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ABSTRACT. By changing the choice of a positional voting method, different election
rankings can result from a fixed profile. A geometric theory is developed to explain
why this occurs, to completely characterize all possible sets of rankings that can arise
in this manner, to determine the number of rankings and other properties of these
sets of rankings, to design profiles that cause the different conclusions, to develop
elementary tools te analyze actual data, and to compare new types of social choice
solutions that are based on the set of rankings admitted by a profile. A secondary
theme is to indicate how results for voting theory can be obtained with (relative)
ease when they are analyzed with a geometric approach.

1. INTRODUCTION

It can be discomforting to discover that a single, fixed profile can lead to different
sincere election rankings of the n > 3 candidates when the choice of the positional
voting procedure varies. The voters’ preferences remam fixed, but different election
outcomes emerge with changes in the choice of the tallying method. Whenever this
happens, we must wonder which election outcome is the group’s “true” ranking
of the alternatives. It is this kind of concern that motivates, to a large extent,
the search for an election procedure that offers some degree of integrity for the
associated election outcomes.

Is this issue of multiple outcomes a serious one? How badly can the election
outcomes vary with a fixed profile? Fishburn {3] showed with two different positional
voting methods that there exists a profile so that the election ranking determined
by each method is the reversal of the other. But much more can happen! In
(Saari [4]) I showed for n > 3 alternatives that anythiug can occur when up to
n — 1 completely different positional voting methods! are used. Namely, choose
any n — 1 rankings of the n candidates. No matter what are these rankings, the
theorem ensures the existence of a profile whereby the election outcome for the jth
positional voting method is the jth selected election ranking, j = 1,...,n — 1.7
Moreover, this assertion is best possible; there are many ways to choose n rankings
of the n candidates so that it is unpossible for all of them to be supported by a
single profile.

This research was supported by NSF Grant 9103180 .

1Sce Saari [4] for the technical definition.

2This conclusion extends to all subsets of candidates; see Saari [1, 7] and the references for
more information.
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This theorem imposes no restrictions on the n — 1 rankings, so there need not be
any relationship among them. This proves that reversals and other kinds of election
behavior can coexist. For example, with n = 5 candidates and any four completely
different positional voting methods, there exists a profile so that the outcome is
€1 > €y > €3 = €4 > C5, OT its reversal ¢s = ¢4 > c¢3 = ¢z » ¢y, or the mixture
co > €5 > €1 > ¢4 > c3, or the reversal of the mixture ¢3 > ¢4 > ¢ » ¢5 >
depending on which of the four tallying methods is used. Moreover, these assertions
are not restricted to examples concocted to illustrate theoretical possibilities; they
can and do arise in practice. To illustrate, I call attention to a recent entertaining
paper where J-P Benoit [1] analyzes data involving the choice of the baseball’s Most
Valuable Player (MVP) to show how different rankings and different choices of the
MVP could oceur with changes in the voting method.?

While this theorem asserting the arbitrariness of election outcomes underscores
an intriguing, disturbing aspect of voting procedures, it does not even begin to
suggest the true magnitude of the difficulty. This is corrected here. As asserted,
the above conclusion is sharp in that one cannot expect a profile to support more
than n —1 rankings selected in an arbitrary fashion. But this value of n — 1 does not
limit the number of election rankings emerging from a single profile; there are many
other election outcomes, related to the original n — 1 choices, that can surface. So,

if

Supa(p) = { all election rankings of the n candidates that can arise

from profile p with changes in positional voting methods }

is the set of election rankings supported by profile p, then it 1s of distinct interest
to understand the properties of Sup,(p). For instance, what are the entries in
Supp(p)? Can an upper bound be found for |Sup,(p)|? How does Sup,(p) change
with p? Which voting methods vield which ranking? These are the types of
questions answercd here.

To give a flavor of the new results, notice that my earlier theorem ensures the ex-
istence of a ten-candidate profile to support nine different election rankings. What
I now show is the existence of a ten-candidate profile that supports millions of
different rankings of these ten candidates! More precisely, there exists a profile p
where Supjo(p) has more than 80 million different rankings.? In fact. I show for
any n > 3 that Sup,(p) can contain at least % of the n! possible rankings without
tie votes. Moreover, the rankings from Sup;o{p) can offer distinctly conflicting in-
formation - for each of the ten candidates, there exist rankings m Supo(p) where
that candidate is top-ranked, and other rankings in Sup;¢(p) where that candidate
is bottom ranked. One might expect — or at least hope — that the profiles leading to

3Indeed, Benoit’s paper and personal correspondence between us about the merits of our
favorite baseball teams provided the initial motivation for this current article. I resurrected the
results given here from an (1987) unpublished manuscript entitled “The Geometry of Voting” to
see if there is a method that would crown a Chicago player as the MVP.

*So, which one of these 80 million different rankings of the candidates reflects the true views
of these voters? If discomfort is caused by the earlier conclusion that nine arbitrarily different
rankings can emerge from a single profile, then these new assertions must introduce serious concern
about the choice of a voting method and the meaning of an election outcome.
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such astronomical numbers of rankings that offer conflicting information about the
candidates all coming from a single profile must constitute a rare, highly unlikely
event; indeed, one might conjecture that the tame situation where a single ranking
holds for all choices of the voting methods is the dominating, more probable situ-
ation. While I defer a careful study of the probabilistic issues to a later article, I
do suggest — by showing how to construct profiles to demonstrate such outcomes
- why we must believe that just the opposite is true! Indeed, for a large class
of quite reasonable probability distributions over the space of profiles and with a
sufficient number of voters, there are strong reasons why we should expect it to be
significantly more likely for a ten-candidate profile to support millions of different
election outcomes rather than just one, or just two, ..., or just fifty, ....

The purpose of this current article, then, is to exploit the recently developed
geometric theory for voting (see, for example, Saari (5, 6, 7] and the references) to
develop an approach for n > 3 candidates allowing the following kinds of results:

1. There exists a profile whereby, when different choices of positional voting
methods are used, Sup,(p) contains more than 53% of all possible rankings of
the n candidates, and this proportion increases with values of n. For each n > 2,
the proportion of all rankings without ties that can be in Sup,(p) is 2=1.

2. For a given p, all rankings in Sup,(p) can be determined. Moreover, for
each ranking in Sup,(p). one can determine the set of all possible positional
voting methods that yield this ranking with profile p.

3. One can characterize all possible sets of rankings that become a Sup,(p) for
some choice of p.

4. One of the goals of this article i1s to indicate how to develop easily used tools
to completely analyze problems and issues resulting from actual election data.
5. An approach is outlined to design profiles that illustrate the various asser-
tions. This approach is then used to provide intuition about the probability of
the various assertions.

6. As a single profile can support very large numbers of rankings. it is not clear
which one of these rankings represent the “true” views of the voters. On the
other hand, suppose all rankings in Sup,(p) have a certain property; e.g., the
same candidate always 1s top-ranked. The fact that this property is preserved
by all possible ways there are to tally the ballots forms a compelling argument
to accept this property as reflecting the actual views of voters. It 1s indicated
how to develop a theory about these commonly held properties.

It is worth commenting that this list includes several types of long-standing is-
sues from voting theory that are notoriously difficult to analyze by use of standard
approaches from choice theory. On the other hand, these questions become concep-
tually simpler to understand, analyze, and extend by using a geometric approach
toward voting. This approach, as indicated here, is to translate a given issue about
positional voting into a geometric construct. In this manner, it becomes conceptu-
ally apparent from the geometry how the issue should and could be studied. What
difficulties remain are the technical details needed to extract and analyze the asso-
ciated geometry. Thus, a secondary theme of this article is to outline this geometric
approach. To help develop geometric intuition, the ideas behind ecach of the major
conclusions is demonstrated first for n = 3 with its clementary geometry. For a
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first reading the reader may wish to consider only these intuitive proofs.

Positional voting methods and the geometry.

For the remainder of this section, I introduce the necessary notation and basic
geometry. The interested reader can find added details and illustrating examples
in the above noted references.

A voting vector for n candidates,

—) .
W= (wy, W, .. Wy )y, Wig1 S wi,t=1...n—1 w; > why,

is used to tally elections by assigning w; points to the :th ranked candidate on
a ballot. In the standard manner, the total number of points assigned to cach
candidate determines the election ranking where “more is better.”

It is immediate that if two voting vectors w7}, w4 are related by scalars a,b
according to the relationship

n terms
e,
(1.1) Wl =W} +06(1,...,1).

then the election rankings must always be the same. So, by use of Eq. 1.1,
we can and do assume that all voting vectors are in the normalized form where
w, = 0, Z?zl w; = 1. This assumptions leads to the introduction of the space of
normalized voting vectors for n candidates; it is the portion of a n — 2 dimensional
simplex given by

n
(1.2) VV® =W |w; > wig, t=1,....n— 1, w, =0, Z w; = 1}.

