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Abstract

The empirical analysis of multiple durations using multivariate mixed proportional hazard rate models
is widespread. In such modcls, the duration variables are dependent if their unobscrved determinants
arc dependent on each other. In this paper it is shown that these models restrict the magnitude of
the correlation of the duration variables. For example, if the baseline hazards arc constant, then this
correlation necessarily lics between -1/3 and 1/2. Similar results hold for more general models. The
usefulness for empirical analysis is twofold. First, the results can be uscd to asscss the ability of the
model to describe certain phenomena, relative to the models that impose less restrictions on the
values the correlation can attain. Secondly, they suggest that, in paramctric analyses, it is important
to take a family of heterogeneity distributions that is flexible in the sense that it does not restrict the
values the correlation can attain cither further. We show that some frequently used parametric

families are much more restrictive than others.

Key words: Multivariate hazard ratc models, competing risks, proportional hazards, corrclation of nonnegative random
variables.
JEL classification: C41, C50.



1. Introduction

This paper examines the correlation of durations in multivariate hazard rate
models. In particular, sharp bounds are derived in the general case as well as
in cases in which the distribution of unobserved heterogeneity in the model is
assumed to belong to a specific parametric family.

By now. the empirical analysis of multiple durations (or. equivalently,
failure times) is widespread. Most of the empirical studies at least partly
focus on whether the durations are independent or not. or, more specifically,
on the degree in which they are dependent on each other. Generally, the
analysis is based on the use of multivariate mixed proportional hazard models
(for a list references. see the next section). In such models, the hazard
rates associated with the different durations have mixed proportional hazard
specifications. The durations are allowed to be dependent by way of
stochastically related unobserved covariates (l.e. unobserved heterogeneity ).

The correlation of the duration variables is generally considered to be a
parameter of interest, since it is informative on the strength of the linear
relationship between these variables. It is a commonly used measure that is
readily understood. In this paper we examine the range of values that the
correlation of the duration variables can attain in the model context outlined
above. We derive sharp upper and lower bounds in the g¢ceneral case. Also, we
derive bounds in cases in which the joint distribution of the unobserved
heterogeneity terms is specified to belong to a parametric family of
distributions. We pav particular attention to the families of distributions
that are generally chosen in the empirical studies on bivariate hazard rate
models, such as normal distributions and discrete distributions.

The results are of practical interest. First of all. they may indicate a
limitation of ability of the general model to describe the distribution of
dependent durations, relative to other possible models. Secondly, they can be
used to compare the flexibility of different parametric families of
distributions as representations of the distribution of the unobserved
heterogeneity terms. [t turns out that some of the frequently used families
are more restrictive than other popular families.

The outline of the paper is as follows. In Section 2 we introduce the
multivariate hazard rate model and derive sharp bounds for the correlation of
the durations. We also derive such bounds in cases in which the heterogeneity
distribution is assumed to belong to popular parametric families. This will be

used to compare these popular families. Section 3 generalizes the results of



Section 2 to more general models. In particular., we consider (generalizations
of} models that can be expressed as multivariate log-linear regression models.
Section 4 concludes. In the appendix to this paper we derive some general
inequalities in terms of the first few joint moments of nonnegative random

variables.

2. The correlation of two duration variables with mixture distributions

2.1. Dependent mixtures of exponentials

The use of hazard rate models for the empirical analysis of durations or
failure times is widespread. Hazard rate models specify the rate at which
failure occurs at a time ¢ conditional on survival up to t. as a function of ¢
and. possibly. of explanatory variables. Depending on the particular
application. the hazard rate is sometimes called the failure rate (in
reliability analysis), or the exit rate (e.g. in the analysis of the duration
spent in a labour market state).

A particularly popular hazard rate model is the Mixed Proportional Hazard
(MPH) Model. In this model. the hazard rate is written as a multiplicative
function of observed explanatory variables x. the elapscd duration ¢, and a

random term v representing unobserved explanatory variables. Specifically,

(2.1} B(t|v.x) = A().0y(x)v with Gy(x) = exp(x'3)

is the hazard rate of t|x.v. It is related to the distribution function F of
tjx.v by 8(t]x.v) = - dlog(l-F(t|x.v))/dx. The distribution of t[{x follows by
integration of F(t|x.v) w.r.t. the density of wv. (See e.g. Kalbfleisch &
Prentice (1980) and Lancaster (1990} for extensive surveys).

Most survival studies are concerned with univariate failure times only.
However, the literature on the simultaneous analysis of multiple dependent
failure times is vastly growing. In general, these studies focus on modelling
and estimating the dependence of the failure times. Multiple failure times may
be consecutive (e.g. the duration of unemployment and the subsequent job
duration) but they may also occur jointly (e.g. the duration of unemployment
and the duration of participation in a panel survey). If in the latter case

all failure times start at the same moment, and only the realization of the

smallest failure time is observed. then the model is called a competing risks



model.

