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Abstract

We study social choice correspondences which can be implemented in undominated
Nash equilibrium by bounded mechanisms. (An undominated Nash equilibrium is a
Nash equilibrium in which no agent uses a weakly dominated strategy. A
mechanism is bounded if every dominated strategy is dominated by an
undominated strategy). We provide necessary conditions and sufficient
conditions for such implementation. Our conditions are satisfied in virtually
all 'economic" settings, and are also satisfied by many interesting
correspondences identified in the social choice literature. For economic
settings, we provide a particularly simple implementing mechanism in which the
undomianted Nash equilibrium outcomes coincide with those obtained by iterated

elimination of weakly dominated strategies.



1. Introduction

Implementation theory studies the extent to which social goals can be
achieved by decentralized decision making procedures. The social goals are
given by a social choice correspondence. A procedure is represented by a
mechanism, which specifies the possible actions available to members of a
society, as well as the outcomes of these actions. Once an assumption is made
about what determines individual or group behavior, the equilibrium outcomes
to the mechanism are precisely the social objectives that can be achieved by
the decentralized procedure. If these outcomes coincide with the social
choice correspondence (SCC), then the SCC is implementable in the precise

sense that it can be decentralized.

The implementation problem is made non-trivial by two considerations.
First, the socially desirable outcome may conflict with the interests of some
individual or group of individuals. Second, information relevant to the
determination of a socially desirable outcome may not be commonly available.
In either case, the decentralized procedure must ensure that individual or
group incentives are controlled so that socially desirable outcomes emerge

from the social decision making process.

Implementation theory has proceeded along two lines. One bLra.- . studies
the outcomes of specific mechanisms, such as sequential majority voting or the
agenda process, and characterizes what «can be decentralized by  such
procedures. The second branch is has been less concerned with the mechanism,
and has concentrated on characterizing those social objectives which can be
decentralized by some mechanism, not necessarily one corresponding to any

class of decision making procedures.

This second branch has been successful in characterizing which SCCs are
implementable using a variety of solution concepts and for various information
structuresl. Much of this work stems from the early contribution of Maskin
{19771, who identified an intuitive condition, called monotonicity, which is

necessary for Nash implementation when there are no informational asymmetries



across agents in society. Monotonicity 1is satisfied by some normative
criteria of interest in specific domains, such as the Pareto correspondence in
pure exchange ecconomies. Unfortunately, many important normative criteria,
including most ecriteria in the social choice literature such as the
(Condorcet) top cycle set and the uncovered set, fail to satisfy monotonicity,
as do other desirable objectives such as the (unconstrained) Walrasian
correspondence in exchange economies. This has led te investigations of
implementation with stronger equilibrium concepts such as subgame perfect

equilibrium and undominated Nash equilibrium.

Our concern here is with undominated Nash implementation. An undominated
Nash equilibrium is a Nash equilibrium in which no one uses a weakly dominated
strategy. Palfrey and Srivastava [1986) show that with this refinement of
Nash equilibrium, any social choice correspondence2 can be implemented. This
is a striking result in that it says that for almost any normative criterion,
it 1s possible to construct a decentralizing procedure and control individual
incentives to ensure that the outcomes are precisely those prescribed by the
criterion, It also implies that there is no conflict between the normative
goal of social choice theory (which develops normative criteria) and the

positive goal (which examines if these criteria are attainable).

The effect of the assumption that agen‘:. ¢- not use dominated strategies
is thus quite startling. We generally expect stronger equilibrium concepts to
expand the class of implementable SCCs, since in designing an implementing
mechanism, it is wusually quite easy to obtain a desired outcome as an
equilibriumB. The difficulty is wusually in ruling out other wundesired
equilibria. Stronger solution concepts tend to be more powerful in ruling out
undesired equilibria, hence allowing larger classes of SCCs to be implemented.
While we would expect this refinement to expand the class of implementable
SCCs  relative to Nash implementable SCCs, such a great expansion is

surprising.

It turns out that some or the power of this result derives from the fact

that we have not imposed any restrictions on the implementing mechanism. In



particular, some undesired outcomes are ruled out through infinite strings of
dominated actions, where each action dominates a previous action, but where no
dominating action is undominated itself. Hence, it is possible that an agent
playing the constructed mechanism has no undominated best response to the
strategies of the others. For such a mechanism, it is no longer clear that an
agent will not play a dominated action, and suggests that it may not be
appropriate to apply the concept of undominated Nash equilibrium to such
mechanisms. Consequently, it 1is important to investigate what can be
implemented by mechanisms in which every agent always has an undominated best

response.

The restriction on mechanisms which prevents the use of an infinite chain
of dominated strategies is defined by Jackson [1989]. This restriction is
called "boundedness," and requires that if an action is weakly dominated, then
it is weakly dominated by an undominated action. Jackson provides an example
(see Example 1 in section 3 below) to show that boundedness restricts the set

of SCCs which can be implemented in undominated Nash equilibrium.

This brings us to the topic of this paper, which is to characterize the
class of SCCs which are implementable in undominated Nash equilibrium by
bounded mechanisms. We provide a characterization of SCCs which are
implementable in undominated Nash equilizium by bounded mechanisms. While
the restriction to bounded mechanisms eliminates some $CCs which are
undominated Nash implementable with unbounded mechanisms, it still admits a
large set of implementable SCCs. This set is larger than that for Nash
implementation; the "chained" condition we identify can be seen as a weakening
of monotonicity. We .show that many SCCs of interest, including those
identified in the social choice literature and those relating to "economic"
settings& (including public goods), can be implemented by bounded mechanisms.
Finally, we investigate implementation under more stringent requirements on
the Implementing mechanism, namely, that the mechanism not only be bounded,
but also not admit any mixed strategy equilibrium for any von Neumann-
Morgenstern representation of the ordinal preferences. We solve this problem

for economic settings, but leave as an open question the full characterization



for completely general enviromments. The mechanism constructed for economic
environments is simple and intuitive, and is dominance solvable. It also
covers the two-agent case.

The next section contains the model and basic definitions. In section 3,
we study in detail the case of strict preferences. In section 4, we consider
the use of mixed strategies and prove a general possibility result for a class

of economic environments.



