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Section 1.

This paper presents a decentralized dynamic process designed 1o apply to the
case of linear equilibrivn equations. The computations recuuired by the process are a
few simple arithimetic calculations per step. Memory and thme requirements increase
roughly as the third power of the number of agents (equations). The process presented
in this paper can also be viewed as a distributed algorithm for solving a distributed
svstem of linear equations.

This paper may be view as a sequel to [3]. That paper describes a class of decen-
tralized dyvnamic processes designed to converge to equilibrivm when the equilibrium
equations are linear. Those processes can also be viewed as distributed algorithims
for solving svstems of hincar ecquations. or as learning algorithims, The class includes
processes that use a message space larger hy one binary digit (per agent or equation)
than the space o which the equilibrivum or solution resides. The compnutations in-
volved in those processes are gquite simple. the only computational steps being to take
the average of two points of the space. and to evaluate the sign of a lincar [unction
at a pomt. However. memory and time requirements increase exponentially with the
nunber of agents (equations). The main purpose of this paper is to present a decen-

tralized process based on the same ideas as those in 3]0 hut one whose computational
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steps do not erow exponentially. This gain is achieved at a cost: each agent must
communicate the value of a linear function at a point. instead of just 1ts sign.

The hackground and motivation lor investigating decentralized processes for
finding equilibriunis disenssed in (3], and references to the literature ave given there.!
In that literature dyvnamic processes are modeled by differential or difference cqnations
that satisfv a condition expressing a requirement of decentralization. While these
models dilfer in a variety of wavs. the import of the results is that a decentralized
process capable ol stabilizing the equilibria of a static mechanism (one that realizes

some goal [unction. such as giving Pareto optimal. Walrasian. or fair allocations)
requires more information. (a message space larger in dimension) than the minimum
needed {or static realization or verification of equilibrium. While these results hold
more generallv, they do apply to the case of lincar equilibrium conditions. Indeed.
Scar{’s example. which shows that it is not true that the competitive price adjustiment
process is stable for all classical environments. has Hnear excess demand functions [H].
Other results. cited in [3]. show that a similar conclusion holds for a more general class
of message excliange processes. namely that if the class of environments 1= rich enough.
for any decentralized process given by differential or diflerence equations. there is an
open et of enviromments for which the equilibria are not locally stable. Tn order to
guarantee local stablility for the Ml class of environments, it 1s necessary to enlarge
the message space of the dynamic process. more mformation must be exchanged
among the agents to ensure local stability, and a fortior, global convergence., Smale’s
globalized Newton's Method. [6] which applies to price dynamics. involves the use of
the dervatives of the excess demand function in addition to the variables (prices and
quantities) needed to characterize equilibrinm.

The processes in [3] and in this paper are not given by differential equations
whose trajectories lie in the space of the equilibrium. but are algorithmic and they arve
decentralized.? Moreover. the processes presented in [3] and in this paper converge

globally to the equilibrium or solution on the full class of environments. which in the

LA recent paper not cited in [3] is [2].

“Other processes for finding equilibrinm hased on algorithms have heen studied: Scarl's fixed
point algorithin is a notable example [5]0 However. not all of these are decentralized or distributed

Processes.



lincar case means for all values of the parameters of the equations characterizing equi-
librinr. While these processes are formally not covered by the theorems about the
informational requirements of local stability referred to above. they do require more
imformation than is vequired to verilyv static equilibrinm. It is not known in general
just how mneh additional information must be communicated among the agents in
order to gnarantee convergence. There are evidently tradeoffs among a number of
relevant performance characteristics. These include:

(a) The set of environments. or parameter values. for which the process is gnaranteed

to converge:

(LY the information to be exchanged:

(¢) the computations to be performed:

() the speed of convergence.

The process presented in this paper does not require that the svstem of ecquations
1o be solved have full rank (that equilibrinm be unique). Thus. with respect to the first
performance characteristic noted above, the process applics to any system consisting
of a finite number of linear equations.”