Again, a particularly popular model in empirical analysis is the model in
which the failure times follow an MPH model (see e.g. Flinn & Heckman (1982),
Flinn & Heckman (1983), Newman & McCulloch (1984), Heckman, Hotz & Walker
(1985), Heckman & Walker (1987). Butler, Anderson & Burkhauser (1989). Ham &
Lalonde (1990), Visser (1990), Heckman & Walker (1990). and Van den Berg.
Lindeboom & Ridder (1991)). The failure times are allowed to be dependent by
way of (stochastically) related unobserved covariates. Consider two failure
times. ¢, and t,. We assume that all individual differences in the joint
distribution of ¢, and ¢, can be characterized by variables x. v;. and v, The
fundamental assumption is that. conditionally given x, wv,. and w,.  the
variables ¢, and t, are independent. Further. the distribution of #[x.v,.v;
equals the distribution of tjx.v, (i=1.2). so to explain individual
differences in t,. the variable v, (j#t) does not give information that is not
available in v, The hazard rates of t and t, conditionally given the

explanatory variables x. »; and », can be expressed as

(2.2) Ot |v.x) = A(t).8p(x).0, with y,(x) = exp(x'J)
Bo(ta|vauX) = Ay(ty). ()0, with 8y,(x)

exp(x'Jy)

il

In practice. the empirical analysis is conditional on the ubserved explanatory
variables. which constitute x. For ease of exposition. we take x to be
independent of v, and w,. Also. we assume that x is not time-varying. (It
should be noted that in a few of the papers listed above x is allowed to
depend on time. Also. if x is a linear function of ¢, then the part of x
depending on t; can be thought of as being part of A(t,).) The variables ¢;|x
and tyjx can only be dependent if the unobserved explanatory variables v, and
v, associated with ¢; and t, are dependent. Heckman & Honoré (1939) and Honoré
(1991) prove the nonparametric identifiability of such multivariate duration
models.

A relatively simple and frequently used version of the model is obtained
by imposing A,(£,)=As(t;)=1. In this version. ¢|x.v; has an exponential
distribution. and t,|x is distributed as a mixture of exponentials. In
empirical applications. a parametric family of distributions for .0, is
chosen to close the model. Let f be a generic svmbol for a density. The
likelihood function is based on f(t,.ty]x). This density depends on the

unknown 3,. J, and f(v,.v;) in the following way.



(2.3) fltytalx) = J‘ } fltilx.vy) fltalx.va} flu,v,) dvy du,
U Uy

—'U,-.e)(p( x'3,-).t,-

in which flti|xv;) = vi.exp(x'3;) .e i=1.2

Of course. v, and v, can be discrete as well.
2.2. The values that the correlation of the duration variables can attain

The correlation of #;|x and t,|x is generally considered to be a parameter of
interest. since it is informative on the strength of the linear relationship
between these variables. Because E(t;|x.v;) and V(t;|x.v;) are proportional to
1/v; and 1/'U?. respectively, there holds that COV(¢),t,jx) and V(f]x) (and
therefore CORR(#;.t,x)) can be expressed in terms of moments of 1/v, and

1/v,. For example.

COV(t .ty x) = E(E(t.ta]xvvy)) — E(E(E x.0))) . E(E{t]x.v,))

1 1 1

E .
(901(1)-902(1)-”1v'Uz (901(")-"1) E(902(x).-u2)

As a result, it is easilv obtained that

COV(1/v,.1/v,)

(2.4)  CORR(t,.t,]x) = 72

{[\’(1/'01) + E(l/uf)] - [V + E(l/uﬁ)]

Note that this expression does not depend on x. We assume that
P(0<v,<x,0<vy<x)=1 and that 1/v; and l/v, have finite wvariances. For
convenience. we will restrict attention to cases in which the variances of
l/v, and 1/v, are positive (if they are not. then CORR(¢;.t,]x)=0).

Because \'(1/'0,-)+E(1/'vf) = 2.‘\'(1/-ui)+E2(1/'u,-)5 it is clear that
CORR(t,.t,]x) < 1/2. This result is also derived in Cantor & Knapp (1985) for
the specific case in which v,=v, with probability one, and in Lindeboom & Van
den Berg (1991).

Denote CORR(1/v,.1jv,) as p, V(ljv;) as af, and E(l/v;) as p;. We can

then rewrite equation (2.4) as

. 1 Pra2
(2.35) CORR({t.tjx) = 3T 2 41/2 -, 2 q1/2
2,y 2 1y
373 2] 3T 2
(o Tg

[}



From Lemma 2 in Appendix 1 it follows directly that CORR(¢,.t,|x) > -1/3 (take
p=2/3). Note that the lower bound does not depend on the distribution of
1/v;,1/v,. Also note that we apply Lemma 2 to the distribution of 1/v,,1/v,
rather than the distribution of ¢,,t,]x. (In the notation of the appendix, we
have taken X=1/v, and Y=1/v,.} So, in a way. we have derived an inequality for
CORR(t,.t,]x) by using an inequality for CORR(l/v,.1/v,). It can easily be
shown that by applving Lemma 2 directly to CORR(Z,.t;|x) one gets an
inequality that is inferior to the one above.

From the results in Appendix 2 it follows that the lower bound -1/3 for
CORR(t,.t;]x} is strict in the sense that it can be approximated arbitrarily
well by taking certain distributions of wv,,v,. It can also be shown that the
upper bound 1/2 is strict (see Lindeboom & Van den Berg (1991)). Consequently,
the bounds in (2.6) are the best possible nonparametric bounds: bounds closer
to zero would exclude certain distributions of v,.v,.