2. The Model

The set of alternatives is denoted by A. There are a finite number, I,
of agents, indexed by i = 1,...,N. S denotes the set of states, where s € §
summarizes the preferences of all agents, In state s, Ri(s) denotes the
complete and transitive preference relation of agent i. We denote by Pi(s)
the strict preference relation corresponding to Ri(s) and by Ii(s) the
indifference relation corresponding to Ré(s), If aIi(s)b for all a,b € A, then
we say that i is completely indifferent at s. The state is known by each

agent,

A . . .
F 5§ > 2 is a social choice correspondence; for each s, 1t selects a
subset of A, This 1is interpreted as the the set of socilally desirable
outcomes in state s. We turn next to a formal description of decentralized

decision making procedures.

A mechanism (or game form) is a pair (M,g) consisting of a message space

1 2 N . i
M =M x M x ... XM and an outcome function g : M- A M is called the
message space of i. An element m € M is referred to as a strategy for i,
and we write m € M in the form m = (m",m °), and call m a strategy profile.

Definition 1 : A stratz;y rv~file m € M is a (pure strategy)5 Nash equilibrium

at s if g(m',m R (s)g(n",m ") for all i and all o & M'

Given a mechanism (M,g), let

NE(s) = { a€ A | 3 meMwith g(m) = a and m is a Nash equilibrium at s}

be the set of Nash equilibrium outcomes at s.

Definition 2 : A strategy m' s weakly dominated at s if there exists a
strategy ot such that g(ni,mfi)Ri(s)g(mi,mki) for all m and

g(ni,m_i)Pi(s)g(mi,m-i) for some m .

Definition 3: A strategy profile m € M is an undominated Nash equilibrium at s

if m is a Nash equilibrium at s and for all i, m is not weakly dominated at



Given a mechanism (M,g), let
UNE(s}) = { a € A | 3 me€ M with g(m) = a and m is an undominated Nash
equilibrium at s)

be the set of undominated Nash equilibrium outcomes at s.

. A . -
Definition 4: A social choice correspondence F : § -+ 2" is undominated Nash

implementable if there exists a mechanism (M,g) with UNE(s) = F(s) for all s.

The following condition was identified by Palfrey and Srivastava [1986]

for undominated Nash implementation.

Property Q (Value distinction): For s and s’, if a € F(s) and a & F(s'), then

there exists i with Ri(s) 4 Ri(s’) and i is not completely indifferent at s’.

Definition 5 : F satisfies no veto power if for all s, 1f there exists a € A

such that for at least N-1 agents, aRi(s)b for all b, then a € F(s).

Theorem (Palfrey and Srivastava [1986]): If F 1s undeminated Nash
implementable then F satisfies preperty Q. Further, if N > 3 and F satisfies

no zto vower and property @, then F is undominated Nash implementable.

The strength of the above theorem is that it substantially expands the
class of implementable SCCs relative to Nash implementation, That is,
property Q is a much weaker condition than monotonicity, which is necessary
for Nash implementation.6 For example, when A is a finite set and the set of
preferences is the set of all linear orders (strict preferences) then any
social <choice function satisfying no veto power is undominated Nash
implementable (by the above theorem), while only dictational social choice

functions are Nash implementable (Dasgupta, Hammond, and Maskin [1979}).

As discussed in the introduction, some of the power of the above result

is due to the fact that we have not imposed any restrictions on the mechanism.,



As shown by Jackson [1989], excluding infinite chains of dominated strategies
can restrict the set of implementable SCCs (see Example 1 in the next

section). The following definition rules out such constructions.

Definition 6 (Jackson [1989]) : A mechanism (M,g) is bounded if for all s, i,
and mi, if m' is weakly dominated at s, then there exists nt e M which weakly
dominates m" at s and is not weakly dominated at s.

3. Bounded Implementation in General Environments

A. An Example

We begin with an example from Jackson [1989], which not only shows that
boundedness restricts the class of implementable SCCs but also motivates the

condition we identify,

Example 1: (Jackson [1983]): S = (s,s'}, A = {x,y}, N =15, F(s) = (%), F(s') =

Iy}, and preferences are:

s s’
12 3 4 5 1 2 3 4 5
y ¥ X xX ¥y y ¥y X X X
® X ¥y ¥y X XX Y Y ¥y
This social choice function satisfies no veto power and I > 3. Therefore, by

the theorem of Palfrey and Srivastava [1986] stated in the previous section, T
is undominated Nash implementable. However, F is not implementable by a

bounded mechanism, as we now argue.

In this example only agent 5's preferences change between s and s’. Yet,
the SCC always picks 5's worst alternative. We can see the role of unbecurded

mechanisms as follows. Consider a mechanism (M,g) which implements F in



undominated Nash equilibria. Let m € UNE(s). Then g(m) = x. Since only 5's
preferences change from s to s', m is also a Nash equilibrium at s’. However,
since x € UNE(s’) = F(s') we know that m° must be dominated at s’. Any

~5 ~5 -5
message m must have g(m’,m

) = x, and must also be a Nash equilibrium. [Only
agents 1 through 4 might deviate and since m° dominates m° for 5 at s', m
must provide outcome y against a smaller set of actions of agents other than 5
than m’ does. ] Thus in turn m must also be dominated. This leads to an
infinite string of actions for agent 5, each dominating a previous one, but

none being undominated.

Such a mechanism would clearly not be bounded. The argument against such
mechanisms is clear. At s’ agent 5 does not choose any action which provides
X (his desired outcome) against m ° since all such actions are dominated in an
infinite string. Instead, agent 5 chooses an action which provides y (5's
undesired outcome) against m >, Against m-5, it is clearly in agent 5's
interest to choose an action which provides x. However, since each such
action is dominated by another, agent 5 cannot decide which one to choose.

For such a mechanism it is no longer reasonable to argue that agents will not

play an undominated action.

Bounded mechanisms have the property that each agent can always "make up
their mind" among a set of actions when considering whether a straiegs is
weakly dominated. We will also require that every agent always has a best
response to the any actions of the other agents. For this class of

mechanisms, undeminated Nash equilibria are thus an appropriate solution.

