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ABSTRACT

Data from wine auctions indicates that identical products sold sequentially typically follow a
decreasing pattern of prices, known as the afternoon effect. This is explained, for both first and
second price auctions, by appealing to risk averse bidders. Earlier bids arc then equal to expected
later prices plus a risk premium associated with the risky future price. This logic rests on the
assumption of nondecreasing absolute risk aversion, which is necessary for pure strategy equilibrium
bidding functions to exist. This, decreasing absolute risk aversion implics ex post inefficiency with
positive probability. Data from wine auctions is used to confirm the cxistence of the afternoon effect.
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Introduction

It is common in the theory of auctions to analyze the sale of a single object, even though many
copies of the same good are often sold at actual auctions. For example, in the June 23, 1990 sale of fine
wines at Christie's of Chicago, of 1355 total lots, the sale of a wine was followed immediately by the
offering of an identical wine 119 times. The fact that similar goods may be sold sequentially has
generally been ignored in the auction literature (some exceptions are Milgrom and Weber (1982b) and
Weber (1983)) and yet results from the empirical study of sequential auctions have posed an intriguing
puzzle. If two similar objects are to be sold one immediately after the other to risk neutral traders,
equilibrium arguments suggest that on average they should generally sell at the same price. Otherwise,
agents bidding in the high-price period would do better on average to participate only in the low-price
period. Ashenfelter (1989) finds a definite pattern in the prices of objects sold at auctions sequentially.
Objects sold at later periods more frequently sell at lower prices than higher prices than identical wines
sold in earlier periods. These periods are frequently just minutes apart.

This result is exactly opposite to that predicted by the standard affiliated values, risk neutral
model. Milgrom and Weber (1982b) show that, with independent private values, expected prices should
remain constant and with affiliation the expected price should rise over time. Expected prices rise because
early auctions release information about the value of the good, thereby reducing concerns about the
winner's curse in subsequent auctions, a phenomenon that Milgrom and Weber (1982a) call the Linkage
Principle. Thus, the pattern of prices found by Ashentelter is inconsistent with the received theory.

This paper analyzes the independent, private values model but investigates the effects of risk
aversion on the path of prices. Ashenfelter (1989) suggests that the pattern of prices is consistent with
risk averse bidders, because then the expected first period price will equal the expected second period
price plus a risk premium for the randomness in the second period. This intuition turns out to require

an assumption. Consider a twice repeated second price auction. The price in the second period is clearly



random, and the behavior of the bidders in the second price auction has the dominant strategy of bidding
the value, as proved by Vickrey (1961). Now consider the first auction. From a bidder’s perspective,
the first period price is also a random variable, and a change in the bid changes the distribution of the first
period price, and thus, in computing the best response bid, the bidder is comparing the change in the
expected utility associated with changing the first period bid, which includes an effect of the distribution
of the prices that bidder obtains if he wins, to the random second period price. Thus, it is not
immediately clear that a bidder bids the expected second period price (conditional on the bidder winning)
plus a risk premium.

In fact, Ashenfelter's intuition is correct for some utility functions and not for others. It is shown
that only in the case of nondecreasing absolute risk aversion (Pratt (1964)) do pure strategy, monotonic
equilibrium bidding functions exist for two-period repeated first price or second price auctions. In this
case, the path of expected prices follow the pattern exhibited in the data. The expected winning price in
the second period is lower than that of the first, and the difference is a risk premium.

The intuition for the declining path of prices can be seen by noting that any auction represents a
gamble for a bidder. A player submitting a bid in the first period of two period auctions uses the
expected utility of the second auction to assess the cost of losing in the first period. For a risk neutral
bidder, the fact that the utility generated by the second period auction is a random variable is irrelevant.
For a risk averse bidder, though, the randomness of utility from the final auction reduces its value and
therefore increases the bid he is willing to make in the first period.

This intuition also indicates why nondecreasing absolute risk aversion (NDARA) is needed for
the result. In second price auctions, for example, the first period bid of a bidder with valuation x is the
expected value of the third order statistic conditional on all other valuations being lower than x plus a risk
premium associated with the gamble of the second period auction. The first component is clearly

increasing in x, however, the second is only increasing in x in the case of NDARA. The possibility of



constructing monotonic, pure strategy bidding functions may then be frustrated by the opposing relative
attitudes to risk of agents with higher vaiuations.

The fact that NDARA is necessary for the existence of pure strategy, monotonic bidding functions
is important for two reasons. First, there is a general acceptance that at least increasing absolute risk
aversion is an unsatisfactory characterization of attitudes to risk (see for example, Stiglitz (1991)).
Second, if equilibrium bidding functions are not monotonic or are not in pure strategies, then with positive
probability the sequential auction will result in an allocation which does not give the objects to those who
value them the most. With positive probability, the ex post allocation is inefficient.