Summarizing, we have the following result.

Proposition 1

In the bivariate duration model set up above, with the assumptions mentioned

above, there holds that
1

(2.8) - = < CORR(t.t]x) <

1
3 2

regardless of the values of 3, and 3, and regardless of the shape of
flvy,v,). The inequalities in (2.6) are sharp in the sense that for every £,>0
(s,>0) there are distributions f(v,.v,) such that CORR(t).t,|x)<(-1/3+¢)
{(CORR(t,.t,]x})>(1/2—25)).

Of course, (2.6) does not depend on the wayv 68g(x) and 68y,(x) are
parameterized.

The result stated in (2.6) is of practical interest. First of all, it
indicates a limitation of the model set up here as a general model for
dependent failure times. For example. the two failure times cannot be almost
equal in a probabilistic sense. Whether this makes the model inappropriate
depends of course on the particular application at hand. It should be noted
that most of the alternative odels proposed for bivariate failure times
restrict CORR(Z,.t,|x) to be nonnegative (sce e.g. Hougaard (1987)), which of
course may also be too restrictive.

A second practical aspect of the result concerns its use as a guide for



the parameterization of the model in empirical analysis. Not every family of
distributions for f(v,.v,) contains elements for which the resulting
CORR(t,.t,|x) is close to the bounds -1/3 or 1/2. If there is no compelling
reason for f(v,,v,) to be in a particular parametric family of distributions,
then for reasons of flexibility one should choose a family that allows
CORR(t,.t,|x} to attain every value in (-1/3.1/2). In the next subsection, we
will examine the values CORR(¢,,t,|x) can attain for specific popular families

of distributions of f(v,.u,).

2.3. Specific families of distributions

Empirical analyses of multivariate failure times often assume that one can

write

(2.7) v, = expl{o.z) vy = exp{3.z)

for some random variable z and nonzero parameters « and J. Flinn & Heckman
(1982) (among others) take a normal distribution for z, while Ham & Lalonde
(1990) (among others) take a discrete distribution with two points of support
for z. Note that if z has a normal distribution. then the t; are lognormal
mixtures of exponentials; also note that in both cases V(l/v;) exists. In
Lindeboom & Van den Berg (1991) it is shown that if the distribution of z
belongs to the family of discrete distributions with two points of support,
then CORR{t,.t,ix) can attain every value in (-1/3.1/2). Of course, this
therefore also holds for the families of discrete distributions with a larger
number of points of support.

On the other hand, if the distribution of z belongs to the class of normal
distributions. then, by elaborating on equation (3.4), one can show that
CORR(¢,.t,|x) can only attain values in [-1/(3+2V2).1/2) (the lower bound
equals about -0.17). This is a remarkable result. In social sciences, the
family of normal distributions is by far the most popular choice as a model
for distributions of unobservables. This is partly due to the high level of
generality and flexibility assigned to this family. Our result shows that, in
the present model setting. choosing the family of normal distributions for 2z
results in a model that is more restrictive than models in which certain other
families of distributions are chosen for z.

Equation (2.7) implies that there is an exact linear relationship between

log v, and log v,. We now turn to cases in which v,,9; has a genuine bivariate



distribution. Van den Berg, Lindeboom & Ridder (1991) estimate a model in
which v,,7, has a genuine bivariate discrete distribution with two positive
points of support for each wv; From the previous paragraph it immediately
follows that in this model CORR(¢,.t,]1x) can attain every value in (-1/3,1/2).

On the other hand, it can be shown that if v,=exp(o.z;) and v,=exp(J3.2z;),
with z=(z,,z,) having a bivariate normal distribution and a#0 and 320 (see
e.g. Butler, Anderson & Burkhauser (1936)). then CORR(t,,t,jx) can only attain
values in (-1/(3+2V2).1/2). If we allow the correlation of z, and 2, to be
equal to —1 (in which case the bivariate distribution is degenerate) then the
lower bound -1/(3+2V2) can be attained. This again illustrates that, in the
present context, models in which the family of heterogeneity distributions is
based on normal distributions are relatively restrictive.

Butler. Anderson & Burkhauser {1989) estimate a model in which v,v, has a
bivariate discrete distribution with points of support that are fixed in
advanced. This means that the only parameters of f(v,.v,) to be estimated are
the probabilities associated with these points of support. It may be
interesting to examine to what extent fixing the points of support narrows the
range of values CORR(¢,.t,|x) can attain. Suppose that both v, and v, have two
points of support, denoted by v} and -vf. and by v and v;, respectively. All
points of support are positive and finite. As a normalization. we take visvlf
and vésvg. In Lindeboom & Van den Berg (1991). it is shown that to obtain a
CORR(¢t,.t,|x) close to its limiting values -1/3 or 1/2. it is necessary that
fui/-v;‘w and vlz/'v;w. This implies that for fixed values of v}, v{, vy, and vi,
CORR(t,,t,|x) can not attain all values in (-1/3.1/2). In Appendix 3 we prove

the following result:

Suppose that 'vi/vll' equals vé/v;. Denote this ratio by c. There holds that

2 2
U] ¢ CORR(ttlx) < U
3c™=-2¢+3 2c+ 2

(2.8)

for all values of the other parameters in the model. The inequalities in (2.3)

are sharp in the sense that they can be attained, for every ce(0,1].