=1

Certain voting vectors represent instructions to the voters “to vote for s of the
candidates;” they play a critical role in our analysis. The normalized form of such
a vector 1s

§ terms

1

E'=(=....2,0....,0). s=1,....n—1.
S

| -

The importance of these vectors derives from the geometrie fact that they are the

—
. —1 .
vertices of V' V", Namely, the vectors { £ }7 -] form a convex basis for the convex

rrr . — . . .
set V'V, so each voting vector w’” € V'1"" has a unique convex representation

n—1 n—1
(1.3) T =3 MET A 20 Y A =L
s=1 s=1

Indeed, the vectors of convex weights in the associated n - 2 dimensional simplex

n—1

A" ={d=(A.... A1) A 20, Z/\S: 1}

s=1

are identified in the natural one-to-one fashion with the voting vectors from V1",
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A profile indicates what portion of all voters have each of the n! possible rankings
of the candidates without ties. To find a geometric representation for the profiles,
list the n! rankings in some order and assign the ith ranking to the ith axis of
R™. In this manner the /th component of a point in R™ indicates the number, or
the portion of voters with the :th ranking of the candidates. More specifically, the
simplex

n!

(1.4) Sin) ={p = (p1,....pa1) € R™ |pi 2 O,ZPI' = 1},
=1

is the space of normalized profiles; the value of p; indicates the portion of all voters
with the ith ranking of the candidates. As an example, there are only 3! = 6
rankings for three candidates, and these rankings are denoted by

p component  Ranking p component  Ranking
(15) P1 C1 > Cy > C3 P4 Cy = Co > C)
P2 C] = €3~ Cp Pa c2 = C3 (]
D3 Cy > €1 = C3 Pe Cy > C1 = C3
The profile i,y = (%,#) 1s the baricentric point of the simplex Si(n!); it

corresponds to where there 1s an equal number of voters of each voter type.

A similar geometric construction defines the space of election outcomes in R".
For the n candidates {c;..... cn b, identify ¢; with the ¢th coordinate axis of R”
where the magnitude of the component indicates the strength of support for ¢;. So.a
comparison of the magnitudes of the components of a vector v = (vy.....v,) € 1",
using the “more is better” binary relationship “>", determines a ranking of the
candidates. In this manner v = (4,1,9) € R? defines the ranking ¢3 = ¢ = ¢; as
vy > v1 > ve, and (2,5, 2) defines the ranking ¢; > ¢1 ~ ¢3. The set of all vectors
leading to a specified election ranking defines its ranking region. It follows from the
inequalities that a ranking region is an open set if and only if it represents a strict
ranking (1.e., a ranking without ties).

. - . . . — .
Because of the inequalities imposed on the weights of a voting vector. w’ is

either in the A, = c¢; > ¢3 > -+ > ¢, ranking region, or in a ranking region in the
boundary of this region. The last situation occurs only for voting vectors where
some of the weights have the same value, so the equal weights represent tie values
in the ranking.

Each of the n! rankings of the candidates (without ties) can be viewed as a
permutation of A,, where p;(A,) denotes the permutation corresponding to the
ith listed ranking of the candidates, : = 1,..., n!. For a ballot representing the
ranking p;(A,), there is a unique permutation of ", denoted by p;(w™). that
corresponds to how points are assigned to the candidates. For example, the vector
(wy,0,w;) denotes the tally of a ballot for the ranking ¢3 > ¢; = ¢, because it
reflects the second place ranking of ¢; (she is assigned w, points). the third place
ranking of ¢ (who is assigned w3 = 0 points), and the top ranking of ¢3. More
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generally we have

pi(wW?) pi( As) pi(T?) pi(As)
(1.6) (wy,we,0) c1 = cp = c3 (0,wa,w;y) ¢3 = g > ¢y
(wy,0,w2) ¢1 = c3 > 2 (0,wy,wy) €3 > 3 > ¢y
(wa,0,wy) e3> ¢ > ¢ (wa,w1,0) €9 > c1 > c3

We now use this notation to represent the election. The points assigned to the
candidates with a ballot representing the ith ranking is p;(w ™), so if p; of the voters

have this ranking, then they contribute the portion p;p;(@™) of points toward the
final tally. By summing over all n! voter types, the final tally is

(1.7) f(p. @) =y pipi @),

1=1

The election ranking corresponding to this tally is determined by the ranking region
that contains f(p, w™): in other words, the election ranking is determined in the
familiar fashion by comparing how many points each candidate received as given
by the magnitudes of the components of the vector f(p, @W").

Notice that Eq. 1.7 defines a convex combination of the vectors {p, (™)} ,.
As each of these permutation vectors is in

Sitn)={veR"|Y v;=1 v >0}
1=1

it must be that f(p, @ ™) € S#(n). Thus. an clection can be interpreted as defining
a mapping

(1.8) fl—=. ™) : Sin!) — Si(n).
The baricentric point of Si1(n)isi, = (,—IT, cees ];) which represents the ranking region
of complete indifference ¢; ~ ¢; ~ -+ ~ ¢,. As one might expect. f(i,. W) = i,

for all w™.

C3

(5] C2

Figure 1
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As all outcomes of Eq. 1.7 are in Si(n), Si(n) is the space of (normalized)
election outcomes. This n — 1 dimensional simplex is the convex hull defined by
the n vertices e; = (1,0,...,0),e; = (0,1,0,...,0),...,e, = (0,...,0,1). The jth
vertex, ej, represents an unanimity situation where all possible points are assigned
to ¢;. In general, the components of v € Si(n) represents the division of the points
assigned to all candidates. From the geometry, we see that Si(3) is the equilateral
triangle in Figure 1. The vertex labelled with ¢), then, is at e, in R2* while the
vertex for ¢ is anchored at e3. The numbers in the regions correspond to the 3!
rankings of candidates given in the above listing. Thus, if a point f(p, w?) is in
the region labelled 5, the election ranking must be ¢z > c3 > ¢;. The boundary, or
indifference lines separating the six open triangles correspond to where there is a
tie vote between (or among) candidates.

We now turn to the geometric approach. Issues about election outcomes often
involve questions of “Who beats whom?” As the election rankings are determined
by ranking regions, such issues are converted to geometric constructs involving the
ranking regions. For instance, an issue involving the ranking of the candidates
concerns the individual ranking regions of Si(n). On the other hand, for an issue
involving the top-ranked (or the bottom-ranked candidate), we are interested only
in who is top-ranked — not in how the other candidates are ranked. This means that
such an issue concerns the geometry of certain unions of ranking regions. Using
Figure 1, the region where c; is top-ranked is the union of region 1. region 2, and
the line segment between them -representing a tie vote between ¢ and c3. If ¢; is
bottom-ranked, then the relevant construct is the union of regions 4 and 5 along
with the associated line segment. If ¢; is middle ranked, then we get the non-convex
region given by the union of regions 3 and 6.

Issues about the likelithood of an clection property concerns the set of profiles:
thus an understanding of such issues comes from the geometry of Si(n'). The
relevant geometric constructs are imposed upon Si(n!) via the connecting link f
(the election mapping) and the geometric constructs of Si(n) developed to capture
the issues being studied. Thus, once an issue about elections is posed, the first
step is to translate it into the language of a geometric construct of Si(n). By using
the inverse image with respect to the election mapping f of appropriate geometric
regions of Si(n), the appropriate geometry is imposed upon Si(n). These are the
relevant geometric entities to be studied.

3

(] 2

Figure 2
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One difficulty is that the space of profiles Si(3!) is five-dimensional, so it cannot
be represented as a standard Cartesian figure. Nevertheless, there are crude ways
to represent Si(3!) based on the interpretation that a component of p € S:(3')
designates the portion of voters with a particular ranking. Thus, the jth component
of p 1s listed in the ranking region of Figure 1 corresponding to the jth ranking.
This is done in Figure 2. Also in Figure 2, the vectors {p,(?*)}%_, are represented
by the six dots on the boundary of the simplex for the BC. The election outcome,
then, is a convex combination of the vectors with weights {p,}. Versions of these two
figures play a role in our subsequent analysis for the special case of three candidates.

2. PROPERTIES OF Sup,(p)

In this section we provide answers to issues of the following kind.

1. For a given profile p, how can one determine in a simple fashion whether
|Supa(p)| > 17

2. How does one determine the rankings in Sup,(p)?

3. For each ranking R € Sup,(p), how can one determine which positional
voting methods have the election outcome R for profile p?

The following two facts form basic tools for our investigation.
g

Theorem 1. Assume there are n > 3 candidates.
a. A normalized election tally can be represented as

n—1
—
(2.1) Fp. @™ =Y Af(p, EV)
s=1
where the vector of convex weights A = (Ap,.... An—1) € A" determines the

coefficients for the convex combination of wW". (Equation 1.7.)

b. In the simplex Si(n) there exists a ball B(i,,r) with radius r > 0 centered
on the baricentric point 1, with the following property. Choose n — 1 points
vy € B(i,,r),s =1,...,n — 1. There exists p € Si(n!) so that

N
flp, E})=v,, s=1...., n—1.

Proof. The first assertion follows from the linearity of f in the @’" variable. We

have that

n—1 n-—-1
(22) fp W) = f(p. Y MET) =) Aflp ET.
=1 s=1

The second conclusion is a restriction of results from (Saari [4, 7]) to the voting
—
. n
vectors { E7}. O

Let Co,(p) be the convex hull defined by the n—1 points { f(p, E'j }72!. The im-
portance of C'o,(p) is that it is the geometric construct corresponding to Sup,(p).
As such, issues raised about Sup,(p) arc resolved by studying the geometric prop-
erties of C'o,(p). The purpose of the next statement is to justify this identification
between Co,(p) and Sup,(p) while introducing certain basic properties of Co,(p).
In this statement, I use the fact that, by definition, the set C'o,(p) 1s a correspon-

dence (a set valued mapping) from Si(n!) to Si(n).
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Corollary 1.1. Assume given n > 3 candidates and a profile p.
a. Let v € Co,(p). There exists a voting vector w* so that

flp,w?*)=v.

