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ABSTRACT

We characterize strategy-proof social choice functions when individuals have strictly quasi-
concave, continuous and satiated utility functions on convex subsets of IR!, representing
preferences for the provision of I pure public goods.

When specialized to the case [ =1, these assumptions amount to requiring that preferences
are single peaked, and for such a domain there exists a wide class of strategy-proof social
choice functions. These were studied by Moulin (1980) under additional assumptions. Our first
results characterize the complete class, after an appropriate extension of the single-peakedness
condition. The new characterization retains the flavor of Moulin's elegant representation
theorem.

For the general [-dimensional case, previous results have shown that there is no efficient,
strategy-proof, nondictatorial social choice function, even within the domain restrictions under
consideration [Border and Jordan (1983), Zhou (1991)]. In fact, Zhou's powerful result
indicates that nondictatorial strategy-proof s.c.f.'s will have a range of dimension one. This
allows us to conclude with a complete characterization of all strategy-proof s.c.f.'s on IR/,
because Testrictions of preferences from our admissible class to one dimensional subsets satisfy
the slightly generalized notion of single-peakedness that is used in our characterization for the

case ! =1.

We feel that a complete knowledge of the class of strategy-proof mechanisms, in this as
well as in other contexts, is an important step in the analysis of the trade-offs between strategy-

proofness and other performance criteria, like efficiency.



1.INTRODUCTION

Consider a society which must decide on the level of provision of / pure public goods. If
no restriction is placed on the admissible preferences of agents, then any mechanism which
takes these preferences into account for reaching a decision must either be trivial or
manipulable. This is the spirit of the Gibbard-Satterthwaite theorem!. Yet, in many instances
the preferences of individuals will belong to some restricted class. In our ! -pure public goods
case it is quite natural, though not completely general, to assume that the preferences of
individuals are convex, continuous and have a single alternative preferred to all others (an ideal

point).

For the case I =1, this assumption amounts to requiring that preferences are single peaked,
and for this restricted domain there exists a wide class of strategy-proof mechanisms. Moulin
(1980) studied such mechanisms in the case where all levels of public good are attainable and
the mechanisms are restricted to operate on limited information: specifically, they are required
to operate on the basis of the agents' ideal points alone. Our first results in this paper extend
Moulin's characterization to the general case where the set of attainable public good levels is
arbitrary and all aspects of the agents' preferences may be taken into account. It turns out that
allowing for the use of additional information does not enlarge the set of strategy-proof
mechanisms and that Moulin's elegant representation theorem can be essentially retained.

For the general / -dimensional case, previous results have shown that there is no
efficient, strategy-proof, nondictatorial mechanism, even within the domain restriction under
consideration (Border and Jordan [1983]; Zhou [1991}). In fact, Zhou's powerful result
indicates that nondictatorial strategy-proof mechanisms will have a limited range, which must
be of dimension one. Why, then, bother to characterize strategy-proof mechanisms at all? We
take the view that it is worthwhile to provide full characterizations of strategy-proof

mechanisms in interesting domains, because we know that there are trade-offs between the

1 yer, Gibbard (1973) and Satterthwaite's (1975) formulation and proofs do not automatically reach as far as the
spirit of the result does. New proofs and new techniques are necded as soon as we introduce a natural restriction

like continuity of preferences on a subset of IR!. See Barbera and Peleg (1989), Zhou (1989).



desirﬁblc characteristics of mechanisms, and more sf)eciﬁcally between efficiency and strategy-
proofness. Knowing exactly how strategy-proof mechanisms look like will help in analyzing
these trade-offs, and eventually in choosing mechanisms which compromise between different
performance criteria.

The paper proceeds as follows. First, we characterize strategy-proof mechanisms on
arbitrary closed subsets of IR using a slightly generalized notion of single-peakedness. Next,
we apply Zhou's (1991) result to the [-dimensional case, and thus restrict attention to
mechanisms with one-dimensional ranges. Since preferences in our admissible class are
(weakly) single peaked on a one-dimensional subset of IR!, this allows us to conclude with a

complete characterization of all strategy-proof mechanisms on IR/.

