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Abstract

In this paper we study the indeterminacy of equilibria in infinite horizon capital ac-
cumulation models with technological externalitics. Our investigation encompasses both
models with bounded and unbounded accumulation paths, and models with one and two
sectors of production. Under reasonable assumptions we find that equilibria are locally
unique in the one sector economies, at least as long as cycles are not present and trajecto-
ries are therefore monotone. On the other hand we show (by mecans of an example) that
persistent oscillations are possible when the external effect is particularly strong and cap-
ital accumulation is bounded. In this case indeterminacy may be present as we are unable
to rule out the existence of a continuum of equilibria converging to the cycle. The situation
is different in economies with two sectors of production. Here it is very easy to construct
analytical examples where a positive external effect induces a two dimensional manifold
of equilibria converging to the same steady state (in the bounded case) or to the same
constant growth rate (in the unbounded case). For the latter we also point out that the
dynamic behavior of these equilibria is quite complicated and that persistent fluctuations
in their growth rates are possible.



1. Introduction

Our goal is to clarify the extent to which equilibria are (or are not) indeterminate
in infinite horizon capital accumulation models with a representative agent and external
effects at the production level.

With indeterminacy we denote a situation in which there exists a continuum of distinct
equilibrium paths, all consistent with the same initial condition. In the models we study
the latter is typically represented by the initial allocation of the capital stock.

Two articles by Lucas [1988] and Romer [1986] have been particularly instrumental in
spreading the idea that models with technological externalities are appropriate to describe
the endogenous nature of growth phenomena. While a varicty of different implementations
have since been proposed the basic intuition is quite simple. It is assumed that, duc either
to the lack of appropriate markets or to the intrinsic nature of the production process, the
productivity of an individual firm’s input(s) is affected by the aggregate level of utilization
of the same or other input(s). In the simplest aggregate world with a single commodity and
production process one writes the production function of the individual firm as f(z, K)
where z is the firins’s own capital stock and K is the aggregate one. The latter is assumed
to affect both the average and marginal productivitics of the former. In certain instances
the external effect is assumed to be strong enough to induce aggregate increasing returns
even if individual decision makers still face decreasing payoffs from their own inputs.

Beside the obvious effect of rendering the associated competitive equilibrium inefficient
the introduction of such an externality has other two, important, implications.

It allows to retain the notion of competitive equilibrium when studying economies in
which unbounded growth is fucled by some form of non-couvexity in the aggregate pro-
duction set. Seccondly it induces a positive complementarity between individual efforts,
the full implications of which cannot be captured by market prices. When private returns
from the investment of capital are affected by its aggregate level, multiple expectations-
driven equilibria become a possibility. Societics with distinct institutional mechanisms
may coordinate private beliefs in different ways, thereby generating different publicly held
expectations about future economic events. In such circumstances it would not be surpris-
ing if the otherwise similar private agents ended up formulating very different investment
plans. This can take place in spite of totally identical technologies, preferences and initial

economic conditions.



From a theoretical viewpoint this situation is commonly described by means of dy-
namic models in which competitive equilibrium is indeterminate. If the given initial con-
dition, supposedly a description of all the “fundamentals” of the economy, is not enough
to pin down the future evolution of the system then other, extra-economic, factors need
to be brought onto the stage. While this needs not be the only compelling explanation for
the factual diversity in the growth patterns of various countries it certainly appears as one

worth investigating.

The relevance of this point of view is reinforced by the apparent pervasiveness of
indeterminacy in dynamic economic models, something of which we have started to become
aware since the work of Kehoe and Levine on the Overlapping Generations Model (Kehoe-
Levine [1985]).

This same form of indeterminacy has been found, for example, in the areca of dynamic
search and matching, Diamond [1982], Mortensen [1982]. In these models the proportion of
agents involved in search is the relevant state variable; it has a positive external influence
on individual efforts because it increases the probability with which matches occur. In such
circumstances the competitive equilibrium outcome is affected by the “pessimism” or “op-
timism” of individual expectations. When the agents come to belicve that tomorrow “is a
good day” the individual, and therefore the aggregate, scarch effort increases and the ensu-
ing equilibrium will be one with a high number of matches: the optimist expectations have
been fulfilled. Similarly for the case in which everybody believe that tomorrow is “a bad

”

day”. A continuum of equilibrium trajectories, paramecterized by different expectations,
may therefore depart from a common initial condition. This was intuitively transparent in
the early contributions to this literature and has been rigorously proved, for various spec-
ifications of the basic models, by a number of authors, ¢.g. Diamond-Fudenberg [1989],

Howitt-McAfee [1988], Boldrin-Kiyotaki-Wright [1991], Mortensen [1991].

Similar results emerge in dynamic models of production and accumulation when mar-
ket incompleteness is introduced. In a context quite close to the one studied here, i.c. a
one sector OLG model, Boldrin [1990] has shown that, with the kind od external effects
discussed earlier, a weak form of indeterminacy is possible as a countable infinity of ac-
cumulation paths may depart from the same initial aggregate stock. Matsuyama [1991]
also shows that equilibria may be indeterminate in a dynamic model of the industrializa-
tion process in which there are two sectors (agriculture and manufacturing) and increasing

returns prevail in the manufacturing sector.
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Quite surprisingly no example! of similar phenomena has been provided for the rep-
resentative agent model of capital accumulation. On logical grounds nothing scems to
prevent the kind of expectations-driven indeterminacy we described before from occuring
also in this context. Given the extent to which models of this form are now used for
the purposes of empirically assessing the economic sources of growth, it scems important
to clarify the matter. If indeterminacy is present the interpretation of many simple esti-
mations, obtained by pooling together data from a variety of different countries, can be
questioned as there is no reason to believe that these countrics should be moving along
the same equilibrium path. On the other hand if a set of hypotheses can be found under
which equilibria are locally unique, then one would rest assured that a minimal theoretical
framework exists within which comparative statics and dynamics exercises can be carried
out.

With this purpose in mind we set out to investigate both one- and two-sector models
of capital accumulation with externalities. For both specifications we consider separately
the casc of bounded and unbounded trajectories as they require different analytical instru-
ments. The results we are able to derive are mixed and open to different interpretations.

In the one sector model indeterminacy can be ruled out under fairly weak assumptions,
in particular under a set of assumptions that seems “reasonable” to us and that is consistent
with those adopted in the more applied literature. We show that monotone trajectories,
either bounded or unbounded, are locally unique and that the unbounded ones display a
unique asymptotic constant growth rate. This is a positive result insofar as one believes
that fluctuations are not caused by the presence of externalitics and that a simple one good
model is appropriate for the study of aggregate growth. Notice, in particular, that under
the assumptions adopted here the old neoclassical prediction of “convergence” obtains
once again, albeit in a different form. Even if the relative difference in income levels is
maintained, countries starting from different capital stocks should eventually grow at the
same constant rate.

On the other hand we arc unable to rule out the possibility that a continuum of
equilibria converging to a cycle may exist. Example 2.2 below shows that cycles do appear
quite ecasily in this kind of models, a fact that we believe should be taken into account in

the study of the interplay between growth and business cycles phenomena.

A qualification is needed: two examples (Kehoe-Levine-Romer [1991] and Spear [1991]) do exist. But they use specifications
of the external effect that are quite different from the one we are studying here and, more generally, from those adopted in the
literature on endogenous growth. They will be discussed below.