In particular, the vector of convex weights A € A" that identifies the position
of v within the convex hull Co,(p) is the same vector of convex weights that
defines the associated w" € VV".

b. An election ranking R is in Sup,(p) if and only if Co,(p) has a nonempty
intersection with the R ranking region.

c. The correspondence Co,(p) Is continuous.

Proof. Part a: This assertion is the converse of the one implied by Eq. 2.2; the
difference is that the convex weights are determined by the election outcome rather

than the voting vector. If v € Co,(p). then there exists A = (Aq,.... A,—1) € A"
so that

n—1 n—1 n—1
(2:3) V=Y AP EN =3 fe.AED = fip. ) ME.

s=1 s=1 =1

so the appropriate choice of a voting vector is w ™ = Z::_]] /\ng'.
Part b: According to part a. each point in C'o,(p) corresponds to an election
outcome for p, so the conclusion follows from the definition of the ranking regions.
Part ¢: This is an immediate consequence of the linear form and smoothness of

f. 0O

For a fixed p, f(p,—) is a linear mapping from the space of voting vectors V'1
to Si(n). Therefore, we must expect the image set, Co,(p), to inherit many of the
geometric properties of V'V, This basic intuition guides the development given in

n

this article.

We now start providing answers for the above questions. To determine the

rankings in Sup,(p). just compute the n — 1 election outcomes f(p, ff) and find
the set Co,(p). Then, according to Corollary 1.1b, we only need determine which
ranking regions intersect C'o,(p). An equivalent analytic approach i1s to vary the
values of A from Eq. 2.1 to find the admissible rankings. Also. several immediate
properties of Sup,(p) can be determined. For instance, it now 1s immediate that a
necessary and sufficient condition for O‘I'Ll’_j one election ranking to be supported by

p 13 that each of the n — 1 tallies {f(p " )} leads to this same. single ranking.
To determine what positional \otlng methods vield each entry of Sup,(p). we
use Eq. 2.1 and the geometry. For example. each ranking region R of Si(n) is a
convex set. So, if RN Co,(p) # 0. then RN Co,(p) is a non-empty convex subset
of Co,(p). By using Corollary 1.1a. cach point in R N Co,(p) defines a vector of
convex weights from A", and the convexity of RN C'o,(p) ensures that the set of
these vectors defines a convex set Ag C A™. Using the identification of the convex
weights for election outcomes (Corollary 1.1a) with the convex representation of a
voting vector, it follows that the set of voting vectors causing the ranking R with
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profile p 1s
n—1

_—)
=Y MENA=(M, . A1) € AR}

It is of significance that after the geometry is used to determine what can hap-
pen, the subsequent analysis needed to carry out each of these steps is reduced
to elementary algebra and vector analysis. As such, they constitute realistic tools
based on elementary techniques to use to analyze real data. This 1s illustrated in
the following three candidate example.

Example: For n = 3, consider the 15 voter profile where

Number of voters Ranking
6 C] > Cg > C2
) Co > C3 > C] '
4 C3 > C2 » C)

With this example, the normalized phu‘alit\' outcomnie 1s
— 6 6 5 4
,E1)=—(1,0.0 0.1,0 0.0, ==
flp. E1) = )+1-( )+1_( V=353
with the ranking ¢; > ¢2 > ¢3. The second required computation is the anti-plurality
outcome

— 6 1 1 S 11 4 11 6 9 15
3
, = —(=,0,= — (0, =, 2)+ =0 . 2)=(z=, 7. ==
/(P 2) 15(2 2)+lo( 2’ 2)+15(0 '2'2) (30 30 30)
with the election ranking ¢3 > ¢ > ¢;. As f(p. E“) and f(p ) do not have

the same ranking, it is an immediate consequence of Corollary 1.1 Thdt this profile
supports several different election rankings.
To determine Sups(p), we only need to compute C'os(p). This is the line segment
joining f(p, E)E‘) and f(p Eh) given by
5 6 9 15
2.4 Co: 5 15 15 — =, =

It follows immediately f101n the geomctuc representation of this line segment. de-

)1 0<s <1}

picted in Figure 3, that this profile supports seven different election rankings. Thesc
seven rankings can be determined from the figure.

C3

1 C)

Figure 3
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To find which positional voting methods cause each of the rankings in Sups(p),

define
1+s 1—3

2 72

W =sE3+(1-s)E} =( ,0).

According to Corollary 1.1a, we have that

6+6s 9+s 15— T7s
2.5 L Wy) = : , .

Thus, the values of s from Eq. 2.4 or Eq. 2.5 that preserve a given ranking are the
same values of s that define the associated voting vectors. Therefore, the following
table 1s derived by solving three trivial algebra problems.

Ranking Values of s for w'?
cy = ¢y = 1 s€{0,2)

C3 ™ Cg ~ C] s:%

C3 = ¢ > Co 56(%,19—3)

C3 ~ C] > C2 SZ%

C1 > Cy > C2 DE(%,%)

C] »~ C3 ~ C2 s:%

C1 >~ C2 > C3 56(%,1}

For example. as the Borda Count (BC) vector (2.1.0) has the normalized form

wh = (%, %,O), it follows from the above table and Eq. 2.5 that the BC outcome
3

for this profile is ¢3 = ¢2 = ¢; with the normalized tally % % %) O

Robustness.

A related issue 1s robustness. Namely, will slight changes in a given profile p
preserve Sup,(p)? If a ranking R € Sup,(p)is realized with ", does the ranking
remain intact with slight changes in the voting vector? These kinds of questions are
answered by using part ¢ of the above corollary. The geometry proves that robust
conclusions are to be expected.

Corollary 1.2. Let n > 3 candidates be given.

a. (Robustness with respect to profiles,) Suppose there are no ties in any of the
—
n — 1 election rankings for {f(p. E 1)}. There exists an open set of normalized

profiles in Si(n!} that support the same set of election rankings.

(Robustness with respect to voting vectors.) For a given profilep. if R € Supp,(p)
has no ties, then there exists an open set of normalized voting vectors wW" (of
dimension n — 2) that lead to this clection ranking.

(Dimension count for voting vectors.) More generally, if Co,(p) meets a ranking
region R C Si(n) so that the codimension of RN Co,(p) in Co,(p) is k. then
there is a convex subset of V™ with codimension k that vield the election
ranking R.

Recall, the codimension of R N Co,(p) in Co,(p) is the difference between the
dimensions of Co,(p) and RNCo,(p). Part ¢ shows how the geometric orientation
of Co,(p) plays a critical role in determining the size of the set of voting vectors
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leading to different outcomes. For instance, with p from the above three-candidate
example, when Co,(p) meets a ranking regions with a tie vote, the intersection is
a point, so the codimension is unity. This means that the sets of voting vectors
realizing this outcome must be a convex subset of A% with dimension dim(A®)—1 =

1—1 =0, or a point. On the other hand, it is easy to find profiles so that f(p, f?)

is on the ranking region ¢; = ¢ ~ c3 while f(p, f%) has the ranking e ~ ¢3 > ¢;.
Here Co,(p) meets the two regions with a single tie vote with codimension zero;
by the corollary, this means there is an open set of voting vectors that gives rise to
the same outcome.

As an extreme example suppose all n—1 vertices of C'o,(p) agree. (According to

Theorem 1b, such situations exist.) Thus, the codimension of Co,(p) N f(p, —ﬁ?)

P n

1s zero; this means that f(p. w") = f(p, f}’) In other words, there exist profiles
where the normalized clection tally i1s the same for all choices of voting vectors.

Proof. Part a: This is an immediate consequence of the continuity of the corre-
spondence Co,(p).

Part b and c¢: As Co,(p) and each ranking regions are convex sets, so 1s T N
Con(p). For fixed p, the mapping f(p.—) is linear in the voting vector variable.
Thus, f~1(p,—)(R N Co,(p)) must be a convex subset of V™. If R is an open
set (so, the ranking has no ties). then RN Co,(p}) 1s a (relatively) open subset
of Co,(p). It now follows from he continuity of f that f~!(p.=)(R N Co,(p)) is
a convex subset of V17",
immediate consequence of the implieit function theorem. O

This completes part b. The dimension statement is an

As the above illustrates, the various issues about Sup,(p) can be answered in
terms of the possible positioning of C'o,(p) within the simplex Si¢(n). With a given
profile p, these computations are straightforward. Alternatively, if we don’t have

)71

the profile, but we do have the tallies { f(p. W@ )} for a set of vectors (W '} then a

similar analysis is possible. For mnstance, by Lnou ing f(p ‘s Jand f(p. w3 ) &) #

. - . —}
s9, an obvious application of Eq. 2.1, leads to the values of f(p. E3) and f(p ﬁ

Because these last two values determine C'o3(p), the above analysis apphes.
3. P-SPECIFIC PROPERTIES AND OTHER PROPERTIES OF Sll.]),,(p)

What remains is to determine the admissible placements of Co, (p) without using
specific profiles. In this way, general properties of Sup,(p). including a listing of
all possible values for |Sup,(p)|. can be found. The basic tool is Theorem 1-b.

