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Abstract

The paper provides an axiomatization of linear inequality measures as a
representation of a binary relation on the subspace of income profiles having
the same total income. Interpreting the binary relation as a preference (of,
say, a policymaker), we extend the axioms to the whole space of income
profiles, and find that they characterize linear social evaluation functions.

The axlomatiziation seems to suggest that a policymaker who has a linear
measure of inequality on a subspace should have a linear evaluation on the
whole space,

In particular, we find that an extension of the preferences reflected in
the Gini index to the whole space is represented by a linear combination of

total income and the Gini index.



1. Introduction

The paper provides an axiomatization of linear evaluation functions! as
a representation of a binary relation on profiles of incomes. In particular,
the Gini index is obtained by a natural strengthening of the main axiom. The
paper is closely related to the work on the measurement of inequality but the
interpretation of the binary relation on the income profiles is different.
Here the binary relation is interpreted as a preference order of society or a
policymaker. Thus, if £ and g are income profiles, f > g means that if the
policymaker had to choose between f and g she would choose f. While the
literature on inequality measurement (notably Atkinson (1970)) clearly
recognizes the relationship between social welfare and inequality, its
ultimate goal is to measure inequality per se. Thus, it attemps to find a
mathematical representation for a binary relation »* with the following
interpretation: f »* g means that f is more egalitarian than g. Clearly we
would not expect that > and >»* coincide on the whole space of income profiles.
For example, a typical assumption on »* is relative invariance which means
that the level of inequality does not change when all incomes are multiplied
by the same factor. When one considers the relation », such a property is
obviously unreasonable. However, if we restrict our attention to some
subspace of income profiles where the total income is fixed, then it seems

reasonable (or at least of interest) to assume that on such a subspace > and

1The term linear in the literature on income distribution means linear
after arranging incomes in an increasing order. Formally, let f € R",

f = (£f,,...,f,) be an income profile and let f be the profile that is obtained
from f by arranging the incomes in an increasing order. We say that a social
evaluation function J(f) is linear if there exists numbers a,,...,a, such that

J(E) = 5., af,.



»* do coincide. 1In other words, when the total income is fixed the
policymaker determines her preferences according to her judgment about the
level of inequality.? If this assumption is made our results can be
interpreted as suggesting that if a policymaker has a linear measure of
inequality on some subspace then she should have a linear evaluation on the
whole space. 1In particular, the evaluation on the whole space can be
represented as the sum of total income and an appropriate inequality index
(i.e., a function that represents the preference on the subspace).

Specifically, we consider two domains:

1. the subspace of income distributions with fixed total income;

2. the whole space.

We first provide an axicmatization of a linear evaluation function on
the subspace (the Gini index is obtained by a natural strengthening of the
main axiom). Then we show that an "innocent" modification of one of the
axioms implies a linear evaluation on the whole space. We do not see how this
modification can be rejected while the original axiom is accepted. However,
this, of course, is an intuitive claim and the reader will judge it for
himself. The Gini index has acquired a special status and it is therefore of
interest to derive the representation of a Gini-index on the whole space.
Specifically, let : be a preference order on the whole space with the property
that its restriction to some subspace is a Gini preference order (i.e., the
Gini index represents the preference). Let f = (f,,...,f,) denote an income

profile. If > still satisfies our axioms then it can be represented by a

Zfor example, Ebert (1987) (and in a different way Sheshinsky (1972))
studies preferences on the whole space that are derived from a preference
order on pairs of total income and an inequality index, where the inequality
index represents the preference on the subspace.
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function J(f) where J(f) = )0y £, - &)icicjen |E; - £;| for some
0 <§ <1/(n-1). Thus, our result is that a Gini preference on the whole
space can be represented by a linear combination of total income and the Gini
index. Let us emphasize that, on the whole space, J(f) is different from the
Gini index which is equivalent?® to

1
n le.ﬂj(n Ifi - fil'

R

This of course is not surprising since the interpretation of J(f) and the Gini
index on the whole space is different. The Gini index is an inequality index;
it can represent the preference of a decision maker only on the subspace where
the total income is fixed. When two profiles that do not belong to the same
subspace are compared, the total income should be taken into account as well.

Linear evaluation functions have been studied by Donaldson and Weymark
(1980), Meheran (1976), Weymark (1981), and Yaari (1988), among others.
Yaari's axiomatization is actually similar to the one provided here when the
whole space is considered. (The main difference is that in Yaari'’s model
there is a continuum of individuals. This makes the proof different.)
However, all this work refers to the whole space of income distributions. Our
focus is on the subspace and on the relationship between a linear measure of
inequality (and in particular the Gini index) and a linear evaluation function
on the whole space.

The paper is organized as follows. Section 2 contains a description of

the axioms and the results. The proofs are given in Section 3.

*When the size of the population is fixed.



