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1. Introduction

The Gibbard (1973)-Satterthwaite (1975) Theorem states that a strategy-proof social
choice function on an unrestricted domain of preferences must be dictatorial if it takes on
at least three values. Equivalently, the result says that interesting social choice functions
cannot be implemented in dominant strategies. This restriction to dictatorial social choice
functions is often attributed to the strength of the requirement that there exist a dominant

strategy for each agent and every preference profile.

It is interesting, however, that similar results obtain for much weaker solution concepts.
Jackson (1989) shows that if a social choice function can be implemented in undominated
strategies by a bounded mechanism' on a full domain of preferences, then it must be
dictatorial. Undominated strategies is a very weak solution concept, quite the oppaosite of
dominant strategies. Most games have undominated strategies: for instance, all mechanisms
with finite action spaces are bounded and have undominated strategies for every preference
profile. An impossibility result also holds for Nash equilibrium. The only social choice
functions which take on at least three values and are Nash implementable are dictatorial,
as shown Dasgupta, Hammond and Maskin {1979). These results indicate that it is not the
strength of the solution concept which makes it impossible to implement interesting social

choice functions .

In order to understand what makes it impossible to implement interesting social choice
functions , it is important to recognize that there are solution concepts which avoid the
negative results. Interesting social choice functions can be implemented on a full domain
of preferences via undominated Nash equilibria, the iterated removal of weakly dominated
strategies, maximin strategies, and other solutions. These observations lead to the following
question: Is Phere some property of a solution concept which prevents it from implementing

interesting social choice functions ?

The obvious answer to this question is that if a solution concept has a strategy-proof
outcome function (for any mechanism for which it always predicts a single outcome), then

it will be impossible implement non-dictatorial social choice functions via that solution

! A mechanism is bounded if, for each weakly dominated action, there exists and undom-
inated action which dominates it. Definitions of various solution concepts and restrictions
on mechanisms are provided in Section 2.



concept. We offer a direct proof of this fact (Theorem 2). Although this theorem is simply
an extension of the Gibbard-Satterthwaite Theorem, we offer a proof for two reasons. First,
the proof we offer is substantially simpler than existing proofs of the Gibbard-Satterthwaite
theorem.? Second, the proof of Theorem 2 makes clear the critical role of the requirement
that a solution lead to a single outcome for every preference profile; which helps us to

identify the aspects of a solution concept which lead to an impossibility result.

Although Theorem 2 provides an obvious property commeon to solution concepts which
are unable to implement interesting social choice functions , this property is not as useful
as one might hope. For some solution concepts and mechanisms, it is difficult to verify
that the outcome function is strategy-proof. With this in mind, we define conditions which
are sufficient for an impossibility result (Theorem 3), and which are easily checked globally

(without reference to a particular mechanism).

These conditions are called positive responsiveness and direct breaking. Roughly, posi-
tive responsiveness states that a solution accounts for improvements available to any agent.
The direct breaking condition states that in certain circumstances, if a set of actions is not
a solution then some agent can improve via some deviation. In addition to being easily ver-
ified, the conditions also provide intuition into the impossibility results. One may interpret
the direct breaking condition as saying that actions to be ruled out are broken directly; or
in a sense, “on the proposed equilibrium path”. More precisely, if only one agent’s pref-
erences change and and the cutcomes ¢f the mechanism completely change, then for some
set of actions which were a solution, some agent can do strictly better by deviating. The
direct breaking condition is satisfied by undominated strategies (on bounded mechanisms),
Nash equilibrium, and the iterative elimination of strictly dominated strategies. However,
undominated Nash equilibrium, the iterated removal of weakly dominated strategies, and
maximin strategies, which do not lead to impossibility results, do not satisfy the direct

breaking condition, and in a sense incorporate “off the equilibrium path” information.

The paper is organized as follows. First, we provide definitions and simple proofs of
impossibility theorems for several solution concepts. Next, we use the intuition from these

impossibility theorems to prove a general impossibility theorem. The key steps in the proof

2 An exception is a recent proof by Barbera and Peleg (1990). Our approach, however,
offers different insight into the result. This is discussed more fully in Section 3.

3



of the general theorem lead us to define the positive responsiveness and direct breaking
conditions and prove that they are sufficient for an impossibility result. Finally, we discuss
potential extensions to allow for indifference and solutions which account for coalitional

incentives. A table at the end of the paper summarizes the impossibility theorems.

2. Definitions

The finite set of alternatives is denoted A. It is assumed that # A4 > 3.
The society is composed of a finite number, N, of individuals.
Individual preferences are represented by a binary relation which is complete, asym-

® We use the notation P* to represent such a binary relation for

metric, and transitive.
agent 1, and for a # b read aP'b to mean that 1 prefers a to b. Let P denote the set of all
such strict preferences over A,

A social choice function is a map which associates an alternative to each preference
profile. We use F' to represent a social choice function, F : P¥ — A. We assume that F is
onto A.*

A social choice function is strategy—proof if for each i, P, and P’ either F(P) =
F(P~*,P) or F(P)P‘F(P~% D).

A social choice function is dictatorial if there exists ¢ such that F(P)Paforall P € P
and a # F({P) in the range of F.

A mechanism is a game form (M, g), where M = M* x--- x M~ and g : M — A. The
set of mechanisms to be considered for the implementation problem is denoted §.

A solution is a correspondence which indicates the set of actions which might be played

for a given game form and profile of preferences. We denote solutions by S where S :

¥ The combination of completeness and asymmetry rules out indifference. As pointed out
by previous authors, considering only strict preferences actually provides for stronger results
than allowing for indifference since it is a more restricted domain. For the implementation
problem, the consideration of indifference leads to some difficulties, which we discuss in our
concluding remarks.

* This assumption is without loss of generality for our analysis. Any solution concept
satisfying the conditions of the theorems we provide, depends only on the preferences of
agents over alternatives available as outcomes of the game form being played. Furthermore,
a solution which satisfies the conditions of any of our theorems also satisfies a unanimity
condition: an alternative which is most preferred by all agents and is available via the game
form will be an outcome. Taking these two observations together, we can let A be the range
of F.