According to Theorem 1-b, one can choose any n — 1 points in a ball in Si(n)

centered about the point of complete indifference (%, e %). specify which point

is to be identified with which voting vectors f;’ and there 1s a profile so that
the selected points are the election outcome of the associated voting vector. In
other words, one can choose any desired convex hull of 1 — 1 points nside of
B(i,,r), and Theorem 1b ensures the existence of a profile p so that Co,(p) is
this hull! Consequently, we can ignore profiles and concentrate on the simpler
problem of determining the geometric properties of all possible choices of convex
hulls determined by n — 1 points in Si(n). In this manner, we can characterize the
properties of {Supa(p)}pesi(n)-
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To illustrate with n = 3 candidates, it follows from Theorem 1b that any line
segment (or point) in the ball given in Figure 4 is Co3(p) for some choice of p €
Si(3!). Armed with this conclusion, all of the general properties of Sups(p) and
Co3(p) can be determined just by examining the admissible geometric properties

of such lines in 52(3).

3

C1 (6]

Figure 4

The kinds of geometric properties that should be examined are dictated by the
voting issues. For instance, because a profile can support a large number of election
rankings, it is not clear which ranking most accurately reflects the views of the
voters. On the other hand, there are situations which offer a natural answer for
questions of this type. For instance, if a particular property holds for all rankings
in Sup,(p) — say, the same candidate always i1s top-ranked - then tlus forms a
compelling argument to adopt this property as reflecting the true views of the
voters.

Definition. A property that holds for all rankings in Sup,(p) is called a p-specific
property.
a. If a candidate is the top-ranked for all rankings in Sup,(p). then she i1s the
p-preferred candidate.
b. If a candidate is bottom-ranked for all rankings in Sup,(p). then she is the
p-denied candidate.
c. If a candidate is not the p-denied candidate and never 1s top-ranked for all
rankings in Sup,(p). then she is a p-indifferent candidate.

It is tempting to accept the p-preferred candidate as the voters’ top- choice.
After all, she is top-ranked independent of the choice of a voting method, so what
more could be demanded of her? Similarly, the evidence indicates that a p-denied
candidate is the voters’ bottomn-choice. These appealing arguments justify a further
study of p-specific properties. Results about p-specific properties are obtained by
determining the various ways a convex hull can be positioned within B(i,.r): this
geometric approach is used to prove the next theorem. Before stating the result.
recall that ¢; is a Condorcet winner if she wins all of the majority vote pairwise
elections with the other candidates: she is a Condorcet loser if she loses all of these
elections.

Theorem 2. Let n > 3 candidates be given.
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a. (Existence.) There exist open sets of profiles defining a p-preferred (a p-denied)
candidate. There exist open sets of profiles where both a p-preferred and a
p-denied candidate are defined.

b. (Non-existence.) There exist open sets of profiles where a p-preferred candidate
and/or a p-denied candidate do not exist.

c. (Comparison.) When they exist, the p-preferred candidate can never be a Con-
dorcet loser, but she need not be the Condorcet winner. Indeed, for any integer
k between 1 and n — 1, there exists an open set of profiles with the p-specific
property that both a p-preferred winner and Condorcet winner exist and the
Condorcet winner is ranked in kth place. Similarly, the p-denied candidate
never can be a Condorcet winner, but she need not be the Condorcet loser; for
any integer k between 2 and n, there exists an open set of profiles with the
p-specific property that a p-denied candidate and a Condorcet loser exist; the
Condorcet loser is ranked in kth position.

d. (Comparison of existence.) There exist open sets of profiles where a p-preferred
winner exists, but a Condorcet winner does not, and vice versa. A similar state-
ment holds for the existence of p-denied candidates and the Condorcet loser.

Some readers may view these assertions showing that the p-preferred (denied)
candidate need not be the Condorcet winner (loser) as a criticism of p-specific
properties. Perhaps; but perhaps a more accurate interpretation is to treat these
assertions as underscoring failings of the Condorcet winner (loser). After all, a
p-preferred candidate survives all of the infinite different possible ways there are to
aggregate the voters’ preferences with positional voting methods — she is the winner
no matter what weights are invoked to measure intercandidate comparisons. This
constitutes a significantly more stringent test of voters’ beliefs — one that involves
comparisons among candidates — than just the pairwise comparisons used to define
a Condorcet winner.

The proof of this theorem uses the following statement that is of independent
interest. Of theoretical importance is the simpler approach used in the proof to
establish the existence of rankings.

Proposition 1. Let n > 3 candidates be given. Let N be the vector from i, to
the vertex of Si(n) identified with cj. The plane in Si(n) passing through i, with
normal vector N7 assigns the constant value of + for ¢;. so any convex hull on this
plane with 1,, as an interior point passes through all ranking regions except those
c; extreme situations where c; is top-ranked, bottom ranked. or tied with k < n—1
other candidates for top- ranked or bottom ranked.

To see the geometry for n = 3 with Figure 1. draw a vector from the bari-
centric point to the e;. The plane described in the proposition becomes a hor-
izontal line passing through i3. This line does not meet any region where c3 is
top-ranked, bottom-ranked, or tied with another candidate for being either top or
bottom ranked. On this horizontal line, any line segment with i3 in the interior has
the same properties.

Proof of Proposition 1. This proposition involves establishing the existence of
a hull with the asserted properties. To simplify the analysis, note that 1, is a
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boundary point for each of the ranking regions. This means that if i,, is an interior
point of a hull Co,(p). then Co,(p) meets the same ranking regions as the plane
spanned by Co,(p). Conversely, if a plane passes through i,, a hull always can be
found on this plane with i, as an interior point. In fact, this hull can be chosen
so that its vertices are in open ranking regions. Consequently, to establish the
existence of certain properties, we only need to find a plane passing through 1,, that
meets the appropriate ranking regions.

Without loss of generality, consider N} and candidate ¢;. The defined plane

passes through i, = (%,..., %) and the coordinate value for ¢ is fixed everywhere

along this plane. Thus this fixed coordinate value for ¢; must be % - the average
value for a coordinate of x € Si(n). By virtue of being the average value, 2 cannot
be the largest or the smallest value of the coordinates of x € Si(n) (unless all n
coordinates equal %) This is the only constraint that can be imposed upon the

coordinates and the average value, so the conclusion follows. O

Proof of Theorem 2: Part a: This follows from Theorem 1-b. To show that ¢; can
be a p-preferred candidate, just place the convex hull into an open ranking region
(or union of such ranking regions) where ¢, is top-ranked. The open set assertion
about the profiles follows from the robustness assertion. A similar argument proves
the rest of the claims.

Part b: Choose a convex hull that mtersects ranking regions where more than
one candidate 1s top-ranked, or bottom ranked. The assertion follows.

Part c¢: Asit has been well known (at least for n = 3 candidates) since the time of
Condorcet and Borda, a Condorcet winner (loser) need not be Borda top {(bottom)
ranked. This statement holds for all n; indeed, a result from Saari [6] characterizes
all possible ways the Condorcet winners and losers must be positioned within the
BC rankings. There i1s considerable flexibility; for any BC ranking where candidate
c; receives more than % of all points cast, there are profiles so that ¢; also 1s the
Condorcet winner. (Thus, from Proposition 1, the Condorcet winner could be BC
ranked next to the bottom.) So. the first step is to choose a BC ranking where ¢; 1s
BC top- ranked and ¢;, the Condorcet winner. is £th ranked where 1 <, <n — 1;
such profiles exist.

The second step also depends upon results from Saari (5, 6]. Expressing an
assertion from these papers in terms used in this current article, we have that for
any BC strict ranking of the n candidates and associated majority vote rankings
of the (;’) pairs of candidates there exists an open set of profiles so that Sup,(p)
consists of a single ranking that is this BC ranking and the majority vote rankings
of the pairs also remain the same. Use this result for the ranking from step one.
This leads to the conclusion that the convex hull is positioned in such a manner
that ¢; 15 the p-preferred candidate while ¢;. the Condorcet winner. is kth ranked.

The remaining parts of the assertion follow in a similar manner by using the
properties of the Borda Count. For instance, as a Condorcet loser can never be BC
top-ranked, but she can be &th ranked for 2 < & < n; thus a p-preferred candidate
never can be a Condorcet loser but the kth ranking of the Condorcet loser is an
admissible p-specific property .

It 1s worth describing the positioning of Co,(p) that denies the Condorcet
winner the honor of being p-preferred because she is kth ranked. Suppose ¢
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is the Condorcet winner. The plane P passing through 1, with normal vector
N§ = (—%, ";1 \ —%, . —%) divides Si(n) into two parts; the part containing NZ
(and the ¢y vertex of Sz(n)) is where ¢y receives at least % of all points cast in a
BC election. (See Figure 5 for the case n = 3.) Now, as described above, a Con-
dorcet winner must receive at least % of all points cast in a Borda election. This
means that if ¢ 1s the Condorcet winner, then the point of Co,(p) corresponding
to the BC election outcome must be on this side of the plane P. In fact, as also
described above, this is essentially the only restriction that can be imposed upon
the Condorcet winner. As long as ¢ satisfies this condition, it can be the Condorcet
winner.