B. The Chained Condition

The above example illustrates what goes wrong when we try to implement
the above SCC by a bounded mechanism. It also provides some insight into the
class of SCC's which can be implemented by bounded mechanisms. It turns out
that an important part of implementing an SCC by a hounded mechanism is to
find an appropriate agent (in place of agent 1) and a z, and z  as summarized

by the following condition.7



Definition /: F 1is chained at x,s,s’ if there exists an agent, i, and

alternatives, ¥, and Y, such that ylPi(s)szi(s’)yi where either:

(A) v, =x

or

(B) There exist agent j=i, and alternatives z, and z, & {x,zl} such that:
(Bl) zP'(s')x, z P'(s")z,

(B2) zl = X or xPj(s)zl

F is chained if it is chained at x,s,s’ whenever =xeF(s)\F(s'). The
intuition behind the condition is actually quite simple. Part A says that if
x € F(s)\F(s'), then F satisfies the standard monotonicity condition relative
to X,s,s'. If not, then there exist a pair of agents who are linked in a
special way (part B of the definition). The first agent, i, has different
preferences in states s and s’'. From Palfrey and Srivastava (1991), we know
that this means we can construct a mechanism such that x is an undominated
Nash equilibrium at s, but not at s', by giving it a strategy that "breaks”
any Nash equilibrium producing x at s by exploiting weak dominance. In order
for the implementing mechanism to be bounded, at least one such dominating
strategy must not be weakly dominated. This will be true, if we can find
some agent j=i (part B of the zhained condition), for whom playing the
original strategy is not a best response to this alternative domin-cing
strategy of 1. However, by giving j a better response, we must not destroy
the weak dominance for agent 1i. The existence of z, and z, with the

properties in part B of the condition ensure that this can be done.

This condition is stronger than property Q in that property Q requires
neither (A) nor (B). It is easy to see that the SCC in Example 1 above is not
chained. Nevertheless, the conditions is actually very weak; for example, it

is always satisfied in the following three general situations.

(i) F satisfies no vetc power and there 1is a uniformly worst element,i.e.
there exists w € A such that for all s and i, aPi(s)w for all a = w. In this

case, 1f x € F(s)\F(s'), no veto power guarantees the existence of z2 and j =



i such that zZPj(s’)x, and the rest of part (B) is satisfied by setting z -

w. Therefore F is chained.

(ii) x € F(s)\F(s') and there exist i with Pi(s) » Pi(s'), j =1, and y €A,
such that both agents prefer y to x at s’. In this case, we set z = x and
z, =Y, and F is chained. This observation will be useful when we analyze

2
economic environments in Section 5.

(iii) F is monotonic. This guarantees part (A) of the chained condition.
C. Sufficiency of the Chained Condition

We turn next to sufficiency. We show below that with three or more
agents, any chained SCC which satisfies no veto power can be implemented by a
bounded mechanism. Before proceeding, we note that we may want to impose
restrictions on mechanisms beyond boundedness. We have argued that
boundedness is an appropriate restriction given that agents are assumed not to
use weakly dominated strategies. Similarly, in order for the "Nash" part of
the solution to make sense, we should require that every agent have a best

. 8 ; -
response to every strategy profile of the other agents . We impose this next.

Definition 8: A mechanism (M,g) has the best respsi.c r-perty if for all i,
for all s, and for all m_i, there exists m" € Mi such that

g(m',m R (s)g(F-,m ) for all mt e Mb.

Definjtion 9: F'is boundedly implementable if it is implementable in
undominated Nash equilibrium by a bounded mechanism satisfying the best

response property.

We remark that an alternative definition of bounded implementation is one
that simply requires that all agents have a undominated best response to any
strategy of the others. This would he slightly weaker than requiring bounded
implementation. However, for the purposes of this paper, this distinction

does not make any difference. 1In particular, Theorems 1, 2, and 3 hold for

10



either definition of bounded implementation.

Theorem 1: If N =2 3, A is finite, F satisfies no veto power, and F is

chained, then F is boundedly implementable.
. 9

Proof: See Appendix” .mmm

D. Weakly Chained: A Necessary Condition

While F being chained is sufficient for bounded implementation, it is not
necessary. The following weaker condition is necessary. For any finite set

J, let 27 be the set of all subsets of J (including the empty subset).

Definition 10: F is weakly chained if for all s and s’, if x € F(s)\F(s"),
then either F is chained at X,s,s’' or there exists a subset of agents, 1 C

{(1,2,...,1}, with #I > 1, j ¢ I, and a function z - 2% - A such that

P'(s) = P'(s’') for all i € I,

z(I)Pj(s’)x,

xPj(s)z(@) or x = z(@), and

z(C)P*(s')z(C\[i}) or z(c) = z(c\{i)) for all i € T and C € 2°

Theorem 2: If F is boundedly implementable, then F is weakly chained.

Proof: See Appendix.mmm

While this condition is somewhat awkward to express, the intuition is
actually straightforward. Note that in comparing s and s', if the only
difference between s and s’ is that the preferences of exactly one agent
change, then the restrictions imposed by either “chained" condition are the
same. The difference between F being chained and F being weakly chained is
that in the latter, we might need several agents (as opposed to a single
agent) to have weakly dominating strategies before we can find an agent who
has a better response. The following example illustrates this point, and also

shows that F being chained is not necessary for bounded implementation.

11



Example 3: N = 3, A = {(x,a,b,c,d}, S = {s,s'}, and preferences are

I

lth

s

i 2 3 i 2 3
X X a X Pl d
c c b a b x
a b d c c c
b a X d d a
d d c b a b

Let F(s) = (x), F(s') = {d}. To see that F is weakly chained, observe that we
can set I = {1,2), j = 3, and define the mapping z : 2f 5 A by z(@) = ¢,z
({1}) = a, z ({2)) = b, z({(1,2)) = 4. The wvalues of 2z correspond to

the elements of the matrix on the right of the mechanism which implements F.

3 chooses the matrix

It can be verified however, that F is not chained.

E. Applications to Voting Rules

The Top-cvecle set

An interesting s-.lal choice correspondence which is not weakly chained

and, therefore not boundedly implementable is the Condorcet or top cycle

12



correspondence, defined as follows. For any X,y € A, we write xD(s)y if
a strict majority of agents prefer x to y. We write xD(s)x to simplify

notation.

te(s) = N{B C A x € B, v ¢ B implies xD(s)v}

The top cycle set at s is the smallest subset of A with the property that

nothing outside the set is preferred by a strict majority to anything in the

set.
Example 2: N =3, A = {x,a,b,c), § = 1{s,s'}, and preferences are
s s’

1 2 3 12 3

x b ¢ x b ¢

a ¢ a a c a

b x b c x b

c a X b a x
Here, tc(s) = {x,a,b,c}, tc(s') = {~), s ¥ € te(s)\tc{s'). Note that only
the preferences of agent 1 change between s and s', sO i = 1. Consider any

choice of j, z and z,.