The process. like those deseribed in [3]. uses a special agent called the coor-
dinator. It also involves N private agents. Fach private agent knows his/her own
equilibrinim equation. In the lincar case this amounts to knowing the (N+1)-vector

of coeflicients. mcluding the constant term. of that equation. The coordinator knows

FAfter completing this paper I learned. from Alvin Bayvliss. of an algorithm due 1o Kacziarz
[1} and later discussed by Tanabe [7]. Starting from an arbitrary point of the space that algorithim
proceeds by projecting that point orthogonally onto the hyperplane defined by one equation. say
the first equation. [t continues by projecting the resulting point onto the second hyperplane. and
so on iteratively, The neration converges i the limit: 1t s stopped when the diflerence between
snceessive appromimations hecomes small enough. Although the algorithm presented n this paper
docs not Invalve orthogoual projection. and requires only a fixed ninmber of steps. depending on the
number of equations. the underlying geometrie tdea seems sitilar to that of Naczmarz, A\ systematic
comparison of the performance of the algorithm presented here with Kaczimarz's and others awaits

computational testing.



only that the space is BV, and does not know any of the equations or cocfficients
of them. The coordinator commmnicates points of B 1o the private agents. chosen
according to the rules of the process deseribed i the next section: cach private agent
responds with a real nunber. Thus. the message exchange requirements of this pro-
cess are Jarger than those of the processes described in [3] in requiring an additional
real variable 1o he transmitted, where the processes i [3] requiired a binary variable.

The computational requirements of this process are as follows. Ilach agent
minst compute the value of a linear function. the one associated with his equilibrium
manifold, The coordinator mnst make two calculations: one involves the difference
of two numbers and the ratio of a thivd number to that difference: the other mvolves
the multiplication of an N-vector by a scalar. performed twice. and the sum of the
two resulting vectors.  The computations that involve vectors lend themselves to
vectorization.

This process arvives at the equilibrium in N steps when the solution 1s unique.
and finds the solution manifold in lewer than N steps when the system is singular.
Computational requirements grow with N as N the number of computations per
step is of order to N

Sections 2.1 and 2.2 present the process in an mnformal intuitive way. The
nonsingular case is presented in 2.1 the singular case in 2.2 Computational and
communication requirements arc disenssed brieflly in Section 2.3, Section 2.1 contains
a more formal treatment. together with proofs of propositions that 2.1 and 2.2 rely

Ol1.

Section 2. The Process

There are N acents. 1o V. Fach agent 7 s characterized by a vector of
parameters el There is a message space M. an open subset of 7. In what

followws we assume for simplicity that M = Y, We assume that there are functions

g whose zero set defines the eqguilibrinm we are seeking. In a lannhar example.

the [unctions ¢' are excess demand functions. Setting them equal to zero gives the
cquilibrium condition.

In this paper. as in 3]0 we assme the g's are linear.



where ' is a function of agent ¢* parameters °.

Le.. al = {a{ (W) al (it ... al-(0h),

For the present purpose it is not necessary to distinguish the underlving pavam-
cters 00 from the coeflicients '
Thus.
G e —d=at = =1 v,
The svstem (2.1) of N equations

S

Il
fan]
I
—

..... N (2.1)

defines the equilibriun.
There is alko a coordinator. who knows onlv that there are N agents and that

the space in which equilibrium resides is #2°.

2.1 The Nounsingular Case

It is asswimed for now that (2.1) has a unique solution. oo that the N x .\
matrix = ((a9) has [ull rank. The case where 4 has less than full rank is discussed
i Section 2.2,

Another interpretation of (2.1) is that cach equation is “known™ by (or in the
memory of ) a single one ol N processors and not by any other. The problem is to find
the solution by a "good™ distributed method. A good method is one that finds the
solution. but does not require too much communication among the processors nor 100
much computation by them. These are at present intuitive notions. not formalized
i this paper.

In the present {(nonsingular) case. the process takes NV osteps.

Step |
Initiallv the coordinator chooses the standavd basis of /2. denoted

0

G . .
W= 1| M position 1=l N.




and the origin. denoted

0
0
Uy =
0
et
. . 0
Cor Ui Uy
"lJ _
0 0 0
Covo Uiy - Uy

The coordinator uses these points to find N points that satisfy one of the
equations (2.1). say. the first equation. This is done as follows.

The coordinator annonnees the N 4 1 points v).. ... e to agent 1.

Agent 1 oreplies with the value of the lincar function charvacterizing 1's equilib-

rium manfold. Let al(a) denote I's response to x. Then

Ay =gty =l et = =001 N
Generally
ety E o)y Jora =100 Ay

Loty = {oe e b= =A%)+ 2% N e IV
= {rec nY L= 38 + ,\'1-’ (1‘? — (l[f) A€ //?}.

preserving linear independence of the resulting set. The coordinator finds a perturbation ¢} such

that al(vl) £ Al (eDy ensaring that Lie,. o) is not parallel 1o the near manifold

HUn' ey = Lo iie 0y = 0y = {aerN ol 0 = o1



to find .\ points that satisfyv the equation

al-x—c =0 (2.2)
Let these points be vl... . v\, They may be written
b= (=AY S A =1 \Y

_. .0 N\ 7,0 0
= vy + A () — )

where
/\? _ 0/

fori=1.....N, provided that o'(¢J) #£ 0.7

Since vy is the origin, the formula for v reduces to

t}zA\? ef fori=1,...,\.
We show in Section 2.4 that these N points satisfv the first equation. i.e.. that

o'l —e'=0 fori=1.....\. (2.3)

This is the end of Step 1.