G x PY — 2™, Thus, m € S[(M, g), P| indicates that m is a solution under S to (M,g) at
P.

The outcome correspondence associated with S is Og : § x P¥ — 24 ig defined by
Os[(M,9),Pl={ac A|3me S[(M,g), P s.t. g(m) = a}.

A social choice correspondence F is implementable via the solution S if there exists a

mechanism (M, g) such that O5[(M,g), P] = F(P) for all P € P¥.

SOLUTION CONCEPTS.

Although most of the solution concepts we discuss are well-known, we provide defini-
tions for them as used in an implementation context. An incomplete list of references for
implementation via the solutions we discuss includes: Maskin (1977), (1985) for Nash im-
plementation Palfrey and Srivastava (1986) and Jackson, Palfrey and Srivastava (1990) for
undominated Nash implementation, Farquharson (1969), Moulin (1979), (1983}, and Abreu
and Matsushima (1990), for the iterated removal of weakly dominated strategies, Jack-
son (1989) and Badrgers (1991) for undominated strategies, Thomson (1979) and Moulin
(1982) for maximin strategies, Barbera and Dutta (1982) for protective equilibria, Herrero
and Srivastava (1989) for implementation via backward induction, and Moore and Repullo
(1988) for subgame perfect implementation. Moore (1991) provides an excellent survey of

the (complete information) implementation literature.

DOMINANT STRATEGIES.

An action m' € M* is a dominant strategy for agent i at P* if for each m™* and

either g(m*, m~*) = g(M*,m™") or g(m',m™*) Pig(W',m™*).
UNDOMINATED STRATEGIES.
The action m' € M* dominates m' € M’ at P' if for each m~* either g(M*,m™) =

g(m*,m™%) or g(M*, m~*)P'g(m’,m~*), with the preference being strict for some m~*. The

action m' is undominated at P* if it is not dominated by any other action.

STRICT DOMINATION.



The action m' € M" is strictly dominated by m' € M* at P* if g(#', m™*) P'g(m*, m™*)

for each m™*. The action m' is strictly undominated if it is not strictly dominated by any

o~y

m'.
ITERATIVE REMOVAL OF DOMINATED STRATEGIES.

Given a mechanism (M,g) and sets X* > M ..., X¥ > MV, an action m' €
X' is dominated by m' € X' at P’ with respect to X if for each m™* € X% either
g{(m',m™') = g(m*,m™*) or g(M',m*)Pg(m',m %), with the prefereﬁce being strict
for some m™* € X~f, Let D'(X,P) be the set of actions which are not dominated
for ¢ at P* with respect to X, and let D(X,P) = D'(X,P) x --- x D¥(X,P). De-
fine a sequence Do(M,P),...Dx(M,P)... by Do(M,P) = D(M,P) and Dg(M,P) =
D(Dk-1(M, P), P). Finally, let D*(M, P) = Ng Dy (M, P). An action m € D*(M, P) is
sald to be iteratively undominated at P.

Correspondingly, we can define iteratively strictly undominated by using strict domi-

nation instead of domination in the above definition.

NASH EQUILIBRIUM.

A (pure strategy) Nash equilibrium at P is a profile of actions m € M such that for
each 1 and m* either g(m) = g(™',m™*) or g(m) P'g(Mm',m™%).

UNDOMINATED NASH EQUILIBRIUM.

The actions m € M form an undominated Nash equilibrium at P € PV if m is a Nash

equilibrium and each m* is undominated at P*.

MAXIMIN.

An action m' € M? is a maximin action for agent ¢ at P*, if for any m' € M’ there exists
m~* such that for each m™* either g(m',m=%) = g(M*,M~*) or g(m*,m %) Pig(f, ).
Under maximin, agents ‘rank’ their strategies in terms of the worst outcomes they might

lead to, and select from among those with the best worst outcome.

BOUNDED MECHANISMS.

A mechanism (M, g) is bounded at P if whenever m' is dominated at P*, there exists

a undominated m* which dominates it. (M, g¢) is bounded if it is bounded at each P € P.
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3. Implementing a Social Choice Function
Our starting point is the following version of the Gibbard-Satterthwaite Theorem.

THEOREM [GIBBARD (1973), SATTERTHWAITE (1975)]. If a social choice function
has at least three elements in its range, then it is implementable in dominant strategies if

and only if it is dictatorial.

Much of the intuition behind the Gibbard-Satterthwaite theorem, has been that the
negative result derives from the strength of the requirement that a social choice function
be strategy-proof on a full domain of preferences. Equivalently, from an implementation
standpoint, the difficulty arises in attempting to construct a mechanism for which each

agent always has a dominant strategy.

It is perhaps surprising that similar results occur for weaker solution concepts. In
fact, the negative result holds for a wide variety of sclution concepts. This includes im-
plementation in undominated strategies by bounded mechanisms, Nash implementation,
and implementation via the iterated elimination of strictly dominated strategies. We dis-
cuss these next, and in each case provide a particularly simple proof of the result. These
proofs highlight the intuition that the inability to implement non-dictatorial social choice

functions derives from the requirement that a solution always predict a single outcome.

THEOREM [JACKSON (1989)|. If a social choice function has at least three elements in
its range, then it is implementable in undominated strategies by a bounded mechanism if

and only if it is dictatorial.

The restriction to bounded mechanisms is critical to the theorem above. If we allow
unbounded mechanisms, then the result is quite the opposite: any social choice function
can be implemented in undominated strategies, as shown in Theorem 1 of Jackson (1989).

The importance of boundedness is discussed in more detail in Example 3 below.

PROOF: Here, we offer a direct proof of the theorem for ¥ = 2 and F has three elements in
its range. This carries most of the intuition. Other cases are covered in the appendix. Let
F be implemented by the bounded mechanism (M, g). The notation P* = (a,b,¢) indicates
that a is strictly preferred to & which is strictly preferred to c.

(1) There exist 1, m* € M*, and c such that g(m* m~*) = c for all m~* € M.



