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ABSTRACT

A strengthened modified Dantzig cut may be derived from the
strengthened mixed integer cut for the all integer program [7]. Thisg
cut has the form: E:tj > N where tj is a nonbasic variable in the
current basis and N is an integer > 1. A cut selection rule based
on the properties of this cut has been introduced and tested.

The summary of computational experience indicate a good potential

of this approach.



I. Introduction

This paper introduces a cutting plane method for solving the
all integer program. The cut has the form: Z:tj > N where tj is
a nonbasic variable variable whose coefficient in the current op-
timum is not an integer and N is an integer number > 1. This
cut is always deeper or equal to the modified Dantzig cut and,
therefore, an algorithm employing this cut must converge in a
finite number of steps [1]. This cut is derived from the strengthened
mixed integer cut of the all integer program nevertheless, it is

less sensitive to rounding errors, and its slack variable is an

integer; factors which make it attractive computationally.
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IT. Derivation of the Strengthened Gomory Mixed Integer Cut of
the All Integer Program

Consider the following L.P. problem

max ZC X
j

S.t. z:Bljxj : = By
J
xj, ti = 1nteger

The optimum solution to the problem has the following form:

_ ) Ay

(1) %3 = Bio + ) Biktin 7 L Biktik”
. k kl
where: X is a basic variable

t. is a nonbasic variable
BiO is the value of the basic wvariable x; at the current
optimum solution
k 1is the set of all negative coefficients of the

nonbasic variables tik

k’ is the set of all positive coefficients of the

nonbasic variables tik'

Bik is the coefficient of the nonbasic variables tik
Bik' is the coefficient of the nonbasic variable tikl
(%55 tix» Bjo» Bik» Bjir 2 0)-

-

Dividing the set k into two sets Q and R, and dividing the k'’ sets ~

into two sets Q’ and R’, (1) is extended to:
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(2) X; = Bjp t 2 Bigtiq T g BirtiR - Z Biq'tiq’ - Z BirtiRr~
L. Q Q' R'

The assignment of a variable t; e k to either Q or R, or the assign-

ment of a variable t: e k'’ to either Q' or R’ is arbitrary. (2)

may be extended to the following form:

(3) x; = (Bjpl + byg + ) [B;qltiq * zbiQtiQ +) ([Bpl + Digg
Q Q R

- ) (L - bypdtp - ) [Biq ltiqr - ZbiQ tiq"
R Q' Q'

- Z ([Byjgrd + Dtyps + ) (L= biptip
R’ R’

where: [Bio], [BiQ], [BiQ’]’ [BiR]’ [BiR,] are the integer part of

B:g> BiQ’ BiQ" BiR’ BiR” respectively, and biO’ biQ’ biQ"

biR’ biR' are the fractional part of BiO’ BiQ’ BiQ" BiR’ BiR”
respectively. (biO’ biQ’ bin, b.gs bipr 2 0)

From the integrality requirement on all xi's and ti's it fol-

lows that:

(4) bio * zbiqtiq - ) (L= bipdtip - ) biq g’
Q R Q'

+ Z (1 - bipdtipe
Rl

is an integer which must be either 2 1l or < 0.

If (4) is 2 1 then:
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(4a) bio + ZbiQtiQ + z (1 - bpNtps -1
Q R’ '

must be true.

If (4) is < 0 then:

L

(4b) big - ) (1= b p)tin = ) bigrtigr S O
R ' !

must be true.

The equivalent convexity cut form of (4a) is:

b. 1 b b. ’
i iR
(4¢) Z T -5, tiq +Z T-%,, tire 2 L
Q R’

The equivalent convexity cut form of (4b) is:

1 -0, b, ..
R iQ
“a ) gt ) B figrz b
R Q’ 1

At least one of the (4c) or (4d) must be true for (4) to be true,

and since by definition (4c) and (4d) are > 0 we have:

b
(5) L TEp €
Q

1 - b b.

i 4
T ®R*) b tig”
QI 10

+
FU\/]

- b. 14
+) TTE g 21
RI ]._0

which is the strengthened mixed integer cut of the all integer program [7].
We may now summarize the derivation of the strengthened cut.
1. Solve the L. P. by ignoring the integrality requirements.