Step 2
The coordinator uses the N points vl 7= 1,..... V' to generate N — 1 lines
Liehely = {ee o= - A el Ay Mem)
= {r el | r=vi A =0y ARy i=20..0. V(2.4)
» Note that the vectors v! — v =) i=1...... N are hnearly independent.,

Ife!(vf) = alr—c! = 0. then, since v{ = 0. it follows that ¢! = 0. Thus equation 2.2 defines an N —1

dimensional hyperplane through the origmn. Since the vectors ... ., v are linearly independent.

there must be at least one value of j, say j1, such that
ol t‘?, # 0.
It follows that O’l(!'?,) # 0. We then define the lines
Lied, oy = {eeRM e = (1= A0, 4 A0e) je {0, . VIVL7} and A e R)

and correspondingly



Because of the linear independence of the initial vectors of = (¢V — o)
N V. the lines L(ej.el) can be used to find N — 1 pomts that satisfyv the
secotd equation of {2.1).

These points are

ro=1o0 A
Where ‘
Voo —a*(r))
Ty
Thus. vi. =20, \all satisfy the second equation of (2.1). 1.0
aliei - =0 fori=2..... N. (2.3)

But these points also satisfy (2.2). because the lines L{v].v]) are contained in the

N — 1 dimensional lincar manilold generated by the N points ol 0 7= 1., V. Hence
. . . . . 2] . -

every point on such a hines including the points roo =200, V. also belong to that

manilold. Therelfore. at the end of Step 2.0 the coordinator has N — 2 points that

satislv the lirst 2 equations of (2.1).

Step t. (L <t < V)

The coordinator hegins witlh N —/ 41 points that satisfy the first / =1 equations

of (2.1). Let these points be o/ 2o o7 The coordinator uses the N — 1 lines
LielZboelmh =t \
to find N — 1/ points
ol o
where
R W R I C A
l»ll—(l \/- iy T ’\A/'/
and
. R
A= — = J=l4+ 100 Vo provided that

L



(i) o'(¢[2)) £ 0. and

At the N step. the process generates one point that satisfies all N of the
equation system (201)0
Tlhe various asscrtions needed to establish the process works as describod are

proved i Section 2.1,

2.2 The singular case

If the matrix of the svstem of equilibrium equations has rank r.and r s less
than V. then there is a linear manifold of solutions whose dimension is .\ — . In
these cases. the process finds the full set of solutions. For convenicnce suppose the
agents are labelled to mateh the ovder in which thev are addressed by the coordinator.
so that agent s is addressed inostep ~0 for s = 1.0 V. Suppose farther that the
equation of agent s is the first equation (in the ovder 1.2.....5) with the property
that equation s is a linear combination of the preceding ones.

A= ((n;)) =100 A V. has rank r < N there must be at least one
such equation.

Then at step s the procedure has eenerated a set of N+ 1 — s (affinely) mde-

pendent points that satisfyv cach of the first s equations.

A oyp -1 - : - . -
If o' (e, 21) = U the coordinator can choose another point among the ['; boog= A
as the connmmon point of the hnes 1,(r';-_i. z'z__])‘ as discussed n footnote 1. Condition (11) does not

arise il the equations 2.1 have full rank, The case where (2.1) has less than full rank 1s discussed in

Sections 2.2 amd 2.4

A equations (2.1) have less than full rank. the process will stop alter fewer than X steps, and
will give the full linear manifold of solutions of (2.1). This 1s discussed Section 2.2 and in Seetion

2o



Thus. after s — 1 steps we have NV 4+1—{(s—1) = N —s+2 points that satisfy
equations 1.....s — 1. and therefore lic in the linear manifold H'nir*n...n it

where.

H'=1'a' )y={aeR | a=r;+Ael—v)) j=t+1... N Aecli}

But if equation s is a linear combination of equations 1.....s— 1. then these

N — s+ 2 points also satisfy equation s, and so he in
Hin...nis—tnlre.