Case 1. g(m) = ¢, for some P and m which is undominated at P, where ¢ is j’s
worst outcome. In this case, since F is single valued, g(m',m’) = ¢ for all m? which are
undominated at P’. Since (M,g) is bounded, it must be that g(m',77) = c for all M7 .

Case 2. For any P and m which is undominated at P, g(m) is not the worst outcome
(b,a,c), P2 = (c,a,b), then

9(M) = a. Similarly, if 7 is undominated at P! = (c,b,a),ﬁ2 = (a,b,c), then g(m) = b.

of either agent. In this case, if M is undominated at P!
At (131,162), both m! and M? are undominated. There is an undominated action #? such
that g(fm',7%) = a [since g(M) = a makes a available to agent 2]. Likewise, there is an
undominated action m' such that g(i', M%) = b. This implies that F(P!, P?) = {a,},
which contradicts the fact that F is a function.

(2) F is dictatorial.

Identify ¢, ¢ and m* from (1). We show that for any a # c, there exists n* such that
g9(m',m7) = a for all m?. This [coupled with (1)] implies that i’s undominated strategies
are constant and provide i’s most preferred alternative. Thus ¢ dictates. Let P° = (a,c,b),
P = (b,a,c). Since g(Mm) = a for some i, there exists an undominated ' such that
g(m*,M’) = a. If m’ is undominated at ﬁj, it follows that g{m) = a or g(f1) = b. Since
g(m',7") = ¢ and c?b, there exists an undominated m* such that g(m) # b. Thus, since
F is single valued, g(#) = a for any m which is undominated at P.

Let P = (a,b,c). Either m' is undominated at ]S‘, or it is dominated by an undomi-
nated action m* such that g(f’, 74’} = a. Since F is single valued, g(7¢,m’) = a for any
#’ which is undominated at P*

Let P/ = (b,¢,a) and consider M’ which is undominated at P7. It follows that g(m) #
b, since otherwise g(m',7’) = b. However, g(m’,’) = b for some m’, since b is in the
range of (M, g) and is most preferred by j. Since i prefers b to ¢, this implies that g(m) #c.
It follows that g{m) = a.

Since a is least preferred by j at 27 and F is single valued, g(m',m’) = a for any

undominated m’. Since (M,g) is bounded, g(#*,m’) = a for all m?. |

A similar result holds for Nash implementation.

THEOREM [DASGUPTA, HAMMOND, AND MASKIN (1979)|. If a social choice function
has at least three elements in its range, then it is Nash implementable if and only if it is

dictatorial.

The theorem stated above also holds for the case of N = 2 and #A = 2, as shown
by Maskin (1977) and Hurwicz and Schmeidler (1978). A simple proof for that case is

presented in Jackson and Srivastava (1991).



PROOF: We provide a proof for N = 2 and #A4 = 3. The extension to N > 2 and #4 > 3
is covered in the appendix. Consider F which is Nash implemented by the mechanism
(M, g).
(1) There exist i, m* € M*, and ¢ such that g(m*,m ) =cfor all m~% € M~

Case 1. g{m) = ¢, for some P and m which is a Nash equilibrium at P, where ¢ is j’s
worst outcome. Since m is a Nash equilibrium, it must be that g(m*,m’) = ¢ for all m?.

Case 2. For any P and m which is a Nash equilibrium at P, g(m) is not the worst
outcome of either agent. In this case, if m is a Nash equilibrium at P! = (b,a,c),P? =
(c,a,b), then g(f) = a. Similarly, if # is a Nash equilibrium at P! = (c,b,a), P? = (a,b,¢),
then g(m) = b. It then follows that at (ﬁl,ﬁz) both m and m are Nash equilibria, which
contradicts the fact that F is single valued.

(2) F is dictatorial.

Identify ¢, ¢ and m’ from (1). We show that for any a # ¢, there exists M* such that
g(m*,m’) = a for all m’. This [coupled with (1)] implies that the Nash equilibria must
result in t’s 1’s most preferred alternative and so 1 dictates.

Consider a Nash equilibrium # at preferences P' = (a,b,c) and pPi= (¢,b,a). It must
be that g(fM) = a and so g(7*,m’) = a for all m’. To see this, suppose that g(#) # a. Then
since m is a Nash equilibrium at P, g(#, m?) € {b,c} for all M. It follows that (m',m7)
(where m' is identified in (1)) is a Nash equilibrium at P* = (a,e,b), P = (a,c,b). There
exists m such that g(m) = a. It follows that 71 is also Nash equilibrium at P, contradicting
the fact that ¥ is single valued. |

A similar result obtains for implementation by elimination of strictly dominated strate-
gies. One way to prove this is to show that any social choice function implemented in this
way is monotonic, and then to apply the Muller-Satterthwaite (1977) theorem. (The same
1s true for Nash implementation). Instead, we offer a direct proof which illustrates how

properties of the implementing mechanism yield the result.

THEOREM 1. If a social choice function has at least three elements in its range,® then it
can be implemented by the iterated elimination of strictly dominated strategies if and only

if 1t is dictatorial

We remark that while the result for undominated strategies relies on a restriction to

bounded mechanisms, the above result does not require any limitation on mechanisms. The

> As with Nash implementation, the result holds for the case N = 2 and #A = 2. This
can be shown by a proof analagous to the one in Jackson and Srivastava (1991).



strict nature of the domination and the restriction to finite A places a natural bound on

any string of dominating actions.

PROOF: Here we prove the theorem for ¥ = 2 and #A4 = 3. The case N > 2 and #A4 > 3
appears in the appendix. Let F be implemented by the iterated elimination of strictly
dominated strategies via the mechanism (M, g).

(1) There exist ¢, m* € M*, and ¢ such that g(m*,m~*) =cfor all m~* € M.

Case 1. g(m) = ¢, for some P and m which is iteratively strictly undominated at P,
where c is j’s worst outcome. It follows that F(P) = c. Without loss of generality, let P7 =
(e,6,c). Any m’ such that g(m’,m’) = a would also be iteratively strictly undominated
since a is maximal for j. Since F is single valued it must be that g(m*, ™) # a for all M.
Then by similar reasoning (given that a cannot be achieved against m*) g(m*,#?) # b for
all m”.