Figure 1 below shows the upper and the lower bound of CORR(z),t,|x) as
functions of ¢ on (0,1). If ¢40 then these bounds go to 1/2 and -1/3,
respectively, which are the bounds of Proposition 1. If c¢#1 then the
dispersion of v, and v, vanishes and., as a result. CORR(¢,.z;]x) goes to zero.

The upper bound is decreasing in ¢ while the lower bound is increasing in c.

]



In fact, the bounds can be expressed in terms of each other in a simple way.

Let U/ and L denote the upper and lower bound; then -L = U/(U+1). So, if U =

1/k, with k>2, then L = -1/(k+1). As a consequence, L is always closer to zero
than U is.
.3
i 1
=533
Lo.s

Figure 1. Sharp bounds for the correlation of the duration variables when
unobserved heterogeneity has a bivariate discrete distribution, as a function

of the ratios of the points of support.

These results show that it is restrictive to fix the points of support of
the discrete distribution of w,,v,. In particular, when the points for v, or
v, are relatively close to each other then the range of values CORR(¢;,t,5]x)
can attain is very small.

From Appendix 3 it follows that in the discrete distributions for v;,v;
discussed here, the bounds for CORR(t,.t,|x) are attained in cases in which
log v, and log v, are linear functions of each other. This means that the
result above is also true in case equation (2.7) holds with z having a
discrete distribution with two points of support.

The results in the present subsection so far may suggest that taking a
particular family of nondegenerate bivariate distributions for w,,v, results
in the same amount of flexibility as taking the corresponding family of
marginal distributions for v, and assuming that there is some non-stochastic
relationship between v, and v,. In other words, it seems that one-dimensional
random variation in the unobserved heterogeneity terms is suffucient to get
the maximum amount of flexibility. This is true if flexibility is defined in

terms of the range of values CORR(ty.t;]x) can attain. However, if flexibility



is also related to certain properties of the marginal distributions of ¢ |x
and t,|x, then non-degenerate bivariate distributions for wv;,v, may be
regarded as more attractive (see Lindeboom & Van den Berg (1991)). Of course,
in practice one may compare different specifications by using statistical
tests (see e.g. Heckman & Walker (1987)).

We conclude this subsection by examining some other specific families of
distributions for v,.v,. Whitmore & Lee (1991) examine models in which v,=v,=v
with probability one and in which the distribution of v belongs to the family
of Inverse Gaussian distributions for which all positive and negative moments
exist. Thev show that CORR(t,.f;/x) can only attain values in (0,2/5).
Hougaard (1986) proposes models in which v,=v,=v with probability one and in
which the distribution of v belongs to the family of Positive Stable
distributions. In that case \(l/v) exists (though E(v) does not). Using
results from that paper it can be shown that in such models CORR(,,t3{x) can
only attain values in [0.1/2). Finallv. if 1/v,.1/v, has a Filon-Isserk
bivariate Beta distribution (see e¢.g. Mardia (1970): V(1/v;} exists) then

CORR(t,.t,|x) can only attain values i (-1/3.0].

3. Generalizations

[n this section. we will present bounds for the correlation of two endogenous
variables in models that are more general than the model examined so far.

As a starting point. consider the model set up in Section 2. In empirical
analysis. the assumption that Ajt,)=1 (see equation (2.2)) may be
restrictive. since it rules out genuine duration dependence of the hazard
rates. A popular generalization specifies that Aft;) = C\i.ﬁ?i—l for i=1.2.
This means that t,|x,»; and t,|x.v, both have a Weibull distribution. with

duration dependence parameters «;>0 and a,>0. respectively. In such a model

E(t;|x,v;) and V(t;|x,v;) are proportional to *v?lla" and 1)72/0". respectively:
E(tx.0,) = D141/ 8500) /7
. & _-’2 . _°
Vitlzog) = [T(42/en) — (TU+1/0,))7] B 2 S 2/

Consequently, COV(¢,.to]x), V(t;]x). and CORR(ty.ty|x) can be expressed In
terms of moments of 'UII/GI and vgl/oi’. We assume that P(0<v,<x.0<v,<c)=1 and

- -1/ - . .
that 'vll/a1 and v, /%2 have positive and finite variances. Denote

10



CORR(UII/O“.-UZI/%) as Py, \'('v:l/a‘) as o.. and E(vfl/ai) as u;. Further,

define a; as

T(1+2/0;)
4 =
(T(1+1/04))

From the expression for V(¢;|x.v;) it follows that e;>1 for every o,>0. Now we

obtain

2 2 | -1/2
(3.1) CORR(t,.t,|x) = po, .“al + (a1—1).‘i§}[a2 + ((Lg_l),%ﬂ

(3.2)

2 24 | —1/2
_ 1 P a, + a, -1 py s a,—1 g /
. L P 2a,-1 7 20,1 2] 26,-1 0 2a-1 7 2
\/‘Zczk—l .\/2a2—1 1 2

It follows directly from (3.1) that CORR(Z,.t;|x) does not exceed (al.az)_l/Q.
Lemma 3 (see Appendix 4) gives the following lower bound for the second term

on the r.h.s. of (3.2) (take p;=a,/(2a;-1). so p;e(1/2.1}).