The structure of the paper is as follows. Section 2 describes the environment and Sections 3 and
4 characterize equilibrium bidding functions in the case of NDARA for the second-price and first-price
auctions respectively. Section Five presents an example in which agents exhibit strictly decreasing
absolute risk aversion (DARA) and characterizes a mixed strategy equilibrium. Section Six provides an
analysis of data from wine auctions from Christie's of Chicago to confirm Ashenfelter's (1989) finding.
The last section otfers conclusions.

2, The Environment

There are n = 3 potential buyers for two identical items. Each buyer i has a value x;, known only
to buyer i, for one unit. Values are identically and independently distributed with cumulative distribution
function F, which is assumed to have a continuous density f, and f has support [0,xg4]. A buyer i who
purchases a single item at price p receives Von Neumann utility u(x;-p), where x; is that buyer's value.
There is no increase in utility associated with obtaining a second unit, so that all buyers have zero utility
of a second unit. Note that this structure forces values to be monetary, in that the utility depends only
on the difference of value and payment, but allows for risk aversion through the function u. We assume
that u has a continuous nonpositive second derivative and positive first derivative, and set u(0)=0 without

loss of generality.



We will consider two distinct games. In the first, the goods are sold sequentially by sealed-bid
second price auction®. In the second, the goods are sold sequentially by first price sealed bid auctions.
Both auctions have a zero reserve price. A useful benchmark is the expected price when the two goods
are sold simultaneously. The method analogous to a second price auction for a single good is a third price
auction, where the highest two bidders receive the goods at a price equal to the third highest bid. Similar
to Vickrey's (1961) proof for the second price auction, bidders have a dominant strategy to report thetr
valuations honestly. Thus a third price auction produces an expected price equal to the third highest
valuation. A first price auction allows the two highest bidders to obtain the item at their bid. We include
the following result, proven in Weber (1983). Denote by X, and x, the random variable, and its
realization, that is the i highest of n i.i.d. draws from F. Thus, with two goods to sell, the realized
price in the third price auction is x3,. When the sample size is not n, we will represent the i® order

statistic as X, where m is the sample size; thus we suppress the sample size when it is n and not

i)
otherwise.
Proposition 1 (Revenue Equivalence; Weber(1983)): Consider the sale of k objects to n > k bidders with
i.i.d. private valuations. Then the k+1* price auction produces a price Xy, The bid of a risk neutral
buyer with valuation x in a first price auction is E{X, . | Xq.n.;)<x}. Thus the expected revenue is the
same in the two auctions under risk neutrality.

Remark 1: This result generalizes the usual bidding result which shows that in a sealed bid auction the
symmetric equilibrium bidding function is the expectation of the highest of the other bidders' values,
conditional on those all being less than the given bidder'§ value. In effect, Proposition | shows that each
bidder bids his estimate of X, , |, given that his value is at least X,.

3. Twice Repeated Second Price Auctions

The second price auction is simpler to analyze than the first price auction because the bidders

continue to have a dominant strategy, to bid their true valuation, in the second auction. A pure strategy

+ See McAfee and McMillan, 1987, for a description of auction games.
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symmetric equilibrium in this environment is a bidding function B|, so that a bidder with value x; bids
B,(x;) in the first of the two auctions, and then bids x; in the second.

Suppose B, is increasing. Fix abuyerand let ¥, = ¥, 2 .. = Y, be the order statistics of the
other buyers' values. The payoff to a buyer who bids & = B,(r) when his value is x is:
¢)) wr,x) = E{u(x-B,(Y)) Y, < riP(Y, < 7 + E{u(x-Y)|Y, 2 r& Y, s xjP(Y, 2r& Y, < x).
The two terms in equation (1) represent the events of winning the first and second auction, respectively.
The buyer wins the first auction if his bid B,(r)=b exceeds the bid B,(Y)) of the highest value competitor.
The buyer wins the second auction provided he loses the first auction, in which case the ¥; value buyer
wins the first, and has the highest value in the second auction. The next proposition shows that following
the pure strategy bidding function B, comprises an equilibrium if « displays nondecreasing absolute risk
aversion.
Proposition 2 (Existence): There exists a symmeltric increasing pure strategy equilibrium bidding function

B, for every distribution F if and only if u displays nondecreasing absolute risk aversion. In this case,
B, satisfies

x

_ n-3
@ ux-B@) = [ucp B2 SO gy,
2 F(x),l‘_

All proofs are provided in the Appendix.