(1) j » 1 : This follows from the fact that %P (s')y for all y = x.

(2) If j = 2 : then, (B2) of the chained condition implies z e {x,a).
Further, zsz(s’)x implies z, e {b,c). But x and a are preferred by 1 at s’
to both b and c, so we cannoct satisfy the (Bl) requirement, zzPl(s’)zf

(3) If j = 3: then (B2) implies z 7 X, since X is 3's worst element at s.

But then (B1l} implies z, = « since x is 1's best element at s', and this

. . 3
violates the requirement that 22P (s')x.

. 0 .
We conclude that the Lup cycle correspondence is not chained . This example

also shows that the intersection of the set of Pareto optimal outcomes and the

13



top cycle set is not boundedly implementable.

The Uncovered Set

An interesting SCC which is chained is the uncovered set, identified by
Miller [1977]. The uncovered set is a subset of the top cycle set and
contains only Pareto optimal alternatives. As shown below, the uncovered set
SCC 1is chained and satisfies no veto power, and therefore is boundedly

implementable.

The uncovered set is defined as follows. We say that X covers y at s if
®D(s)y and for all z, yD(s)z = xD(s)z. Thus, x covers y if it "beats" y and
also beats all alternatives which y beats. The uncovered set at s, written
uc(s), is the set of alternatives which are not covered at s:

uc(s) = {x € A | x is not covered at s}.

In Example 2, uc(s) = {a,b,c} and uc(s’) = {(c).
Proposition 2: The uncovered set correspondence is chained.

Proof: Suppose x € uc(s) and x ¢ uc(s'). Then, there exists z such that z
covers X at s' but not at s. There are two cases.

Case 1: not zD(s)x.

In this case, since zD(s')x, there must exist an agent 1 such that
zPi(s’)xPi(s)z. Therefore, the first part of the chained condition 1is
satisfied.

Case 2: There exists y such that xD(s)y while not zD(s)y.

If it is not the case that xD(s')y, then there exists an agent 1 such that
yPi(s')xPi(s)y, so the first part of the chained condition is satisfied.
Suppose then that xD(s')y. Since z covers x, we get zD(s’)y. Since we have
not zD(s)y, there exists an agent i such that zPi(s’)y Pl(s)z. To complete
the argument, we need a j # i such that zPJ(s')xPj(s)y. This follows from the
facts that zD(s’')x and xD(s)y and the fact that the D relation requires that
more thaii nN/2 agents prefer an allocation to another. If j=1, then it follows

that xPi(s)zPi(s’)x and so the first part of the chained condition is

14



satisfied. Otherwise, let z, =z and z =y and the second part of the chained

condition is satisfied.mmm
Corollary: If N = 3, the uncovered SCC is boundedly implementable.

Proof: This follows from Theorem 2 above and the fact that the uncovered set

correspondence satisfies no veto power. mmm

Pluralityv rule

Another interesting social choice correspondence which is boundedly
implementable is the plurality rule. The plurality correspondence is neither
Nash implementable nor subgame perfect implementable (see Abreu and Sen
[19%0]). Since the SCC in Example 2 is not boundedly implementable but is
subgame perfect implementable, we see that subgame perfect implementation
neither implies nor is implied by bounded implementation. The plurality rule

is defined as follows.

For any a € A and any s € §, let
N(a,s) = #(i | aP'(s)b for all b € &},
F(s) = (aeA | N(a,s) = Nfb,s) vV b e 4A).
p

Then, F 1is the plurality correspondence: at each s, 1t picks the best element
P

of the largest group of agents.
Proposition 3: If N = 3, then F 1is chained.
P

Proof: Let x & E;(s)\Fp(s’). Then, two cases arise:
(i) x is the best element of some i at s but not at s’, or
(ii) case (i) does not hold and some y € Fp(s') is ranked first by more agents
at s' than at s.

In case (i), there exists i such that xPi(s)zPi(s’)x for some z € Fp(s').

In case (i1), there exists i such that y 1s the best element of i at s’ and ¥

is not the best element of i at s. Further, since case (i) does not hold we



have N(y,s’) > N(x,s') = N(x,s), so there exists j=i such that ij(s’)x. In

this case, let zl = X, z, = V. HNN

Corollary: F (s) is boundedly implementable if I > 3.

p
Proof: This follows from Theorem 1 and the fact that with N > 3, F satisfies
- P

no veto power.NEN
Borda Count

The plurality correspondence is a special case of a general class of
correspondences called scoring correspondences (see Moulin [1983]). While the
plurality correspondence is boundedly implementable as shown above, other
scoring correspondences are not. As an example, we consider the scoring
correspondence defined by the Borda count. For any s, let Bi(a,s) =k if a is
the k'th most preferred alternative. Let

F(s) =(aea |z Bas) = ) B'(b,s) ¥ b e A).

Then, FB is the Borda correspondence. The following example shows that FE is

not weakly chained.

Example 4: FB is not weazakly chained.

A= {a,b,c,de}, N=23, 8 =1{s,s'!, and preferences are;

s s’

=
I~
|
[~
I
o

a e c a e b

b a d b a c

¢ b b c b d

d c a d c a

e d e e d e
Here, FB(S) = {a}, FB(S') = (b}. FE satisfies no veto power, but it is not
weakly chained. To see this, consider outcome a. The position of a relative

16



to any other outcome has not changed between s and s', so only the second part
of the weakly chained condition must be checked. The only candidate for
inclusion in I is agent 3 (thus weakly chained here is equivalent to
chained). The only candidate for z{I) is e, and the only candidate for

J is agent 2, since a is the best element of agent L at s’, and e is the only
alternative which which 2 prefers to a at s’. But then z(@) = e since we must
have z(I)Pa(s’)z(Q) or z{(I) = z(&). This violates the requirement that
aP’(s)z(B) or a = z(@).

We note that in general, Borda winners need not lie in the top cycle set,
even if there is a Condorcet winner. This is illustrated here since a is the
Condorcet winner in both states. The example can be modified by adding more
alternatives to ensure that the Borda winners lie in the top cycle set at each

state, and also to satisfy no veto power.
F. Double Implementation

An interesting by-product of Theorem 1 concerns "double" implementation,
tnat is, implementation simultaneously in Nash equilibrium and undominated

equilibrium. The following extends results of Yamato [1990].