2. Strategy Proofness and Single-Peakedness on Subsets of the Real Line.

We begin by stating some general definitions, and then specialize them to our case.

i) I={1,2,...,n} is a set of agents.
(i1) A is a set of alternatrives.

(i) U is a set of admissible utility functions on A .2

(iv) A social choice function on (U, A)isa function f: UN_,A.

(v)  Agisthe range of f.
n-tuples of utility functions (up,u2,...un) are called preference profiles. It is convenient to

denote them in several ways. A complete n-tuple may be denoted by u or u" and then u; oru;

will naturally stand for an i-th component. To distinguish between the preferences of one subset

] of agents and those of the rest, we write (uJ, u_J).

A social choice function f on (U, A) is strategy-proof iff u, (f( ui,u_i)] > ui[f( u'i,u_i)] for

alliel, u,, u'i e Uand u_€ vl

2 The use of utility functions rather than preference preorders is not restrictive here, given that we only want 10

consider continuous preferences on R



If a social choice function f is not strategy-proof, then there exist i, u, u'i and u_; such that

ui[f(u'i LU )] > ui[f(ui,u_i ). We then say that f is manipulable (at (ui,u‘-1 ), byi, via u'i).

In this paper we concentrate on the case where A is a closed, convex set of IR[. Although
most of this section is devoted to the case [ =1, we first present aresult about the range of

strategy-proof social choice functions which applies for any /.

LEMMA 1. Let A be aclosed, convex subset of IRI. Let U include the set of continuous,
strictly quasi-concave utility functions with a unique maximal pointin A. If £UM A is strategy-

proof, then Afis closed.
Proof. Suppose the contrary. Then 3 a sequence xk-) xo, where xk € Aka,xoﬁE Af,

x_€ A. Consider u e U™ defined by u (y) = l | y— xo ‘ | (where | | y—x l | represents the
. . , k o] K o
standard Euclidean metric). Let a = f(u) where ae Af‘ Since x — x , 3K s.t | | X —X | l <

| | a-— xo ] I Since xKeA 30 st f(ﬁ)= xK.
f

[¢]
By strategy-proofness, f (ﬁl, u_1)is nocloserto x thana.

A ; ° A
By strategy-proofness, f (Gl, U7, u.1,2) is nocloser to x than f (uj, u.1,2) and thusno
closer than a.
o]
By the same reasoning f(ﬁ) is no closer to x than a. This contradicts the fact that f(ﬁ\)=xk.

Thus our supposition is wrong, and Af is closed.

The rest of this section is devoted to the case where A=IR. In order to specify the set of

admissible preferences, we needthe following definitions.

DEFINITION 1. For any B C A, a utility function u: A—IR is weakly single peaked on B
iff there exist alternatives tl(u), t2(u) € B with tl(u) < tz(u) —the "peaks” of u on B—, such

that u (tl(u)) =u (tz(u)), and for all x,y € B, x,y € {(tl(u), tz(u)}



x<y<ti(u)::>u(x)<u(y)<u([i(u)) } for ic (1.2]
ti(u)<x<y:>u(ti(u))>u(x)>u(y) '

If tl(u) = t2(u) in the above definition, we say that u is single peaked on B, and we denote
its unique peak by t (u).We will assume that agents have continuous single peaked preferences

on A. S denotes the set of all such functions.

Qur objective is to characterize all strategy-proof social choice functions on (A,S). Before

we do that, we restrict attention to a particular subclass of preferences.

Given that individua! utilities are single-peaked on A, the restriction of any such ue S to Ay,

the range of f, will be weakly single-peaked on Ag, for any strategy-proof f. Let S¢ be the

subset of single-

&

peaked utility functionson A that are also single-peaked on Af. Let f be the restriction of f
n R %

toSg. Clearly, if f is strategy-proof, then f must also be.

*
Our first theorem proves that, even if f is defined on the set of single peaked utility profiles,

it can only depend on the peaks on Af of each of the preferences in the profile.

n % n
THEOREM 1. ("Tops only”}. If the restriction of a social choice functionfto S F f:8 £ —A,

n
is strategy-proof, then, for any u, u'e Sf , [(WieD)t (ui) = t(u'i)] —f(u) = f(u").