Remark 2: There appears to be a consensus that individuals display decreasing absolute risk aversion (this
is suggested by Pratt (1964)), i.e. that risk premia decline, for a fixed gamble, as wealth increases. In
this event, Proposition 2 indicates that either nonmonotonic strategies are used, or bidders must
randomize. However, there is a pure strategy equilibrium for the case of constant absolute risk aversion.
Remark 3: An intuition for the necessity of NDARA is as follows. In the second auction, the price will
be the third highest value. Thus, a bidder with value x expects to pay E{X;,| X5, <x}. This is random,
so the bidder also associates a risk premium R(x) to this amount; i.e. the certainty equivalent of competing

in the second auction is E{Xs,| X, <x}-R(x), which represents his expected profits minus his risk



premium. Now consider a slight decrease in the bid, from B,(x) = E{Xs)| Xpy <x} + R(x)to By(r). The
only event in which this has an effect on the bidder's utility is when x> ¥, >r, in which case he loses the
first auction and wins the second, where bidding B,(x) would have him win the first. Therefore,
necessarily,
3) E{u(x - B{(Y;)ix > ¥, > r} = E{u(x- 1)|x > V;>r}.
Since these are equal as r — x, this inequality says that the risk premium of the left hand side increases
with a siight increase in x, i.e. increasing absolute risk aversion.

Remark 3 also provides an intuition for the afternoon effect, because a bidder’s bid equals the
expected price in the second auction, plus a risk premium.
Proposition 3 (Afternoon Effect).; EB((Xy) 2 Xg,, that is, the expected price obtained in the first auction
exceeds the price obtained in the second auction. Moreover, if u is strictly concave, this inequality is
strict.
4. Twice Repeated First Price Auctions

Repeated first price auctions are significantly more difficult than the second price case because
bidders lack a dominant strategy in the last period. As a result, it may matter whether the price obtained
in the first auction is announced to the remaining buyers or not. In particular, a buyer who bids less than
his equilibrium bid in the first auction may learn that he has the highest valuation if the winning bid is
announced. On the other hand, if the winning bid is not announced, then losing bidders know only that
the winning bid exceeded their bid, which produces different information for the different bidders. We
will assume that the winning bid in the first auction is announced prior to the second. This is in accord
with government procurement statutes® and with practice in some auctions.

In the second round of bidding, bidders will know their own value and the bid of the first period

winner. We will use b;(x) to represent the bid of a buyer with value x in the first auction, and by(x,Y,)

to represent the second period bid when the first period bidder bid by(¥,).

5 See McAfee and McMillan, 1988,



Proposition 4: Increasing equilibrium bidding functions b, and b, exist if u displays nondecreasing
absolute risk aversion, and do not exist if u displays decreasing absolute risk aversion. If u displays
nondecreasing absolute risk aversion, then b,(x,Y,) does not depend on Y|, and we suppress Y. b, is
given by b,(0) = 0 and

_ (1=D)f(x) Bx-b,x))
FO) il (x-b,x)

4) by(x)

b, is given by b,(0) = 0 and

(n-1)f(x) ¥(x-b,(0)) - ux-b,(x))
F(x) i (x-b,(x)) '

s bi(x) =

Remark 4: The characterization for existence is not quite as tight as in the second price case. It appears
possible for buyers to have increasing absolute risk aversion with low values, and decreasing with high
values, and for equilibrium bidding functions to exist. However, we see that everywhere decreasing risk
aversion is inconsistent with the existence of pure strategy symmetric equilibria. As before, the afternoon
effect exists.

Proposition 5 (Afternoon Effect): If u displays nondecreasing absolute risk aversion, then Eb\(X,)) =
Eby(X ).

There is an interesting relationship between the bid B, in the first of two second price auctions
and the bid b, second of two first price auctions, which is developed in the following result.

Proposition 6: If u displays constant absolute risk aversion, then B(x)=b,(x), for all x. If u displays
nondecreasing absolute risk aversion, then B(x) Sb,(x), for all x.

The final result of this section ranks the auction types with respect to the seller's revenue. It
presumes nondecreasing absolute risk aversion, so that the bidding functions represent equilibria.
Proposition 7: Eb\(X;)) = Eby(X;5)) = EB\(Xy) = EXy,. Thus, in both periods, the sequential first
price auction produces a higher expected price than the sequential second price auction, which in turn
produces higher prices than the simultaneous third price auction.

5. Mixed Strategy Equilibria — An Example

If bidders do not exhibit increasing absolute risk aversion, then pure strategy equilibria with



monotonic bidding functions may not exist. This section characterizes the mixed strategy equilibrium of
an auction with bidders displaying decreasing absolute risk aversion.