This will be revealed to the coordinator. because at step s the responses from

agent s will he as(z‘_‘f*l) = 0 for cach of the N — & + 2 points ¢57]..... e
Consequently A =0 for all N — . + 2 points.

In that case the procedure continues with the same lines
L{viTi. vj-_l) for j=s—1.....N in step s + 1. as in step & — 1. Thus. the points

generated by intersecting these lines with the hyperplane [/**? given by the equation
a*Th » = 71 awill span a lincar manifold of dimension N — &+ 1 in I7*T!, instead of
one of dimension N — s, as would be the case if equation s were not dependent.®

Thus. for every such dependent equation the dimension of the intersection up
to that step is increased by 1. After the N step the process has N —r + 1 (affinelyv)
independent points. spanning a linear manifold of dimension N — r. The manifold
is the solution manifold of (2.1). (In case r = N, then N — r = 0. and the solution
manifold consists ol a single poiut).

To illustrate the process suppose N = 3.and r = 2.

[n this case equations (2.1) have the form:

al - r =, (2.2.1)
o’ r=¢? (2.2.2)
at-r=c" (2.2.3)

Since r = 2 there exists scalars 3;..7,. 35, not all 0. such that

Jilal.e) + lat. ) + FPlat.) =0 (2.7)

®If equation s+ 1 of (2.1) is also dependent on the preceding (s — 1) equations, then the same

: L 9
lines are nsed to generate points in H+2,

10



Consider 2 cases.

('ase 1. 3y =0, 3, #0# 3,
In that case. equation (2.1.2) is proportional to equation (2.2.1). 1.c..
(a?.c?) = 3a'.c"). where 3 = 35/ 3.

(fase 2. Fy # 0. 3y £ 0.

In Case 1. starting from vp, vy, v9. 3 in JR2, after Step 1 we have
erovh vl
cach satisfving equation (2.1.1).

Step 2 reveals that these same points also satisfy equation(2.1.2).

|
= U3.

Wes

Hence v = o). vf = v} v
Hence. at Step 3 the lines L(¢cf. v2) and L(vi. v3) (the same as L(v], v}) and L(vy.v})
generate 2 distinet points satisfving equation (2.2.3).
Since this is the last step. the process ends with the
N — =3 =2 = I-dimensional linear manifold satisfving all three equations.
In Case 2 the process starting {rom v, vy, vy, va, generates vy, vy, vy alter Step
[. and the points v3.v? after Step 2. But. since (2.7) implies that the third equation

is a linear combination of the first two. it {follows that v3.v2 satisfy the third equation

and hence (v — ¢3) spans the 1 -dimensional set of solutions of (2.2).
2.3 Complexity and Communication Requirements
2.3.1 Complexity

The number of elementary computations required by this process may be esti-
mated. Counting addition. subtraction. multiplication and division of real numbers

as elementary operations. we have the following.

11



At the 17 step the coordinator computes £ — | values \'/ J=1t-+1.0. V. lach
of these requives one subtraction and one division. two elementary operations. The
coordinator must then perform two vector additions (actualiyv a subtraction in one
case) and one multiplication ol a vector by a scalar. Thix amonnts to 3.V + 30N — 1)
clementary operations at step /£,

Adding these. for a fixed Nowe get

BN(IN + 1) 9NP 43N
.) - f)

3N+

t

At step 7. Agent £ must compute a* at each of the points ot j = /..., .. V.

Fach such evaluation involves taking the inner product of 2 vectors and subtracting
a munber from the resnlt. This is N+ 1 elementary operations per evalnation.

The fivst agent does N of these: thus the fivst agent performs NN + 1) elemen-
tary operations.

The 17 agent performs

(N = 1N + 1)

such operations. the last agent performing just
(N +1)

operations.
The total of these over agents and steps is

AR AT AN

-)

NN = 1) =
The total of what the coordinator and the agents do is

(N TINT V),

T —

- - .
thongh no one agent. or proceszor. performs more than N° operations,



2.3.2 Communication

It this process communication takes place hetween the coovdinator and cach
agent separatelv. When there are \oacents: the coordinator sends (N 4 1) points of
Y 1o the first agent. N to the second. N — 1 to the third. and in general. N — 42
to the Y agent. e reccives Trom cach of them one real nmumber per point — thus.
N —/ 2 from the /' agent.