The proof of the theorem follows from several lemmas and is to be found in the Appendix.
We now elaborate on its interest and proceed to make use of its implications. The result is
interesting on its own, because it shows that, even if the class of social choice functions that
operate only on the basis of the tops of agents’ preferences is a very small part of the set of all

conceivable social choice functions, there is no need to look for more elaborate forms of



processing utility information if one cares for strategy-proofness.3 Actually, this is also true in
many contexts different from the present one (see, for example, Barbera, Sonnenschein and
Zhou [1991]). It is nevertheless necessary to prove it in each specific context, because it is not

true for all domain restrictions.

n n
Given Theorem 1, every strategy-proof f: Sf —A can be identified witha g: (A f)—> A P

n

such that V(tl, et eAf ) g (tl, Tys oo t y=f (ul,uz,...,un), for any choice of u, 's such
that t(ui)zti. The class of & functions with range IR was characterized by Moulin (1980). The
careful reader will be able to adapt the proof of his elegant theorem 2 to our present context, to

show that:

n * n
THEOREM 2. The restriction of a social choice functionf oS £ f:8S £ —>A, is strategy-proof

iff there exist extended real numbers ace Af U {-o0, +0o} for each C < 1 (including ), such

n
that (V(u,,u,,....u )eS;) f(u ,u,,...;u ) =min (max [a~, t (u)D.
R AR P s MR B S| C;IieC[C C)

Notice that aI can be identified with the lower bound of the range, a " with its upper
bound, and that i is a dictator when we set a, = a and all other aC's C=#=1,equalto a¢. As the
original result may not be as well known as it deserves, we think it is worthwhile to provide

some examples of rules which belong to this class.

EXAMPLE 1. (Anonymous rules with range A). ForA A, ..A € AU {-00, +oo} and

for all (ul,uz,...,un)e S, let f(ul’UZ"“’un) = m(t(u), Hug).., t(u, ), A ?”2’ ks

where m is the median of these 2n-1 extended real numbers (with at least the t(*)'s being real).

These are the median voting rules with phantom voters discussed in Moulin (1980).

3 Sprumont (1989) had reported a similar but weaker result for anonymous functions in Moulin's context.



EXAMPLE 2. For n=2, let ay<ay, A= +00, &y 5=-o, and f (ul,uz) = min [max (al,t (ul)),

max (a,, t(u,)), max (t(u), t(uy)]-
This rule is strategy-proof, and may be described in either one of the following ways:
(a) f picks the median of ay, 2y, t(uz) and t(ul), where t(ul) is counted twice, or

(b) f is a rule where agent 1 dictates whenever his peak lies between a, and ay. Otherwise, f

selects the median of (a, t(ul),t(uz)), wherea is the a, closest to t(ul)A

Our previous statements have limited attention to the restriction of strategy-proof social choice
functions to profiles where all preferences are sin gle-peaked on the range. This includes the
case A=A P where our statament is unconditional, since we have already assumed that
preferences are single-peaked on A, the set of conceivable alternatives. In general, however, an

agent's preferences on the range Ay may only be weakly single-peaked, given that they are

single peaked on A and Ag 1s closed (see Definition 1 and Lemma 1). Thus, a utility function
u;€S may have two peaks on A¢ (but no more than two).

We use the notation tf(ui) = [tl(ui)’ tz(ui) }, where tl(ui) < t2(ui), to represent the peaks of
u; on Af. If tl(ui) = tz(ui), then ui is still single peaked when restricted to the range of f.

The notation Lf(ui) > tf(vi) indicates that tl(ui) P tl(vi) and t2(ui) = t2(vi)‘

DEFINITION 2. A tie-breaking rule for agentiis a function gi:Sn—)A, such that gi(u)e te(uy)

Thus, a tie-breaking rule for agent 1, gl, is a function which selects one of agent i’s peaks.

