguished from what Dawes (1988)
refers to as "distributing ignorance equally across verbally
defined categories." For example, if two coins are flipped then
either 0, 1, or 2 heads could occur. Someone who distributes
ignorance equally would deduce that each event has probability 1/3.
The LMAD bias, not recognizing that an event has undergone an

additional test of 1likelihood, differs entirely. In Dawes’



treatment subjects count the events and assign equal probability to
each. In LMAD contestants begin with correct initial probabilities
(all of the doors are equally 1likely to conceal the prize), but
upon receipt of more information, mistakenly treat the revelation
of a door as though its effect was symmetric and maintain equal
probability of the events.

If in fact the LMAD bias causes people to stand pat rather
than switch, fewer people should commit errors as the existence of
the test becomes clearer. As has been suggested by Littlechild and
others (Nalebuff 1990) increasing the number of doors makes the
test more obvious. If the contestant chooses from among one
hundred doors and in stage two sees ninety-eight incorrect doors
from among the ninety-nine unchosen dcors, she should be more
likely to recognize the asymmetry of the test. The unchosen door
survived a test while her initial choice was guaranteed safe
harbor. Even if she cannot compute the probabilities at all, much
less precisely, the logic of switching should be more apparent. As
will be detailed in the next section, increasing the number of
doors to one hundred made the bias less commonplace.

Generally, biases can be overcome when the numbers are taken
to extremes. Stretching the Dawes example above, few people would
believe that one hundred tosses of a fair coin are as likely to
yield no heads as fifty. 1In the case of another well known bias,
only Sherlock Holmes recognized that one dog not barking was an

important clue, but anyone would have deduced that only a friendly



intruder could slip by one hundred and one dalmatians.’

Before proceeding to the results of the experiments, no
treatment of LMAD wculd be complete without mentioning that if the
three stages of the game are not known to the player then switching
need not be optimal. Suppose that Monty offers the switch only
when the contested has initially selected the correct door. 1In
other words, Monty Hall only gives the option of taking "the other
door" when "the other door" is wrong . In this scenario, whenever

Monty offers a door the contestant should refuse.

3. Experiments

We ran two sets of experiments for real money to test our
hypothesis. The first experiment asked whether LMAD becomes easier
as the number of doors increases. We considered three cases, n =
3, 10 and 100, where n equals the number of doors. These games
will be referred to as LMAD(3), LMAD(10) and LMAD(100)
respectively. To minimize framing effects (Kahneman and Tversky
1979), the second stage of the game was cast as "n-2 incorrect
doors have been randomly selected from the n-1 unchosen doors" as
opposed to "the correct door must be either the initial door or
door k." Furthermore, our wording of the crucial part of the
experiment agrees with the game show which emphasizes revealing bad
outcomes. For a precise characterization of the experiments see

Appendix 3.

1T would like to thank Max Bazerman for suggesting this line of argument.
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Our expectation that the bias would be decreasing in the
number of doors was strongly supported. The subjects were fifty MBA
students in a decision making class. Winners, those who had the
guessed the correct door at the end of the game, received five
dollars. Losers received nothing. ©Only two of seventeen switched
in LMAD(3). In LMAD(10), eight of seventeen switched, while in
LMAD(100) fourteen of sixteen switched. Table 1 gives the
proportion of individuals who switched and 95% confidence intervals

for these results.

Table 1
# Doors #Switch p(Switch) .95 CI
3 2 out of 17 .116 .02 < p £ .33
10 8 out of 17 471 .26 < p £ .69
100 14 out of 16 .875 .66 < p £ .98

The subjects were also asked to estimate the probability that
their initial and final selections were correct: the former to
guarantee they understood the game’s formulation the latter its
soluticn. In LMAD(3), six of seventeen (35%) correctly estimated
the odds of that the initial door was correct after the revelation
at 1/3. However, four of these people did not switch. Discussion
following as well as written comments made during the experiment
hinted that many of these subjects thought that switching did not
matter. In short, subjects neglected to update the probabilities
so that they added to one. In LMAD(10) five of seventeen (29%)
correctly estimated the probability of the other door at 9/10 and
all of the rest except one believed the odds were even. In
IMAD(100) exactly half of the 16 subjects switched and correctly
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estimated their probability of winning to be 99/100. Of the rest,
all of whom claimed that the probability of winning after switching
was one half, three quarters switched. This switching in the face
of possible regret implies that even though the subjects could not
correctly compute probabilities, they acted 'as if" they were
Bayesians. Moreover, these results support our characterization of
the bias. As the number of doors increased, subjects were more
likely to recognize the additional test survived by the alternative
door.