The two-sector models we examine have only one capital good, which can be inter-
preted cither as human or physical capital. They do not include, therefore, the models
with both physical and human capital stocks that were suggested in Lucas [1988] and more
recently in Romer [1990]. In any case even in this simpler world the comforting results
of the one-sector framework are casily turned upside-down. Examples of indeterminate
equilibria abound and they can be derived from very standard utility and production func-
tions such as CES, Cobb-Douglas and linear ones. Furthermore, in the case of unbounded
growth, the very same examples can exhibit indeterminate and perpetually oscillating (i.e.
chaotic) asymptotic growth rates for certain set of paramecters. Quite naturally an issue
of “realism” can be made with regard to the parameter values at which these more com-
plicated phenomena arise. While they do not appear as far away from reality as those
previously encountered in the optimal growth brand of the chaotic dynamics literature
(e.g. Boldrin-Deneckere [1990]) they do rely on particularly strong externalities. For this
reason and for the lack of reliable empirical evidence about the external effects consistent
with this type of technology, we refrain from speculating on the positive implication of our
findings.

The differences between our results and those presented in Kchoe-Levine-Romer [1991]
and Spear [1991] should be mentioned at this point. In both papers a one-sector growth
model is studied, the difference laying in the type of external effect considered. The first
group of authors specify the individual production function as f(z,C), where C is the
aggregate consumption level and z is the individual stock of capital. They show by means
of an example that such an economy may have a locally stable steady state around which
equilibria are thercfore indeterminate. In the paper by Spear a different type of external
effect is introduced: the production function is written as f(z, K'). where K’ is tomorrow’s
aggregate capital stock which is assumed to have a positive effect on today’s productivity.
In this case the author derives a set of sufficient conditions under which stationary sunspot
equilibria exist in a neighborhood of a stationary state. Neither article consider the case
of unbounded growth nor the kind of external effects we are studying here. The results
are, in this sense, non comparable.

This paper contains two more sections and the conclusions. Next section is dedicated
to the one-sector model whereas section 3 will discuss the case of two sectors. Most of the

formal proofs are collected in the final appendix.



2. The One Sector Model

We begin with a general description of the model under a set of assumptions en-
compassing both the case of bounded (Subsection 2.1) and unbounded (Subsecction 2.2)
accumulation paths. The economy is composed of two continua of agents: consumers in-
dexed by 7 € [0,1] and firms indexed by j € {0,1]. There is only one good which is used
both as consumption and capital input. Each consumer 7 is infinitely lived and owns a
firm j and an initial stock of capital k. He maximizes total discounted utility by choosing

a consumption stream {c}}:2, that solves:

ma,xZu(ci)ét (P(i))

for given sequences of prices {p:}$2,, and incomes {7i}2,. All consumers are identical
in the sense that they have the same discount factor 0 < § < 1, utility function u(-) and

initial capital stock kg.

Assumption 2.1 The utility function u : R, — R is C?, increasing and strictly con-

cave.

Each firm is described by a production function G(k7,k,¢) which depends on the
private amount of capital stock k7, the aggregate capital stock k = fol k3dj, and labor £.
The latter is inelastically supplied by the consumers and will be normalized to one. Except

for the external factor, £, the production function G is standard.

Assumption 2.2 G : §R?|_ — Ry is of class C?. For any given k > 0 it exhibits the
following properties:

1) GIAKT kA8 = AG(K7, &, £), YA > 0;

ii) G(-,k,-) is increasing and concave;

i) Gy1(:,k,£) <0 for all £ > 0.

Denote with 0 < g < 1 the capital depreciation rate. We define f : 3{3_ — R, as
f(K, k) = G(A9,k,1) + (1 — p)k?. Firms buy their initial stock of capital k‘% from the
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consumers at price go. In each subsequent period ¢t = 1,2,... they sell their output at
a price py, buy the future capital stock also at a price p; and pay a dividend income
= pt[f(kf,kt) - ka] to their owners. At t = 0 the dividend paid is instead: wg =
po[f(k3, ko) — k1] — qoki. Given the initial capital stock k2, the two sequences {py, ke}S2,
of prices and aggregate capital stocks and the initial price g, every firm j maximizes total

discounted cash-flow by choosing an accumulation sequence which solves:
bt . . B
max{ " pulf (6, k) = k] = aokd | (P(5)
t=0

under a non negativity constraint on the k{’s.
Recall that initial wealth kg = fol kidi = ki is equally distributed among consumers

and that each one of them owns one of the identical firms.

Definition 2.1 A competitive equilibrium is given by a scalar qg and a set of sequences
{pe, ke, e, e }52 such that:
a) given {p;, m}324 and qo, the sequence {¢;}32, solves P(i) for all i € [0,1];
b) given {p;, k:}i24 and qo, the sequence {k¢}52, solves P(j) for all j € [0,1];
¢) markets clear:
o f(kyht)=yr=¢r+kyyq forallt=0,1,2,..., and
o w0 = palfke, ko) — kega] fort =1,2,3.. ... and
o o = polf(ko, ko) — k1] — qoko.

With a few more technical assumptions existence of an equilibrium is not difficult to
obtain. The problem becomes more difficult if one seeks a representation of the equilibrium
sequences {k;}{Z, by means of a pair of continnous functions 6 : R2 — R, and 7: R, —
Ry such that ki, = 6(kf, k) for all i € [0,1] and kyyq = 7(ke) = 8(ky, k). Here we
proceed under the assumption that an equilibrium satisfying Definition 2.1 exists from

every initial condition kg.

Proposition 2.1  Let Assumptions 2.1 and 2.2 hold and let {x,}3°, be a sequence

satisfying vg = ko and 0 < x4 < f(zy,z¢) for all t > 0. Then (qo. {ps, T4, 74, ¢t }32,) with:

et = f(ze.2t) — Tegas

po =1, and pe—y/pe = fi{zy,z¢) for t =1,2,.. .,

mo = po[f(To.To) — x1] — oo, and m = p,[f (w4, T0) — Teg1) for t = 1,2,..., and
g0 = poS1(zo, zo).



is an equilibrium for our economy if and only if {z,}32, satisfies:

wW(f(xe, xe) — Teg1) = 6u' (f(Teg1. Teg1) — Teg2) [1{Teg1, Te1), (EFE)

and

th_}lolo Stz (f(xe, T4) — Tog1 ) frlze, T4) = 0. (TC)

Proof: See Appendix.

Proposition 2.1 is useful because it allows us to scarch for equilibria by looking at
those solutions of the dynamical system (EE) that satisfy (TC). In the sequel of this paper
equilibria will therefore be sequences {z,}§2, that, given a sequence {k:}32,, solve the

“parametric” programming problem:
P

0

max{z u(f(zy, ky) — :Bt+1)6t} (PP)

t=0
subject to: 0 < 441 < f(zy, ky)

and also the “fixed point problem” z,({k;};2,) = k; for all t. A more detailed discussion of
the equivalence between a competitive equilibrium with externalities and the programming
cum fixed point problem (PP) can be found in Kehoe-Levine-Romer [1991].

Before proceeding with our analysis we need to make our notion of indeterminacy

more precise.

Definition 2.2  Let {z,}{2, denote an equilibrium for an economy with initial condition
Ty = ko. We say that it is an indeterminate equilibrium if for every € > 0 there exists
another sequence {y}<,, with 0 <] y; — o1 |[< € and yy = xg = kg, which is also an

equilibrium according to Definition 2.1.