LEMMA 2. A tie breaking rule for agent i, gi, is strategy-proof if and only if

() (Vu, v e SM [ghu ;v > g0 = B sy vj and (v Sty < )

Before we prove Lemma 2, we make a few remarks about its meaning. A strategy-proof tie

breaking rule is almost tops only. The condition (%) shows that gi only depends on where the

tops of each agent fall relative to the tops of agent i. The exception occurs when agent j has the



same two peaks as agent i: that is, when tf{vj) = Lf(vi') = tf(uj). In this case (and only in this case)

gi may break ties based on other information about agent j's utility. The reason this can be done is
that in this case agent j does not care which point is chosen and thus cannot manipulate the
outcome by changing utilities. If on the other hand, an agent has a strict preference over the two
points, then any other utility with the same top must have the same strict preference and thus

must lead to the same outcome.
We now proceed to prove the Lemma.

Proof of Lemma 2. In order to prove that if gi is strategy-proof, then (*) holds, it will suffice

to show that:
(* %) (V¥ u, Y_’E st [gi(uj, v_j) > gi(z)] = [uj # Vj and tf(vj) < tf(vi) < tf(uj)].

It is clear that if (* *) is satisfied, then so is (¥): just change agents’ utilities from Vj to uj, one

at a time. Since gi(u_i, vi) > gi(z), there is an increase for some change.

To verifiy that (* *) is satisfied, first notice that gi(uj, v_j) > gi(v) implies that tt{vi) ={ gi(z),

gi(uj, v_j)}. Since gi is strategy-proof it follows that tl(vj) < gi(x). Otherwise, vj(gi( uj, V-j)) <
vj(gi(z)), which contradicts strategy-proofness. This implies that Lt(vj) < t.f(vi). By similar

reasoning, tz(vj) 2> gi( uj, v_j), which implies that tf(vi) < tf(uj). Thus, we have established (* ).
Now we prove the converse: if gl satisfies (*), then it is strategy-proof. First, notice that i cannot
manipulate gi since it always chooses one of i*s peaks. Thus we consider j#i. If gi(v) € tf(vj),

the agent j is at his peak and cannot manipulate gi. So assume that gi(v) € tf(vj). If t2(vj) < gi( v),

then it follows from (*) that j can only raise the choice of gi, which is not an improvement.



Similarly, if gi(v) < tl(vj), then it follows from (*) that j can only lower the choice of gi, which

is not an improvement.

THEOREM 3. A social choice function f: SPSA s strategy-proof if and only if there exist
strategy-proof tie-breaking functions gi for each i€l as characterized by (*)in Lemma 2, and

extended real numbers

a € A-U [-00, 400} for each C 1 such that Vu e S™) f(u) =min (max [a, iu .
<& AU (oo, Feo} f (Vu €8 f(w =pin (max fac, g'(W)

Proof of Theorem 3. It is easily checked that any f written in this form is strategy-proof. Proving
the converse involves extending Theorem 2 to all of S™. This is accomplished by first showing
that f can be written in the same form, but with tie-breaking rules determining which peak of
each agent is used in the calculation. Next, we show that these tie-breaking rules must be
strategy-proof for certain u’s. Precisely, a tie breaking rule must be strategy-proof at a profile for
which it may make a difference which of an agent's peaks are chosen. The proof is completed by
verifying that the choice of each gi is irrelevant at other points, and that we can extend any gl
which is strategy-proof at these decisive profiles to be strategy-proof everywhere.

We now proceed formally.

n
Let Af(li) = {al 3! € Sf s.t. f(!) =aand ty(v;) € tf(ui) Yi}.

The above setis obtained from profile u in the following way. First get a new profile v by
changing every u, that has two peaks for a new v; with only one top alternative, chosen in such

a way that the unique top of v; is one of the tops of u;. Then compute the outcome f(v). This



outcome may of course depend on our choice of v; for each u;, and Ag(u) is the set of

alternatives that we may attain by these choices.

Step 1. f(u)e Af(u) forall ueS™.

Consider ue S" and let f(u) = a. For each i construct V€ S¢ (which is thus single-peaked

~

on Af) as follows. Find which of {tl(ui), tz(ui)} is closest to a. If it is tz(ui), then let vy be
by vi(b) = ui(b) if bz t2(ui) and vi(b) =uy (b) — 1, otherwise. If tl(ui) is the closest peak to a,
then let v; be defined by v,(b) = u;(b) if b<ty(yy) and v,(b) =u; (b) — 1, otherwise.
(Notice that the discontinuity is not important, since it occurs outside the range of f and we

could easily provide continous functions having the same consequences as the ones we

construct here).
We verify that f(}r_) = a and thus f(E)E Af(E)' Notice that by the construction of v,
n [be Af, b # a and vi(b) 2> vi(a)] - [u-l(b) > ui(a)].
Now change agents' utilities, one at a time, from u; to v;. We show that through these changes,

f must always give a. By strategy-proofness, if f changes to some b #a, then v;(b) 2 v;(a).