Proposition 1: If N > 3, F is monotonic and satisfies no veto power, then

there exists a bounded mechanism such that for all s, UNE(s) = NE(s) = F(s).

Proof: The mechanism constructed in our sufficiency proof has this property if

F'is monotonic. mam
4. Economic Environments

In the previous section, we did not allow for the possibility that agents
might use mixed strategies. If agents have von Neumann-Morgenstern utility
functions, then the mechanism used to prove Theorem 1 may have mixed strategy
equilibria which, with positive probability, lead to outcomes outside of the

SCC.



The consideration of mixed strategies leads to several questions which
remain unanswered in implementation theory, The mechanism presented in the
proof of Theorem 1 can be extended to show that any chained SCC satisfying no
veto power can be implemented by a bounded mechanism (i.e. one in which there
is no infinite chain of weakly dominated strategies) in which there are no
mixed strategy equilibria. This can be done by use of an (infinite) integer
game.ll We do not know if a mechanism can be constructed in which every agent
always has a best response to every (mixed) strategy profile of the other
agents, This question remains unanswered for Nash implementation as well.
The construction of Moore and Repullo ([1990] for Nash implementation also
involves an integer game for which there are no mixed strategy equilibria,
However, there exist mixed strategies of some agents to which other agents
have no best response, in which case it seems unreasonable to apply the Nash
equilibrium solution concept. The problem that arises in such constructions
is that the set of mixed strategies is very large when the mechanism is
infinite, and it is difficult to simultaneously have a best response to every
mixed strategy  profile for every possible von Neumann-Morgenstern

representation and at the same time not have any mixed strategy equilibria.

Even if it is possible to construct an implementing mechanism with no
mixed strategy equilibrium, it is generally going to be infinite, even in
finite environments; an example is given by Jackson (198%9]. An alternative
approach is to examine conditions on SCCs, beyond monotonicity or the chained
condition, which characterize Nash or undominated Nash implementation by
finite mechanisms in finite enviromments. Such an approach may be less useful
for cases such as pure exchange economies, where it is usually assumed that
the set of allocations is infinite. However, the special structure of such
environments usually permits particular, simple constructions, as we will

show.

The difficulties associated with mixed strategy implementation apply to
any Nash-based equilibrium concept, at least in abstract settings. We will
show below that in "separable" environments, which include many economically

interesting ones, positive results can be obtained with quite simple
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. 12
mechanisms

Recently, Abreu and Matsushima [1990] have studied implementation by
iterated elimination of weakly dominated strategies. They assume that there
is a finite set of von Neumann-Morgenstern utility representations, and allow
the mechanism to use random allocations. They show that under some additional
(very) weak conditions, any social choice function can be implemented by a
finite mechanism. Their construction hinges on their assumption that there is
a finite set of von Neumann-Morgenstern utility indices. The finiteness
restriction and the use of random allocations allows them to construct a
mechanism which is immune to mixed strategies. This still leaves open the
central issue concerning mixed strategies: how does one construct a mechanism
which is compatible with the solution concept and is immune to mixed strategy

equilibria for every von Neumann-Morgenstern representation of preferences.

We resolve this question for "separable" environments. We describe a
mechanism which implements any social choice function in undominated Nash
equilibrium, and has no mixed strategy undominated Nash equilibrium for any
representation of preferences. The mechanism does mnot require the use of

random allocations.

Saparable Environments

We examine bounded implementation in environments which we loocsely
classify as "separable environments."” These environments do not require a
finite set of alternatives, and also allow for weak preferences, They include
the case of pure exchange economies and all economies with a transferable
private good such as public gocd environments. Here, the chained condition is

satisfied by all SCCs.

We will show that in separable environments, bounded implementation can

be achieved by a simple mechanism. In fact, any SCC can be boundedly
implemented by a mechanism in both pure and mixed strategies. Further, this
mechanism 1is dominance solvable. The result requires the following

19



assumptions, which describe an enviromment which is separable relative to F.

(Al) A worst element relative to F: 3 w € A such that aPi(s)w for all i, s,

s', and a € F(s').

(A2) Separability: For all a € A, and J C N, there exists a’ € A such that

aQIj(s)W for all s € S for j € J, while aqli(s)a for i ¢ J.

(A3) Strict walue distinction: If Ri(s) » R}(s'), then there exist a and b in

A such that aPi(s)b, bPi(s')a, aPi(s)w, and bPi(s’)w.

There are many well-studied environments which are separable, as we now

discuss.

Example 6 (TIransferable Utility)

Here, A = B X C where C = R is the set of joint transfers, and i's
preferences are strictly increasing in the transfer, et Further, it is
assumed that for any s € S, b, b’ ¢ B, there exists ¢’ e R" such that (b,0)
Ii(s) (b",c’) for all 1. This says that for any two allocaticens b and b’
there exists a set of transfers such that agents are Indifferent between b’

with the transfers and b without any transfer,

An example of such a setting is in the provision of public goods.
Consider the social choice function which selects the efficient decision of
whether to wundertake a public project, and which distributes costs in
proportion to each agent's benefit. Such a social choice function is
boundedly implementable (see Jackson and Moulin [1990]). Many other cost

sharing rules can also be accommodated.

The case of transferable utility 1is known to have nice properties
relative to implementation. This can be seen in the implementing mechanisms
of Moore and Repullo [1988], Glazer and Ma [1989], Jackson and Moulin {19%0]

and others. The definition of separability, however, admits environments
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which are not restricted to have quasi-linear utility with transferability,
For example, a classical exchange economy is separable with respect to any

social choice function which provides each agent with a non-zero allocation.

Example 5 (Pure Exchange Economies)

Here, A = { x € rRY: | 2 ' < e }, where e is an aggregate endowment and
+ i

'

there are L commodities. Agent i's preferences depend only on his own
consumption bundle, and is strictly increasing and continuous in this bundle.
Here, we can implement any F which gives a non-zero allocation to each agent,
For example, if each agent has a non-zero endowvment, then the Walrasian
correspondence is boundedly implementablel3. Likewise, the no-envy

correspondence is boundedly implementable,

Theorem 3: If the above assumptions are satisfied then any social choice
function F is boundedly implementable. Furthermore, the mechanism can be
constructed so that are no mixed strategy Nash equilibria which only wuse

undominated strategies.