2. Derive a Gomory cut in the convexity cut form: z (1/t§)tj >1
i |
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where: t*

s . ?
bo/bj for all j in R

J
* ..
ty = bO/(l - bj? for all j in k.

3. 1If there is any t? < 1 replace it by its complement. For example:

if bo/bj < 1 replace it by (1 - bo)/(l - bj) > 1
if by/(1 - bj) < 1 replace it by (1 - bo)/bj > 1.

4., The new cut is Eﬁ(l/t?)tj > 1 where t? > 1.

J

I1T. The Strengthened Modified Dantzig Cut

One significant disadvantage of the strengthened Gomory mixed
integer cut of the all integer program is the fact that the new
slack variable is not necessarily an integer. After the first cut
is employed, the original problem becomes a mixed integer problem
a fact which may cause a slow convergence if relatively many cuts
are needed for solving the problem. It is possible, though, to
use (5) for the derivation of a cut, the slack variable of which
is an integer and, nevertheless, is deeper or equal to the modified
Dantzig cut.

Consider the cut

(1/tj)tj >1 (t.

1
(t5 2 1)

w1

min t; if min t¥ is an integer
J j ]
Define N =
min [t;] + 1 if min tj is not an integer
j .

Then the following cut is a valid cut:

(6) )ty 2 N
j



Proof:

(7) Let min t: =t
3 J

then the cut E:(l/t§)tj > 1 may be written as
3

n

*, % x®

(8) tp + .zz(tl/tj)tj > t3
J=

% % . . .
Since tl/tj < 1 and every tj is an integer, the solution to the problem:

in )
(9) min Lth
j
n
%, % %*
(10) s.t. ty + z (tl/tj)tj >ty
j=2
tj is an integer
n
. _ % %, % _
is: t; = tq, Z(tl/tj)tj = 0
j=2

if t; is not an integer then ty = [tf] + 1 is the solution to the
above problem.

When min t? is an integer (5) is deeper than or equal to (6)
when min t; is not an integer (6) is deeper than (5) at least along
one dimension. |

The main properties of the strengthened modified Dantzig cut
are: »
1. The slack variable of the cut is an integer.

2., No fractional variables are used and therefore the danger of

~rounding the errors is reduced significantly; a property which

proves to be attractive computationally.



IV. Cut Selection Rule

Consider the following strengthened modified Dantzig cut:

E:tj > N. The larger N the deepter the cut.

J . * . * .
min tj if tj is an integer.

N =

min [t?] + 1 if t? is not an integer

Among several alterm tives select the one which maximizes
N and use it as the source row for deriving the cut E:tj > N.
Notice that the cut selection rule in this algorithm almost
always guarantees the selection of the best cut among several

alternatives. This factor by itself may cause a relatively fast

convergence.



V. Strengthening the Strengthened Modified Dantzig Cut

It is possible to strengthen (6) by using the properties of
the strengthened mixed integer cut of the all integer program with-
out violating the integrality property of the new slack variable
and the coefficients of the nonbasic variables. 1In deriving (5)
we used two alternative conditions (4c) and (4d) at least one of
which must have been true for (5) to be true. An alternative
presentation of (4c) and (4d) is:
(4ca) % (l/tj) tj =1

(4da) ? (1/t;?‘) £ = L.

By the same reasoning used for (6) we define

/ * %
min t, 1f t. is an integer
c J
N =
. * . * .
min [tj] + 1 1if tj is not an integer
c
% %
“min t, if t., is an integer
d 3 ]
M =

* *
min [tj] + 1 if tj is not an integer.
d

Then we replace (4ca) and (4da) by (4cb) and (4db), respectively,

(4eb) T t, = N
c J
(4db) = tj > M

and the cut becomes:



(7) M -2 t,+NZ t. 2N . M.
c J d J

If N # M then (7) is deeper than (6).