Case 2. For any P and m which is iteratively strictly undominated at P, g(m) is not
the worst outcome of either agent. In this case, if fm is iteratively strictly undominated
at P! = (b,a,c),ﬁ2 = (c,a,b), then g(m) = a. Similarly, if M is iteratively strictly
undominated at P! = (c,b,a),P? = (a,b,¢), then g(Mm) = b. It then follows that at
(]3’,}32) both m and M are iteratively strictly undominated, which contradicts the fact
that F is single valued.

(2) F is dictatorial.

Identify 1, ¢ and m* from (1). We show that for any a # ¢, there exists #* such that
g{M*,m?) = a for all m’. This [coupled with (1)] implies that i dictates.

Suppose that there does not exist such a m'. Then at preferences P* = P7 = (e,c,b),
the action m' [defined in (1)] is not strictly dominated. Given the structure of m’, none of
agent j’s actions are strictly dominated as long as m' has not been removed by 1. It follows
that m', m7 is iteratively strictly undominated for any m? at P and so F(ﬁ) =c. It is also
true that any 2 such that g() = a is iteratively strictly undominated at P, contradicting
the fact that F is single valued. 1

The proofs given above illustrate that much of the force behind the negative results is
the fact that F' is single valued. For each of the previous theorems, the proofs follow similar
reasoning: If F' is single valued, then some agent must be able to enforce some outcome
(part (1) of each proof). Next, we show that the same agent must be able to enforce every

outcome and thus is a dictator (part (2) of each proof).

There are solution concepts for which this line of reasoning is not valid. Such solu-

tlon concepts can implement non-dictatorial social choice functions . We now discuss two
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such solution concepts. The first is undominated Nash equilibrium, which is stronger than
either undominated strategies or Nash equilibrium, and weaker than dominant strategies.
This indicates that the strength of the soluticn concept has little to do with producing an

impossibility result.
EXAMPLE 1. Undominated Nash implementation.

The following mechanism allows both agents some say in the selection of an outcome,

and yet it has a unique undominated Nash equilibrium fer any preference profile.

3
3

3
o
o

!
o
2]

The mechanism represented above always has a unique undominated Nash equilibrium.
The column player always has a unique undominated action, depending on the preference
between b and ¢. The row player has a unique best response to this action, which completes
the equilibrium. Notice that an iterated elimination of (weakly) dominated strategies will

lead to the same predictions as the undominated Nash equilibria for this mechanism.®

If we examine other solution concents applied to the above mechanism, such as undom-
inated strategies, Nash equilibrium, or dominant strategies, they do not lead to a unique
prediction for the above mechanism at some preference profiles. At some profiles there are
more than one predicted outcomes for the undominated strategy or Nash solution concepts,

while agent 1 has no dominant strategy.

Another solution concept which permits a positive implementation result is maximin

strategies.”

® More discussion of interesting social choice functions which can be implemented by an
iterated elimination of weakly dominated strategies on a full domain of preferences is given
in Moulin (1982), (1983), and Herrero and Srivastava (1989).

" For more discussion of implementation via maximin see Thomson (1979). Example 2
also works for implementation via protective equilibria [Barbera and Dutta (1982)], which
s a refinement of the set of maximin strategies [see Barbera and Jackson (1988)].
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EXAMPLE 2. Maximin Strategies.

The following mechanism shows that the maximin solution is single valued on a mech-
anism which is not dictatorial. In fact, the maximin outcome function for the mechanism
below is anonymous. One way to think of this mechanism is that each agent can veto a

single outcome. The unique maximin solution is to veto your worst outcome.

m? m2 m?
m! a a b i
m! a c c !
m! b c c l

4. Comparing Solution Concepts.

The proceeding discussion leads to the following question: Can we characterize the
solution concepts which lead to impossibility results? Such a characterization is provided
by Theorem 2 below.

Before stating Theorem 2, we remark that the condition it identifies need only be
satisfied on mechanisms for which a solution provides a single valued outcome function.
This makes it easy to verify for those solutions which satisfy it everywhere, but much
more difficult to verify for solution concepts which only satisfy it for some mechanisms.
Thus following Theorem 2 we offer Theorem 3 which provides sufficient conditions for an
impossibility result. The sufficient conditions turn out to be easier to verify for most

solutions.

STRATEGY RESISTANCE.

A solution S is strategy-resistant® with respect to the mechanism (M, ¢) if for each i,
P e P¥ and P' € P, there exists m € S[(M,g),P] and /7 € S[(M,g),P“,Ig‘] such that
either g(m) = g(#M) or g(m)P'g(m).

8 A condition of strategy-resistance is defined for social choice correspondences in Jack-
son {1989). The condition stated here requires that a solution lead to a strategy-resistant
outcome function in the sense of Jackson (1989).
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The strategy-resistance condition states that agents do not wish that they had pref-
erences different from their true preferences, in the sense that those preferences lead to
outcomes, all of which are better according to their true preferences, than the outcomes
they get with their true preferences. The term strategy-resistance is a bit of a misnomer
here, since agents do not have the ability to change their preferences (recall that this is a

condition on a solution concept).

THEOREM 2. The solution S is strategy—resistant with respect to a mechanism via which
it implements a social choice function (with at least three outcomes in its range), if, and

only if, the social choice function is dictatorial.

The above theorem is easily proven using the Gibbard-Satterthwaite theorem. We
offer a direct proof which provides insight to the impossibility results. The proof is similar
in structure to those of the preceeding theorems. It is first shown that strategy—resistance
and single valuedness imply that some agent can enforce an outcome. It is then shown
that the same agent can enforce any outcome. The proof is easily modified to prove either
the Gibbard-Satterthwaite theorem or Muller-Satterthwaite theorem. As mentioned in
the introduction, the proof offered here is substantially simpler than the existing proofs
of these theorems, with the exception of a proof of the Gibbard-Satterthwaite theorem
by Barbera and Peleg (1990). Our proof is a nice complement to theirs, as it employs a
different approach. The Barbera and Peieg (1990) proof uses a key step of showing that a
strategy—proof social cheice function on a full domain is “tops-only”. That is, the social
choice function depends only on the information of which element is most preferred by each

agent. The key step in our proof involves showing that some agent can enforce an outcome.