\/(2a1—1).(‘2a2—1)‘

Va,.a, + V(a,—-1).(a,-1)
“Hay S e

Note that we apply Lemma 3 to the distribution of wv,

expression above does not depend on this distribution. so it holds for all
possible distributions of ‘UIUQI.U;UO‘Q (i.e. for all distributions of v,.9,).
From this expression, a lower bound for CORR(t,.t;]x) follows that holds for
all possible distributions of v;.v,.

From Appendix 4 it follows that the lower bound for CORR(t.t,|x) is again
strict in the sense that it can be approximated arbitrarily well by taking
certain distributions of wy.v,. The upper bound is also strict. (This can be
shown easily by taking a bivariate distribution with two points of support for
v,.v, and letting certain parameters of it go to the boundary of the parameter
space.) Consequently. the bounds in (3.3) are the best bounds possible in the
sense that bounds closer to zero would exclude certain distributions of v, v,.

In sum, we have the following result.

Proposition 2
In the bivariate duration model of this section, with the assumptions

mentioned above. there holds that

11



1 < CORR{t;t|x) < —2

\Alraz"*"/(“l—l)‘(flz‘l)‘ Vi,.a;

regardless of the values of By,(x) and Bg,(x). and regardless of the shape of

(3.3)

flvg,vy). The inequalities in (3.3) are sharp in the sense that for every £,>0
(£,>0) there are distributions f(v.v,) such that CORR(ty,ty|x) is smaller

than the lower bound plus =, (larger than the upper bound minus £,)).

For oy=c,=1 (a;=a,=2) the results specialize to those obtained in the
previous section. In fact, for a,=a, (so a,=e¢, and p;=p,). (3.3) could have
been derived using Lemma 2 in Appendix [.

In general. the lower bound is closer to zero than the upper bound.
Further, if. for some ig{1.2}. o, \0. then a~>x and CORR(¢,t;]x)¥0. On the
other hand, if a;»x and a,»x then ;41 and a,1. and the interval of values
that CORR(f,,t,/x) can attain goes to {-1.1). So. by varying o« and the
distribution of w,.w,, all values in (-1.1) can be attained. (It should be
noted that Lee & Gross (1939) derive results from which it follows that all
values in (0.1) can be attained.) Still. for specific values of the duration
dependence parameters o, and a,. the value of CORR(t.t,|x) is restricted. In
other words, the range of values that CORR(t,.t,|x) can attain depends on the
duration dependence of the hazard rate of t;{x.v; and the duration dependence

of the hazard rate of t,|x.v,.

For another generalization. consider the following bivariate nonlinear

regression model.

(3.4) to= Colx) w8

ty = CoalX). g2y

We assume that x,u;s; are independent of cach other for every i, and that =z,
and ¢, are independent. Further. we assume that wu,.u, are positive with
probability one. but we allow z; and {,(x) (and therefore t,) to be negative.
Note that if =, and {,(x) are always positive. and Iif (g(x) equals
exp(x'3;), then the model can be written as a bivariate log-linear regression

model,

(3.3) log t; = x’3, + log u, + log 2,

log t, = x'J, + log u, + log =,

12



Let ¢; denote the square of the coefficient of variation of = ie. ¢ =

\'(si)/Ez(s,-), if it exists. One can show along the lines of the first part of

this section that

(3.6) . -1 - < CORR(tpty|x) < L
\/cl.c2+ (ci+1).(c+1) \/(714-1).((:21&1)

for every distribution of 1w, u,; provided that this correlation exists.
Consequently. the range of values that CORR(t).t;|x) can attain depends on the
coefficients of variation of ¢, and 2, (or the coefficients of variation of
tx.y and tylx.u,)

In fact. the model examined in the first part of this section is a special
case of the nonlinear regression model (3.1} (take ¢;=a;—1l. take =; such that
1/«

=% has an exponential distribution with parameter one. and take u,=v tand
1 I 1 H

Corl 1) =0, (x) ),

4. Conclusion

In this paper we have examined the correlation of duration variables in the
context of multivariate mixed proportional hazard models. We showed that such
models restrict the range of values that this correlation can attain. If the
baseline hazards are constant (so the durations have marginal distributions
that are mixtures of exponentials), then the correlation necessarily lies
between -1/3 and 1/2. This holds regardless of the actual values of the
parameters and functions in the model. and regardless of the values of the
observed explanatory variables. Moreover. these bounds are sharp in the sense
that, for either one of these bounds. there are distributions for the
unobserved heterogeneity terms for which the correlation of the durations is
arbitrarily close to it.

We also derived bounds for this correlation in case the distribution of
the unobserved heterogeneity terms belongs to a specific family of
distributions. If it is assumed that these heterogeneity terms follow a
(multivariate) discrete distribution. then all values between -1/3 and 1/2 can
be attained. However. if the unobserved heterogeneity terms are restricted to
have a (multivariate) normal distribution. then the range of attainable values
is smaller. Similarly, if discrete distributions with a priori fixed values of

the points of support are taken. then not all values between -1/3 and 1/2 can

13



be attained. All of these families of distributions have been used to
parametrically model unobserved heterogeneity in empirical analyses of
multiple durations. Our results suggest that. in terms of flexibility, using a
discrete distribution with unspecified points of support is to be preferred
over using one of the other families.