The second set of experiments used forty-six MBA students who
recently spent three weeks studying probability. The subjects were
divided into two groups. Group 1 played the traditional LMAD(3)
with winners paid $5 and losers nothing, and group 2 simultaneously
played both LMAD(3) and LMAD(100) for $3 and $2 respectively.
Group 1 was used as a control. Briefly, only three of twenty-four
subjects in Group 1 switched and a different set of three correctly
computed the probability of winning. As was the case in the
previous experiment, the written comments of the subjects with
correct probabilities show that they believed switching neither
improved nor decreased their probability of winning. Of the three
who switched, two volunteered during discussion that they did so
capriciously.

The subjects in Group 2, who played the LMAD(3) and LMAD(100)
simultaneously, had difficulty learning LMAD(3). Even though the
wording of the two games was ildentical (except for the number of

doors) the results for IMAD(3) differ only slightly from the
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control group’s. Only four of twenty-two in Group 2 switched in
IMAD(3). While those four individuals also switched in LMAD(100)
all estimated the probability incorrectly in not only LMAD (3} but
also in LMAD(100). None of the subjects who correctly computed the

probabilities in LMAD(100) recognized the similarities in the games

and "learned" to switch in LMAD(3). In other words, no one learned
through mathematical reasoning. Eighteen of the twenty-two
subjects playing both games switched in LMAD(100). Twelve of the

eighteen (66%) who switched estimated their probability of winning
at 1/2 and only five (28%) computed the correct probability. Table

2 below summarizes the results.

Table 2
Group# # Doors #Switch p(Switch) .95 CI
1 3 3 of 24 .125 .03 £ p £ .29
2 3 4 of 22 .182 .06 < p £ .37
2 100 18 of 22 .875 .63 £ p £ .94

Discussion following the experiments indicated those subjects
who felt that the odds were even in LMAD(3) may have remained with
their initial choice out of either inertia or regret avoidance. 1In
LMAD(100), many "knew" switching was better despite their inability
to prove so mathematically. Again, subjects intuitively recognized
the optimal strategy without being able to formally Jjustify it.
Arguments in favor of switching emphasized the unlikelihood that
the initial door was correct and the obvious increase in the
likelihood of the alternative. No coherent explanations were

offered as to why the same logic did not hold in LMAD(3). Comments
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typically took the form "they seemed different somehow." This
difference drives the bias. 1In LMAD(100), the opening of ninety-
eight incorrect unchosen doors makes transparent the asymmetric
affects on the likelihood of the initial door and the remaining
unchosen door. In LMAD(3), revealing one incorrect unchosen door
does not appear to impact the likelihood of the initial door and

the remaining door asymmetrically.

4. Variations on a Theme

LMAD can take many equivalent forms. Gardner’s (1959)
original story tells of three prisoners, one of whom was randomly
selected to be sent to the gallows. The Warden has not vyet
announced the outcome of the selection process. The first prisoner
asks the warden for the name of one of the others who will not be
killed. After being told that the third prisoner will not be
killed, the first prisoner’s probability of being selected is..?
Additional verbal representations of mathematically equivalent
problems, while fun, add 1less to our understanding than other
mathematical forms which create the same difficulties for decision
makers. Alan Truscott (1991) recently dealt (pun intended) with
just such a problem in his bridge column. His example will be
summarized below (for a full treatment see Appendix 2). Another
problem first mentioned by Gardner (1959) which may be even more
difficult than LMAD(3) will also be discussed. Gardner’s problem
will be extended to three "Myrtle problems", the name Myrtle being

liberated from Paulos (1988) who elaborates on a variant of the
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puzzle in his fun little book Innumeracy. Finally, conditions on
random variables used by Kirschenhieter (1991) will be shown to
generate many LMAD type problems.