The proof below is for N = 2 when F has a range of three elements. The proof is

completed in the appendix.

PROOF: It is easily seen that if S implements a dictatorial social choice function via (M, g),
then it is strategy—resistant with respect to (M,g). Thus we prove the converse. Let F be
a social choice function which has at least three elements in its range and is implemented
via the solution S by the mechanism (M,g), for which S is strategy-resistance. We show
that F is dictatorial.

(1) For some 1 and ¢ € A, there exists P* € P such that F(P', P?) = ¢ for all P/ € P.
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Case 1. There exists P, j and ¢ such that Os[(M, g}, P| = ¢ and ¢ is worst for 7 at P’.
Strategy-resistance then implies that Og[(M,g),(F*,-)] gives ¢ everywhere.

Case 2. Nobody ever gets their worst outcome. Consider P* = (b,a,c) and P? =
(a,b,¢). Then Og[(M,g), P] € {a,b}. Without loss of generality, suppose that

Os[(M,g), P] = b. Strategy-resistance then implies that O [(M, g), Pl,ﬁz] # a for all P2.
Since Os[(M,g),] is neither agent’s worst outcome, Og[(M,g),Pl,ﬁQ] # ¢ for any P2.
Therefore, Og[(M,g),Pl,ﬁz] = b for all P? and (1) is satisfied.

(2) F is dictatorial.

Identify ¢, ¢ and P* from (1). We show that 1 can also enforce any a # ¢.

Let P = {(a,c,b) and P = (b,a,¢). Since Os[(M,g),P",I_”-] = ¢, it follows from
strategy—resistance that Os{(M,g), P| # b. Since a is in the range of F, a = Oy (M, 9q), }3]
for some P. Thus by strategy-resistance a = OS[(M,g),-}?,IS"]. Then since a is preferred
by 7 to ¢ at ﬁj, O5{(M,g), P] # c. Therefore Os[(M,9),P) = a.

Let P* = (a,b,¢). By strategy-resistance Og[(M,g),]g“,ﬁIS’.] = a. Let P/ = (b,c,a).
Os [(M,g),ﬁ] # b, since otherwise strategy-resistance implies that Og[(M,g), ﬁ",ﬁj] =b.
Since b is in the range of F, b = OS[(M,g),}S] for some P. Thus, by strategy-resistance
b= 05[(M,g),]3‘,};"]. Then since b is preferred by ¢ to ¢ at ﬁ", OS[(M,g),}?’] # ¢. Thus
Os((M,q), ~] = a. Since a is least preferred by j at P7, strategy-resistance implies that
Os[(M,g), P P/l =aforall P/. |

Before proceding to Theorem 3, we examine how the strategy-resistance condition

applies to several solution concepts.

EXAMPLE 3. Undominated Strategies

Implementation in undominated strategies shows that the possibility of non-trivial
implementation depends critically on the domain of possible mechanisms . If we restrict
attention to the class of bounded mechanisms, then the solution of undominated strategies
1s strategy-resistant, as shown in the theorem in section 3. Another way to see this is to
apply Theorem 2. Consider a bounded mechanism (M,g) and any i, P € PV, Pe P,
m e S[(M,g),P"‘,ﬁ"]. If /' is undominated at P, then € S[(M, g), P], and strategy—
resistance is satisfied. If m* is dominated at P, then it is dominated by an undominated m®.
In this case ™', m' € Os[(M,g), P| and either (M™%, m’) = (@) or g(m™*, m*) P*g().

If G includes all mechanisms, then any social choice function is implementable in un-

dominated strategies [Theorem 1 in Jackson (1989)]. The above argument breaks down in
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trying to find the appropriate m* in the argument above because for an unbounded mech-
anism, there exist infinite strings of strategies, with each strategy dominating the previous
one, but none of which are undominated. For such mechanisms, an agent might find that
a dominated strategy provides a better outcome than all of the undominated strategies,
against a particular set of strategies of other agents [See example 1 in Jackson (1989)].
For such a mechanism, however, it seems unreasonable to argue that agents will only play

undominated strategies.

EXAMPLE 4. Undominated Nash implementation (part II).

Undominated Nash equilibrium does not satisfy strategy-resistance for the mechanism
provided in Example 1. If P* = (¢,a,b) and P? = (b,c,a), then the solution is m, with
outcome a. If agent 2’s preferences change to P? = (c,b,a), then the solution is bottom
right, with outcome ¢. This is not strategy-resistant, since agent 2 would rather have
preferences ﬁz’ when he or she has preferences P2. Indeed, the social choice function

implemented by the mechanism of Example 1 is not dictatorial.

Although strategy-resistance seems like a compelling condition for a sclution to satisfy,
we should be careful to consider its interpretation under different information structures.
For solutions which operate in incomplete information settings, such as undominated strate-
gies or dominant strategies, strategy-resistance seems natural since agents do not know the
preferences of others and thus choose actions independent of the actions or preferences of
others. The only change in actions from a change from P to Piisduetoa change by agent
t. The agent should not choose actions which do uniformly worse against the actions of the
other agents.

However, when we move to a complete information setting, the preceeding argument
can no longer be made. A solution such as undominated Nash equilibrium, looks for a stable
point given that all agents know each others’ preferences. In Example 1, m is ruled out at
P*', P? since agent 1 knows that it is a dominant strategy for agent 2 to play m?. Given

this, agent 1 should play m*, even though the agent would prefer that both agents play m.

As mentioned previously, although Theorem 2 provides a characterization of solutions

which lead to impossibility results, the strategy-resistance condition is not always easily

15



verified. It is difficult to verify, since it is only required to hold for mechanisms on which the
solution concept has a single valued outcome correspondence. In the case of Nash equilibria,
for instance, the strategy-resistance condition holds for ‘single outcome’ mechanisms, but
not for other mechanisms. To overcome this problem, Theorem 3 provides conditions which

are easy to check globally.