There are several comments to be made concerning Theorem 3. First, it
covers the case of two agents, which is not covered by our other results.
So, for instance, it covers bilateral bargaining situations in which transfers
are possible. Second, it accounts for mixed strategy equilibria. As
discussed by Jackson {1989], the implementation literature has largely ignored
the existence of mixed strategy equilibria. Third, it provides the wvery
strong result that any SCC can be boundedly implemented. Fourth, the theorem
is stated in terms of social choice functions. However, the proof can be

modified to also implement correspondences.
Proof: Let Ré=(Ri(s):s € S} be the set of preferences possible for 1i.
1

M=(R' x R'] U A x A)

Agents either announce a pair of preferences (their own and their neighbor’s),
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or they announce a pair of allocations.

g 1s defined as follows.

Case 1:

If all agents announce preferences then let

J(m) = ( j | m; = miﬂ}, and define

J(m)
g(m)=[F(s)]"™,
where [-]Jm) is as defined in (A2), and s is the state consistent with the
announcements m . [If there is no such state then use a default state s' €
S.]
Case 2:

. . i i+l .
If there exists i such that ml=(Rl,Rl ), while all other agents announce the

same pair of allocations m9=(a,b), then

}N-i if aR'b and aPiw, while

c(m)=[a
g(m)=[b]" " if bP'a and bP'w,

g(m) = w otherwise,

where [a]N‘i is defined according to (a2), giving a to i and excluding all

others.

Case 3: All other announcements.
g(m)=w,

To see that this implements F:

(1) The only undominated strategies are to announce a pair of preferences, the
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first of which 1is the agent’'s own true preference. [Any announcement

concerning the neighbor’s preference is undominated].

It is clear that announcing a pair of alleocations is dominated by a truthful
revelation of preferences, since announcing allocations always leads to an

outcome indifferent to w.

Next, the announcement of own preferences only affects the outcome under Case
2. Strict value distinction assures that truthful revelation in that case 1is

the only undominated action.

(2) Given (1), the only UNE involves announcing your own true preferences, and
your neighbor's true preferences. [This follows since any set of undominated
actions must have each agent announcing their own preferences truthfully, and
only best response involves matching your neighbor’s announcement. The
uniqueness of this best response assures that there can be no mixed strategy

equilibria. ]

\3) From the analysis in (1) above, it is clear that the mechanism is bounded.
To see that the mechanism satisfies the best response property, note that by
setting mi to be the true preference, and setting m; = m?ﬂ whenever mTl is a
preference announcement and choosing m; arbitrarily othkzowin.. is a best

response to the actions of the other agents.

The set of UNE coincide with the strategies left after the iterative
elimination of dominated strategies (or the procedure defined by Borgers

[1991]) .mmm

The mechanism constructed in the proof of Theorem 3 makes heavy use of
(Al) and (A2). It "punishes" agents whose messages are inconsistent with the
messages of others. The separability assumption (A?) allows the mechanism to
punish only certain agents, instead of resortine to severe punishments for all
agents when only one has deviated. Abreu and Matsushima [1990] obtain a

. L4 . . . . . . . .
similar result with wvirtual implementation in iteratively wundominated
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strategies. Their result has the advantage of working with smaller
punishments, and has the disadvantages of requiring that preferences have a
known von Neumann-Morgenstern wutility representation in each state, and

applying only to finite enviromments,

5. Concluding remarks

In summary, this paper presents several results on bounded implementation
in undominated Nash equilibrium. First, we identify the chained condition
which, together with no veto power and at least 3 agents is sufficient for
bounded implementation. Second, we identify a slightly weaker necessary
condition, called weakly chained. Third, we apply these results to show that
the uncovered set and plurality rule are boundedly implementable, but the top
cycle set and Borda rule are not implementable. Fourth, we identify a domain
restriction, separable environments, where there exists an implementing
mechanism is simple and intuitive, applies to the two-agent case, is immune to
mixed strategies, is bounded, and is dominance solvable. That domain includes
rany economic environments of interest.

This is one of the first papers that attempts to characterize what is
implementable in general environments under axiomatic restrictions on the
mechanism. The requirement of boundedness was motivated by Jackson's (1990)
identification of a conceptual problem wi<hi - -artain kinds of constructions
in the implementation literature. In the course of finding a solution to that
problem, it has become evident that there are many other important conceptual
issues that remain to be explored in implementation theory. Prominent among
these is the problem that many of the mechanisms constructed in the past
(including the one in our appendix) may have undesirable mixed Strategies in
some domains. While the problem can sometimes be overcome in isolation (Moore
and Repullo (1990)), or in some kinds of economic environments, its resolution
for general environments remains an open question when coupled with the

requirement of boundedness.



Appendix

Proof of Theorem 1

We construct a general implementing mechanism in the following way.

Preliminary steps in the construction:

The assumption that F is chained (Definition 7) guarantees that for all s,
s', and x € F(s)\F(s’'), there exist i,yl,y2 such that )HPi(s)szi(s')yl and

either:

(A) y, = X and yZPi(s’)x or
(B) ygf(s)yz and there exists j = i and there exist allocations zl,z2 such

J ' . 3 - i []
that zZP (s')xP (s)z1 (or x zl) and zzR (s )z1

In case (A) we define two functions, io(x,s,s’) and yo(x,s,s') such that

yb(x,s,s')Pi(s’)xPi(s)yO(x,s,s’) for i = i (x,s,s').

In case (B), define the functions I(x,s,s’),J(x,s,s’),yl(x,s,s’),yz(x,s,s'),
zl(x,s,s'),zz(x,s,s') such that, for i=I(x,s,s’) and j=J(x,s,s'):

(1) yl(x,s,s’)Pi(s)yz(x,s,s’)Pi(s’)yl(x,s,s’).

(2) zz(x,s,s’)PJ(s’)xPa(s)zl(x,s,s') (or x = zl)

(3) zz(x,s,s')Pi(s')zl(x,s,s')

Since no one is indifferent over A at any state, define, for each i, the

functions éi(s) and gi(s) such that éi(s)Pi(s)gi(s) for all s..
The message space for agent i is
Mi=A % S X S X (-(I+3),-(I+2), . . . ,-1,0,1.2,....1).

It is required that the message m‘1 = (x,s,s’,0) can only be sent by agent

io(x,s,s’) or I(x,s,s'). Alsc, mf € F(m;) is required for all 1i.
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Define the outcome function by partitioning the message space as follows.