By (1), this implies that ui(b) > ui(a), which contradicts the fact that f is strategy-proof.

Step 2. There exist tie breaking rules gi for each iel and extended real numbers

a €A U{o00,+ for each Ccl such that (V ue S) f(u) =min (max [a,, i(u .
<€ ApU (o0, +oo) ueS) f(u) =min (max [z, £')

This follows directly from Step 1 and Theorem 2. Actually, the gi(u) functions are just



indicating which one among the two peaks of u; must be chosen in order to compute f(u) as the

image of a profile v, with each of the v's being strictly single peaked.

Define the tie breaking rule é\i as follows

~

Step 3. f’g“ is strategy-proof.
Clearly i cannot manipulate é\l since it picks from i's tops.

Consider j # 1 and suppose that é\l(u) # é\l (u_j, u'j) for some u'je S. Without loss of generality

assume that tl(ui) = é\l(g) < gl(u_j, u'j) = t2(ui).

From the definitdon of gl, it follows that f(u} < tl(ui) < tz(ui) < f(u_j, u'.).

Since fis strategy-proof it follows that tf(uj) Stdug) € tf(u'j).

Thus by (+ *) in the proof of Lemma 2, §J is strategy-proof.

Step 4. fw)= LB ).
p (u) = énénl(rlgaé [ac g 1)

This is established by showing that min ( max [a-, u) = min ( max [a~, g:(u)]) and
y g C;( o ac 1)= CC(IEC Cgl,..)

applying step 2. Pick some j, and replace gJ by f;\l. Consider any u € s™

> )
Case 1 f(E) > t2(uj).
In this case it must be that maé (aC, gl(u)) pd tz(uj) for all Ccl. Since in this case Ql(u) =
ie ~ ~

t2(uj) > gi(u), it follows that for any C containing j: max(aC, é\i(u)) = max(aC, g'(u)) and so

there is no change.



Case 2 f(u) £ tl(uj)
In this case gj(u) = tl(uj) < gj(u). Thus the expression obtained by replacing gi(u) with Q](u) is

no higher than f(u). Since max[aC, é\j(g)] 2ty (u) for all C containing j, the new expression is
not lower than (E)' This complete the proof of Theorem 3.

Notice that if Af is connected, then all preferences are single-peaked and there is no need
for tie-breaking rules. However, there might be interesting cases where the range is not connected:

for example, if units of the public good are indivisible, then alternatives are a subset of the integers.

3.- Strategy-Proofness with Continous, Strictly Convex Preferences on Subsets of [R™.

. { . .
We now turn to the general case, where A is a closed convex subset of IR, of dimension at
least two”. The set of admissible utilities for agents is given by U, the set of continuous, strictly

quasi-concave utility functions with domain A and a unique maximizer in A.

We rely on the following result.

THEOREM 4. (Zhou, 1991). Any strategy-proof social choice function on U" with range of
dimension greater than one is dictatorial.

There is little to add about dictatorial rules. Even with no substantial domain restrictions
(assume continuity of preferences for convenience), one can define a strategy-proof social

choice function by any choice of a compact subset TCA, and of an agenti€], and letting the

4 Dimension of A refers to the number of vectors in the basis of the smallest affine subspace containing
A. For our purposes, all that is important if is that dimension A =1, then all point in A lie on a line,
while if dimension A>2 then they do not. If dimension A=1 then the analysis of the previous section

applies.



function have as outcome, for any preference profile, i's best element on T (with adequate

provision for the case of multiple utility maximizers).

We thus concentrate on non-dictatorial rules, i.e., rules whose range must be of dimension
one, some subset of a line. Our preceding results for the one-dimensional case turn out to be the

right ones to use for characterizing these rules, after the following remarks.