The intuitive notion is that an equilibrium is indeterminate when there exists a whole

interval of equilibrium paths starting off from its same initial condition.



2.1 Bounded Accumulation Paths

We consider first the case in which the aggregate production function F(z) = f(z, z)
does not allow for persistent growth. We retain Assumptions 2.1 and 2.2 and add the

following;:

Assumption 2.3 The production function F(z) = f(z,z) has the properties:
(i) There exists an T > 0 such that F(z) > z for0 <z < T and F(z) < z for z > T.
(ii) The partial derivative f, satisfies: f1(Z,T) < 1 and lim,_¢ f1(z,z) > 1/6.

It follows from very standard arguments that all equilibria are bounded and an interior

stationary state exists.

Proposition 2.2 Under Assumption 2.1, 2.2 and 2.3 all equilibria {z;}2, satisfy the
following properties:
(¢) 0 <y < max{¥y,zo}, where § = max {F(z);z € [0,7]}.

(o) There exists a value £* € (0,T) such that x; = =* for all t. is an equilibrium.
Proof: Sce Appendix.

Without loss of generality, we can assume for the remainder of this subsection that
0 <29 <7 =max {F(z);z € [0,T]}.

We have not yet specified the “sign” of the external effect: it could be cither negative
or positive. Our claim is that with positive externalitics monotone equilibria cannot be
indeterminate. It is easy to see that indeterminacy arises when negative external effects are
present, as we show in example 2.1 below. The qualification “monotone” in the first part
of our claim is needed because when the externality is positive and very strong we cannot
rule out a continuum of equilibria converging to a periodic orbit. In fact we conjecture
that such a type of indeterminacy should arise in a neighborhood of period two cycles like
the one we derive below in example 2.2. We will now proceed to show that in the absence

of oscillations equilibria are always locally unique.

Theorem 2.1 Under Assumptions 2.1, 2.2 and 2.3 all monotone equilibria are locally

unique.



Proof: See Appendix.
By slightly strengthening our conditions a more general result can be proved.

Theorem 2.2 Let Assumption 2.1, 2.2 and 2.3 be true and assume furthermore that the
private return on capital fi(z,z) is a non increasing function of the capital stock. Then
all interior equilibria are locally unique. Morcover, there exists a unique value z* € (0,7T)
such that if xyg < z* then {z,}2, satisfies z; < z441 < z* and if g > z* then {z:}2,

satisfies z* < 2441 < x; for every t.
Proof: See Appendix.

An implication of Theorem 2.2 is that when the private rate of return on capital is
non-increasing the Turnpike Theorem applies also to one-scctor models with externalities.
One could extend the theorem to the case of noninterior equilibria, but this would require
introducing a cumbersome amount of notation.

A simple example will show that everything unravels when the externality is negative,

i.e. when fa(r,z) < 0 around the stationary state z*.

Example 2.1 Set u(c) = ¢! 77 /(1 —7) and f(z, k) = az + bz*k? + dL”. Adopting the

notation introduced in the proof to theorem 2.1 one can verify that:

f1 = a+ abxath-1,

f2 = Bbz+P=1 4 dpre1,

/i = abla+  — 1a+92,

F'=a+dpzP~! + bla + B)z>tF-1,

o=vu/ju" = —¢/y;
where the equilibrium condition £ = & has been substituted everywhere. A unique interior
steady state z* = 1 exists if we choose 67! = a + ab. The algchbra can be simplified by
picking appropriate parameter values, such as: § = 8/9,a = 7/8, d = —1/8, a =1 —¢
and b = 1/(4(1 — €)), for some 0 < € < 1. The associated consumption level will be ¢* =
€/(4(1 —€)) > 0 and fao(x*,2*) < 0 if we choose, for example, 3 = 2¢ and p > 4¢/(1 — e).
We can then linearize around z* to obtain the characteristic equation: A2 + a; A + a; = 0,
where a; and a; are again defined as in the proof to theorem 2.1. Both cigenvalues will be
inside the unit circle if and only if: (i) 1—a; > 0, (ii) 1+a; +a2 > 0, and (iii) 1 -a; a3 > 0
simultaneously hold. To get (i) set, for example, € < 1/5 and p > 2. Then (ii) is always

true and (iii) obtains for any v > €/9. Equilibria near =* arc therefore indeterminate.
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We shall now show, again by means of an example, how cycles may emerge when the
positive external effect is strong enough to make the private return on investments fi(z, x)
an increasing function of the capital stock. We conjecture that such cycles can become

locally asymptotically stable and therefore originate indeterminate equilibria.

Example 2.2 We nced a production function f for which fi(z,z) = §! has a
solution z* such that f is increasing in a neighborhood of z*. The choice f(z,k) =
azk — gmzk would do, at least as a local representation. We can normalize z* = 1 by
choosing a = 67! + b and we can assurc that f; is increasing around z* by imposing
further that §~!' > b. Now consider the linearization of (EE) around this steady state
and use the flip bifurcation theorem (see Guckenheimer and Holmes [1983] for the technical
details) to generate a period two cycles. The crucial requirement is that the characteristic
equation A2 + a;A 4+ a3 = 0 has a solution at A = —1. In general this is equivalent to
2(1+4 F') = —o f;/ f1, where we have set again ¢ = —u' /4" and all functions are evaluated
at z¥. One can see by inspection that f; increasing is necessary for the bifurcation condition
to be realized. Choose u(c) = ¢'~7/(1—7), so that o = —7/c and use the parameter 7 as
a bifurcation parameter. The bifurcation value is then v* = 2¢f;(1 + F')/f,. Again one
can verify that all the remaining technical conditions are satisfied and so a cycle of period
two will exist for values of ¥ near 7*. A back of the envelope calculation can give an idea of
the magnitudes of v which are consistent with the presence of equilibrium cycles. We will
choose the other parameters consistently with what the Real Business Cycles literature
deems to be realistic values (a recent paper by Baxter and King [1991] is used as a source
in this case). Accordingly we set 6 = (1.065)™! = .938 and the depreciation rate equal to
6% per period. This together with the restriction of the steady state value to one gives a
net output equal to .125 + b/2 per period and a net capital income equal to .125 also per
period. To make this consistent with a capital share in national income equal to 42% we

need to set b = .35. Then * can be computed to be approximately 2.4.

2.2 Unbounded Accumulation Paths

In this subsection we show that similar conclusions hold also in the presence of per-
sistent growth if the one sector model is retained as a description of the aggregate tech-
nology. More precisely we will prove that, under reasonable hypotheses, equilibria are

locally unique in the following sense: given an initial condition z; there exists at most one
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sequence {z4}52, satisfying (EE) and (T'C) and growing asymptotically at some constant
rate. The latter requirement implies that those models in which the asymptotic growth
rate is not bounded and in which the stock of capital grows infinitely big infinitely fast
are not captured by our analysis. Also excluded from our consideration are cyclic growth
paths, i.e. sequences of capital stocks growing at an oscillatory rate. While they certainly
are a logical possibility we fail to see how a non farfetched example could be built within
the one-sector context.