So, to have ¢; the Condorcet winner while ¢; 1s the p preferred candidate, the
hull must be positioned in the interior of the union of regions where ¢, is top-ranked
and the BC point of the hull is on the ¢; side of the P plane. For more specific
positioning (where c¢g is kth ranked) the sector 1s chosen to keep the BC ranking
in the regions where ¢y is kth ranked. This 1s possible from Proposition 1 and
its proof and the robustness assertions. The intersection of these regions forms an
open sector. The geometry imposes restrictions on the positioning of the hull: there
remain ample opportunities for this construction.® (For n = 3 this is the small,
shaded triangle in Figure 5.) The ouly difference in the geometry when comparing
the Condorcet loser and the p-preferred candidate is that if ¢y 1s the Condoreet
loser then the BC point now must be on the other side of the P plane. In this
situation, 1t is geometrically impossible for the hull to have the BC point on the
correct side of P while being in the interior of the regions where ¢ 1s the winner
or tied for being in top place. However, by use of the proposition, anything else is
possible. This is a geometric explanation of the assertion.

3

Ci (&)
Figure 5

Part d: Choose a ranking where ¢; is top-ranked but there is no Condorcet
winner, and then follow the lead of the proof of part ¢. Geometrically, there is no
restriction on the choice of the convex hull. To show that a Condorcet winner can
exist where a p-preferred candidate does not, recall from Saari [4, 5] that one can
choose the plurality and the anti-plurality election rankings of the n candidates in
any desired way and still have the freedom to choose the majority vote rankings of

5From the restrictions on the construction, one might conjecture that when there exists a p
preferred candidate and a Condorcet winner, it is more probable that they agree than disagree.
With wide classes of probability distributions on the profiles. this can be shown to be the case.
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the (;) pairs of candidates. So, if the rankings are chosen so that ¢y is plurality
top-ranked, ¢y is anti-plurality top-ranked, and ¢; is the Condorcet winner, the
assertion follows. Notice, however, that the hull must be placed in such a manner
that the BC point is on the correct side of the P plane. The other assertions follow
in a similar manner. 0

A similar approach can be used to understand other Sup,(p) and p-specific
properties.

Corollary 2.1. Assume there are n > 3 candidates.

a. (Comparison) There exist situations where a p indifferent candidate 1s a Con-
dorcet winner, and other situations when it is a Condorcet loser.

b. (Nonexistence) A p-indifferent candidate need not exist. Indeed, for any n there
exists open sets of profiles where each candidate is top-ranked for at least one
ranking in Sup,(p).

c. (Extreme non-existence) If n > 4 is even, then there exists a p so that for cach
candidate ¢; there exists a strict ranking in Sup,(p) where ¢; is top-ranked and
another strict ranking in Sup,(p) where ¢; 1s bottom-ranked.

The profiles described in the last part of part ¢ can inspire electoral debate. Tt
asserts that for the same profile and for cach candidate ¢;. there exist choices of
voting vectors that appoint ¢; as the top-ranked candidate, but then there are other
choices of voting vectors that can be used to cast serious doubt on this outcome
because they end up with ¢; being bottom-ranked!

Proof. Part a. This is a simple exercise using the above ideas and the geometry
of the ranking regions. so it 1s left to the reader.

Part b. Consider the plane described in Proposition 1 for the normal vector Ny
According to the proposition, for every candidate ¢;. j = 2,..., n, the plane must
meet at least one open ranking region where ¢; is top-ranked. The boundaries of
all ranking regions where ¢y is top-ranked meet this plane at i,,. Therefore, with
a small parallel translation of the plane along NY, the translated plane meets all
regions where ¢; 1s top-ranked, or tied with up to n — 2 other candidates for being
top-ranked. Moreover. because the original regions where ¢;. j = 2....,n, was top-
ranked are open regions, if the translation is sufficiently small (vet positive), then
the plane still meets all of these regions. The conclusion now follows. Incidentally, a
similar argument proves the existence of open sets of profiles so that each candidate
1s bottom ranked for some ranking in Sup,(p).

Part c. To prove the last assertion. suppose n > 4 1s even. There exists a plane
passing through 1, so that half of the vertices are on cach side of the plane. say
€1,€2, ... Cyp are on one side and the remaining vertices are on the other. Each
pair of vertices, where one is chosen from cach side of the plane. defines an edge of
Si(n). One such plane, with normal (1.1..... 1,-1,-1..... —1). must pass through
all edges of this type and only through edges of tlus type. The point of intersection
on each edge is the midpoint (by the choice of the normal vector).

Consider a two-dimensional face of Si(n) defined by the three candidates ¢;, ¢;, ¢k
where (¢;, ¢;) and (ci.c¢;) are two of the above edges. In this face (an equilateral
triangle), the plane is a line segment that must pass through two open regions where
¢; is top-ranked. (To sec this. connect the midpoints of two edges of S:(3) from
Figure 1. Notice that the line must pass through the regions where the candidate
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identified with the common vertex of these two edges is top-ranked.) Near this
face, all other candidates are ranked below the specified three candidates, thus this
plane passes through a region where ¢; is top-ranked. By construction, this is true
for any index c;j.

Using the symmetry of ranking regions with respect to i, and the fact that
this constructed plane passes through 1,, it follows that any ranking represented
on this plane has its reversed ranking also represented on the plane. Thus, for
each candidate ¢; there exist open ranking regions that meet this plane where ¢; is
bottom-ranked. As any hull Co(p) on this plane with 1, as an interior point meets
the same ranking regions as the plane, the conclusion follows. Notice (for future
reference) that any small translation of this hull up or down along the normal vector
still meets the ranking regions with these properties.

To see why this assertion need not hold for odd values of n > 3, just examine the
properties of line segments in S7(3): it is impossible to have half of the vertices on
each side of the plane. However, the assertion does hold for n — 1 of the candidates:
this can be seen with the five candidate example described in the introductory
section and from the results in Saari [4]. I leave further refinements to the interested
reader. O3

The above constructions can create the impression that these conclusions rely
upon delicate placements of the hull. While such delicacy may simplify the proof of
an assertion, it 1s not needed to support the basie phenomenon. The next “stability”
assertion shows that once the existence of a set C'o,(p) with certain properties is
established, there are large degrees of freedom to move this hull while retaining the
same properties. Thus, in the last construction showing that cach candidate can
be top and bottom ranked for some strict ranking in Sup,(p), there is considerable
room for moving the vertices. As another consequence of this statement, which
plays an important role in the analysis of the likelithood of the various events.
it shows that the restriction of points to B(i,,r) imposes no restrictions on our
analysis of election rankings.

Proposition 2. Suppose each of the vertices of Co,, (p) are in open ranking regions.
If Con(p') is another hull where each vertex remains in the same open ranking region
and where i,, &€ Co(sp + (1 ~ s)p’)Vs € [0.1], then Sup,(p) = Sup.(p').

Alternatively, consider two hulls in Si(n) with vertices in open ranking regions.
Suppose if one hull has a vertex in a given ranking region, then so does the other -
this defines pairs of vertices with one from each hull. Connect each pair of vertices
with a straight line segment: this creates n — 1 line segments. Paramecterize cach
line segment in the standard manner by s € [0,1] where s = 0 represents the vertex
of the first hull, and s = 1 is the corresponding vertex of the second hull. If i, is
not in any hull with a vertices on the line segments corresponding to s € [0.1], then
both of the original hulls meet the same ranking regions.

In other words, there is no change in Sup,(p) for changes in p as long as during
the transformation of the hull. eacli vertex remains in the same open ranking region
and, in transforming from one position to another, the hull does not pass through i,,.
The alternative description releases any need to consider profiles: only the gecometry
of the hulls is needed. Thus. although the construction proving the assertions of
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Corollary 2.1b involved “sufficiently small” translates of a plane, according to the
proposition, this requirement can be dropped.

The geometric support of this assertion is based on the observation that if a
ranking is added or dropped from tle set of supported rankings, then, by continuity,
the hull must first pass through a ranking region with a tie vote; the hypothesis
makes this geometrically impossible. For instance, with n = 3 and Figure 1, if
one vertex of Co(p) is in region 3 and the other in region 1, then |Sup,(p)| = 3
independent of the positioning of these vertices. On the other hand, if the vertices
are in regions 1 and 4, then the choice of rankings and the number of rankings
change if the line segments are on different sides of i3. Incidentally, it is clear from
the proof that this assertion extends to the situation whereby the vertices remain
in the same ranking region whether or not these are open ranking regions.

Proof: The only way the set of rankings can change (a new ranking is added or
an original ranking is dropped) is if for some s in C'o,(sp+(1—s)p’), the associated
convex hull passes through an indifference region. One such region is the point i,,
but, according to the assumptions. i, € Co(sp + (1 — s)p’)Vs € [0.1]. Therefore,
the hull must pass through an indifference region that is at least one-dimensional.