Remark 1. Let B — A be a one dimensional subset of A. Then for some je {1,...,1} and for all
b, b'e B, [b#b'] &[bjzb'j]. Thus we can use the jth component of elements in B to identify
each one of them, uniquely. We'll say that j is a nondegenerate component of B. We'll denote

by Bj the projection of B on the j-th coordinate axis, i.e., the set of all values which are the j-th

component bj for some be B. For such j's, we denote by B-proj’! (bj), the unique element of
B having this component.

Remark 2. Let A c IR, and let ue U. Given a closed one dimensional subset BC A, let j be a

nondegenerate component of B, and define a continuous utility function ' Bj—> IR so that,

forall xeB, u](xj) = u (x). Then since u is strictly quasi-concave on A, W is weakly single-

peaked on B.
We can now state our next theorem, which provides a full characterization of strategy-proof

social choice functions within our domain.

THEOREM 5. A social choice function f: U"5A s strategy-proof iff it is either dictatorial or

has a one dimensional range A ¢ In the latter case, for a given nondegenerate component § of



AP the social choice function can be expressed for all profiles ue U as
A1 P
f(B)= A ¢prOj [{:rngnI (?éaé fa., g; (E D1

where, as in Theorem 3, g is a strategy-proof tie breaking rule (as characterized by (*)in Lemma

2)anda C's are extended real numbers in A ¢ U -o0, + o9} for each Cd, with a<a 2 for at least

two different agents.

We close with an example illustrating Theorem 5.

EXAMPLE 3. A society is deciding on the provision of [ public goods subject to a budget

constraint. Thus they choose xe IR! such that p-x <1 for some pe IR — and I 2 0. Individual
utilities are continuous, strictly quasi-concave, and increasing. Since utilities are increasing
society will want the budget constraint to hold with equality, so we set A ={x € IR! px=1}.

The restriction of utilities to A is the set of all continuous and strictly quasi-concave utilities

defined on Al with unique maximizers in A.

If I =2 and society desires an anonymous, unanimous, strategy-proof social choice function,

then the range of f must be all of A (Af=A). We can then apply theorem 5 to get a

characterization of such social choice functions. In this case all utilities are single peaked on Af
and so we can ignore tie-breaking rules. Either axis will serve as nondegenerate component of

Af‘ so we choose the first axis. f(u) can then be expressed as the xe A whose projection onto

the first axis is the median of {t (ull), t (ull), ot (ui), 7\.1, xn-l}’ where ;‘1’ ;‘n-l’ are
real numbers with 0< lks Fl It is interesting to note that this social choice function is also

efficient (subject to the budget constraint).



If we go further and allow coalitions to enforce a status-quo, then we put restrictions on the

placement of the A's. For instance, if any individual can enforce a status-quo then all A's must

coincide with the projection of the status-quo onto the first axis.

For ! >3, society will not have such nicely behaved social choice functions available. As
shown by Zhou (1989), in this example unanimity and strategy-proofness are not compatible

with having a non-dictatorial choice. Unanimity requires that Af = A, while strategy-proofness
and no dictator imply that Af is of dimension one. Theorem 5 above tells us that there are
strategy-proof and non-dictatorial social choice functions with one dimensional Af C A. For the
anonymous case, these amount to median voting (with phantoms) over a line segment in A. The
restriction to a line segment may be viewed as restricting tradeoffs between various public
goods to be in fixed proportions. This loss of flexibility, and thus efficiency, is the cost of

having a non-manipulable choice.



Appendix

The proof of Theorem 1 follows from several definitions and lemmas.

DEFINITION. Let Ac Bc IR. We say that A is connected relative to B iff
[xe A, ye A, ze B; x<z<y]=ze A.
Notice that the relation "being connected relative to" is transitive.

DEFINITION. Let f be a social choice function, and u J be a list of preferences for the agents in

J < 1. Then Gf(uJ) is the range of f (uJ,'), ie. of(uJ)={xe AfI |3 uy? f (uJ, uy )=x}.

When there is no ambiguity about the relevant function f, we may omit the reference to it and
just write o(-).

NOTATION. Before we proceed into the proof, we introduce a useful piece of notation. Given

two profiles u and u’, we denote by (u, u', t ) the profile that obtains by attributing the same

preferences asin u' to the first t agents, and the same preferences as in u to the remaining n-t

agents. Thus, for example, (u,u,0) = u,and (u,u’,n)=u'.