The essence of Truscott’s bridge problem can be understood
without the formal argument. Briefly, a card player must guess
whether Player 2 or Player 4 holds the jack of hearts. Ignoring
other information, Player 4 can be shown to be more likely to hold
the card using simple counting arguments. Suppose though that on
the previous trick Player 4 laid the queen of hearts. Experienced
card players know that if Player 4 held both the jack and the
queen, he would have been indifferent between which card he played
first. Therefore, the 1likelihood that Player 4 holds the jack
decreases, given that were he to have it, he might have played it.
Player 2, having given no such signal, is more likely to hold the
jack. (See Appendix 2)

A distinction can be drawn between Truscott’s problem and
LMAD. In the latter, two alternatives are not equally likely
because one has undergone an additional test which increases its
probability relative to the other. 1In the former, the additional
test (that Player 4 could have tossed the Jjack previously)
decreases the probability of one event (Player 4 holding the jack),
making the other event (Player 2 holding it) more likely.

The next set of problems may be even more difficult than
LMAD(3). Evidence from informal pre-tests supports the conjecture
that the Myrtle problems trip up even the most formal decision

makers.
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The Myrtle Problems: A census worker and amateur probabilist
arrives at a household which claimed two children but neglected to
specify thelir gender. Assume that boys and girls are equally
likely. Consider the following three separate scenarios:

Scenario 1: The Census worker meets the oldest child, named Myrtle,
what 1is the probability that she has a younger sister?

Scenario 2: The census worker asks the mother, "do you have at
least one daughter?” The mother replies that she does. What is the
probability that she also has a son?

Scenario 3: Randomly a child, Myrtle, enters the living room where
the interview is being conducted. What is the probability that the
other child is a boy?

The answer to Scenario 1 is 1/2. Boys and girls are equally
likely. The younger child has equal probability of being either.
The answer to Scenario 3 is also 1/2. The child that the census
worker sees was randomly selected. Therefore, the other child,
also randomly selected, is equally likely to be either a boy or a
girl.

The answer to Scenario 2 is 2/3. How can this be? The answer
can be arrived at in two ways. First, using formal probability:
Initially there were four equally likely cases, bb, bg, gb, and gg,
where gb means that the older child is a girl and the younger a
boy. The information that the mother has a daughter rules out the
case bb. However, it does not make any of the other three more or
less likely than the other. The three remaining cases, bg, gb, and
gg are all equally likely. In two of the three cases the octher
child is a boy, thus the probability of 2/3.

The second explanation uses the idea of an additional test. In
Scenario 1 the gender of the older child does not test in any way

the gender of the younger. Similarly, in Scenario 3, the gender of
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random child does not test in any way the gender of the other
child. However, in Scenario 2, verifying that there exists a girl
implies that both children’s genders may have been tested. Suppose
that the census worker was asked by the Census Bureau to verify the
mother’s answer. He could select the children in any order: older-
younger, taller-shorter, randomly, etc. There are three cases of

interest:

Case 1: The first child in the ordering is a girl
Case 2: The first child is a boy, and the second a girl.

Case 3: Both children are boys.

Only in Cases 1 and 2 could the census worker report that the
mother’s answer had been truthful. Given an affirmative response,
with positive probability both children have been viewed (Case 2).
More important, if they were, then the first child was a boy. An
affirmative answer implies that with positive probability two
children were viewed and one was a boy, but with probability zero
two children were viewed and both were girls. Therefore, the
probability that the mother has a son exceeds one-half.

If confusing LMAD and Myrtle type problems only occurred in
game shows, bridge tournaments, and math examinations, their
importance would be primarily diversionary. However, similar
problems can arise in the analysis of more important phenomena.
Kirschenheiter (1991) compares incentive aspects of disclosing

market and historical costs of assets to shareholders. He asks
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when a firm might prefer to withhold one of the two valuations from
the potential shareholders. He shows, given technical assumptions,
that withholding occurs if p,,'p, > P, where p equals the
correlation coefficient between x and y, and the variables x, vy, z
represent the market cost, historical cost, and shareholder value
of an asset respectively. He further requires that all of the p;;’'s
are greater than or equal to zero.

How does this relate to LMAD? Consider a simple example where
Py, Py, > Py, and all of the p;;’s > 0. Let x and z be independent
and equal 1 with probability 1/2 and 0 with probability 1/2. There
are four possible states {x,z} = {0,0}, {0,1}, {1,0}, and {1,1}
each equally 1likely with probability 1/4. Let y be a random
variable whose value depends on x and z. If x=z then y=x=z with
probability 1. If, on the other hand, x = (1-z), then y equals 1.
A simple calculation shows that Py = Py~ 1/2, and p, = O,
satisfying the assumptions. More to the point, we can now show the
equivalence of the example and Scenario 2 of the Myrtle problems.