There are two ways a hull can pass through an indifference region with positive
dimension. The first is that a vertex passes through an indifference hyperplane; a
possibility outlawed by assumption. To analyze the second possibility, note that if
the normal vector for an indifference plane is not collinear with the normal vector
for the hull, then they meet transversely - the intersection persists for changes in
the profile, so the same rankings occur. Therefore, should the second possibility
happen, it must be that a normal vector for the hull becomes collinear with a normal
vector of some indifference plane. This means there i1s a pair of candidates (defining
the indifference plane), {cx.c;} whereby for all points in Co(sp + (1 — s)p). the
relative ranking is ¢ = ¢ for s < &', but ¢; = ¢¢ for s > s'. This requires xg > &y
for s < s’ and a¢y > xy for s > s’ for all points in Co(sp + (1 — s)p’). Using
Eq. 2.1, the first situation requires the relative ranking ¢x > ¢ for cach vertex of
Co(sp + {1 — s)p) where s < s and the reversed relative ranking of this pair for
each vertex where s > s'. This contradicts the assumption that the vertices remain
in the same open ranking regions.

The alternative description follows from the above, Theorem 1b, and the smooth-
ness of f in both variables. From these results, we have that the line segments
Joining vertices of the two hulls defines a parameterized line seginent of profiles. By
use of this line segment. we now have the above proof. [

There are other related behaviors and p-specific properties that can be analyzed
as indicated above. But a couple of features are beginning to emerge. The first 1s
that while one can identify certain attractive properties to investigate. the existence
of p-specific properties can be restricted. Secondly, in the analysis of the p-specific
properties, there is a critical reliance upon the properties of the Borda Count.
This is no accident; we now know (Saari [6]) that the BC plays a central role in the
analysis of the properties of positional voting processes. This strongly suggests (but
does not prove) that the p-specific properties that are viewed as being favorable are
inherited from the BC properties. while undesirable properties can he attributed
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to the properties of other choices of positional voting methods.® In turn, this leads
to the natural suggestion that instead of using p- specific properties, the BC is the
appropriate choice to use for voting processes. The BC must be a serious candidate
as the method to determine the “true” wishes of the voters.

The Admissible Values for |Sup,(p)|.
The remaining topic of this section is to find all admissible values for |Sup,(p)|.

Theorem 3. Assume n > 3 candidates are given.
a. Let k be an intcger satisfving

(3.1) O0<k<n!l—(n-1)L

There exists a profile p where Sup,(p) contains precisely k strict rankings. Con-
versely, if there are k strict rankings in Sup,(p), then k satisfies Eq. 3.1.

b. Let C(n) be the number of ranking regions in Si(n); that is, C'(n) is the number
of n-candidate rankings with and without ties among candidates. For any k
satisfying

1
(3.2) 1<hk<Cm-[1+Cn~1)+Y. (" I_ 1)6’(77 i1,

=1

there exists a profile p so that |Sup,(p)| = k. Converselv. if |Sup,(p)| = k. then
k must satisfy Eq. 3.2.

The value of C'(n) grows rapidly with increasing values of n. To sce this. define
(k) = maz(k — 1.0) and 6(k;. ka.. ... ky) to be the multiple of the factorials
of the number of times ecach non-zero value occurs in the n tuple. For instance.
6(4,3,4,5,5,4.2.2,0,0) = 311!2!2! because 4 appears three times, 3 appears ouce.
O appears twice, 2 appcars twice, and the 0 terms are ignored. By using standard
combinatoric arguments, we have that

(3.3)

n n=317" n-Sni2 n/2 .
C( ) '+ Z {(J])X(' Zj;;-zl]k)x( %ik;j1lk)(n_zi=/1 T(_]l))'
n)=mn. ‘ ‘
2G> 2 in B(J1..... Jny2}
jn/220-1122
HFEIVI>2

It follows from this equation that C'(n)/n! — oc as n — x.

For all values of n, 1t i1s possible for Sup,(p) to contain a significant portion (at
least %)) of all rankings without ties. This fraction increases with the limit of unity
with an increase in the value of n.

Corollary 3.1. Forn > 2 candidates Sup,(p) can include up to but not exceeding
1— % of the n! possible rankings without ties.

Proof of the corollary. There are n! open ranking regions. so. according to
Theorem 3, it is possible for up to ”!'(]:1!_”! = =1 of the strict rankings to be
obtained with a single profile. O

5Other geometric arguments cau be developed to support this assertion, but the point is made.
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Theorem 3 indicates that incredibly large number of rankings can be supported
by a single profile. An appreciation for the magnitudes of these numbers, how fast
they grow, and how the proportion of rankings in Sup,(p) approaches unity as
n — oo is gained from the following table.

n  Strict Rankings inSup,(p) Max |Sup,(p)| MLAS(Z';'LP)'
2 1 1 0.3333
3 4 7 0.5385
4 18 45 0.6338
5) 96 371 0.7176
6 600 3645 0.7783
7 4320 38,131 0.8063
8 35,280 451.893 0.8279
9 322,560 5.997,341 0.8462
10 3,625,920 84.830, 767 0.8569

The geometry leading to the proof of the theorem is indicated in Figure 6. The
convex hulls Cez(p) are line segments. A line segment in S:(3) 1s uniquely deter-
mined by its orientation, as computed by a parallel line passing through i3, and
the required translation to return the orientation segment to the original line seg-
ment. Conversely, the behavior of all possible line segments can be determined by
first considering all possible orientations through iy and then all possible parallel
translations.

Orientation. Depending on the orientation of a line passing through 1, the
orientation line intersects either two or zero of the open regions. The situation
depicted in Figure 6 has the orientation line meeting two open regions and missing
3! — 2! open regions. Half of these missed reglons are on one side of the orientation
line, half on the other.

C3

Cq (8]

Figure 6
Translation. To maximizes the value of |Sups(p)|. the optimal situation corre-
sponds to a parallel translation of the orientation line off of iy but where the end
points stay in the same open regions. It is clear that a small translation meets all of
the original open regions and half of the missing ones: it follows from Proposition
2 that any translation satisfving the specified conditions has this property. Thus,
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this choice of Co3(p) meets % + 2! = 3!32! = 4 regions. This is the bound on
rankings without ties.

When all ranking regions are considered, it is geometrically obvious that the
orientation line meets three regions. We give a different, more complicated ar-
gument with only one virtue that it explains Eq. 3.2 for n = 3. First, use the
fact that the orientation line divides Si(3) into two regions. It follows from the
geometry of Si(3) that there exists a candidate, say c2, where all ranking re-
gions corresponding to where c; is top-ranked are on in one of these half re-
gions.” This means that the orientation line misses all of these regions. To
count these regions, note that there are C(2) of them where ¢; 1s top-ranked
(corresponding to the number of rankings of the remaining two candidates) and
(f)C(l) regions where ¢; is tied for being top-ranked with another candidate.

Therefore, the orientation line misses all these C(2) + (f)C(l) = § regions. By
symmetry of ranking regions (with respect to i3), the orientation line also misses
the corresponding C'(2) + (f)C‘(l) = 3 regions where ¢ is bottom, or tied with
another candidate for being bottom-ranked. Thus, the orientation line meets
C(3)-2[C(2)+ (f)C(l)] regions, and it misses 2[C(2)+ (f)C(l)] of them. A transla-
tion of the orientation line that keeps the endpoints in the same open regions meets

C(3)-2[C2)+ (HCM+[C2)+ ()C(1)] -1 =C(3)—[C(2)+ (})C(1)+1] = Tre-
gions. The “—1" term corresponds to the fact that the translated line loses contact
with the boundary ranking region i,,. By truncating the length of the translated
line or using a parallel translate where an endpoint leaves an original open region,
one can get examples of hulls mecting any number of regions between 1 and the
indicated upper bound.

Other orientations. It remains to consider the orientation lines that meet no
open regions. (Such lines prove the existence of & = 0 in Eq. 3.1.) For this
to occur, the orientation line must be in a line of binary indifference. Therefore,
it misses 2« regions, a of them on each side of the orientation line, so it meets
C(3) — 20 = 3 regions. For the same reasons given above, the translated line can
meet no more than C(3)— [a + 1] regions. In fact, the translated line meets a fewer
number of regions; it must meet no more than a =3 < C(3) — [a + 1] = 7 ranking
regions because the translated line must lose contact with all of the original regions
corresponding to rankings with ties. This completes the proof for n = 3. [0

Proof of Theorem 3. The proof for part a follows that of part b, so only part
b is proved. The geometric properties of a convex hull are determined by the
orientation (of the plane it spans) through 1, and its parallel translation - the
main concern is attaining the asserted maxiimmum value. For the orientation, choose
a n — 2 dimensional plane passing through i,,, or a hull on this plane with i, as an
interior point and vertices in open ranking regions. This plane misses 2a ranking
regions where, as shown below.

n—1
(3.4) a§[C’(n—1)+Z(T??1>C'(rz—i—1)},

=1

"This is not true for all values of n > 4. For instance, consider the plane used for the proof of
Corollary 2.1¢ — no candidate can be found with the indicated property.
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so the plane meets C(n) — 2a regions. By symmetry {of ranking regions with
respect to i,), there are a ranking regions are on each side of the orientation
plane that do not meet the plane. Consequently, a parallel translate of this plane,
or the hull, can meet no more than [C(n) — 2a] + o« — 1 = C(n) — [a + 1] of
the ranking regions where the “—1” term represents the ranking region i, that
cannot be on the translated region. The translated region meets precisely this
number of regions if only the ranking region i, is totally contained in the original
ranking region; here, the translation loses contact only with the region of complete
indifference i,. If the plane starts with this property and if the vertices all vertices
start in open ranking regions, then the properties remain as long as the vertices
remain in these regions. Thus, an upper bound for the number of ranking regions
is C(n) — [@ + 1]. According to inequality 3.4, an upper bound for |Sup,(p)| is
[Cn)—[14+C(n—1)+ Z?:—]l ("71)C(n — ¢ — 1)]. The fact that all values can
be obtained is achieved by changing the vertices so that they now meet and pass
through different indifference ranking regions.