POSITIVE RESPONSIVENESS.

A solution S satisfies positive responsiveness with respect to the mechanism (M, g) if
g(m™*,m*)P*g(m) for some 1, m € S|(M,g),P|, and m' € M*, implies that there exists
m & S[(M,g), P] such that either g(m)P*g(m~*,m") or g(m) = g(m~*,®*).

The positive responsiveness condition essentially says that a solution is compatible with
agents’ preferences. If we consider any solution which is stable in a Nash equilibrium sense,
then this condition is satisfied almost vacuously: there can exist no such improvement '
for 1. For solutions which work by means of domination arguments, the condition is also
satisfied, but only when we restrict attention to bounded mechanisms. For example, if
we consider undominated strategies, then such an action ' is either undominated itself,
or dominated by an undominated action which then must lead to at least as good an
outcome for agent 1 as m'. If the mechanism is not bounded, then this is no longer true.?
Two solutions which do not satisfy positive responsiveness are maximin and the protective
criterion. Both solutions rely on information about the worst outcomes which an action
may lead to, and do not account for the outcome of an action against particular actions of

the other agents.

DIRECT BREAKING.

A solution S satisfles direct breaking with respect to the mechanism (M,g) if for
each P, 1, and P* such that OS[(M,g),P_",ﬁ‘] N Os{(M,g),P] = @, there exists 5, m €
S[(M,g), P, P'], and m’ such that g(M 7,77 ) Pig(f).

The direct breaking condition may be interpreted as follows. Suppose that a change in

one agent’s preferences leads to a complete change in outcomes. Then it must be that the

° Example 1 in Jackson (1989) provides an illustration. In that example there are devi-
ations ' which are strict improvements, but they form a string each one dominating the
previous one.
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strategies leading to the alternative outcomes are not stable at the agents’ original prefer-
ences. That is, some agent could benefit (in terms of original preferences) from deviating

from at least one of the solutions associated with the one agent’s alternative preference.

The direct breaking condition may seemn somewhat similar to requiring that the out-
come correspondence associated with a solution be monotonic.!® There are important
differences, however, and the direct breaking condition is much weaker. The direct break-
ing condition is binding only when all cutcomes change due to a switch in preferences by
some agent. In contrast, monotonicity is binding when any outcome changes due to a
change in the preferences of an agent. Further, monotonicity then requires a preference
switch between the outcome and some alternative for the agent whose preferences have
changed. Direct breaking only requires that some agent have an improving deviation from
some original solution. The agent does not necessarily have to have a preference switch or
be the agent whose preferences have changed. These important differences are evident in

the following example.

EXAMPLE 5. The Iterated Removal of Strictly Dominated Strategies.

As shown in Theorem 1, only dictatorial social choice functions are implementable via
the iterated removal of strictly dominated strategies. Positive responsiveness and direct
breaking are easily verified as follows:

Consider ¢, m € S[(M,g), P] and m' such that g(m~* #')P*g(m). Since #A is finite,
there exists m' such that for each ' either g(m™ , m)Pig(m™ ') or g¢(m™ ') =
g(m~*,m*). It follows that m™* 7" is iteratively undominated at P, and hence satisfies the

requirement of positive responsiveness.

Checking the direct breaking condition is as straightforward. Consider m which is left
after the iterated elimination of strictly dominated strategies at P“‘,]‘ﬁ;". If m is not a
solution at P, Then there is a first stage such that m? is strictly dominated by 7 for some

J. This implies that g(m~=7, ﬁi")ﬁjg(m)'

1% On the full domain we consider, monotonicity may be defined as follows. A social
choice correspondence F is monotonic if for each a, P, 1 and P such that a € F(P) and
a ¢ F(P~%,P"), there exists b such that aP*b and bP a. This condition has been called

strong positive association by some authors.
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Now we show that although the iterative elimination of strictly dominated strategies
satisfies positive responsiveness and direct breaking, it does not always have a monotonic

outcome correspondence. Consider the following mechanism.

m? m?
m! a a
m! b c

Let P! = (b,a,c¢), P = (b,¢,a), and P? = (c,b,a). At P, neither agent can remove
a strategy and so the set of outcomes is {a,b,c}. At _}51,P2, agent 1 can remove m! since
it is strictly dominated by m'. This then allows agent 2 to remove m?. The solution is 7
with outcome c. This is inconsistent with monotonicity: the relative ordering of b remains
unchanged, and yet it is dropped as an outcome. It is consistent, however, with direct

breaking since g(m)P?g(m', m?).

THEOREM 3. If#A > 3 and a solution satisfies positive responsiveness and direct breaking
for a mechanism via which it implements a social choice function , then the social choice

function is dictatorial.

PROOF: Let F be a social choice function which has at least three elements in its range
and is implemented via the solution S by the mechanism (M,g), for which S satisfies
positive responsiveness and direct breaking. We show that S satisfies strategy—resistance
with respect to (M,g). Thus by Theorem 2, F is dictatorial.

Suppose S is not strategy-resistant with respect to (M,g). It follows that for some
P, i, and P*, we have Og[(M,g),P“,ﬁ]POS[(M,g),P]. Let P be the preference of {
such that O5[(M,g), P~%, 13‘] is most preferred and O;[(M,g), P] is second most preferred.
[Recall that Oy is single valued.]