D1 ={ m l i s, x €F(s) s.t. V¥V Kk, uﬁ—(x,s,~,0)}

g(m) = x

D2= { m ] 3 s,s’ and x € F(s) s.t. n9=(x,s,s’,-1) for j=J(x,s,s’) and

nﬁ=(x,s,-,0) for all k~J(x,s,s’))

i 10x,s,s%) . I(x,s,5")
g(m) = zl(X,s,s') if m3x55 —s or if qplexiss st

Ilx,s,s’
such that zl(x,s,s’)P (.88

(s"') z (x,s,s")
g(m) = zz(x,s,s') otherwise.

D=lm |3 s,s",x € F(s), i s.t. mk=(x,s,‘:0)r v k;‘dta(x’s’S’) and
m'=(x,s,s’,-2) for i=i (x,s,s"))

g(m) =y, (x,5,5")

5 s, x€ F(s), and 1 s.t, mk=(x,s,',0) Vk=i)

k
D5 ={ m ] 3 s,s'",x € F(s) s.t. m- ([, <,s',-3) ¥ ks I{x,s,s') and
mI(x,s,s')

=(x,s,-,0))
g(m) = Yl(X,S,S') if né(xﬁ'y)=s or if m % _s'¢ gsuch that
yl(X,S,S,)PI(X'S'S')(S")yz(X,S,S’)}
g(m) = yz(X,S,S’) otherwise.

De: { m ] 1 s, s’ (possibly s=s'), x € F(s) and i

s.t. m =(x,s,s',-(1+3)) ¥V k=1i)

g(m) = a'(s') it m'= (x,s,-,0)

g(m) = gi(S’) otherwise.
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D7={ all other m}
g(m) = mi* where i* is determined as follows:
For each i, let n' = max {0, m:) and let L = n’ + - - - + n

Then define i* = 1 + modI(L)

Claim 1.

At s, mk=(x,s,s,0) for all k is a Nash equilibrium,

Proof:

A deviation by agent i puts the action into one of Dz’ D3, and Da' A move to
D4 changes nothing. From the definition of zl(-), no agent can benefit from
moving to D2. Since xRi(s)yO(x,s,s') for i=io(x,s,s’), a deviation to D3

does not improve the payoff to io(x,s,s’).

Claim 2.
At s, nﬁ=(x,s,s,0) is undominated for each k.
Proof:

Region D6 guarantees that the only strategies that could weakly dominate m at

s are of the form, (x,s,s’,0), with s=s’. Such a message is only permitted by
I(x,s,s') or io(x,s,s'). Since yl(x,s,s’)Pi(s)yz(x,s,s') for i=I(x,s,s"),
Region D5 guarantees that (x,s,s,() is not dominated at s by (x,s,s’,0). If i

= io(x,s,s’) then (x,s,s,0) alweyz duzs at least as well as (x,s,5",0).

Claim 3.

If m is a Nash equilibrium at s’ and m & D1 then g(m) is the best element
for at least I-1 agents and so by no veto power, g(m) € F(s').

Proof:

From every joint message, m, In a region other than Dl, at least (N-1)
players, each have a unilateral deviation, say nl, such that (m“,nl) € D7 and

o T SO
gm ",n") is i’s best element at s.
Claim 4.

At s’, if i=I(x,s,s’), then mi=(x,s,s’,0) dominates mis(x,s,s,O).

Proof:
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In region D5* m}=(x,s,s’,0) is strictly better than nf=(x,s,s,0) for
i=I(x,s,s8’') at s', In every other region, 1 is weakly better off at s’ with

m}—(x,s,s’,O) compared to mi=(x,s,s,0).

Claim 5.

At s', either m = (x,s,s',0) weakly dominates nt = (x,s,8"'"",0) for
i=I(x,s,s') or zz(x,s,s’)Pi(s")zl(x,s,s’).

Proof:

In every region i is either strictly better off or equally well off reporting
(x,s,8',0) compared to (x,s,s’’,0). If (x,s,s',0) does not dominate
(x,8,8'',0), then they must lead to the same outcomes in D2 which implies that

zz(x,s,s') Pi(s")zl(x,s,s').

Claim 6.

If m e Dl is a UNE at s', then g(m) € F(s').

Proof:

Suppose not. Then g(m) & F(s'). This implies that mi = X and m; = s » s’ for
all 1. Since F is chained, there exists either io(x,s,s') or I(x,s,s'). In
the first cass, io(x,s,s’) can strictly improve his payoff by reporting
(x,s,s8’,-2), which contradicts m being a Nash equilibrium. In the second case,
Claim 4 implies that (x,s,s’,0) dominates (x;s,s,O) for I(x,s,s'). Since m is
undominated, Claim S fmplies that I(x,s,s’') must be reporting (x,s,s’',0) or
some (x,s,s'’',0) such that zz(x,s,s’)Pi(s")zl(x,s,s'). But this implies that
J(x,s,s8") can strictly improve his payoff by reporting (x,s,s’,-1), which
moves the message from D1 to D2 and changes the outcome from x to zz(x,s,s’).

This contradicts m being a Nash equilibrium.

Claim 7: The above mechanism implements F in UNE.
Proof:

From Claims 1 and 2, for every s and for every x € F(s), it is an undominated

Nash equilibrium for everyone to report (X,s,s,0) at s. From Claim 6 there
are no other UNE outcomes in Dl. rrom Claim 3, every Nash equilibrium at s
that lies outside of D1 produces an outcome in F(s). Therefore every

undominated Nash equilibrium outside of Dl preoduces an outcome in F(s).
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Claim 8:
The mechanism is bounded and has the best response property.

Proof:

Since A is finite, it follows that S and M are finite. Any mechanism with a

finite message space is bounded and has the best response property.mMN
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Proof of Theorem 2

Suppose F is boundedly implementable by (M,g), x € F(s)\F(s’), and m is an
undominated Nash equilibrium at s with g(m) = x. Then, either m is not a Nash

equilibrium at s’ or m is weakly dominated at s'.

If m is not a Nash equilibrium, then there exists an agent 1 and an
alternative strategy n' with x » y = g(ni,mﬁ), and xPi(s)yPi(s’)x. In this

case (A) is satisfied and F is chained at (x,s,8').