It appears to be the case that this algorithim minimizes the amount of commu-
nication necded. At cacli step only the minimum information needed to identify the
intersection of hyvperplanes up to that step s transmitted. However: this s as vet a
conjectire. sinee no formal analyvsis of this point hias so far been done,

Note that 10V = 3 it s not possible for all the agents to transmit their equations
to the coordinator via these messages. It 1s alwavs possible for the first agent to use
the N+ 1 responszes allowed to encode the coelficients of the first equation. (There
are N cocllicients after normalization.) The sccond agent can also encode the N
cocllicients of the second cquation. The third agent has N normalized cocflicients.
but onlv N =1 real numbers. and <o cannot transmit his equation. When N > 3 the

svstem s solved without knowledee of the whole svstem accumulating anvwhere.

. *
2.4 Propositions
To beginwith recalt some well-known facts about Iiear manifolds and subspaces
in 7
These are sumumarized e
Proposition 1. The following statements are equivalent:

L) p=1 points. p < ND g w, determine a linear manifold of dimension

I

20 the rank of the matrix
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3) the pvectors {wy —wy). (o —wy) oo (e, — ) arve finecarly mdependent.

(The p+ 1 points @’ wy. . ... w, are called affinely independent if the vectors

.
(e, —wey) gre {00000, p} ave lincarly independent).

Proposition 2 ey =gl ooos (e, —wg) s a lincarly independent <et of vectors
in Y. then for anv 7.j ¢ {1, phowith 1 £ J. the lines Liwg.w,) and L{wy. ;)

have exactly the point wy in conmon. 1.0,
Liewgow;) N Llwgae;) = {wg)

Proof. 1 2 ¢ Llwgow;) 0 L) then,

for some A, and A,
=g A+ A (e =) =g+ A (e =)

Henee

Ay —wp) — A, —wg) = 0.

Since (w; — wy) and (1w, — wy) arve linearly independent. it follows that

Therefore

Next we deseribe the process more formally.

Consider the first step ol the process described in Section 2010 This step can he

represented by the matrix eqnation



- (040 .
V= JUAY (2
where
. . 0
oot U\
\'(l o
o 0 0
Poxo Uiy Uy
r N0 / A0y T
(1 — A (1 =A%)
N
Al
A0 = ,\(_f 0
.0 AL
and
Y0y 0 VL0 A0y L0 Y0 L0
I N (1= APy + AV, (L — Aoy + Ay
1 U\
"l _ —
’l\' "]\ \
L. = N0y L0 N0 L0 N0y L0 YO0
(1 — /\1)11).\' + /\1'1\ (1 — ’\.\')‘n,\‘ + f\,\‘i A
‘ 1 Y
={{e,..... eyl
where
vy D
- —aiie)
i ) - -
A= — o forj=1l.00N
' (7(',) alivy)
First. we establish:
Proposition 3. The points »ho .. b satisfv
Lroposition » | | A .
ol et = forj=1.....N i

o



Proof.  Suppose (2.9} is satisfied. and solve for A;. Thus.
(8] 0 N
0 = o (=X}, +N))—¢
= (l=A;) ol 1‘8 + A, ol I'T — !
= o' g+ A (al 1"/]—(\] op) =t

and Q@ I W
] ()
7 (vy) 3
Henee T 0 = A
afel)—a(vg) "
Verifving (2.9) divectIv,
. 1 S
| . —(niy =) "o (v vy — ¢
T e I arg
] ¢ 1,0 ¢ 1{,(1 0 ( 1.0 . 1[_()
Vg vy el —aleg
1.0 1, 0 1.0
oty =ty — (ot — o) atny o
- 10 10
Tty L)
— l ( 1")__1) 1,0 ¢« 1.0 .]) l
7 o [l e atey = lateg = ca
atel = aley
_ l PR DS BRI 1‘0] 1
— 5 vy R ool C
alv] —aley
.1 P LN |
__((n " a ey 0
o 1,0 1,0 -
(4} fl — (¥ il

Next. Proposition -1 is immediate.

Proposition 1.

If o and g satisliv any eqguation of (2.1). then. so doces

=l —=XNur+ Ay Ae lt

16



Proof.  Suppose

alcr—cd=0=a'"y—-¢  Jorsome e {lo .. V.

Then o'z = (L=MNa' -or+Xa' -y

= avr+Ma-y—alr)

It remains to show

Proposition 3. The V=1 vectors

form a linearly independent set,

Proof. Accordine 1o Proposition 1 an equivalent statement i< that
d a |

ROV = .

where R(\) denotes the rank of the matrix X,

Now.