We remind the reader that the regularity Assumptions 2.1 and 2.2 are maintained
throughout this section and only positive external effects will be considered. Our argument
will proceed along these steps: first we show that (under only the extra assumptions
required to guarantee unbounded accumulation) equilibrium orbits are locally unstable,
thereby preventing nearby equilibria from merging into each other asymptotically. Then we
introduce a set of additional assumptions about the behavior of the utility and production
functions “at infinity”. This allows us to prove there exists a unique constant growth rate
and that the latter is dynamically unstable, thereby implying the existence of at most one

equilibrium path growing asymptotically at a constant rate.

We begin by assuming that unbounded growth at a bounded rate is possible:

Assumption 2.4  The aggregate production function F(z) = f(x,z) satisfies:
(o) liminf, 4 o[F(z) —z] > 0;
(o) liminf, o fi(z,z) > 671

() limgqoo Flz)/z = L < 400.

It is simple to verify that the first two parts of Assumption 2.4 together with strict
concavity of the utility function imply that equilibrium consumption sequences are mono-
tone increasing. This, together with feasibility considerations of the type we already used
in the proof to Theorem 2.1, implies that also the capital stock sequence is monotone in-
creasing along an equilibrium trajectory. Notice also that the third part of Assumption 2.4
effectively bounds the capital growth rate by L and, for z large, it implies F(z) = Lz+g(x)
with lim,_, o g(z)/z = 0.

To see why orbits satisfying (EE) cannot converge to cach other pick any one of them
{z¢}32, and compute the linear approximation to (EE) in a neighborhood of it. The

associated jacobian matrix is time dependent and with some algebra one can check that
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its two real roots, at any regular point of the trajectory {z:}{2,, are given by:

1 !
M = w(ce) u'(ceq1) = Fl(z,)

Then we have:

Proposition 2.3  Under Assumptions 2.1, 2.2 and 2.4 all equilibrium trajectories are
locally unstable at least along one direction. Under the further assumption that the utility
function displays non-decreasing elasticity of substitution in consumption, they are saddle-

points.

Proof: By assumption 2.4 and the hypothesis that the external effect is positive, /\% >1
for all ¢. The first part is then a simple application of well known results from dynamical
system theory (sce e.g. Irwin [1980, page 114]). The sccond part follows from the same

results and the fact that consumption is monotone increasing along equilibrium trajectories
which implies Al < 1 for all t. Q.E.D.

With some additional efforts one can in fact show that the cigenvalue we denoted with
A} is associated to the eigenspace which lies in the direction of the orbit around which the
linearization takes place whereas the second one is transversal to it.

As in the previous subsection our attention concentrates upon those equilibria that
are characterized by Proposition 2.1, i.e. by (EFE) and (T'C). I in (FE) we write x; =
T, Tip1 = MT, Typa = M41A:T, We obtain a parameterized implicit function 8, mapping
the growth rate of capital during time ¢, A; into Ayyq the growth rate in the subsequent
period. In general the map 6, depends on the value of x, the current stock of capital, and
the latter changes in cach period. We are therefore facing a sequence of such maps 6,. On
the other hand we are interested only in the behavior of 8, at “large” values of z. One
then needs to assure that a function 6., = limg_, o #; exists which is well defined from
the interval (0, L] into itself. The analysis of the asymptotic behavior of equilibria then
reduces to the study of the fixed points of such a function and of their dynamic stability
under iteration of 6 itsclf. Under reasonable hypotheses one can see that (apart from L)
only one such fixed point exists, the instability of which is casily verified. The fact that
the only feasible asymptotic growth rate is dynamically unstable is enough to imply local
uniqueness of the equilibrium sequence at least when the capital stock is “large enough”.

In fact, for given g the economy cannot pick z; arbitrarily as this would almost always
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imply a value of Ay that leads either to —oc or to L asymptotically, neither of which is
admissible in equilibrium. By adding this finding to the results contained in proposition
2.3 our conclusions will follow.

We now proceed to introduce our assumptions on the asymtotic behavior of the utility

and production functions.
Assumption 2.5 The private rate of return is aymptotically constant, i.e.
lim fi(z,z)=7> 6!

Tr—oQ

Assumption 2.6 The utility function is such that:

c>c implies

Assumption 2.5 prevents the private rate of return from continuously oscillating be-
tween a lower and an upper bound. This condition is necessary for the existence of a con-
stant growth rate equilibrium. Along such equilibrium the stock of capital and the level of
consumption must be growing at the same constant rate: this follows from assumption 2.4
on the asymptotic linearity of the production function. Assumption 2.6 instcad requires
the utility function to display a non-decreasing elasticity of substitution in consumption
(or, which is the same in this context, non-decreasing relative risk aversion). Uniqueness
of the constant growth rate is mostly a consequence of this condition.

Let us begin by rewriting the Euler Equation as an implicit function of z, Ay, Apyq:
d’(I:Atﬁ At-}-l) = —U,(F(.’E) - )\tCC) + é‘UI(F()\t.'L') — )‘t+l/\t$)fl(/\tma )\tﬂ:) =0 (EE)

Strict concavity of u guarantees the existence of a continuous function 6, : Ry - R
satisfying
Pz, A, 0,(N) =0 (2.1)

for all finite values of z. Next we define the asymptotic functions

T( A, Apg1) = i (2, Ag, Aegr) (2.2)
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and

Ooc(X) = lim 8,()), ic. T(N,0.0(N)) = 0. (2.3)

T— o0

While both ¥ and 8, are well defined limits (finite or infinite), they are not necessarily

continuous under our hypotheses. We must therefore introduce the technical assumption:

Assumption 2.7  The function 0 : £y — R defined in (2.3) is continuous on the

interior of its domain.

Continuity of 8., depends in a complicated form on the properties of the production
and utility functions. It can be derived from a number of different special hypotheses
about the behavior of the two “fundamentals” w and F. We do not see any advantage in
pursuing this more general approach here. Under the set of assumptions we have collected

one can prove the following theorem.

Theorem 2.3  Under Assumptions 2.1, 2.2 and 2.4-2.7 and given an initial condition
there exists a unique equilibriuin path for our economy. Along such path the growth rate
of the capital stock A\¢ = x4/, converges to a constant growth rate A\* = lim._, ., A*(c),

with the latter solving

Proof: Sce Appendix.

The theorem will be now illustrated by means of some examples. We begin with the
simplest one.
1—o

Example 2.3 Let u(c) = (i—_ﬂ, flz, k) = ax+bz®k1 = with a,b > 0, € (0,1). It is

immediate to verify that when 6(a + ab) > 1 all of our assumnptions hold. The asymptotic

function f in this case can be computed directly and is given by:

e(X) = L = [6(a+ b))}/ L ; A (2.4)

The two asymptotic roots are therefore

A1 = [8(a+ ab)]/7;
/\2 = L =a+ b
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In our theoretical treatment we have assumed an equilibrium always exists and purposely
ignored the fact that in certain instances no growth rate can be found that satisfies the

transversality condition (T'C'). Here two different cases are still possible:

Case 1: Ay < A1, then no equilibrium exists that satisfics our hypotheses, because

both growth rates conflict with the transversality condition.

Case 2: A; < Az, then there is a unique equilibrium growth path if the transversality
condition is satisfied. The latter requires §(a + ab)!™7 < 1. In these circumstances it is
casy to verify that the asymptotic map (2.4) is unstable at the fixed point A;.