Consider a repeated second price auction. As before, equilibrium behavior in the last period is
simply to submit a bid equal to the bidder's valuation. Suppose, though, that bidders follow a mixed
strategy for their bids in the first period. Let the strategy of a bidder of type z be such that ¢(b:z) is the

probability that type z submits a bid of & or lower. The joint distribution of x and & then is

X

(6) Gbx) = j¢(b:z)f(z> dz.

o

Lemma 8: If all bidders follow a symmetric mixed strategy given by ¢(b:z), then the expected utility to
a bidder of type x from a bid b is

b

©) Vibx) = (n-1) j u(x-B)G(B x)" 2 G,(8 xpp) dB

o

[+ ] X

+ (n-1) J GyB 3 [(n-2ux-y)G (B Y)GB .y dy B .
The proof is omitted, but to understand the expression, note that G(8,xy)"! is the unconditional
probability that only bids less than § are made in the first round by the n-1 other bidders and
[G(8,y)/G(B8.x;)]™? is the probability that all #-2 remaining types have valuation less than y given that
a bid § won in the tirst round. Thus the expression is just the sums of expected value of the first round
and the second round.
For it to be a best response for a bidder of type x to submit a bid b, then the first order conditions

from (7) must be satisfied. We must have

X

(8) u(x-b)G(bxy)" 2 = ju(x—y)(n-z)ab,y)"‘3 G(b,y)dy.

a

Let 8(x) = inf{b: ¢(b:x) = 1} denote the supremum of the support of type x's mixed strategy.



Lemma 9: Suppose B(x) is increasing and $(b.x) is a nonatomic distribution, increasing for all
bE[0,8(x)], then 3(x) must satisfy

ux-B() _ [ - F ) ) dy |
W (x-B(x)) r‘ W/ (x-y)F" () fy) dy

Note that (9) provides a simple characterization of the upper end of the support of the mixed strategy

bidding function. In particular, if bidders use only pure strategies, (9) yields equation (2) in Section 3.

For the remainder of the section, consider the special case, fly) = 1, n = 3 and u(w) = w*, that

is, bidders utilities exhibit constant relative risk aversion but decreasing absolute risk aversion. The
unique B(:) which satisfies (9) is 8(x) = l_fc? However, it can be shown using Lemma A2 in the
appendix that, if all bidders were to follow this pure strategy bidding function, any one bidder of type x
does strictly better by lowering his bid. Nevertheless, there exists a symmetric, mixed strategy
equilibrium bidding function with upper end of the support, §(x).

Proposition 10: Let

L2 %] 3 -DH*
o (B(2):x) = - |:arcsm((;) ] Tﬁz—}

for z € [0,x] and one for z>x. For the twice repeated second price auction game with n = 3, u(w)=w",
a = %, fiy) = 1, a strategy profile in which a bidder of type x submits a bid less than or equal to 3(z)
= 2z/3 with probability $(8(z).x) forms a Nash equilibrium.
6. The Empirical Significance of the Afternoon Effect

We obtained data from Christie's wine auctions in Chicago in 1987. This data represents four

5 There were 411 instances where the same wine was sold more than once in the same

distinct auctions
auction. In 177 instances, we obtain three prices for the same wine in the same auction. We treat the
same wine sold at a different auction as a distinct product. It is important to understand that the products

we are treating as homogeneous are indeed homogeneous; they represent cases of the same vintage of the

same wine sold on the same day in the same city.

6 The auctions occurred on February 7, April 11, October 27 and December 5, 1987.
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Table 1 provides summary statistics for the last two sales of each wine. Note that the afternoon
effect is present; a wine sells for an average of $724.66 in the first auction, and $714.35 in the second,
a difference of $10.31, or approximately 1.4%. This is a reasonable magnitude to be attributed to risk
aversion.

Table I: Christie's Chicago 1987 Repeated Wine Sales Statistics

Auction: First Second
Means: $724.66 $714.35

Mean Std. dev. of mean
2ndy st 0.9922 0.000276

Direction Rose Fell No change
1% vs. 20 15% 31% 54%
[st,2nd 3rd: = 12% 33% 55%**

* Total of 177 sales.
** includes up then down and down then up patterns.

To formally test that the afternoon effect is present, we follow Ashenfelter (1989) and examine
the ratio of prices, and the proportion of times prices rose, fell and remained constant. As shown in
Table I, the ratio of the second price to the first is 0.9922, which is different than 1 with a -statistic of
28.3. These numbers are similar to those found by Ashenfelter. Now look at the instances where the
price rose, fell, and stayed the same. In 127 instances, or 31%, the price fell. In 62 instances, or 15%,
the price rose, and in the remaining instances, it stayed the same. These numbers are also similar to those
found by Ashenfelter.” Consider the trinomial variable which is 1 with probability p and -1 with
probability p and 0 with probability 1-2p, where 1, -1 and 0 refer to prices rising, falling and remaining

the same. The probability of observing data as extreme as that observed (i.e. at least 127 instances of

7 Data from auctions in 1990 exhibited similar behavior although there is some indication that the absolute value of the fall in price is no

longer so large.
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falling prices and no more than 62 instances of rising prices) is

62 411-k At

,; j_lzn K (411-k=))!
Thus, the probability of observing this kind of split between the number of falling prices and the

P9 (1-2p) 1% = 0.00003.

number of rising prices is much less than one percent.®> Thus we overwhelmingly reject the hypothesis
that prices are equally likely to rise as to fall, in favor of the existence of an afternoon effect, that prices
are more likely to fall than to rise.