If m is a Nash equilibrium at s’, then m' must be weakly deminated at s’
for some 1. Let I be the set of all i e {1,2,...,N} for whom m* is weakly
dominated at s’. For each i € I, let n' be a dominating strategy. Since M, g)

) L., .

is bounded, we can assume that n° is itself not weakly dominated at s’ for
every i € I (otherwise we can simply replace n' with an undominated strategy
which weakly dominates m' at s'). Further, it must be the case that Pl(s) >

Pi(s’) for all 1 € I. Otherwise m would be weakly dominated at s.

Next, strict preferences imply that g(nanfi) = %, for all i € I(s,s’)
(otherwise m would not be a Nash equilibrium at s'). Two cases now arise: (1)

I =1, and (2) #I > 1.

1t

Case (1) I = (i}. Here, g(ni,mﬁ) = X as argued above, and neither n' nor any
of the mk for k = i are weakly dominated at s’. Since x ¢ F(s'}, (ni,mﬁ) is
not a Nash equilibrium at s’. Hence there exists an agent, say j(» 1), and a
strategy for j, say nQ, such that z, =g(niJﬁ,mij) is better than x for j at
s', i.e. zsz(s’)x. Now, let z = g(mé,nj,m_u), so that the situation is

given by the following:
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1 i
m n
m’ X X
J
z z
o’ 1 2

. L . i .
The requirements of the condition are now clear. Since m’° is a best response

for i at s, it must be the case that either z1 = X or XPJ(s)zl. Since n'
weakly dominates m at s’, it must be the case that either z, = z or
zzPi(s')zl. If z, = z, then (A) is satisfied for agent j. If zzPl(s’)z:l then

(B) is satisfied. Therefore F is weakly chained (at (x,s,s')).

Gase (2) #I > 1. Suppose, for simplicity, that I = (i,i’}. Since g(ni,m"i) -

x and g(nl ,m_l ) = %, the above matrix takes the form

i

i i

m n

]
ir
m X x
il
ni’ X y

Suppose that y = x. Then, it must be the case that yPi(s')x, yPi'(s’)x, so

(B) is satisfied with zZ, =y, z =X and F is weakly chained (at (x,5,8")).

. : i i -ii’ .
Suppose then that y = x, in which case g(n',n" ,m Yy = X, and mo one is
using a weakly dominated strategy. Since x & F(s'), this cannot be a Nash
equilibrium. Hence there exists another agent, say j, and a strategy, n’,

-ii7j

such that n’ is a better response for j to (nl,nl ,m 7y than n’. The

situation now locks as fellows, in which j chooses the matrix.
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i i i
m n i i
m n
i’ i’
m X X m z z
X i ® i
ir X X i z z
n n i’ ii’
m’ n’
j j . i
It must be the case that z__PJ(s’)X and XRJ(S)Zw. Further, since n weakly
ii’

dominates m' for i, we must have ziRi(s’)z¢, z_wRi(s')z_,, and similarly for
11 1
agent 1’ Letting z(g) = z@, z({i,j}) = z ., z({i}) = zi, z{{i')) = z ., we
il 1

get the requisite mapping.

The extension of the above argument when I consists of more than 2 agents

is straightforward.mmm
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ENDNOTES

1Complete information studies include implementation in Nash equilibrium
(Maskin [1977], Saijo [1988], Moore and Repullo [1990], Dutta and Sen [1988],
Danilov [1989]), subgame perfect equilibrium (Moore and Repullo [1988], Abreu
and Sen [1990]), undominated Nash equilibrium (Palfrey and Srivastava [1986]),

strong equilibrium (Dutta and Sen [1989]), undominated equilibrium (Jackson

[1989]), backward induction (Herrero and Srivastava [1989]), iterated
elimination of dominated strategies (see Moulin [1983] for a summary) ,
virtual implementation (Matsushima [1988], Abreu and Sen [1989], Abreu and

Matsushima [1990]), and the early results on dominant strategies (Gibbard
{1973], Satterthwaite [1975]). Characterizations when there is incomplete
information include Postlewaite and Schmeidler (1986}, Palfrey and Srivastava
[1989], Mookherjee and Reichelstein (1990] and Jackson [1991], all of whom
employ Bayesian equilibrium, and Palfrey and Srivastava [1989] who study
undominated Bayesian equilibrium. A recent survey can be found in Palfrey
[1990]. '

I . . .
Their result covers correspondences satisfying no veto power when there are

at least three agents in society.

3 . . . - . .
There are some exceptions, such as implementation in "strict" Nash

equilibrium or implementation in dominant strategies.

4 . . ; .

In fact, we work with "separable" environments. An environment is separable
if it is possible to "punish" a group of agents without affecting any of the
other agents. This is possible in environments such as economic ones where

there exists a private good.

& discussion of the role of mixed strategies is given in Section 4.

6A SCC F is monotonic if for every s and s', if x € F(s) and x & F(s') then

there exists an agent 1 and an outcome y € A such le(s)y and

yPi(s')x,



7The remainder of this section is written assuming strict preferences. All
the definitions and results extend to weak preferences in a natural way. This

is done in Jackson, Palfrey, and Srivastava [1990].

815 possible to construct examples of games which are bounded, but in which no
agent has a best response to certain strategies of the others.

9See Jackson, Palfrey, and Srivastava [1990] for a proof with weak
preferences.

10This example also shows that the SCC given by F(s) = x, F(s') = ¢ is not

chained. We show below that this F is not boundedly implementable. This
shows that bounded implementation differs from implementation via backward
induction (Herrero and Srivastava [1989)), since this F is implementable wvia
backward induction.

11 s . .
The restriction to bounded mechanisms does not rule out all types of integer

games, Rather, it assures that the process of eliminating dominated
strategies is a coherent one. Thus, a restriction to bounded mechanisms may
have little to say about whether the Nash solution is appropriate. For

example, it is easy to construct bounded mechanisms in which agents do not
have a best response to strategy profiles of other agents. In such a
mechanism, elimination of dominated strategies may be quite resonable, but it
may be inappropriate to apply the Nash solution concept.

12 . . . . : . s
An alternative approach which handles mixed strategies s to consider finite

trees of perfect information. There, backward induction can be applied, as
studied by Herrero and Srivastava [1989].

13 . . .
Note that only the ‘"constrained" Walrasian correspondence is Nash

implementable (see Hurwicz, Maskin, and Postlewaite [1984]).

4 ; s e . . .

Their results are actually significantly weaker, since their mechanisms are
not dominance solvable for all wvon Neumann-Morganstern representatives of
ordinal preferences, and may admit mixed strategies for some such

representations.
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