Consider now the effect that a linear utility function (violating assumption 2.1) has in
an cconomy which is otherwise identical to the previous one. If we set u(c) = ¢, the optimal
individual capital stock z,y; for given (x4, k¢, ky41), needs no longer be interior. The con-
straint z¢y; < ary + bm?k,}_o‘ should therefore be imposed explicitely for all £ = 0,1,2,....

By manipulating the first order conditions for the individual optimization problem one can

derive the optimal accumulation policy of the representative agent:

bé
Tip1 = IDIN {amg + bﬂ??k%_a§ (la_aé) 1_lakt+1}'

Noting that ab6/(1 — ad) > 1 if and only if §(a + ab) > 1 we have three possible cases:

1. 6(a+ ab) < 1; then the equilibrium condition z; = k, imposes z; = 0 for all ¢;

2. 6{a+ab) > 1; then at z, = k; one has z,41 = (a + b}z or z; = (a + b)zy, which
violates the transversality condition and cannot therefore be an equilibrium:

3. 6(a+ ab) = 1; then z441 = min {az; + bm?ktl_a;kt+1}. So any path that satisfies

[0

Tip1 < azy + bxlk;~* and the transversality condition is an equilibrium path. The
transversality condition here is equivalent to lim,_, . é*z; = 0, so any growth rate

A <min {a+ 5,1/} is an equilibrium growth rate.

The next example shows how the sequence of functions @, converges to the map 6

as T — OQ.

Example 2.4 Let the utility function be u(c) = —exp(—c) and take a general pro-

duction function. The Euler Equation (z, A;, A¢41) becomes

exp[—(F(z) — \x)] = exp[—(F(Mezx) — Mdip12)] fL(Aez, Ay (2.5)
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which is clearly not continuous in A when £ — +o0c. Nevertheless one can verify the
following. The (EE) (2.5) can be reduced to

F(JE) —F()\tfﬂ)-f-)\tAt_*_lIE - )ttIL'-f-J»(IE,At) =0 (26)

where k(x, A:) = log(d f1{Ax, Ayx)). Dividing both sides of (2.6) by « and rearranging we

have: FOz)  Fa) K A)
T T (z,
02(A) = Az Ax +1- AT

which satisfies all the general properties derived in the proof to Theorem 2.3 . Taking

limits as £ — oc one finally obtains the asymptotic function 8., which is

L
Osc(Ay=L - —
(A =1L A+1

The unique asymptotic equilibrium growth rate is therefore A* = 1 to which the economy
converges as the stock of capital goes to infinity. Note that the asymptotic Euler Equation
is not verified as an equality here, at least as long as ém > 1 holds. The equilibrium
sequence is one along which capital stock and consumption grow unbounded at an ever

decreasing rate and become constant only “at infinity”.

Finally our last example shows how a violation of assumption 2.6 may come around

and falsify our result.

Example 2.5 Again we need not restrict the production function to any particular
form. Assume the marginal utility of consumption is given by u'(¢) = 1/log{c +1). The
latter docs not satisfy assumption 2.6.

By rearranging the Euler Equation for finite values of = one obtains:

F(Az) [F(z)— Ag]?fi(AeA2)

N == - Az (2.7)

By graphical inspection one can observe that (because of assumnption 2.5) the sequence
of functions implied by (2.7) moves outward as z — oco. Its limit being a discontinuous
function equal to —co for A < L and to 400 for A > L. The growth rate A = L is a fixed
point of such a function but it is not an equilibrium for obvious reasons. Therefore there

is no asymptotic equilibrium satisfying Theorem 2.3



17

3. The Two—Sector Model

In this section we make the assumption that consumption and capital are different
commodities and that as such they might be produced by different combinations of labor
and capital inputs. We will show that this is enough to gencrate robust examples of inde-
terminate equilibria. The first example (subsection 3.1) displays a continuum of equilibria
converging to a stationary state, whereas the seccond (subsection 3.2) has a continuum of
equilibria growing at a common asymptotic growth rate. For this second economy we also
point out that at certain parameter values there exists a continuum of equilibria converging
(in growth rates) to a chaotic attractor. A detailed study of this more complicated case
can be found in Boldrin [1992].

We retain here the market and demographic structures of the economies studied in
Section 2. There is a continuum of consumers 4 € [0, 1] and two continua of firms j € [0, 1],
one for each sector. Within each sector firms are identical and each consumer owns the
same initial amount Ay of capital stock and supplies a fixed unitary amount of labor in
each period. Capital can be freely shifted from one sector to the other at the beginning of
cach production period. There is an external effect in production, which may affect cither
one or both production processes.

Such external effect comes from the aggregate stock of capital and can be given any
of the many interpretations found in the recent literature. We do not believe this is the
place for us to argue in favor or against the empirical relevance of these different sources
of externalities. Their implications are not yet well understood and their ‘measurcment’ is
far from being accomplished. We only would like to stress that the state variable “capital
stock” in this context can be interpreted either as physical or as human capital.

An obvious modification of definition 2.1 provides the appropriate notion of Compet-
itive Equilibrium to be used in what follows.

Let the production function of a typical firm in either sector be denoted as F*(xi, £, ky ),
with 7 = 1 for consumption and 7 = 2 for investment. We assume that, given the aggregate
stock of capital k;, both Fi(-,. k)’s satisfy Assumption 2.2. Assuming that markets are
fully competitive in every other respect one can define the Production Possibility Frontier

(PPF) faced by a representative individual as:
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T(mt,$t+1, kg) = max Fl (IE%,Z%, kt)

z},f}
. 2¢,.2 22 1.
s.to: xep1 < Fo(xy, € ke) + (1 — )z,
:1:% +$f < Ty
0407 <1,

where =, denotes the private and %y the aggregate stock of capital. The parameter p € [0, 1]
is the capital depreciation factor and one is the total amount of labor available to an
individual in each period.

Now denote with u(c) the representative individual utility function and with V(z,z’, k)
the composition u(T(z,z’, k)). Then, as in the one sector model above, interior equilibria
can be characterized by means of a variational equation (EE') and a transversality condition

(T'C). In the notation just introduced they are:

Vo(T, Tog1. @) + OVI(Tog1, Tega, Teg1) = 0 (EE)
and
tlim St Vi(ze 2ip1,2¢) =0 (TC)

respectively. The proof of this statement is omitted and we proceed to study (EF) and

(T'C) directly. For more details on the mechanics of the two scetor model the reader is
referred to Boldrin [1989).

3.1 Bounded Accumulation Paths

Before producing the analytical example we should illustrate our intuition by means

of the general model.

Lincarization of (EE) around a steady state x* gives the characteristic equation

v,
/\2+A{V22+ ”+V”}+{1+V23}=0 (3.1)

(SV21 V21 6 6V12

where it should be understood that the functions V;;,4,7 = 1,2,3 arc evaluated at the
steady state. Our contention is that there exists an admissible set of parameter values
at which both roots of (3.1) are inside the unit circle. In such circumstances equilibria
are indeterminate. as xp near z* implies that for all z; in an e-ball around zy the path

(zg,21,...) is an equilibrium converging to z*.



19

Once again the necessary and sufficient conditions for both roots of a quadratic equa-

tion of the type A2 + a; A + ay = 0 to be inside the unit circle arc:
(1—a2)>0; (14a +a)>0; (1—aj+az)>0.