Let x be the older child’s gender and z the younger’s, with
1’s denocting girls and 0’s boys. Let the variable y represent the
question "do you have at least one daughter?", with 1 representing
a yes and 0 representing a no. Clearly, x and z are independent
each equalling 1 and 0 with probability 1/2. Also, the two
conditions for y are met: If x=z, then y=x=z, (if both children are
girls the mother answers yes, if both boys no) and if x=(1-z) then
y=1 (if either is a girl, the mother answers yes). Scenario 2 can

be restated as finding p(x=0 or z=0|y=1). (See Appendix 1)
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Many LMAD type problems can be written by choosing random
variables x, y, z with Py, Py, > P, and all of the p;;s 2 0. The
easiest have x, y, and z taking only the values 0 and 1. We will
present one at the end of this section. A generic LMAD type

problem does not necessarily fit into this formn. Necessary

conditions for a LMAD type problem are:

(1) prob(B) > prob(A) > 0

(2) 0 < prob{(B|y) < prob(Aly)

The first inequality says that event B is at least as probable
as event A before the signal y occurs. The second says that while
y is consistent with either A or B, A is more likely given that y
occurred. In other words, y offers a stronger test of A’s
likelihood than of B’s. All of the problems considered can be put
in this form. In LMAD, 1let B be the event that the door chosen at
the Beginning is correct, and A be the event that the Alternative
door is correct. In Truscott’s problem, let A be the event where
Player 2 holds the jack, and B where Player 4 does.

To use random variables Xx,y,z which satisfy Py, P, > P,, and
p”'s > 0 to form LMAD type problems, let events A and B represent
specific values of x and z respectively or combinations of values
of x and z. Let the random variable y be positively correlated
with both x and z but be asymmetrically consistent with values of

x and z. Consider the following example:
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Bowling Romans: Romulus and his identical twin Remus have both
gone bowling. Romulus being the happiest of men always smiles.
Remus on the other hand smiles every other day. His mood today is
not known. There are two alleys in town, One Alley Lane and Big
Zero’s Gutter House. Assume that each brother independently flips
a coin to determine which alley to visit. Richard Nixon, yet
another avid bowler, appears with a One Alley Lane scorecard and
upon being asked if he saw a smiling person fitting Romulus/Remus’
physical description, Nixon responds (honestly!) that he did. What
is the probability that both Romulus and Remus are at One Alley
Lane?

Appendix 2 provides the answer to Bowling Romans, we leave
the formal proof to the motivated reader. Bowling Romans was
created from random variables satisfying Py Py, > P,, and p;;'s > 0.
Let x be the alley chosen by Remus (either One or Zero), z be the
alley chosen by Romulus, and y be the event that a smiling person
was seen at One Alley Lane. Finally, let A be the probability that
one brother went to Big Zero’s given that the other went to One
Alley Lane, and B be the probability that both brothers went to One
Alley Lane given that one brother went there. 1Initially A and B
have equal probability. Following the revelation of y, they do
not. Additional LMAD type problems are easily made from this basic

mathematical form.

Conclusion:

As expected, careful experimentation with monetary incentives
supported earlier anecdotal evidence that people cannot correctly
solve LMAD; most of the graduate students tested opted not to
switch. More interesting than those results was that as the number

of doors increased ILMAD became less difficult. This result
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supports our conjecture that people do not recognize that the
unopened door has undergone an additional test of 1likelihood.
Written comments during the experiments and discussions following
further supported this conjecture.

Also of interest was the result that playing LMAD(100) and
LMAD(3) simultaneously did not lead to greater understanding of
either problem. ILMAD(3) appears not to be easily learned. The
hope that subjects might be able to arrive at the solution
deductively proved to be in vain. Clearly, repeated playing of
LMAD, where the improved odds resulting from switching will be
manifested in the distribution of wins and losses, would induce
learning. Learning through repeated playing only suggests that
people can recognize an unfair coin after enough flips, not that
they can learn LMAD. Being convinced that the probabilities are
unequal through experiments implies acceptance but not
understanding of LMAD’s proof.