Most of the qualitative results carry over to more general models.
Moreover, if the baseline hazards are not constant., then the upper and lower
bound for the correlation of the duration variables depend on the duration

dependence of the hazard rates.



Appendix
A.l. Some moment inequalities for two random variables with positive means

In this appendix we present and discuss some lemmas that will be used in the
main text. The lemmas provide moment inequalities for two random variables X
and Y. These inequalities involve the correlation coefficient p,, of X and Y
and the means and variances pi,. ft, oi and af, of X and Y, respectively, and
are derived under the assumption that . g, and E(XY) are positive.
Obviously, sufficient for the latter is that P(X>0,Y>0)=1. To ensure that p,,
and the first and second moments of X and Y exist, we will assume throughout

the appendix that the variances ai and af of X and Y are positive and finite.

Lemma 1
Let X.Y have a bivariate distribution with positive finite variances. If

E(XY)>0 then oy, > —py.pty. Consequently.
(A1) pyy > - B K
Proof. 04 = E(XY)=pipty > —fixpty.

This simple result formalizes and extends the idea that for nonnegative
random variables having a negative linear relation, the variances can not be
arbitrarily large relative to the means. As a very simple example, suppose
that X~LN(slog 3) and Y~LN(u.log 3). so log X and log Y have the same normal
distribution with unspecified mean u and variance equal to log 3. Then it
follows from Lemma 1 that p,, necessarily exceeds -1/2. regardless the joint

distribution of X.Y.

Lemma 2
Let X,Y have a bivariate distribution with positive finite variances. If p,>0,

#,>0 and E(XY)>0, then

(A.2) Ty > — \/paf + (kp)‘,ui .\/p.of, + (1—p).,u§ for all pe[0.1)

Consequently,



2 2
/ _p) . Hx _py M
(A.3) Py > =P+ 1 p)'gz \/?: (1 p)';}zi for all pe[0.1)
x y

Proof. The result trivially holds if p,,>0. Suppose p,,<0. Let n;=u;/0;. From
Lemma 1 we know that p,, > -5, This is equivalent to stating that the

following matrix M is positive definite.

Ne Py

(Ad4) M=
2
px)’ T]y

since the determinant of M equals (1,),=px ). (M +Py). and 7,>0. 1n,>0 and
Piy<0. There also holds that p,, > -1 This is equivalent to stating that the

following matrix S is positive semi-definite.

L Py
(A.3) S =
Poy 1

This implies that for every scalar pe[0.1) the matrix pS+(1-p)M is positive

definite. Therefore. its determinant is positive,

(p + (1=p)2) (p + (1-p)ny) - p5y > 0
and the lemma follows.

The bound for p,, in (A.3) can be interpreted as a (by p) weighted average
of the two bounds -n.n, and -1 for p,, that follow from p,, > —n.7, and py, >
-1. respectively. For p=0. (A.3) reduces to p,, > -n., while for ptl the
bound in (A.3) goes to -1. It can be shown that for values of p between 0 and
1. the bound in (A.3) is smaller than max(-n,7,,~1) (unless n,=n,=1). In
general, therefore, max(-1,7,.-1) provides a sharper lower bound for p,, than
the bound in (A.3). This means that for pe(0.1), equation (A.3) is not
relevant in case a bound for p,, in terms of u,, pu,, ai and 0:; is needed that
has to be as sharp as possible. Rather. it mayv be relevant for cases in which
the value of p is given: that is. it nﬂay be relevant in cases in which bounds
are needed for p,, divided by the r.h.s. of (A.3) with given p. As will be
shown below. such bounds are the sharpest possible in the sense that there are
distributions for X.Y for which p,, divided by the r.h.s. of (A.3) with given

p is almost equal to 1.
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A.2. Cases in which the inequalities almost hold with an equality sign

We will now examine whether there are distributions of X.Y satisfying the
assumptions of Lemma 2 for which the moment inequalities derived almost hold
with an equality sign. Clearly. to find a distribution for which equation
(A.3) holds with an equality sign. we have to relax one or more of the
assumptions made. Suppose we replace the assumption that E(XY)>0 by the
assumption that E(XY)>0. This implies that equation (A.l) may hold with an
equality sign, or. equivalently. that the matrix Y defined in equation (A.4)
may be singular with rank one.

From the proof of Lemma 2 it follows that equation (A.3) holds with an
equality sign if and only if pS+(l-p)M is singular. Consider cases in which
pe(0.1). Under the sustained assumptions. necessary and sufficient conditions
for pS+(1-p)M to be singular are (i} S and M are singular and (i) S and M
have the same set of eigenvectors corresponding to their zero eigenvalues.