Since M and N are integers the new slack variable is an integer

and the original constraints set remains all integer.
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VI. Computational Experience with the Strengthened Modified Dantzig Cut

Computational experience with cutting plane algorithms for in-
teger programs do not, in general, yield a reliable solution. Many
times they fail to converge in a reasonable number of steps and other
times they cut off integer points which might have been otherwise
candidates for an optimum solution of the optimization problem. Ex-
periments with the Strengthened Gomory Mixed Integer Cut of the All
Integer Program [7] proved the point just made. The main reasons for
those difficulties lie in the high sensitivity for machine rounding
errors which is built into most of the cutting plane algorithms.

Cuts derived by the Strengthened Mixed Integer are based on the
numerical fractions of the tableau coefficients which are already
subjected to some previous rounding errors in their fractional part.
The relatively good results obtained by employing this type of an
algorithm were due to the fact that the truncating parameters (ep-
silon) were changed from one test problem to another so as to yield

a minimum rounding error effect. At times when the truncating param
meters were not modified from one test problem to another, the program
failed to converge or yielded a solution different from the real op-
timum. The Strengthened Modified Dantzig cut algorithm has been, on
the average, slower to converge than the Strengthened Mixed Integer
Cut, but, nevertheless, it has been significantly more reliable and
less sensitive to machine rounding errors; a fact which is caused, main-
ly, by the integer rather then fractional, coefficients of the addi-~

tional constraint.
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The problems used for testing pruposes are those developed and
reported by J. Haldi [5] to test the LIP1l computer code. Further
comparisons were made with respect to Trauth and Woolsey's study in
computational efficiency [9] who tested theALIPl, IPM3, and ILP2-1
codes. The results are presented in tables I and II and are self
explanatory. All times were computed from the first executed instruc-
tion of the program to the end of the minimum output needed to inter-
pret the results. All times are given in seconds. The word "iteration"

refers to a single matrix pivot operation. All programs were run on

the CDC 6400 computer.

The first ten problems in the computational summary tables are
Haldi's fixed charge problems. They are followed by IBM integer pro-
gramming test problems also in [5]. The results are summarized in the

following tables:

Table I
Fixed Charge Problems

* Code MD SGV?2 LIPL IPM-3 TLP2-1
Problem Time Itr. Time Itr. T:ra Itr. Time Itr. Time Itr.
1 1.979 37 1.902 20| 1.833 24 3.117 5410.852 36
2 2.508 52 1.401 131 1.350 15 3.767 81{0.935 47
3 1.996 31 1.430 14| 1.883 26 3.033 3711.384 104
4 1.001 10 0.966 6] 1.483 18 4.100 9110.674 18
5 3.765 48 2.414 16 | 9.012 158 +7000 +7000
6 3.708 45 2.819 24 1 7.507 123 +7000]3.273 311
7 3.401 46 2.497 16 | 7 833 159 +7000 +7000
8 3.322 45 2.310 14| 6.417 126 +7000} 3.033 306
9 1.917 15 1.282 91 3.233 42 5.183 11813.598 298
10 8.670 86 +5000 | 9.150 102 [71.100 1396 +7000

* MD is the Strengthened Modified Dantzig Cut
SGV2 is the Strengthened Gomory Mixed Integer Cut - Version 2 [7]
LIP1, IPM-3, ILP2-1 are codes tested by Trauth and Woolsey [9]
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Table II
Haldi's IBM Problems

Code MD SGV?2 LIP1 IPM-3 ILP2-1
>roblem Time Itr. Time | Itr. Time Itr. Time Itr. Time Itr.
1 2.005 12 1.512 8 1.866 11 2.300 8 1.010 9
2 2.623 25 2.785 23 3.016 32 2.833 17 1.056 13
3 2.300 41 2.617 41 2.866 53 2.633 22 0.705 23
4 12.988 85 8.882 40 11.666 73 5.933 24 3.492 41
5 81.650 402 { 31,5661 149 66.483 351 51.600 ! 1144 +7000
9 302.795 683 [357.002 | 841 473.100 953 |633.313 | 6758 +7000

VII. Conclusions

While SGV2 was the fastest algorithm in most of these test problems

it suffered from high sensitivity to machine rounding errors, therefore,

every problem was solved several times with different truncating para-

meters until a solution was reached.

MD, on the other hand, was slower

but its reliability was proved to be of importance.

test problems and never failed to converge.

It solved all the
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