A similar outcome arises when we look at the data for three sales. The first auction had a higher
price in 33%, a lower price in 12%, and the same price in 55% (this case includes those situations where
the two price changes were in opposite directions) of the 177 cases where three sales of each wine
occurred. Because of the reduced sample size, the effect is not as significant.

Figure 1 provides a scatterplot of the second price as a function of the first price. The curves
through the data represents the forty-five degree line and the result of a regression of the second price on
a quadratic function of the first price.’

7. Concluding Remarks

The necessity of nondecreasing absolute risk aversion for the existence of pure strategy monotonic
bidding functions suggests that in sequential auctions, at least, it is not always the case that objects end
up in the hands of those who value them the most. In a way, this result may not be so surprising since

with risk aversion, an auction really offers two types of 'goods’ — the object to be traded and risk. An

8 This estimate of the probability was computed using a normal approximation. Note that the mean of the trinomial is O and the variance
is 2p. The sample mean is 65/411 and the variance of the sample mean is 2p/4ll. Since p<127/411, we have Pr(X>65/411) =
Prob(Z> (65/411)/(2p/411)") < Prob(Z>4.08) = 0.0000292.

9 This regression produces an R? of .989 and the following estimates.

Term Coefficient f-statistic
Constant -30.0 5.1
Lincar 1.09 101
Squared -0.00006 15

Thus the data indicates that the size of the afternoon effect is increasing and concave in the range of the data.

11



object cannot be traded without some imposition of risk on the bidders. The ex ante welfare consequences
of the allocation generated by a sequential auction have to take into account the relative allocation of risk
among agents with differing attitudes to risk. The fact that a sequential auction may lead to ownership
of a good by someone who values the good less than another losing bidder is not in itself evidence of ex
ante inefficiency. Nevertheless, it is the case that in single period auctions, goods are allocated to those
who value them the most so there is never an incentive for a buyer to attempt to resell the object. This
is not true in sequential auctions with DARA and it is an open question what might occur in sequential
auctions if retrading were allowed.

One would like to have a characterization of equilibrium bidding strategies for general n-period
auctions. While the characterization of bidding functions via the first order conditions is easily extended
to this case, the verification that these functions satisfy sufficient conditions for a maximum becomes more
complicated and we have not been able to come up with a clear generalization. Finally, it would also be
desirable to be able to characterize equilibria for general utility functions. The difficulty of computing
the equilibrium mixed strategies just in the simple example of Section 5 suggests that such an exercise

would be a daunting one.
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Appendix

Two mathematical lemmas are used several times below. The first was proved by Guesnerie and Laffont
(1984) in the generality used here; however, special cases were used by several authors, notably Myerson
(1981) prior to this. Subscripts are used to denote partial derivatives.

Lemma Al: Suppose v:[a,b] — R is twice continuousiy differentiable. Then

(AD) (vr)(vx) v(r,x) < vx,x) implies

(A2) (vx) vi(x,x) = 0 and

(A3) (Vx) vi5(x,x) = 0. Moreover, (A2) and
(Ad) (Vr)(vx) vio(rx) = 0 imply (Al).

A version of Lemma A2 appears in McAfee (1991).

Lemma A2: Suppose u: R - R is thrice continuously differentiable, increasing and concave. Then u(c)
= Eu(X) implies u'(c) = (>, <, <) Eu'(X) for all real valued random variables, X if and only if u satisfies
nondecreasing (increasing, nonincreasing, decreasing) absolute risk aversion.

Proof: Let Y = u(X), and ¢ = u'(E[Y]). Then

u'(c) 2 E[u'(X)] if and only if u' (W E[) = Eu'@ (D).

1ero-1
This holds for all random variables X if and only if u'(w'(-)) is concave, or if Z(u 1())
()
1.
nonincreasing. Since u™! is increasing, this is equivalent to —ﬂ_) is nondecreasing, or NDARA. The
other cases are similar. () |

Remark Al: Define the risk premium R(W) for a mean zero gamble X by Eu(W+X) = u(W-R(W)).