~ —~ o~

Lemma A-1. Let (uJ, u_J) be such that for some ae AF argmax u, (x)=a for all i¢ J. Then,
XE o(uJ)
f(uJ, u_J) =a. .

Proof. Since argmax u; (x)=a, aec c(uJ). Thus, there exists T J such that f(uJ,'ﬁ -J) =a.
Xe G(UJ)

Letu = (uJ, u_J) and u' = (uJ,'ﬁ _J). Consider the sequence of profiles (u', u,t) for t=

=0,1,....,n. We have that f(u',u, 0) = f(u') = a. If f(u) # a, there must be a first t such that



f(u',u,t-1)=aand f(u', u,t)#a. But this t must correspond to an agent not in J, and this
agent prefers a above all other alternatives when his preferences are as in (u, u',t).

o~

He will then manipulate via T, contradicting f's strategy-proofness.

#]
Lemma A-2. For any JcI, and uye Sf » Op (uJ) is closed.

Proof . This follows from Lemma 1 in the text, noting that with u ] fixed, f is strategy-proof

foriel.

Lemma A-3. For any JcI and uye S? , c(uJ) is connected relative to Af.

Proof. Consider de case J ={1}.Choose any x, y eﬁ(ul) and any ze Af such that x<z<y. We
must prove that ze 0(u1). Ifz=t (ul), then ze o(ul). Otherwise, let (T 1 ,u _1) be a profile
such that f( U 1 ,u _1) = z. Such a profile exists, since ze Af. If z¢ o(ul), f(ul,'ﬁ _1) # Z.

But then agent 1 can manipulate at (ul,ﬁ _1) via ﬁl .

Thus, suppose z #t (ul). By single peakedness, either ul(z)>u1(x) or ul(z)>u1(y). W.lo.g.,
say that ul(z)>u1(x). Then t(ul)>z>x. If z¢ 6(u 1), by Lemma A-2 there exists a neighborhood
of z, N(z), such that N(z)nc(ul) = . Therefore, we can choose a preference u such that

t(u)=zand u (x)>u (w) for all we o(ul), w>z. Consider the profile G, where Gi= u foralli

#1 and Gl=u1. By Lemma A-1 xsf(ﬁ) # z. Since ul(z)>f(ﬁ), agent 1 could manipulate f at 4

via u, a contradiction.

We have proven then that o(ul) is connected relative to A £ To show that c(ul,uz) 18

connected relative to G(ul), notice that f(ul, *) is an n-1 agent strategy-proof social choice



function on o(ul), and that the restrictions of Sf to o(ul) are single-peaked, because G(ul) is
connected relative to A £ Therefore, reasoning identical to the above will show that 0(u1, u2)

is connected relative to o(ul), and thus relative to AP by the transitivity of the "being connected

relative to" relation. We iterate the procedure to get all the force of Lemma A-3.

Lemma A-4. Foralliel ﬁie S g Ue Sr}‘ 1, [f( ﬁ'i, u_ )< ﬁ'i)] - [f(ui’ u_i)sf( ﬁ’i, u_i)]
and [f( 0, u_i)>t( ) [f(u.l, u_i)2f( o, u_i)], for all u.

Proof. By Lemma A-3, G(u_i) is a connected setin A £ By strategy-proofness (Lemma A-1 with
J=1-{i}), f( ﬁ'i, u_i) is the maximal element of L'Ti on c(u_i) and this must coincide with the

point in G(u_i) which is closest to t ( ﬁi).
We can now proceed to prove Theorem 1.

Let f(u ) =x. LetJ be the set of agents for which t(uj) =t(ﬁ}) # x. For je], we get from

Lemma A-4 and strategy-proofness that f (uj, u_j) = f(ﬁj),u_j = X. We can thus proceed to change
all preferences uj into L’TJ for je J, while keeping the outcome equal to x. Now, f(ﬁj ,uj) =X, and

thus xe G(I'Ij). But then, since t (ﬁ‘i)zx for all ieJ, Lemma A-1 guarantees that f(i)=x.
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