For equation (3.1) they translate into:

I+ <1

V12
Vi
14 7+ Ypdaz 4 Yk 5 o (3.2)
1 | Vog—Vaa  Vi14+Vig
1 + 'S + 6V21 - ’5V21 > O.

A careful examination of (3.2) shows that, contrary to the one-sector model, there
exists economic conditions under which the three inequalities are simultancously satisfied.
In fact if V2 and Vi3 have opposite signs the first condition can be obtained. Of the other
two, only one is really binding: if 0 < a; < 1, then a; > 0 implies the second inequality in
(3.2) is always satisfied, whereas a3 < 0 implies that the third is automatically satisfied.
Notice also that whatever sign a; may have, its magnitude can be made quite small by
forcing V11 and Vi3 to cancel cach other.

More intuitively our economy has to display these three properties.

1. A steady state value such that the consumption scctor has a higher capital-labor
ratio than the investment sector (Th; < 0) and a relatively inelastic marginal utility

of consumption (Vig = uw'Tis + u"ToTy < 0).

2. A positive externality that also reduces the cost (in utils) of producing additional

capital stock (Vo3 = w/'Ty3 + v/'ToT3 > 0).

3. An external effect that increases the marginal value of the current stock of capital

together with a moderately concave utility function (Vi3 = w'T13 + w1173 > 0).

Neither of these conditions appear cconomically unreasonable nor they are very diffi-
cult to formalize. The example we provide next is just the simplest we could come up with.
Others, more “realistic” ones can be derived from more claborated and better specified
two—sector economies.

To simplify matters we begin by choosing a linear utility function u(c) = ¢, so that
Viz,z', k) = T(x,z', k). In light of the second part of example 2.3 above it is worth
stressing that the same results would carry through with, say, a CES utility function.
Only the algebra would be messier. The output of the consumption good is given by

¢ = (1) (z')' =™ and output of the investment good is given by y = min{¢?, z?/~}, with
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a,y € (0,1). The aggregate stock of capital & has also the effect of increasing the efficiency
level of the otherwise exogenous unitary labour supply. In other words the external effect
is assumed to be observationally equivalent to labour-augmenting technological progress.
Denoting with 4; the total number of efficiency units of labor at time ¢ we represent
the externality as £, = k7. The allocational constraint is then £} + ¢2 < ¢,, for cach
t. To simplify further we will also assume istantaneous depreciation. The PPF for the

representative agent is then given by:
T(z,z' k) = (k" — 2)*(z — y2')' 7.

Equilibria arc those sequences {z,}72, that, given a sequence {k;}32, solve the para-

metric programming problem
oo
maxZ(St(k;' —(Et+1)a(ﬂlt — ’)/It+1)1_a (33)
t=0

z
subject to: 0 < zypq < min{k?, —t}
Y

and that also satisfy z; = k; for allt =0,1,2,....
The unique interior steady state solution to (3.3) is computed by solving the equation
To(x™, ™, %) + 8Ty (z*, z*, z*) = 0, which gives:
1

x.:{ (0-71-a) }m
(=71 -a)+a(l -9)

Some tedious but nevertheless straightforward algebra will now prove the following

theorem.

Theorem 3.1 There exists an open sct of values in the parameter space («, 8,7, ), such
that the equilibria of the growth model (3.3) are indeterminate.

Proof: In light of the previous discussion it suffices to show the existence of some combi-
nations of parameters at which the inequalities (3.2) are satisficd. The constants a; and

az can be computed as:
oy 1oty

ay; = ; + p— )
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where:
(z)71 -1
1—7

It is then a simple numerical matter to verify that, for example, in a neighborhood of the

z =

parameter values « = .5, § = .5, n =.5 and y = .2, the inequalities (3.2} are all satisfied.

The statement then follows from the continuity of the functions in (3.2). Q.E.D.

We like to stress that this is not meant to be a realistic model. The point of our
exercises is simply that of pointing out the extreme qualitative difference between the
one-sector and the two-sector formulation and the fact that indeterminate equilibria are

pervasive in the latter.

3.2 Unbounded Accumulation Paths

As mentioned in the introduction indeterminacy is also possible for the two-sector
model in the presence of endogenous growth. Again we will be satisfied with making our
point by means of a very simple, almost trivial, example.

In order to better llustrate the equilibrium behavior in the presence of externali-
tics we will begin this subsection with a brief analysis of the standard case. Once again
there are two goods: a consumption good produced with a Cobb-Douglas technology
c = (z")*(£M)!7=, and an investment good produced with a lincar one, i = bz?. The
aggregate capital stock z, induces the constraint z; > z! + 22, and evolves according to
the law of motion ;41 = (1 — p)z, + 4. Also in this case we will introduce a few innocuous
simplifications: the utility function will be chosen to be lincar and the exogenous labor
supply £ will be set equal to onc in every period.

One can write the PPF as T'(z,z') = (yz — az”)*. with y = 1 + (1 — p)/b > 1, and
a = 1/b. The Euler Equation associated to this simple optimization problem can be easily
manipulated to yeld a one dimensional map from current to future growth rates of the

stock of capital:

1

Ap1 = T(A) = 0+ (60)7% — 6(60) T AL (3.4)

where § = b+ (1 — 1) > 1 is necessary to make persistent growth feasible. The function 7

has two fixed points,

Ay =6, and Ay = (66)75.
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The first root, A; = #, should be ruled out as a possible equilibrium with constant
growth as consumption is forever zero along such an accumulation path. For the second
root to be an equilibrium we need to verify that the transversality condition is satisfied.
At Az, (TC) requires §6™ < 1. The latter inequality also guarantees that Az < Ay and
that A, is an unstable fixed point of 7.

As we should have expected, in an optimal growth model without any external effect
if an equilibrium exists it is also determinate.

We shall now proceed to modify this model by appending an external effect to the
production function of the consumption good. Set ¢ = k7(z!)*. Then the PPF faced by a

representative consumer-producer becomes:
— 1. «
¢y = K (v, — azeyq) (3.5)

where, as usual, k; denotes the aggregate capital stock which is treated parametrically by

the representative agent. Given a {k,}32, equilibria are sequences {z;}2, solving

max Z kJ(yry — azypp)6? (3.6)
t=0

subject to: 0 < w441 < bzy.

and satisfying =, = k; for all t.
As in our previous treatment of the one-sector model we will restrict ourselves to the

study of sequences with bounded growth rate. In this example it is always true that:

T

lim sup
t—oo It

Furthermore the functional forms have been chosen to guarantce that the Euler Equa-
tion associated to (3.6) can be written in the form ¥(z, A¢, A{11) and that by simple ma-
nipulation a map 7(A;) = A1 can be derived that satisfies ¥(z, A, 7()\)) independently of

z. The latter is:

Mep1 =7(A) =6 — (60)== A0(0 - A) (3.7)

where 3 = -C-'li_’aLl Given an initial condition Ag > 0 every uniformly bounded trajectory
of the dynamical system 7 is candidate to be an equilibrium. In order to be one it has

also to satisfy the appropriate transversality condition. Among the bounded trajectories
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a special role is played by the fixed points and the closed orbits of 7 and our analysis will
concentrate on them. Nevertheless, as we will briefly point out later, there are other more
complicated orbits of 7 that also satisfy (3.8) and therefore are equilibria. Some of them
can be chaotic.