If Os[(M,g),P_",ﬁ*] # OS[(M,g),P"‘,ﬁ"], then by direct breaking, for some m €
S[(M,g),P"",IS"] either (a) there exists j # { and ™’ such that g(m~7, ™) P/g(m), or
(b) there exists m' such that g(i~*, 7 )P*g(#). In case (a), positive responsiveness then
implies that Og [(M,g),P‘*,}’s"] is multi-valued, which is a contradiction. In case (b), the
fact that Og[(M,g), P"',IS"] is most preferred at P' is contradicted. Therefore, it must be
that Os[(M,g), P~%, P'| = Os|(M,q), P, P]. _

It follows that OS[(M,g),P“,ﬁ‘] # Os[(M,g),P]. By direct breaking, for some
m € S[(M, g}, P] either (a) there exists j # i and ¥’ such that g(m~7 7?)Pig(m), or (b)
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there exists 7T such that g(m™*, 7 ) P*g(m). there exists 7 such that g(m=*, 7 ) Pig(m).
In case (a), positive responsiveness then implies that Os[(M,g), P] is multi-valued, which
is a contradiction. In case (b), by the definition of P, it follows that g(m=*,m) =
Os{(M,g), P~%, P*]. Therefore, g(m™*, 7 )P*g(m). Positive responsiveness then implies
that Os{(M,g), P} is multi-valued which is a contradiction. Thus, our original supposition
was wrong and § is strategy-resistant with respect to (M,g). |

EXAMPLE 6. A Dictatorial Solution.
The converse to Theorem 3 is not true. Consider S defined by
S[(M,g), P{ = {m | g(m}P’g(m)¥m € M}.

S 1s the somewhat pathological solution concept which assumes that all agents choose
actions which are best for the first agent. Clearly, the social choice functions which are
implementable via S are dictatorial. Yet, S does not satisfy either positive responsiveness

or direct breaking with respect to the following mechanism.

(3]

m m
1 [ !
m a i b

Let P! = (a,b,¢,d), P = (d,a,b,¢), and P*(c,d,a,b). The solution at P is m and
the solution at _}31, P? is m. Positive responsiveness is not satisfied since g(m®, m?)P2g(7).
(This is part of what makes the solution so unappealing.) Direct breaking is not satisfied

since neither agent has an improving deviation away from m.

EXAMPLE 7. Nash implementation.

Although it is difficult to check that the Nash equilibrium solution satisfies strategy—
resistance for mechanisms on which it is single-valued, we can easily check that it satisfies
both positive responsiveness and direct breaking for any mechanism. Positive responsiveness
is satisfied since by the definition of Nash equilibrium there can never exist m‘ such that
g(m™*,M')P*g(m), when m is a Nash equilibrium at P. Direct breaking is satisfied since if
m is a Nash equilibrium at P but not at P",f"', then m‘ must no longer be a best response

for player 1.
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EXAMPLE 8. Undominated Strategies (part II).

We close this section by verifying that the solution of undominated strategies satisfies
both positive responsiveness and direct breaking for any bounded mechanism. Consider P,
m which is undominated at P, and i and M’ such that g(m~* m*)P'g(m). Either M* is
undeminated, or it is dominated by an undominated action 7. Positive responsiveness is
thus satisfied by either m™*, M’ or m~*, ™", respectively. To verify direct breaking, consider
P and P such that Os[(M,g), PN Os[(M,g), P_",I_D{] = 0. Let m be undominated at P.
It follows that m' is dominated at P' by an action 7 which is undominated at P. Thus,

g(m) # g(m~*,m"), and so g(m“,ﬁ")?g(m). Therefore, direct breaking is satisfied.

5. Concluding Remarks

In this paper we have examined properties of sclution concepts which limit their ability
to implement social choice functions on a full domain of preferences. The solutions with
limited implementation results, had the common trait of “breaking” certain equilibria di-
rectly by requiring that some agent have an improving deviation against the actions of the
other agents. In contrast, solutions which permit implementation of interesting social choice
functions on a full domain of preferences incorporate information which permits them to
break equilibria without requiring that any agent an improving deviation directly against
the actions of the other agents. [Table 1 summarizes the results for various solutions.]

We have focussed attention on full preference domains and on the implementation of
social choice functions . Comparisons across solution concepts might also prove useful in
understanding implementation in more structured environments, where there are additional
restrictions on the set of preferences considered, and where it is possible to implement
correspondences instead of just functions.

Another extension would allow for the possibility of indifference in preferences. Consid-
ering a full domain of preferences with the possibility of indifference, produces difficulties
for the implementation of social choice functions . For almost any solution we consider,
there are no non—constant social choice functions which are implementable on a full do-
main of preferences where indifference is allowed. [Thus not even a dictatorial social choice
function is implementable on such a domain.] This is easily seen by noting that when

all agents are completely indifferent, then all actions will be possible under almost any
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solution concept. An implemented social choice function must then take on all values at
such a preference profile. Even if complete indifference is ruled out, allowing for some in-
difference will produce multiple outcomes for some preference profiles. Thus to extend the
discussion of implementation to the domain of indifference, one has to consider social choice

correspondences.

Finally, we have restricted our attention to non—cooperative solutions. For example,
we have not discussed implementation in Strong Nash equilibria [see Maskin (1977), (1985),
Dasgupta, Hammond, and Maskin (1979), and Dutta and Sen (1988)}]. Strong Nash equilib-
rium leads to an impossibility result in the setting considered here, but does not satisfy the
direct breaking condition. Coalitional arguments rely on slightly different intuition than
that presented here. Direct breaking would be satisfied, however, if we changed it to allow
a coalition of agents to take the place of agent ;. In order to obtain an analog of Theorem

3, we then simply modify the positive responsiveness condition to account for coalitional

deviations as well.
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TABLE 1

D - Only dictaterial functions are implementable.

N - Non-dictatorial functions are implementable.

N=2 N>3 N>
Solution #A=2 H#A=2 #A>3
Dominant Strategies N N D
Undominated Strategies
(unbounded mechanisms) N N N
Undominated Strategies
(bounded mechanisms) N N D
Iterated Elimination:
Weakly Dominated N N N
Iterated Elimination:
Strictly Dominated D D D
Nash Equilibria D N D
Undominated Nash N N N
Subgame Perfect N N N
Maximin D N N
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APPENDIX
Proof of Theorem 2 when N > 2 and #4 > 3¢
(1) F is monotonic.

Consider @ = F(P) and preferences P such that a # F(P). We need to show
that there exists b € A and { such that aP'b, while bPa. Let ¢ be the first agent
such that a = F(P',...,P' ", P*,... P¥), while a # F(P',...,P',P'*1,... P¥). Let
b = F(—ISI,. ..,?,P”H...,P”). By strategy-resistance, and the fact that F is single

valued, bP a and aP'b.

(2) If F is monotonic with range A, then F is Pareto efficient.