\'l — \‘(’JA\\U
where
ROVY = A
and
AV 0
RIAYMY = R
0 ] [{

(2.10)



The Tatter matrix has rank N provided that none of the scalars A,y = 1., Ay
is (1"
"Suppose that for some jre {1..... N} /\;\, =0
n o V0,0 0
then \'Jl, =T = ALY+ Ay, = vy
But. since forall j=1...... N
L0
i - (l'ra)
’\7' = 17 0 [
SR O R A
J
it follows that ,\;‘ =0forall j=1..... Nosinee o' (o) = ol il — et and olel)y =0 amply
aboel =l
[}
Further, sinee v = Jitfellows that ol - el = 0 = ¢F Geometrieally, the case ,\l;', = [ arises

0]
1

if and onbv if ¢! = 00 which means that the hyperplane defined by the first equation

H i
at(ry) =10

{Thie reply fromeagent 1re iy ds 0)

0

)

. ) . 5 ; v .
e can thew replice the point o] = . by one the N pomts o). eheeosay e for whieh

Y
al ol # 00 There mnst be at east one such point because the vectors ¢f o oo v span an N-
dimensional subspace, while ol - r = 0 defines an N — 1 dunensional subspace.

N 1 - - .
Alternatively. o) can he replaced by one of the N- points,

o, .t .
vie) = ¢ | Meoordinate

. . . Y -
which has ¢ 0 << Loin the i coordinate and 075 elsewhere.

. T P
For some value of 10 @ (v (e) F 00 (ront. on nerl page)

|~



Sinee the rank of 179 3s also N. it {ollows from (2.10) that

By Proposition 1. the N points ... e\ determine the N — 1 dimensional

linear manifold that contains them. By Proposition 3 this is the hyperplane defined

by equation (2.9).

Now
2= k!

whore

(1 — A (1 — AL

AL
A= /‘\_-13 0
0
vl
AN

which generally has rank N — L. except in the case where a{elh = 0.1

The following Proposition shows that lincar mdependence of the vectors

s preserved at cach step f R \.

Proposition 6. If the vectors

4 feont)  The lines

.H ‘\‘} o 3 )_\v b Lo .I"\, ‘\‘] N
Llvjita). o) = {rc I e =(1=MA) {0+ Ajry o Aje Ry
g=1...... v
intersect nudgquely at ri(e). The coordinator ean proceed with the pracess. which is again in the

case Nj(e) £ 0 forall .

NS(’(’ i‘c)()l note O,

19



are hnearlv independent. then so are the vectors

¢ s -
o= =4 1o \.
Proof. By Proposition 1 it suffices 1o show that if the matrix V7! has rank
. A |
N =+ 1L then the matrix VO has rank N — 1.
But
‘ [— \'!71 \f—l
Vi1 V-1
(1 — N\ (L =AY
i
_ =1
where A7 = AV 0
0
.
/\,\'
Now. except in the case where A7V = 00 fe. the exceptional case where {7
lics in the hyperplane defined by equation
1 :
a S r=c
the matrix A7 has rank N — 0 Y
P the exceptional ease. the coordinator chooses another of the points 1';7“ J=14 .. Voo
serve as the comnmon point of the lines, or perturbs {'f:}. for example. by
f—=1te N t—1 - . - -
Uy J‘:(l-*,)r;*}%-‘;r; O< <1l Jg=5Ho..... AW
If ﬂ'(t’;’l) =10 foradl joo {0 — 1ot V1 othe ,\;_" are not defined. In that case the points
vf—1; satsly
,,H-j’,-bc’:u forj=t1—1.1.....N (211
By construetion. the points ('J'—i satisfv the equations o' e —¢ =0 fori=1..... f— 1. Thus.
PR T A B i— 1. and
J
P=i—1 v (2.12)

Ii more geometric laneuage. the N —f4 1 points r';“" determine a unique (N —=#) -dimensional linear
manifold. Since these points e i V07200 0 A8 and that intersection is (N — 1) diunensional.
s the linear maniold defined by cquation (2.12). I af were independem of ol A=t ohen the

. . . —1 . . . . .
No—= ] polns z; would determine an (N — 1) ~dimensional Lnear  feont. on nerl paye)

20



Hence the dimension of the lincar manifold they span at step 715 N — 1 When
= N.the matrix V2 has only one entrey. the nnigie point in the solution manifold

ol (1) which N = N =0 dimensional,

1 feont)  manifold iy the hyvperplane 710 given by (2.11) and therefore hecause of (2.12) m the

the mmtersection
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