Consider condition (i). The matrix S is singular if and only if py=-1.
This means that there has to be a negative linear relationship between X and
Y. If p,,<0. then the matrix M is singular if and only if E(XY)=0. It 1is
straightforward to construct distributions for which p,>0. >0, 0,>0, 0,>0,
E(XY)=0. and p,,=-1 (take e.g. P(X=Y=1) = P(X=-1/2.Y=2) = 1/2). If we restrict
the attention to distributions for which P(X>0.Y>0)=1. then E(XY)=0 is
equivalent to stating that all probability mass is concentrated on the x-axis
and on the y—axis. Consequently. in that case S and M are singular if and only
if the distribution of X.Y belongs to the following family of discrete

distributions with two points of support:

i

(A.6) P(X=¢,,Y=0) = c,>0. O<w<l
P(X=0.Y=c;) = l-7 c;>0

However, such distributions do not necessarily satisfly the second
condition for pS+(1-p)M to be singular. One can show that in the family
described by (A.6), the second condition holds if and only if 7=1/2. As a
result, the class of distributions satisfving P(X20,Y20)=1. 0,50, and 0,>0 for
which equation (A.3) with pe(0.1) holds with an equality sign. is described by
(A.6) with ==1/2. Note that p itself does not enter the description of this
class of distributions.

Until now we have considered cases in which pe(0.1). If p=0 then equation
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(A.3) holds with an equality sign if and only if M is singular. If p,y<0, then
M is singular if and only if E(XY)=0.

Summarizing, if we allow for E(XY)=0, then for every pe[0,1} there are
distributions of X,Y such that equation (A.3) holds with an equality sign. For
reasons of continuity, this implies that for every pe[0.1) there are
distributions with E(XY)>0 for which equation (A.3) -almost’ holds with an
equality sign, in the sense that p,, is arbitrarily close to its bound on the
r.hs. of (A3). In other words. for every pe[0.1) there are distributions
with E(XY)>0 for which p,, divided by the r.hs. of equation (A.3) s

arbitrarily close to 1. Consider for example the following family of

distributions.
(A7) P(X=c,.Y=¢,) = 1/2 €,>£,>0
P(X=:z,.Y=¢,) = 1/2 Cp>z >l

Such distributions satisfv the assumptions of Lemma 2. Note that py,=-1 for
all £,€(0,c;) and all z,&(0.¢;). The bound for p,y, in equation (A.3) is a
continuous function of =z,,z, on (0.c;)x(0.¢;). Let =30 and £,40. In the
limit, the distribution of X.Y becomes the distributien in (A.6) with w=1/2,
and the bound for p,, goes to -1. The limiting distribution does not satisfy
all assumptions in Lemma 2. However, because of the continuity in £, and g,
the value of bound for p,, can be made arbitrarily close to -1 by taking &,

and =, sufficiently small.
A.3. Discrete distributions with fixed points of support for v, and v,

Suppose that w,w, has a bivariate discrete distribution with points of
i ! . 1 .

support v, and v) for v,. and v, and v, for v, with O<v;<vi<x for i=1,2. The

probabilities associated with different points of support of w, and v, are

defined in the following way:

i

u u u !
= P(v;=vy, 1,=1,) 73 = Ploy=vy, ve=1,)

1

—

{

Ty = P('ulzvi, V,=03) Ty o= P(v1='ui. 'vzzvé)

Of course, 0<m,.7,.75.7,<1 and 7,+7,+73+7,=1. We now assume that vi/v’f = vi/vg
and we define ¢ as ¢ = vi/vlf. It follows that 0O<c<l. If c¢=1 then
CORR(t,,t,]x)=0. If 0O<c<l then. by elaborating on equation (2.4), we obtain

(see also Lindeboom & Van den Berg (1991))
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(A.8) CORR(t.tyix) = (m.my — Tpmy) / [(7.'1+7r2).(7r3+1r4) +

2
e (T W)+ (Ma+74 )

(1-¢)®

+

CZ-(""1+773 J+(Tat+74 )]

2

] -l:( T+Ta)(Totmy) +
(1-c)

We now have to find values of m,.7,,m,7y for which this expression
attains its maximum and minimum, given c. Fisrt, substitute 7,=1-7-7,—7; into
(A.8) and rewrite this equation using the following one-to-one mapping of my,

7y, and T3 On Yy, Yo, and 3 7=, 72=7+7,. and y3=m+7;. As a result.

-1/2
2 1
(\.9) CORR(t).t5]x) = (71 = 72:73) - I:_Wg - 72-'0_ + ]

Because of the definitions of 5, and 74, there holds that the derivative of
CORR(t,.t,|x) w.r.t. w7, (m;) equals the derivative wr.t. v, (¥3) It is
straightforward but tedious to show that the derivative w.r.t. y, has the same

sign as the following expression.