Let a Pareto dominate b at P and suppose that F(P) = b. Consider P where each
agent has a most preferred and b second. By monotonicity F(IS) = b. Since F has range
A, there exists P such that F(IS) = a. Hence, F(ﬁ) = a by monotonicity. This contradicts
the fact that F is single valued.

A subset of agents S has veto power if aP'b for all ¥ € S implies F(R) # b.
(3) If N > 3 and #A4 = 3, then F is dictatorial.
(i) Partition agents into S and S°. Either S or S¢ has veto power.

Consider preference profiles for wiizh all agents in S have identical preferences, and
all agents in S° have identical preferences. From the proof of Theorem 2 for N = 2 and
the fact that strategy—proofness implies coalitional strategy—proofness (on a full domain
of preferences), F' gives the most preferred outcome of either S or S° on this restricted
domain. Say it is S. Suppose that for some P, F(P)=bwhile aP'b for ali 1 € S. Consider
P such that every agent in S has identical preferences with a most preferred and b second,
and all agents in S° have identical preferences with b most preferred. The outcome is the
most preferred outcome of §, so F(P) = a. Since F(P) = b and F is monotonic, it follows

that F(P) = b. This is a contradiction.

ii) If S has veto power and 7 € S, then either S — § or j has veto power.
) J J p

"' This portion of the proof is partly based on a proof in Schmeidler and Sonnenschein
(1978).
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Suppose not. Then by (1) it follows that $°U 7 and S — 7 U S° have veto power. Let
S — 7 have preferences (a,b,c), j have preferences (b,¢,a), and S° have preferences (c,a, b).
F(P) # b, since aP*b for all i # 7 F(P) # ¢, since bP'c for all 1 € S F(P) # a, since cP'a
for all f € §° U ;7 This is a contradiction.

(iii) F is dictatorial.

Begin by (i) and then apply (ii). If j has veto power, then j is a dictator. If not, then
pick k € S — 5 and apply (i1) again. Repeat until k is a dictator.

(4) If N > 2 and A > 3, then F is dictatorial.

Choose three alternatives in A, say a, b, and c. Fix an order for all other alternatives.
Define 7 to be the subset of P such that a, b, and ¢ are preferred to the other alternatives,
which appear in the fixed order.

(1) F restricted to P¥ is dictatorial,

By monotonicity, the range of F restricted to P is {a,b,c}. Apply previous steps.

(i) If F restricted to ¥ is dictatorial, then F is dictatorial.

First notice that by monotonicity, the fixed order for the alternatives other than a, b,
and c is irrelevant. Next notice that if agent 1 is a dictator when a, 4, and ¢ are at the top,
then agent 1 is a dictator when a, b, and d are at the top. To see this suppose the contrary.
Then there exists some other agent 7 who is dictator. Thus b is chosen when it is at the top
of agent j’s preference, a is at the top of agent i’s ﬁreference, and d ranks third for every
agent. Now perform a monotonic change so that ¢ replaces d in each agents’ preferences.

By monotonicity the alternative chosen is b, which contradicts the fact that 1 is a dictator

when a, b, and ¢ are on top.
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On Two-Ferson Nash Implementable Choice Functions
Matthew O. Jackson and Sanjay Srivastava

April 1991

We provide an elementary proof of the following theorem: a two-person social
choice function is Nash implementable if and only if it is dictatorial on its
range. Maskin [1977] and Hurwicz and Schmeidler [1978] proved the result for
Pareto optimal functions. Recently, Moore and Repullo [1990] provided a
proof (given Pareto optimality) based on necessary and sufficient conditions
for Nash implementation. 1In this note, we provide a very simple proof which

does not require Pareto optimality of F.

Let A be a finite set and let P denote the set of linear orders on A. 1In a
. . . . ; 2 .

two agent setting, a social choice function is a map F : P° -+ A, F is

dictatorial if it always picks the best element of the same person. Let

rng(F) denote the range of F, and define F to be dictatorial on its range if F
always picks the best element of the same person within the range of F.

A game form is G = (Slﬁﬁ,g) where g : S1 X S2 -+ A, and S1 and S2 are the
strategy sets of the two agents and g assigns to each pair of (pure)
strategiles an element of A. Let OM(G;P) be the set of pure strategy Nash
equilibrium outcomes to G given P € P>, F is Nash implementable if there

exists G such that ONE(G;P) = F(P) for all P c P.

Thecrem (Maskin [1977), Hurwicz and Schmeidler [19781): If a two-person social
choice function is Pareto optimal, then it is Nash implementable if and only
if it is dictatorial.

We prove:

Theorem: A two-person social choice function is Nash implementable if and only

if it is dictatorial on its range.

Proof: The "if" part is obvious. To prove the converse, note that the



implementing game form cannot involve any a € A \ rng(F), since any element
available through the game form is a Nash equilibrium outcome when it is most
preferred by both agents. If #rng(F)=1, the theorem is obvious. If #rng(F)z2,
consider any implementing game form in which player 1 chooses rows and 2
cheooses columns.

Case 1l: Every a € rng(F) appears in every row. Then, agent 2 is a dictator
since every Nash equilibrium must lead to agent 2's best outcome in rng(F).
Case 2: Some a € rng(F) does not appear in some row, say row n. Then, a must
appear in every column (if a does not appear in column m, then let ¢ denote
the entry in row n, column m. When both agents have preferences a preferred
to ¢ preferred to everything else, there are at least two Nash equilibrium
outcomes, a and ¢, which contradicts the fact that the game form implements a
function). Next suppose b=a does not appear in some column. Then, as above,
b must appear in every row. But then there is no Nash equilibrium when a is
1"s best element and b is 2's best element. Thus b must appear in every
column. Since b is arbitrary, this means that every element in rng(F) is in

every column, which implies that agent 1 is a dictator over rng(F).

Remark: If rng(F) has three or more elements, then the theorem also holds for
more than two players. This is shown in Dasgupta, Hammond, and Maskin [1979],
and also follows from the Muller-Satterthwaite (1977} theorem. A simple proof

for this case is given in Jackson and Srivastava (1991},
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