Differentiation yields
Ed(W+X) - W (W-R(W))
i (W-R(W))

Lemma A2 is equivalent to stating that R'(W) is posmve (negative) if and only if « displays increasing
(decreasing) absolute risk aversion.

(AS) RW) = -

Proof of Proposition 2:

Necessary conditions: Suppose that B(- ) is a monotonic symmetric bidding function for period one. By
(1), if bidder one of type x chooses to bid as type r, he receives, if r = x,

(A6)  V(rx) = (n-1) [ u(x - BNF" 20 f(y) dy

+(n-1)(1 -F(r))Ju(x-,V)(n*Z)F"'S(Y)fO’) dy,

and if r < x,

Al



r

(A7) V(rx) = ju(x—B,(y»(n-l)F"‘z(y)f(y)dy

o
X

+ (n-1)(1 - F(x)) [u(x-y) (-2 F"f(y) dy
x ¥

+(n-1) j (n-2) ju(x—y)F""S(y)f(y) dy fly,) dy, -

r o

Differentiating either (A6) or (A7) and setting V,(x;x) = 0 yields (2).

The necessary second order condition for B,(x) to be an optimal response for bidder type x is, from
Lemma Al, V,(x,x) = 0. Both (A6) and (A7) yield:

x _ n-3
ux-B,(x)) = Ju(x-y)(n 2;5-2(())’)f (y)a‘y implies
3 x

X

_ n-3
W' (x-B,(x)) = ju’(x-y)(" 23;_2((,:#0) &.
o X

Lemma A2 and the definition of B,(-) in (2) then yields that NDARA is necessary for the first order
condition definition of B,(-) to be an optimal response for ail random variables.

Sufficient Conditions: From (A6), if r = x,

X

(A8)  V,(rx) = f(r)(n-D|u(x-B(MF"r) - (n-2) [ﬂx—y)ﬂ”(y)f@)dy

a
X

o (x-B,()F™Xr) - (n-2) [t/(x—y)F“'3(y)f(y)dy

o

> f(r(n-1) > 0.

From (A7), for r < x, we need to show V,(r,x) 20, or,

f oy -3
(A9)  u(x-B,(r) = [u(x—y) (n 2)171 _ OYO) 4.
0 Fr (r)
Fix r and define §(x) by
g oy -3
(AL0) w(-B D) = [ulx-y) (n 2)F'_'2 OYO) 4y
o F" (r)

Note that 3(r) = B,(r) and that 8(x) is the expected value of y, plus the risk premium associated with
"income" x (the support of y, ranges from 0 to r). NDARA then gives us 8(r) < §(x) so

r

_ n-3
ALD uG-B,() = uG-80) = u-800) = [utx-y) (-DF 0O

5 F*2(r)
which yields the result. u
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Proof of Proposition 3. This follows from (2) since

x - By(x) = E{x - X;1.n.0) | X1:n2y < X} - Risk premium,
o B\(x) 2 E{X.pz : X1:np S X}, and thus,

EB|(X,) 2 E{X.n2 : Xy S X} = E{X)}. [
Proof of Proposition 4:
Assume that there exist monotonic bidding functions, 5,(-) and by(-, ). by(- ,y,) defines a symmetric
monotonic and differentiable equilibrium bidding function in the second auction when all bidders know

the value of ¥,.

1. Period Two Strategies.: Suppose that bidder 1 bids b=b,(r,,y,) in period two. His final period expected
return is

-2
Fi
u(x—bz(rz,yl){ (’z)I ifr, <y,

(A12) Vi(ryxy,) = )
u(x=0,(ry,y)) ifr, > »
200
The first order condition is 0 = W xxy) ,which yields, for r, < y,,
b
0b>(r-2,7,) pn-2 3 |
(A13) 0= "u/(x'bg(rzyyl))gf YUET (ry + u(x'bz(rzyyl))("-z)pn (rz)f(rp_)[r o’
This yields
-2 u(x=by(x,y,))
bs(x,y)) (nF)f(x) - X sy
(Al4) 5 = &) W (x-byx,y,)
2 0 ifx >y

with the boundary condition, 5,(0,y;) = 0. b,(- ,y,) is increasing and is independent of y, for x < y,,
by(x,y;) = ba(x). If x > y,, (A14) implies that b,(x,y;) = &,(y,y;). Note that

1

2 2 n-3
(A15) FVirxy) _ i (x-b (P |, L/(x—b,(r))(”_z)f(’)F(r) > 0
drox - Foy) 2 F(yl)"'z

so the necessary conditions for an equilibrium strategy defined in (A 14) are sufficient as well, by Lemma
Al.
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II. Period One Strategies:

Necessary Conditions: Now fix the equilibrium bidding function in the second auction b,(- ), defined in
(A14), and fix a candidate bidding function in the first period 5,{- ).