Another intriguing result was that most subjects made the
correct decision in LMAD(10) and LMAD(100) even though they could
not compute correct probabilities. The subjects in LMAD(10) and
LMAD(100) estimated the same probability of being correct as those
whe played LMAD(3), but only the former groups switched.
Probabilistic arguments that 1led to equal 1likelihood were
overridden by logical arguments that the unchosen door had survived
an additional test in LMAD(10) and LMAD(100). Ironically, decision
making instructors stress the opposite; using formal probabilistic

reasoning to correct flawed human logic. On a postive note,
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advocates of rational choice (a.k.a. economists) can find evidence
of "as if" rationality in our subjects’ decisions.

In sum, we were able to make LMAD easier by increasing the
number of doors, but we were not able to induce deductive learning
through our experiments. Whether this rather lengthy paper can

teach LMAD depends partially on the transparency of the following..

Monty Hall arranges a deck of cards face down before you on a
table. You are told that if yocu select the Ace of spades you win
$100. If you select any other card you win $0. After pointing at
your selection, you notice that there are 54 cards on the table.
You exclaim to Monty that he must have left the jokers in the deck.
Monty offers to check, peeking at the cards that you did not
select. Finally, he flips one. It is a joker. He says, "you are
right. Would you like to choose a different card?"

Well, would you?
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Appendix 1

This appendix proves three claims presented in the paper. The
first two claims prove that the host cannot by signalling make
staying with the initial choice the preferred decision. The third
claim formally proves Myrtle Scenario 2.

Claim 1: In LMAD(3) switching is always at least as good as
standing pat regardless of the probabilities with which the host
randomizes between the doors.

pf: Without loss of generality let door 1 be the door initially
chosen. Let p be the probability that the host shows door 2 if
door 1 was correct. If door 3 was correct he must show door 2, and
equivalently, 1if 2 was correct than 3 must be revealed. The
following probabilities are easily computed:

Correct prob(correct) revealed prob(revealed)
door door
1 1/3 2 P
3 1-p
2 1/3 3 1
3 1/3 2 1

There are two cases to be considered. For notational purposes let
p(1lc|2R) equal the probability that door 1 was correct given that
door 2 was revealed and let p(2R|1lc) equal the probability that
door 2 was revealed given that door 1 was correct.

Case 1: Door 2 revealed: Using Bayes’s rule:

p(1lc]|2R) P(2R|1c)/[p(2R|1c) +p(2R]|3c)]

p/[p+1]

Since p < 1, it follows that p(lc|3R) < 1/2

Case 2: Door 3 revealed: Using Bayes’s rule:

p(lc|3R)

P(3R|1c)/[p(3R|1c) +p(3R]|3c)]
= (1-p)/[2-p]

Since p £ 1, it follows that p(lc|3R) < 1/2

Therefore, in both cases switching guarantees at least as high of
a probability of winning as standing pat.
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Claim 2: In LMAD(n) switching is always at least as good as
standing pat regardless of the probabilities with which the host
randomizes between the doors.

pf: Without loss of generality assume that door 1 was initially
chosen and that all doors except door 2 have been revealed to not
contain the prize. Let p(2r|lc) equal the probability that 2 was
the remaining door and door 1 was correct, and let p(lc|2r) equal
the probability that door 1 was correct and door 2 remaining.
Using Bayes’ rule:

p(lc|2r)
p(2c|2r)

p(2r
p(2r

1c)/[p(2r|1lc} + p(2r|2c)]
2c)/[(p(2r|1lc) + p(2r|2c)]

The denominators are the same so only the numerators need be
compared. Switching is preferred iff p(2r|2c) 2> p(2r|lc), but
p(2r|2c) = 1 and p(2r|lc) < 1, which proves the clain.

Claim 3: If X and z are independent random variables each taking
the values 0 and 1 with probability 1/2 and if y is distributed as
follows:

y = x if x =2
y =1 if x = 1-z
then p(x=0 or z=0|y=1) = 2/3.

pf: There are eight possible outcomes. The states and their
probabilities are listed below:

Outcome Prob
{x,¥,2} {x,¥,2}
000 1/4
001 0
010 0
011 1/4
100 0
101 0
110 1/4
111 1/4

Using Bayes’ rule:
p(x=0 or z=0|y=1)

p(010) + pP(011) + p(110)}
p(010) + p(011) + p(l10) + p(11l)

[0 + 1/4 +1/43}/[0 + 1/4 + 1/4 + 1/4]
2/3

[
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Appendix 2

Truscott’s Problem: Bridge is played with a standard deck of
playing cards and four players. Players 1 and 3 comprise one team
and Players 2 and 4 the other. Player 1 leads the first card
followed by Player 2, and so on. After all four have played cards,
whomever wins the "trick" leads the first card of the next one.
FPlayer 3’s cards are placed face up on the table after Player 1l'’s
initial lead, and Player 1 chooses the order in which Player 3
plays his cards. There are two simple rules which determine who
wing a trick and how to play. Assume no trump.