2. Notations and Results

let N = {1,...,n) be the set of individuals. Let the income profiles

(or simply "profiles") be

F=1(f: N-R|If(1) 20V { € N},

to be identified with RP. In the sequel we will not distinguish between £(i)
and f;.
Since we will be interested in subspaces across which total income is

constant, it will prove useful to define, for C = 0

FC = (f € F| ewn £; = C)

Some of our axioms will involve an assumption of order preservation,
i.e., that two profiles do not change the income-ordering of individuals. In
general, this condition (on pairs of profiles) is called comonotonicity (see
Schmeidler (1989)). However, since we will anyway impose a symmetry axiom, it

will facilitate notations to simply focus on monotone profiles. Define, then,

Fy={feFif, < f,  for 1 si<n-1)
and

m-FanM'

For a permutation n: N + N, and f € F, define nf € F by (nf); = £,,.
Obviously, #(F°) = F® for all € = 0. For every f € F define f* =

(E£D, £ £™) to be the element of Fy for which there exists a



S

permutation x: N - N satisfying £‘> = nf. Note that f‘® is uniquely defined
even if n is not.

For f € F and i,j € N, i is said to f-precede j iff f; < f; and there is
no k € N for which £, < fy < f;.

Let > ¢ F x F be a binary relation, to be interpreted as a preference
relation, We will now formulate some axioms on :. These axioms are
parametrized by a set of profiles H ¢ F, where the theorems will be stated

using axioms H = F, F¢, Fy or F§.

AL(H). Weak Order: =x is complete, i.e., for every f,g € H, £ » g or g = f,

and transitive: for every f,gh e H, f r g and g = h imply £ » h.

We use the regular notations of < = »"! = ((f,g)|(g,f) € 2}); ~ = > n <;

> o= 2\~ = g\~
A2(H). Continuity: For every f € H the sets {g € H|g » f), {g € H|lg < f) are
open in H. (That is, in the topology on H induced by the natural topology on

BR".)

A3(H). Symmetry: For every f,g € H, if there is a permutation n: N - N such

that g = nf, then f ~ g.

A4 (H) Monotonicity: For every f, g ¢ H, if f, > g; for all i € N and f, > g;

for some j € N, then f > g.

The next two axioms all require some consistency between choices. They
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have a flavor of Savage’s sure-thing principle (Savage (1954)), but they also

presuppose that utility is linear in income.

AS(H). Order-preserving Gift: For every f,g,f’',g' e Hn Fy and i € N, if

f.

;j = £; and gy = g; for all j » i, and £{ = £, + ¢, g{ = g, + t for some t € R,

then £ > g iff £' = g'.

A5 says that the preference between two profiles of f and g, which agree
on the social income-ordering, should nct change if the same individual i
receives a "gift" t in both f and g, provided that the resulting profiles £’
and g' respect the same ordering. The logic behind it, which one may accept
or reject, can best be seen if one first considers the cases it excludes: Iif,
for instance, f and g do not agree on the social income-ordering, individual i
may be the poorest in f and the richest in g. Increasing his income would
therefore have a different effect on the inequality in f and in g, and the
preference between them may well change. Similarly, even if both f and g are
monotone, a gift of t to individual i may make him richer than (i + 1) in £,
but leave him poorer than (i + 1) in g. Again, this asymmetric impact on
inequality may give rise to preference reversal.

It is only in the cases where the above do not happen that A5 can be
invoked to deduce that preference reversal should not occur.

Note that for H € F¢ AS is vacuouslv satisfied, since for t » 0, £’ and
g' do not belong to F¢ if f and g do. Hence, we will need a total-income
preserving version of it, which will deal with transfers (from one individual
to another) rather than gifts. However, we formulate it in a potentially

stronger form, as explained below.
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A6(H) Order-Preserving Transfer: For all f,g,f', g’ € H and 1,j € N, if the

following hold:

(1) i f-,g-,f'- and g’'- precedes j;

(i1) £y = £ + ¢ gy = 8 + ¢
£y = £, - ¢ g, = g; - t for some t > 0; abd
(iii) £} = f, gx = & for k & (i,j),

then f > g iff £' 2> g’.

To better undersatnd A6, let us first consider the case H = Fﬁ (as will
be done in Theorem A below). For this H, A6 is the "natural" reformulation of
A5 when one is restricted to a constant-total-income hyperplane. Indeed,
A5(Fy) implies A6(F§), as is easily verified.

However, we will also use A6 for H = F¢ (in theorems B and D), in which
case it makes a stronger claim: starting out with some f,g € F¢, f' preserves
the order of f, as does g' with respect to g. But A6 requires that there will
be no preference reversal even if f and g do not agree on the social ordering.
In particular, the pair (i,j) may be the poorest in f and the richest in g,
yet a transfer from j to i should not, according to A6(F°), change the
preference between f and g.

Thus the distinction between general linear welfare functions on F¢ and
the more specific Gini index will be whether A6 is required to hold on F§ or

on all of F°.