Subgame perfection requires that whatever bidder !'s behavior in the first auction, if b,(- ) is the
equilibrium bidding function in the second auction, he will bid b,(x). Recall that b, is independent of y,
whenever x <y,, but if x>y, then the agent bids b,(y;). Therefore, if 7, > x, the agent's expected utility
is:

(A16) Vi(r,x) = u@-by(r))F""(r) + (1= - F(r) u(x-by(0)) F"(x) .
And if r| < x,

(A1T) VArx) = uGe=b(r))F™ ' (r) + uG-by()(n-1)(1 - F)F"2(x)

X

o [uO-by ) (1= DF2,)f ) dy,

The first term in both (A16) and (A17) represents the event of winning the first auction with a bid &,(r).
The second term in (A16) represents the event of losing the first auction and winning the second, with
a bid of b,(x), since y, =r, =x. The second term in (A17) represents the event of losing the first auction
and winning the second because exactly one bidder had a value greater than x, while the third term
represents the case of losing the first auction and winning the second because the highest value of another
bidder fell in [r ,x], so that y,<x, and the bidder bids b,(y,) in this instance. The second term is
independent of r,. The first order conditions are slightly different depending onr; > xor r; < x but they
are continuous at r;=x. If r| = x,

a—‘/l(rl ax)

r = —u’(x—bl(rl))b/l(rl)F"'l(rl) + u(x"b1(r1))(n_1)Fﬂ_2(r1)f(r1)
1

(A1)

- (n=Dux-b,0))F" @) f(r)) -

and if r; < x,
av! (r;,x)

Ty

(A19) = <1 (x-b,(r)By(r)F" " (r) + ux=b,(r)) - DF"(r)f(r))

- (= Dulx=byr NF" X fr)) -

As r, approaches x from either above or below, (A18) and (A19) approach the same value, so setting
either (A18) or (A19) equal to zero at r; = x yields the same first order conditions detining a candidate
solution of b,(x):

(n-1)f(x)y 4x=by(x)) - ulx-b,(x))

(A20) bl(x) =
1 Fx) W (x-b,(x))

Sufficient Condirions: From (A19) and (A20), if r; < x,
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1 -b - u(x-b -b - u(r,-b
(A21) ﬂ/_(rl,x) - (n—1)F"'z(rl)f(rl)I/(X—bl(rl)) ux 1("1)) u(x g(rl)) _ "(r1 1(r1)) u(r1 2(’1)) .
ar, W (x-b(r)) W (r=by(ry)
(A21) can be signed with the use of the following lemma.
Lemma A3: u exhibits NDARA implies that

mg) = O uE-o) —ux8) 54

ox W(x-a)
Proof: Tg) = X =wB) _ (uxa) - uxB)l'lim).
W (x-a) W (x-a)
Therefore
Ir@8) = Wx-) | w'x-8) _ l/l(x—a)].
Wa-a) (W (x-8)  dx-a)

NDARA then implies that II'(8) is greater than zero if and only if § is greater than «, so II(- ) is
minimized at 8 = « and () = Q. [ |

Lemma A3 yields the resuit that NDARA implies that the bracketed term in (A21) is greater than zero.
Thus a bidder of type x can always do better than a bid &,(ry), r; < x, by increasing his bid to b,(x).

From (A14), (A18) and (A20), if r; = x, we have

v (r;,%) -
axar,

-2
(n-DF"2(r)f(r,) | €x-by(r)) - w(x-bz(x))[ﬂx_)T

(A22) )
1

W (x-b,(r))

- [u(r,-b(r)) - u(r;=b,(r))] ———
1~ u(r =b,(r, ‘/(rl‘bl(’l))

W (x-b,(r)

(A23) = (n-DF"2r)f(r) | (x-b,(r)) - W(x=by(r) ~ [u(x=by(r))) - ux=by(r )] ——ve |.
W (x=b,(r))

The inequality comes from applying Lemma A3 to the second line of (A22), noting that -¢" >0, from

the fact that F(r;) = F(x) and from the fact that u'(x-b,(x)) < u'(x-by(r,)) because of concavity.

u’”(a

Lemma Ad: Let p(e) = -5 () - u@B)] + d(e) - @)

(a)
Then u(- ) exhibits NDARA implies that p(c) = 0 for a = 8.
/
Proof p(8) = 0 and p'(ar) = -[u() - u(ﬁ)]ai“j @ 5. m
(44

u(a)

Lemma A4 along with the fact that b,(r|) < by(ry), from (A20), implies that (A23) = O for r; = x. (A2l1)
= 0 forr, < xand (A23) = Ofor ry = x then implies that NDARA is sufficient for a bid b, (x) to be a best
response in period one for a bidder of type x. This establishes sufficiency of NDARA. To see that
DARA is inconsistent with the existence of pure strategy bidding functions, note that the inequalities in
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lemmas A3 and A4 are reversed with DARA. Therefore, the bracketed term in (A21) is less than zero,
if DARA holds, which violates the necessary condition that, locally for r, <x, aV'/ar, = 0. |

Proof of Proposition 5:
Fix a second period equilibrium bidding function, (- ) and define a function, bf () with b;(O) = 0, and

(A24) F'ux-b{() = [u(x-bz(y))(n-I)F"'z(y)f(Y) dy.