(A.10) ATy = 1 - YT F =2y + vy ) v (Y2 - Vo)

Consider the equation that follows by equating this expression to zero. The

discriminant of this quadratic equation in ¢ can be written as

(14 372y — 73+ 73 (2ry + 3y - 1)

Now note that v,—7;<0 and y,-1<0, so the discriminant is smaller than or equal
to zero. Therefore, either (A.10) cannot be positive. or it cannot be
negative, for all possible values of ¢. 7. 7, and 3. The value of (A.10) as
c4l equals —v5. As a result. the derivative of CORR(t;,t|x) w.r.t. 7, is
always smaller than or equal to zero. Because of the symmetry of the r.h.s. of
(A.9) as a function of 5, and 7, this implies that the derivative of
CORR(t,,t;|x) w.r.t. 5, is smaller than or equal to zero as well
Consequently, the derivatives of CORR(t),t,|x) w.or.t. 7, and 73 are smaller
than or equal to zero. This means that the maximum of CORR(tyt|x) is

attained at m,=m;=0 and the minimum at 7 +m,+7;=1.
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Consider the hvperplane m+m,+73=1. After substituting m+my+m;=1 into
(A.8) and differentiating w.r.t. w, (73). it is easy to show that, in this
hvperplane, the derivative of CORR(t,.t,|x) w.r.t. @, (m,;) is smaller than or
equal to zero. Consequently, the minimum of CORR(¢;.t;)x) is attained at
m+my=1.

Now consider the line m,4+m,=1. Let us substitute m;=1-7, into {A.8) and
differentiate the resulting expression w.r.t. 7, It is tedious to show that
the derivative has the same sign as
)2

ol (et l)my + (1-e)(3ct+e+3)ms +

+ (—C4+63+‘262+C—1).772 -

This expression can be rewritten as follows

(A1) 2 (7 - 2) . [ (1= (Fectl)ms + (1-0%(Fterl)my + ¢ ]

[T

The quadratic equation that results from equating the expression in square
brackets in (A.l11) to zero has two real roots. However, it is easily shown
that one of them is negative while the other exceeds one. for each value of ¢
in (0,1). Therefore, m,=1/2 is the only value of m, in (0.1) for which ({A.11)
equals zero. Again, it is easily shown that (A.11) is negative for m,€(0,1/2)
and positive for mye(l1/2.1], for each value of ¢ in (0.1). As a result,
CORR(f,,t,|x) attains its minimum at m,=my=1/2. for every ce(0.1). By
substituting w,=7;=1/2 into (A.8} we obtain the lower bound of CORR(%;.t,|x)
as a function of ¢ on (0.1).

Now let us turn to the upper bound for CORR(t,.t;|x). It is necessary that
my=l-7,. If we substitute this into equation (A.8). and differentiate the
resulting expression w.r.t. m,. we obtain an expression that has the same sign

as
(A12)  (1-¢)’m —2.m, + 1

It is easy to show that =, = 1/(14+¢) is the only value of = in [0,1] for
which (A.12) is zero. Moreover. since (A.12) is negative for m€{0,1/(1+¢))
and positive for me(l/(1+c).1], it follows that CORR{t).;|x) attains its
maximum at 1, = l-m, = 1/(1+¢). for every ce(0.1). By substituting 7, = 1-74 =

1/(l+c) into (A.8) we obtain the upper bound of CORR(t,.t;|x) as a function of
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¢ on (0.1). Note that the bounds in equation (2.8) in the main text also

capture the case ¢=1.
A.4. Generalizations

This appendix contains a generalization of the results derived in the first
two appendices above.

In equation (A.3), the same constant p appears under both roots. The
following lemma generalizes Lemma 2 by providing a lower bound for pyy, in

which the constants under these roots may differ.

Lemma 3
Let X,Y have a bivariate distribution with positive finite variances. If u,>0,

py>0 and E(XY)>0. then

(A13) [\/1'11’2'*'\/( 1-p){1-p; )] Oxy >~ \61-0§+(1—P1)#i ~\/Pz-‘7§+(1‘P2)-ﬂ§

for all p,ef0,1) and p,€(0,1)

Consequently,
1 / 2 2
(Al P T , ‘-\//P1+(1—p1).i§- o/ Pat(1-p2) 5%
\/I’1P2+\/( 1-p)(1-p2) * Y

for all p,e[0,1) and p,e(0,1)

Proof. We use the same notation as in the proof of Lemma 2. In addition, let

the matrices Q0 and R be defined as follows,

s o 't 0 ; (1-p'’* 0
h 0 py/° 0 (1-py)'/?

Then, for every p;.p,€[0,1), the matrix OSQ is positive semi-definite. Also,
for every p;.p.€(0.1), the matrix RMR is positive definite. As a result, for
every p,.p,€[0,1), the matrix QSQ + RMR is positive definite. Thus, its

determinant is positive, and the lemma directly follows.
By taking p,=p,, Lemma 2 is obtained as a special case of Lemma 3. It is

21



clear from the proof above that Lemma 3 can be generalized by allowing the
elements of the matrices ¢ and R to be unrelated to each other. For example,
one can easily derive an equation analogous to (A.l14) in which the terms
(1-p;) are replaced by constants g,&(0.1].

Using the same argument as in Appendix 2, it can be shown that for every
p..p2€[0.1) there are distributions of X.Y for which the bound for p,, in
Lemma 3 almost holds with an equality sign. The class of distributions
satisfying P(X20,Y>0)=1, o,>0 and o,>0, for which equation (A.14) with

p1.P2€(0.1) holds with an equality sign, is as follows.

(A.16) P(X=¢,,Y=0) =7 c,>0
P(X=0,Y=¢;) = 1-x ¢o>0
pi1-ps) ]
with @ = | 1+ —1——_—2——]
|: Pa(1l-p1)
Note that if p;=p, then m=1/2. which is in accordance to what we found in

Appendix 2.
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