Along a balanced growth path with constant growth rate equal to A the transversality
condition reads as:

tlim a8tz vz, — axyq)* "t = tlim const - (§A*TME =0 (3.8)
— 00 — 00

To prove our claim we only need to show that there exists a fixed point of 7 that satisfy
(3.8) and is asymptotically stable for the dynamics A,y = 7(A;). This is spelled out in our
last theorem. More generally, though, indeterminacy can also arise in the following more
complicated fashion : there exists a subset A C [0, 8], which is an attractor for Ay = 7(A)
and which contains a more than countable number of points. As the analysis of this case
would lead us astray we prefer to bypass it here. We refer the reader to Boldrin [1982] for

a more detailed study.

Theorem 3.2 In the model of growth with externalitics described by the programming

problem (3.6) equilibria are indeterminate when the following restrictions are satisfied.

e a+7n>1,
. 69<1<58°’+’7,
. )\2>0—1/,8.

Then Xy = (69)“-;—'1) is the only constant growth rate that satisfies the transversality
condition. It is also asymptotically stable under iterations of (3.7).

Proof: See Appendix.

The form of indeterminacy described in our theorem is the familiar one in which for a
given initial condition xy there exist an open interval of values of z1 that are all consistent
with equilibrium. These distinct trajectories grow asymptotically at a common rate Aq but
need not converge to each other, i.e. they typically grow “parallel” forever. It is difficult to
say if the parameter values at which this phenomenon occurs may be considered “realistic”
or otherwise, mainly because the model we are using is rather simplified. To get an idea
of the range of values we are considering let us play the parameterization game one more
time. Choose a depreciation rate of about 10% and a capital/output ratio around 3.4 in

the investment sector to obtain a value of 4 equal to 1.2. With a relatively low discount
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factor, say 6 = .80 one needs a = .5, n = 1. to bring A2 around the “credible” value of 1.08.
Then, as it can be easily verified, also the stability condition is satisfied and equilibria are
indeed indeterminate. Everything clearly relies on the magnitude of the externalities and
on their pervasivencss: a matter about which very little empirical evidence is available.

The indeterminate and chaotic equilibria we mentioned above arise at about thie same
parameter values when Ay < 8 —1/5. 7 is then a non-monotone mapping of the interval
[0, 8] into itsclf for which both stationary states A; and A; are dynamically unstable.

One final comment on the interpretation to be given to the last theorem and to the
case of “chaotic indeterminacy” we just outlined. According to this model two countries
that start from the same initial stock and follow different equilibria from then on will
display a common average growth rate in the long run and, while their capital stocks
may persistently be different, (because different values of z; were chosen) we should not
observe them growing apart in their relative conditions. In other words models of the
type discussed here can account for the fact that certain countries never catch-up with
the leader and for the fact that growth rates may be out of phase. On the other hand
they cannot account for the fact that countries that started in almost similar conditions
have been growing very differently, some of them reaching full economic development while
other remained at the underdevelopment level. To explain “poverty traps” we have to look
somewhere else, most probably to the positive interactions between the accumulation of

human and physical capital stocks.
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4. Conclusions

We have studied the determinacy of competitive equilibrium in infinite horizon models
of capital accumulation with productive externalities.

In the standard one-sector model we have proved that equilibria converging to a steady
state are always locally unique and that unbounded equilibria converging to a stationary
growth rate are also locally unique under reasonably mild conditions. In such models
indeterminacy may still arise around cyclic paths (which we have proved to be possible)
but it scems quite difficult to obtain without substantially complicating the model.

The presence of endogenous oscillations is of interest by itself. It underlies the fact
that external effects in production and the market incompleteness they imply may be useful
in explaining the self-sustaining nature of the business cycles. The example we provide is
not meant to be taken seriously: it is simply meant to remind that endogenous oscillations
obtain at much more realistic parameter values once the complete markets assumptions is
dropped. The relevance of this fact for business cycle theory should be investigated in the
future.

We have also addressed the problem of indeterminacy within the context of a two-
sector growth model again in the presence of an aggregate externality. In this case inde-
terminacy of equilibrium seems to be always possible and indeed appears quite easily even
in the simplest model. For very standard functional forms of the utility and production
functions and for parameter values that appear altogether not unreasonable there exists
a continunm of distinct equilibria departing from a common initial stock of capital and
cither converging to the same steady state or growing asymptotically at a common rate.

The practical implications of these results cannot be fully evaluated given the sim-
plified models adopted here. Further research along these lines should clarify if the phe-
nomenon we have pointed out is robust with regards to a number of empirically relevant
perturbations of the stylized models we have studied here. From the point of view of
the theory of economic development an important extension is to models with more than
one stock of capital (physical and human) and to models of technological change and /or
industrialization. From the point of view of business cycle theory one would be curious as
to what implications an endogenous labor supply and more realistic production functions
would have on the model’s dynamics. From a general perspective it seems that the study of
multiscctor growth models with external effects is a promising avenue for the long overdue

reconciliation between the theory of economic growth and the theory of the business cycle.
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Appendix

Proof of Proposition 2.1 The proof is standard and will only be sketched here. Interiority of
{ze}52, together with the (strict) concavity of P(¢) and P(j) for given {p;, 7, k¢ } 52, imply
that the unique solution to each maximization problem is characterized by the following

necessary and sufficient conditions:

6tu,(ct) = Apta A > 07
Yoo Pt = E;’ZO Tt + GoTo,
limy_, o pscy = 0.

for P(z) and,

pof1(zo, ko) = qo,

pef1(xe, ke) = p—1,

limy— oo przy = 0.
for P(j). Now set ky = x for all t and assume (EE) and (T'C) arc satisfied. By substitution
one verifies that ¢; = f(zy, z4) — 7441 satisfies a) and that z, satisfies b) of definition 2.1.
As c) is satisfied by construction the candidate sequence is an equilibrium. The only if

part can be obtained similarly by manipulating the necessary conditions given above to

show that (EE) and (T'C) are satisfied. Q.E.D.

Proof of Proposition 2.2 Equilibrium paths are nonnegative by construction. If zg > 7,
Ty < ¢ forall t > 1, and if o < ¥ then z, <7 for all t. A stationary equilibrium point
z* € (0,T) exists if, setting ¢* = f(z*,z*), the two conditions (EFE) and (T'C) are satisficd
by the pair z*,¢*. This is casily verified. Q.E.D.

Proof of Theorem 2.1 A monotone equilibrium satisfies either 441 > 24 or x4y < x4 for
all t. It will therefore converge to some z* because of Proposition 2.2. Local uniqueness
follows if all values of z* that solve fi(z,z) = §7! are cither saddle points or sources
for the dynamical system induced by (EE) on [0.%] x [0.%]. This can be verified by
linearizing (EE) around a stationary point and computing the associated cigenvalues.
They are the two roots of a quadratic polynomial of the type: A2 + a1\ + a; = 0, with
a; = —(L+ F' 4+ of;/f1), and a; = F', where all functions are evaluated at z* and the
symbols F' = fi + fa, fi = fu1 + fi2, 0 = 4'/u” have been introduced. Then z* is a
sink if both roots are less than one in modulus. This requires, among other things, that
ay < 1. But: ag = fi + fo =61 >1at z*. Q.E.D.
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Proof of Theorem 2.2 First notice that z* € (0,Z). We need only to prove that all
equilibria are monotone. The rest follows from Theorem 2.1. We will articulate the proof

in a lemmata.