Inequality 3.4. It remains to prove Inequality 3.4. If a ranking region is on
one side of of a plane, then the ranking region corresponding to the reversal of
the original ranking is on the other side. (This is due to the synunetry of ranking
regions of Si(n) with respect to 1,,. Therefore. it suffices to minimize the number of
ranking regions that are on one side of a plane P. According to Proposition 1, there
are orientations of P where the only ranking regions in one half space are defined by
a particular candidate, say ¢;. These ranking regions are where ¢) is top-ranked,
or tied for top-ranked with up to n — 2 other candidates. In other words, there
are C(n—1)+ Z:-:ll (":])C(n — ¢ — 1) ranking regions on this side of P, and the
same number on the other. Already, by use of this value of a. this establishes that
Maz(|Supn(p)] 2 [C(n) =14+ C(n—1)+ Z?_;l ("7 C(n — i —1)]. What needs
to be shown is that Maxpesia)(|Supa(p)]) cannot be larger. That is. inequality
3.4 needs to be proved.

By symmetry (and the corresponding fact following from the scalar product
that the angle between any two vectors from {N{} 1s 90° < arccos(n—__l—l) < 120%)
at least one vertex must be on each side of the plane. The particular geometric
setting described by Proposition 1 has a single vertex on one side of the plane, and
this vertex is placed so that all ranking regions where ¢; is top-ranked or tied for
top-ranked are in this half space. It follows from Proposition 2 that whenever this

geometry is observed, the indicated value of o occurs.

In changing the geometry. the plane needs to be moved so that it finally comes in
contact with one of these ranking regions. The first possibility is with a tie vote. so
suppose at lcast one region representing a top-ranked tie vote with ¢ now is in the
plane. Let 3 represent the ranking region with largest dimension and where ¢ is
tied for top-ranked that first meects P. If part of 7 is in P. then .7 C P. (This uses
the fact that the ranking regions are lincar objects obtained from the intersection
of planes and that P is a plane.) Clearly, this geometry still requires the ¢; vertex
to be the only vertex on this side of P. (Before another vertex can enter this half
space, it must pass through P:i.e.. the vector N7 € P. But the line defined by this
plane includes the ranking region where ¢; is bottom ranked. and all candidates are
tied for top- ranked with ¢;.) As .3 C P. rather than being on the ¢) vertex side of
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P, this subtracts from a the value [C{n — 1) + Z::ll ("THCm —i-1).

Much more information follows from the o value. After all, if 7 represents a tie
vote with fewer than n — 2 other candidates, then P must also include all of the
boundary regions of 3. (Again, this uses the fact that the ranking regions are linear
objects and that the boundaries must be in the same linear space as the ranking
region. For instance, if the region is ¢; ~ ¢z ~ ¢3 > ¢4 -+ > ¢y, then, P also meets
the regions ¢; ~ ¢ ~ ¢3 ~ ¢4 > ...cy), ete.) On the other hand, this orientation
forces several regions that previously met P to be on the ¢; side of P; each such
region adds to the count of a.

Above P are the regions where ¢; is top-ranked. Thus, all regions where the
top-ranked tie with ¢, indicated by 3, is broken to the advantage of ¢; must be
above P. Similarly, the more numerous number of regions (if n > 4) where the ties
are broken to the disadvantage of ¢; are on the other side of P. By the symmetry
of the ranking regions, it follows that the reversal of each of these rankings now
are on the ¢; side of . In total. the value of a has increased. Notice. since the
one of the boundary rankings in P has n — 1 candidates tied for first and one
candidate in bottom place, and since the plane passes through 1,,. the reversal of
this ranking is also on P. But, this one-dimensional line includes the vertex. Thus.
if the orientation of P is changed so that an open region with ¢; top-ranked meets
P, then there are at least two vertices — ¢; and another one - that are on the same
side of P.

What remains. then, is to consider what happens when more than one vertex is
on the same side of P. By symmetry, attention can be restricted to the side that
has no more than 3 vertices. (So, for anything new to occur, n > 4.) The basic
idea can be seen with two vertices ¢;.¢y. Here the geometry dictates that all open
regions where one candidate is top ranked and the other second ranked are on this
c1 side of P. If a boundary region of one of the open regions with this top two
ranking is in P, then, by use of the above argument, it follows that more regions
are on this ¢y side of the plane than if no boundary regions were included. But since
any open ranking region is equivalent to another, it follows that there are at least
as many ranking regions in on this side of P as in the one vertex setting. (A more
careful count, using the possible orientations of the vertices and the angle between
INT proves that more rankings are admitted.) This completes the proof. O

4. SPACE OF PROFILES

To complete the story, it 1s necessary to suggest how likely are the various events
described in the previous sections.® To provide intuition about these likelihoods,
I first outline how profiles are designed to obtain the different kinds of outcomes,
and then I use this discussion to indicate what we should expect from probability
statements.

A basis of voter types.
Designing profiles can be a difficult task. The prime complication revolves around
the number of variables - as the design of an n-candidate profile potentially involves

8 As noted above, I defer to elsewhere a rigorous discussion about the likelihood of the var-
ious outcomes. This discussion is based a geometric approach developed to avoid the serious
combinatoric complications.
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n! independent variables (the number of voter types), even linear programming
approaches are not adept at handling the millions of variables.(See. for instance,
Chamberlain [2].) However, by use of the geometry, the number of voter types can
be significantly reduced.

Theorem 4. Assume a profile p is to be constructed so that the vertices of Co,(p)
are in regions representing specified strict rankings of the n candidates. There exists
such a profile requiring no more than (n — 1)? voter types.

Proof. The proof of this assertion is immediate. The hull Co,{p) is uniquely
defined by its n—1 vertices. In turn, the ranking region of each vertex is determined
by n—1 inequalities of the coordinates of x € Si(n). Through the election mapping,
this leads to (n — 1)? linear algebraic inequalities in the profile variables. From
elementary algebra — “k equations and k unknowns” - these equations can be
solved in the designated number of variables provided these (n — 1) equations are
independent and do not define contradictory relationships. That this is true is one
of the assertions from Saari [4, 7]. O

Example: Theorem 4 indicates that four voter types are required for n = 3.
However, if strict rankings are involved, the geometry can be exploited to obtain a
further reduction — only three voter types are needed. To see this and to see how
to select the three voter types, start with ¢; top-ranked for r;, j = 1,2,3 and n;
the number of voters of this type. So, if the plurality ranking 1s ¢; > ¢2 > ¢3. then
ny > ne > nNi..

It remains to choose the voter types so that a profile can be found to obtain any
given anti-plurality ranking. The anti-plurality outcome is in the hull defined by the
midpoints of the three edges of Si(3). (See. for example, Figure 1.) However, if ¢;
is the top-ranked candidate of a specified anti-plurality ranking, then only the edge
of the anti-plurality hull closest to ¢; need be considered. For instance, if ¢; = ¢3,
then this is the edge of the anti-plurality hull connecting the midpoints of the two
side edges of 5i(3). To force the anti- plurality outcome to be on this edge. choose

the second candidate for cach r; so that p]-(fg) 1s one of the two midpoints on the
side edges of Si(3). This requires c; to be the second ranked candidate for both ry
and r3 but it imposes no restrictions on ry: the ranking for r, 1s chosen to obtain
the designated anti-plurality outcome. For instance, if the anti-plurality ranking 1s
to be ¢3 > co = c;. then the outcome must be on the right-hand side of this line
forming an edge of the anti-plurality hull. Thus the second ranked candidate for
r3 must be ¢;. and it leads to the inequality n; < ny + n3. The operative set of
inequalities 1s
ny >N >Ny Ny +ng >y,

where the smallest integer solution is 7y = 4.n, = 3.173 = 2. Another solution,
n, = 6,ny = 5,n3 = 4, defines the example in Section 2. Of course. there are many
other solutions involving more than three voter types. However. it 1s not difficult
to show (via this geometric construction) that if [Sups(p)| = 7. then there must be
at least nine voters. [

From the geometry it follows that any pair of strict rankings can be obtained
with 3 voter types. (For n > 3 candidates and n — 1 vertices in regions with strict
rankings, n{n — 2) voter types are required.) On the other hand. similar geometric
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arguments prove that not all pairs of strict rankings for n = 3 can be obtained
with profiles involving only two voter types; the following assertion uses this kind
of analysis to show the number required to obtain a single ranking. I leave to the
interested reader the generalization of this assertion to arbitrary values of n.

Proposition 3. For n = 3 candidates, if Sups(p) contains only one ranking, and
this is a strict ranking, then p involves at least three types of voters. Any such
profile requires at least three voters.