4

Differentiating (A24) with respect to x and rearranging terms gives

x

(= D)f () ¥E-B1 (%) - ux-by(®)) . r/(x-bz(y)) (n-DF ) F) &

(A25) b7 (x) =
1 Fx) o (x-b; (x)) Jx-bix)  Flo

Consider the term in large braces. By (A24), bl'(-) is defined as the certainty equivalent for u(- ) of the
gamble defined by the right hand side of (A24). Thus, NDARA implies that the term in large braces is
negative (Lemma A2). Now consider the definition of bg(-) from Proposition 2:

(n-1)f(x) ¥x-by(x)) - u(x-b,(x))
F(x) u(x=b,(x)) '

(A26) bi(x) =
Since b{(0) = b,(0) and the differential equation defining b;(- ) via (A25) implies that b; has a lower slope
than b,(- ), then NDARA implies
(A27) b (x) = bj(x) for all x.
Therefore, since by(x) = E[by(X 1 p-1)) Xy p-1yS*] + risk premium,

E[6,(Xyy)] = E[6j(Xgy)] 2 E[by(Xgy)]. .
Proof of Proposition 6:

Differentiate (2) and solve for B;(x) to obtain

By = O MBS Ay e FOrR) 4 |
F@ i (x-B,(X)) Jux-Bi(x)  F
The term in large braces is zero under constant absolute risk aversion, and negative under IARA, by
Lemma A2. Comparison with (A14) completes the proposition. u

Proof of Proposition 7:

The first inequality is Proposition 5. The second follows from Proposition 6, and the third from
Proposition 3. u

A6



Proof of Lemma 9:

If B(x) is increasing, then G,(b,y) = fly) for y such that 8(y) < b and G,(b,y) = ¢(b,y)y) otherwise.
From (8) we have, for all z < x, b = B(z), by replacing x with z in (8) and eliminating G(b,xy),

X

a28) S50 (w0 dy = [ux-)GBIY G, by) dy.
u(z-b) J J
Differentiating (A28) with respect to x and letting x go to z then yields (9). [ |

Proof of Proposition 10:

Note that ¢(- :x) is increasing and that ¢(0:x) = 0, ¢(x:x) = 1 so ¢(- :x) is a probability distribution
function. From (A28) for x > z, we have

o g BEB@) [
(A29) z[u(x VB (2):y) dy ml““ y) dy lu(x ydy = Tx:z).

Solving for the middle term in (A29), T is given by:

Ty = (rex-2* z 2 - @
P a+l a+l

Note that %%"(z:z) = 0. Fix z, define Tx) = T(x:z) and S(y) = ¢(8(z):y). Multiply equation (A29) by

(a - x)"™*, integrate to @ = z, using the change of variables ¢ = I after rearranging the integrals:
a-y

(A30) j(a—x)““ Tx)dx = j(a—x)"“ [(x—y)“scy)dydx = B(a) [S(v)(a—yﬁdy,

1
where B(a) = JE"(I—E)"“d{-.

o
a

Since _3_3_ [S(y)(a—y)zdy = 28(a), the solution to (A29) is
(9a)’

<

Kl [(a )" ) dx
(9a)* !

(A31) S(a) = 2Ba)

Differentiating once with respect to a, integrating by parts using T{z) = 0, differentiating with respect
to @ and integrating by parts using T'(z) = O then differentiating one last time yields
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a

(1-a) J(a—x)'“ T (x) dx

A32 a) = S@) =
(A32) ¢(B(2):a) (@ ZB(a)z

a
= e [(G—x)-(Jl [(az"l)Z((a"'l)I—z)“‘Z + a(x-2)*1 - ax® 1| dx.

2B(a) | %!
Setting @ = '4 and integrating (A32) by Mathematica yields the equation for ¢ in the Proposition. It
remains to show that a bidder can not do better by submitting any other bid. Since ¢ satisfies bidder x's
first order conditions for all bids less than x/(1 + «), we need only check whether a higher bid is a better
response. An argument parallelling the proof in Proposition 2 shows that no bid improves on the bids

below x/(1 +a). [ |
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