Lemma 1. If z; < z*, then ¢; > ¢;—1 and if z; > z* then ¢; < ¢;—q, (strict inequality
in z implies strict incquality in ¢).

Proof: Ifz¢ < z*,6 fi(zy, ;) > 1 will hold, which implies v/ (¢;—1) /' (¢t} = 6 f1(zy, T2)

v

1 and so ¢; > ¢;—1 because u is concave. Similarly when z; > z*.

Lemma 2. If z; < z* then z441 > 4.
Proof: Lemma 1 implies already ¢; > ¢,—;. Assume that z;4; < z¢. Then (EF)

implies:
u'(ce 1) _ u'(ce) fr(ze, z¢)
u'(ee)  w(ewr1) fi(Tedr, Teg1)

> 1 (%)

We will show that a contradiction with (*) arises. To do this, notice first that z¢y1 < 74
unplics ¢, < ¢p. In fact, if ¢441 > ¢p and xeqy < 2 < 2%, then 2440 = F(T441) — ci41 <
F(z;) — ¢ = 2441 and so z442 < z*, which implies (by Lemma 1) that ¢, > Ct41-
This in turn gives 443 = F(zy42) < F(2441) — ce41 = T442. By iteration the sequence
{Teg:}$2 satisfies 44 < 24q;-1 < z* for all 7 > 1 and the sequence {4}, satisfies
Ciyi = Cepi—1 > 0 forall i > 1. Let z < % = limj,o T14; and € = lim;_,, ¢t¢;. Then
¢ > 0, and € is finite because £ < z* implies f(z,z) is bounded. Hence, v'(¢) € (0, 00) and
Sfi(z,z) =1 has to hold, which contradicts & < z*. So z44; < 7, implics csp1 < ¢

Now rccall that is non-increasing and u’ is decreasing, then z,41 < z, implies:
1 +1

w'(ce) frlze, o) < u'(ee) fi(@eg1, Teg1) < W{cep1) frlTosn, Tog),

which contradicts (*). Therefore, z; < =* implies z,41 > z,.
; P +

Lemma 3. If 2, < z* then z, < x447 < z*.

Proof: Only the part z,4; < z* needs to be proved. Again, pretend z447 > z*. Then
(by Lemma 1) ciq1 < ¢¢ will hold and 449 = F(z441) — ¢441 > F(z¢) — ¢y = 7441 and, as
in Lemma 2, iterations will give two sequences, {$t+i,ct+i}§’§0 with 441 > T4 > z*
and ¢y < ¢iq4—1. Once again set Hm oo 2oy = T > z* and lim; oo €45 = . If ¢ > 0,
then v'(¢) is finite and 6f1(Z,Z) = 1 has to hold, which contradicts T > z*. If ¢ = 0
and u'(c) is not finite then, for 7 large enough, f1(z44i, 14:) < v < 1 must hold. Hence:

w(ciriv1) = [0fi{Zeqit1, Tegig1)] T (cepi) > (87) 7/ (ceqs), which implies: u'(ciqs) >
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(67)~*u (for some constant u and ¢ large). The latter gives: limy_ oo @4 f1(xs, T4 )60/ (i) >

im0 e f1(Te, e ){7) fu = +o00. This contradicts (T'C') and proves the Lemma.

Lemma 4. If z; > z* then z; > 244y > z*.
Proof: One needs only to replicate the proofs to lemmata 1-3, with the appropri-
ate changes in the inequalitics. Now lemmata 3 and 4, together with theorem 2.1 are

equivalente to the statement of theorem 2.2. Q.E.D.

Proof of Theorem 2.3 Begin by noticing that Proposition 2.3 together with monotonicity
of the accumulation paths leaves only the following two possible scenarios under which
equilibria are not unique:
1) Given zg there exists a nontrivial set of values for z; giving origin to orbits that are
parallel to each other from a certain period onward.
2) Given xg there exists a nontrivial set of values for z; giving origin to distinct orbits,
l.e. to orbits that have different asymptotic behavior.
Case 2) will be ruled out by proving that there exists a unique constant growth rate.
We will also show that the latter is unstable (under iterations of the map #.,) which rules
out case 1). In fact stricy concavity of u implies that the functions 8, and 6. are never
constant. Hence equilibria cannot become parallel “in one period™ but they can do so only
asymptotically. This requires convergence to the unique growth rate A\* that we will show
instead to be dynamically unstable.
Begin by using the continuity of u’ to write the Euler Equation (at large enough values

of z) as

—u'[(L — XN)z] + ' [(L — 8, (X)) Az]é7 = 0 (EE;)

Notice further that the fixed points of 6, that are balanced growth equilibria are solutions

to:
u'(c)
u'(Ac)

=ém (EEg)

that satisfy the (T'C) condition. Due to the strict concavity of u the latter has a unique
solution A*(c) for every given ¢ (or equivalently z). Inspection of (EE;) and use of the
implicit function theorem also shows that for large enough values of z the functions 6,
satisfy the following properties:

a) 6, is monotone increasing;

b) z >z’ implies 8,(X) > 6,/ (X);
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¢) Oz(\) =N, for i =1,2, and Ay > )y imply that 6_(A) < 8, (A2);
d) 8.(1)<1,and 6,(L) < L.
Applying the implicit function theorem to (EFE;) finally proves that:
f) if A*(¢) solves (EE5) and ¢ > ¢ then A*(c) < A*(¢').
Property a) follows from strict concavity of the utility function while properties b),
c), d) and f) follow from the assumption that u displays non—decreasing elasticity of sub-
stitution. All together they imply that for large values of z the function 8, is as depicted
in figure 1. More precisely 8, has two interior fixed points, 1 < Aq(z) < A2(z) < L, the
smallest of which is also the unique solution to (E'E2), i.e. Ai(z) = A*(c), ¢ = (L — X\ )z,
(this last fact being a consequence of b) and f) together). Clearly Ay(z) is unstable and
Az(z) stable under iteration of 4,.
Assumption 2.7 then implies that the fixed points of 8. are the (uniform) limits (in
the interval [1, L]) of the fixed points of the sequence of functions §,. The balanced growth

equilibrium is then given by the unique limit A* > 1 of the sequence A(z) (A*(c)) as
z— 0 {c— o). Q.E.D.

Proof of Theorem 3.2 Derivation of (3.7) from (E'E) is a simple matter of algebra. Similarly
it is straightforward to verify that when a+ 7 =1 the function 7 has only one fixed point
cqual to 8. When « + 1 # 1,7 has the two fixed points A\; = 8, A\ = (60)m. The
transversality condition reduces to §At" < 1. The case a + 7 < 1 is similar to the model
without externality. It is casy to see that the root As is the unique equilibrium and that
it is unstable.

The case a + 7 > 1 requires a flew extra computations. Here 8 > 0, so that 7(0) =
6 >1, 7(6) =6, and 7 ()\) = (66) Y (1 - B0 - /\)) This implies, in particular that
7'(A1) > 0 whereas 7'(A2) may be of either sign. The condition §8°*7 > 1 guarantees at
once that Ay > Ay, and that A, satisfies the trasversality condition. To check that Ay is
stable one has only to notice that 7 has a minimum at A* = # — 1/8 and that our last

condition is equivalent to A* < Ay, Q.E.D.
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Figure 1:

Shape of the Asymptotic Map