Rule 1. The highest numbered card in the suit led wins.
Rule 2. If possible a player must lay a card of the same suit as
the card led.

Player 1 knows both his cards and the cards of Player 3.

Player 1 Player 3

YA 8 7 5 2 YK 10 6 3
+9 7 2 4 3

*K J 3 &A Q 10 6 4
AL 3 AK 8

Player 1 leads ¥A followed by ¥4 from Player 2, %3 from Player 3
and ¥Q from Player 4. Player 1 then leads ¥8 followed by ¥9 from
Player 2. Should Player 3 lay ¥K or ¥10? In other words, who has
the greater probability of holding %J, Player 2 or Player 4?2 If
Player 2 (Player 4) is more likely to hold ¥J, then Player 3 should
lay %10 (¥K). There are two cases:

Case A Case B
Player 2 Player 4 Player 2 Player 4
vJ ¢ 4 vQ vo 4 o J

In each case, twenty two cards remain to be allocated to the
two players. Simple counting arguments show that in Case A there
are 646,646 possible hands and in Case B, 705,432. 1In Case B can
assume that Player 4 randomly chooses which card to play on the
first trick. (If the same player holds consecutive cards they have
equal value!) Therefore, if Player 4 held ¥J then with probability
1/2 he would have thrown it on the first trick. %J Case B can be
subdivided into Cases Bl and B2. In Case Bl, Player 4 holds both
vQ and ¥J and plays ¥Q first. In Case B2, Player 4 again holds
both but ¥J is played first. There are only 352,716 possible hands
in Case Bl. Since the correct comparison is between Case A and
Case B1l, the optimal strategy for Player 3 is to play ¥10, because
Player 2 is more likely to hold %J.

Bowling Romans Answer: 2/5
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Appendix 3

The Experiments: Subjects were told that they were going to play
a game for real money. The proctor presented a sealed enveloped
marked "Scott". In total the subjects were given two sheets of
paper. The first sheet explained the problem and asked a subject to
both make an initial selection and estimate the probability his

selection was correct. The second sheet revealed incorrect
numbers, offered the opportunity to switch, and again asked
subjects to estimate the probability they were correct. After

presenting the envelope, the proctor handed out Sheet # 1.

SHEET # 1

The envelope marked "Scott" on the chalkboard contains one of
the following numbers:

1 2 3 4 5 6 7 8 9 10

Your goal is to guess the number that is in the envelope. If
you are correct, you will win $5. The game that we are going to
play proceeds in two stages. In the first stage, you will be asked
to guess the number. Once you have made your guess, wait until no
one else is at Scott’s desk and go hand your sheet to him. In the
second stage of the game, he will reveal eight incorrect numbers
from among those nine numbers that you did not choose. You will
then be given the opportunity to switch your initial guess to the
other possible number.

You will be asked to estimate the probability that your guess
1s correct at each stage. There is no payoff for estimating the
correct probability but it is important for our purposes.

(1) What is your initial guess?

(2) What is the probability that your initial guess is correct?

TURN IN YOUR PAPER TO SCOTT WHEN HE IS AVAILABLE
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After completing Sheet # 1, a subject brought it forward and
received Sheet #2 from the proctor, who would cross out all but two
numbers on Sheet #2. If the subject had guessed the correct number
the proctor randomly chose another number to leave as a
possibility. If, on the other hand, the subject was incorrect, the
initial choice and the correct choice were left as the remaining
possibilities. Subject then took Sheet #2 back to their desks to
complete the experiment.

SHEET # 2

The numbers which are crossed out below are definitely not the
correct number

1 2 3 4 5 6 7 8 9 10

(3) What is your final guess? (this is the one that counts for the
money)

(4) What is the probability that your final guess 1s correct?

After the correct number was revealed from the envelope,
subjects were encouraged to both defend their decisions in both
written and oral arguments.
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