What we see from these arguments and results is that the geometry can be used
to determine the number of voters and the number of voter types required to have
Supn(p) satisfy some specified properties. In turn, this gives information about
the likelihood of such profiles occurring.

Proof. Without loss of generality, assume that the ranking is ¢; > ¢ > ¢3
and that there is a two voter type profile with this outcome for both the plurality
and anti-plurality outcomes. Of the two voter types ri,r;, ¢; must be the top-
ranked candidate for r; and n; > 1y, > 0 to realize the plurality outcome. If the
second ranked candidate for ry is ¢3, then the anti-plurality outcome must be on
the line connecting the midpoint of the right edge of Si(3) with either the midpoint
of the bottom or the left edge of Si(3). As cither line misses the ranking region
for ¢ = ¢o = e3, a contradiction arises. Thus, r, = ¢2 = ¢; = c¢3. If ¢o 1s the
second ranked candidate for 7y, then the anti-plurality outcome is forced to be the
midpoint of the bottom edge of $i(3), a ranking that is not tlie desired one. Thus
r1 = c1 > c3 > ¢y and the anti-plurality outcome is on the line counecting the
midpoirts of the bottom and left edges of Si(3). But, as n; > ny. this point must
be in the region ¢; > ¢z > ¢3 rather than the designated one. This contradiction
completes the proof.

To obtain the minimal number of voters. use the above geometric analysis of three
voter types to obtain that rj = ¢y = ¢y = ¢3.70 =3 > €] > C3.73 = €] > €3 > C3
with the inequalities ny +n3 > ny > 0.1y + n2 > n3 where the minimal solution
is, of course, ny = ny = n3 = 1. O

What emerges are dual sets of constraints for the design of profiles. The first is
the set of rankings for the vertices of Co,(p) nceded in order to realize a certain kind
of outcome; the second are the restrictions on voter types and the combinatorics
to obtain these vertices as an outcome. It is not overly difficult to extend this
reasoning to show that with a large class of probability distributions, that it is less
likely for Sups(p) to consists of a single strict ranking than it is for Sups(p) to have
at least two rankings. This 1s because in order for Sup;(p) to consist of a single
strict ranking, all vertices of C'o,(p) must be in the same (open) ranking region
this introduces a serious constraint on the combinatorics. Then. the geometry of
S(3) imposes a further constraint on the minimum number of voter types — hence
on the minimum number of voters. For instance, using the above geometric analysis
it takes a simple computation to arrive at the following table where it is assumed
that the voters are umiformly distributed among the voter types. Notice the small
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likelihood of Sups(p)} consisting of a single strict ranking (the last colummn).

# voters values for |Sups(p)| Prob({Sups(p)| = 1 strict rank)
1 2 0.0000
2 1,3 0.000
3 1,2,3,5 0.0556
4 1-5 0.0417

Indeed, the construction in the above example even suggests that with a sufficient
number of voters, we shouldn’t expect a great difference between the probability of
Sups(p) consisting of a single strict ranking and the probability that [Sups(p)| > 5.
This intuition is correct. Furthermore, as indicated in the example, these ideas can
be used to determine the minimum nunber of voters needed to achieve the various
results.

The difficulty with Theorem 4 is that the choice of the (n — 1)* voter types is
dependent upon the rankings. Instead. we might prefer a basis of voter types that
serves for all problems.

Definition. A listing of n(n —1) voter types, VT, is a basis of voter types for the
design of profiles if

foreach s = 1..... n — 1. there exists n linearly independent vectors in
Ha
{pl EJ ) iev;
indeed, the convex hull formed by these vectors has i, as an interior point. and
the vectors
_)n —)71

(4.1) {pi EY)o o opil B v

are linearly independent.

The vectors in Eq. 4.1 are used in the design of the desired outcomes. These
vectors provide no savings with n = 3 as 1t requires all six voter types. Where

savings are obtained is with the design of a profile for n > 4. To see how to design
a basis with n = 4, for cach ¢;, let ¢; be top- ranked for n —1 of the rankings. From

the ¢; vertex, there are n — 1 edges; the midpoint on the edge represents p,v(fé’)
which i1s determined by the two top-ranked candidate - the candidates identified
with the two vertices defining this edge. So, choose a sccond ranked candidate so
that each edge from a vertex is represented.

What remains 1s the choice of the third ranked candidate. The point p;(f‘g‘)
1s determined by the three top-ranked candidates; it is the baricentric point in the
equilateral triangle defined by any three vertices. Each edge is the edge for two tri-
angles, and corresponding to the midpoint of each edge. there are two rankings. So.
for each pair, choose the third candidate for cach ranking so that the corresponding
p,(ﬁ?) points are in different triangles.

By construction, both the convex hull conditions and linear independence are
satisfied.
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Choice of vertices.

The above scheme to design profiles can be even further simplified by exploiting
the flexibility of the geometry of Si(n) to select the vertices for Co,(p) — an issue
that plays an important role in the determination of likelihoods. To illustrate how
this is done, suppose the goal is to find profiles where Sup,(p) has the maximum
number of rankings. The first step is to determine the positioning of the orientation
plane so that it intersects (n —1)! strict ranking regions and C'(n 1) regions. Using
Proposition 1, select a normal vector, say N3. Now, a hull needs to be selected on
this plane; namely, it remains is to choose the vertices so that 1, is an interior point
of the orientation hull and the vertices are in open ranking regions. This 1s done
by choosing n — 1 vectors v; so that

1. each v; is orthogonal to IN,

2. the vectors 1, + v; are in different open ranking regions of Si(n) (and are

the vertices of the orientation convex hull), and

3. the zero vector is an interior point of the convex hull defined by the vectors

{vi} (to ensure that i, is an interior point of the orientation convex hull).
Once such a hull is selected. 1t 1s translated off of 1,, but so that the translated
vertices (and edges) remain in the same ranking regions. According to Proposition
2, we only need worry about rankings of these vertices. It is this geometry we use
to find the rankings for the vertices of the hull.

Example: To indicate the ideas. reconsider the problem of finding a p so that
|Sups(p)| = 7. The normal vector is Np = (0.1.0) — i3 = (—%, % —%). A vector in
S1(3) must be orthogonal to (1.1.1). so the sum of its components must equal zero.
Thus such a vector can be expressed as v = (vy,v9, —(v) + v2)). The condition
that v is orthogonal to N requires vy, = 0, so the vector must be v = (v).0,—vy).
The second condition is satisfied if 1 # 0, so only the third need be considered.
This condition is satisfied should v; = (1.0, —1) = —v4. Thus. the vertices of the
translated hull must be in ¢, > ¢y = ¢3 and 1 ¢3 > ¢z = ¢;. This 1s the above
construction.

For n = 4 candidates, the normal vector becomes Ny = (=13

— 113 —%. —%). Again,
the sum of the components of the v; vectors must be zero; again, the orthogonality
condition forces the second component to equal zero. Thus. the vectors can be
expressed as v; = (v1.0.vi.vl). vl + vd + v} = 0. To satisfy the of strict rankings.
the three components of v, are chosen to have distinct non-zero values. The final
requirement is satisfied if three positive scalars A, can be found so that >~ A, v, = 0.
As a simple example, choose 1'11 =3.vy = —1, l'f = —2to define vy = (3.0. -2, —-1).
By using a cyclic permutation. we obtain v, = (=1.0.3.=2). vy = (=2.0.-1.3).
Thus, one (of many) choice of rankings for this problem 1s ry = ¢; > ¢ > ¢3 >
Cq4,T9 = C3 = Cp ~C1 » Cq4. T3 = Cq4 > C2 > C3 » €. ]

This construction plays an important role in understanding iow the probabilities
of the events change with n. As already noted, if Sup,(p) is a single ranking,
then all n — 1 vertices of Co,(p) must be in the same ranking region. If there
are a sufficient number of voters uniformly distributed over voter types. then this
restriction on the vertices of C'o,(p) imposes a restriction on the likelihood the
single outcome will occur. A similar constraint 1s nnposed upon the vertices of
Cos(p) to obtain |[Sups{p)| = 7: as derived above, the vertices must be on opposite
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ends of the line segment. Therefore, this restriction on the rankings of the vertices
imposes a similar restriction on the likelihood of the event occurring. Now notice
the significant flexibility in the choice of the rankings of the vertices obtained in
going from n = 3 to n = 4. In the first case, with N; there are only two choices
— given by the opposite ends of the line segments. In the second case with Ny
there are more than a hundred different choices. This significant relaxation in the
choice of the vertices is marked by a corresponding relaxation in the combinatorics
of voters needed to satisfy these conditions. In turn, we should expect a higher
likelihood of the event occurring,.

As n increases in value, we then see that a single or a small number of outcomes
in Sup,(p) corresponds to severe restrictions on the vertices of C'o,,(p); this lessens
the likelihood of occurrence. On the other hand, there is considerable flexibility in
choosing the vertices so that |Sup,(p)| attains reasonably large values; this should
increase the likelihood of this event. Thus, we should not be surprised with a
sufficient number of voters and large enough values of n to discover that it is quite
likely for |Sup,(p)| to have large values. All of this is verified with a different
geometric development given elsewhere.
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