A7(H). TInequality Aversion: For all f,f’ € Fyn H and 1 = i < n, if

£ = £, for all j ¢ (i,1i + 1)
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f{ = f, + ¢, £, = f,, - t, for some t > 0,

then f' > f.

A7 simply states that a transfer of money from an individual to the
next-richest one, in such a way that the social income-ordering is preserved,
will result in a strictly preferred social profile. Thus, A7 is a weak version
of the famous Dalton-Pigou principle which states that a transfer of money
from a rich person to a poor person, which leaves the rich person richer, will
reduce inequality.

We will say that ": satisfies A, on H" if » satisfies A, (H).

We can finally formulate our main results:

Theorem A: For every C > 0 and every = ¢ F¢ x F° the following are

equivalent:
(i) r satisfies Al, A2, A3, and A7 on F°, and A6 on F§.
(ii) there is a vector p = (py,...,p,) wWith p; > p, > ... > p,

such that for all f,g € F°,
£ 2 g <=>Jiew pifY 2 Loy P18
Furthermore, in this case the vector p (in (ii)) is unique up to a positive

linear transformation (p.l.t.).

Theorem B: For every C > 0 and every x ¢ FC x F¢ the following are
equivalent:
(1) x satisfies Al, A2, A3, A6 and A7 on F°;

(ii) for all f,g € F¢,
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frg<=> lei<an l£, - £5] = lei<j5n 18 - &;l-

Theorem C: For every z C F¢ x F° the following are equivalent:
(i) x satisfies Al, A2, A3, A5, and A7 on F;
(ii) there is a vector p = (py,...,py) wWith p; > p, > ... > p, > 0
such that for all f,g € F.
£ 2g <> Tiaw PP 2 Law pig.
Furthermore, in this case the vector p (in which (ii)) is unique up to

multiplication by a positive scalar.

Theorem D: For every = ¢ F x F, the following are equivalent:

(i) x satisfies Al, A2, A3, A4, A5, A6 and A7 on F;
(ii) There is a number §, 0 < § < 1/{(n - 1), such that for all
f.g € F,

frg<=>) £ -6 2151<an [£; - £ = Le B - 6 2151<J5n lgi - &;l-

Furthermore, in this case the coefficient § (in (ii)) is unique.

Theorem A provides a characterization of linear evaluation functions on
the subspace. Theorem B states that the Gini index is obtained if, in
addition to the assumptions in Theorem A, we require that the order-preserving
transfer axiom will apply to every pair of profiles f and g (and not only to
pairs of profiles that agree on the social crdering). Theorems C and D are
the counterparts of Theorems A and B, respectively, when the whole space of
income profiles is considered and when we add AS(F). Thus, Theorem C

characterizes a linear evaluation function on the whole space, while Theorem D
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provides the representation of an extension of the preferences, reflected in
the Gini index, to the whole space. Note that the preference on the whole
space is represented by a linear combination of total income and the Gini
index.

We now want to suggest that a decision maker that satisfies A6(F§) on
the subspace should satisfy AS(F) on the whole space. As we noted, AS5S(F)
implies A6(FG) because a transfer from i to j can be obtained by a gift to j
and a "negative" gift to i. So, A6(Fj) is obtained by putting a certain
restriction on the application of A5(F), namely, that a gift to one person
should be offset by a negative gift to another person. We do not see why a
decision maker will accépt AS5(F) with the restriction but not without it. One
could, for example, object to A5(F) on the grounds that the effect of a given
gift to individual i on social welfare should depend on total income (and not
only on the rank of the individual involved). However, if the decision maker
satisfies A6(Fy) on the subspace, it means that the effect of a given transfer
between two individuals on the evaluation function depends only on the rank of
the individuals involved but not on their absolute level of income. Hence,
our response to the above objection is that it seems inconsistent for a
decision maker to evaluate a change in individual i’s income according to
total income, but not to take into account i’s own income. We hope that our
results are of interest whether the above view is accepted or not. However,
if this view is accepted then the implication is that a decision maker who has
a linear evaluation function on the subspace should have a linear evaluation
on the whole space as well. 1In particular, if the preference of the decision
maker on the subspace corresponds to her evaluation of inequality then the

results can be interpreted as follows: if a decision maker has a linear
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inequality measure on some subspace than she should have a linear evaluation
function on the whole space. In particular, if the decision maker evaluates
inequality according to the Gini index, then her evaluation on the whole space

is a linear combination of total income and the Gini index.

3. Proofs and Related Analysis

This section is organized as follows. We first introduce some
preliminaries, mostly regarding the Choquet integral, to be used in the proof.
We then continue to prove the theorems according to their stated order.
Theorems A and C are basically Choquet-integral representations of preferences
on F¢ and on F, respectively (with the additional restriction of inequality
aversion). While Theorem C is a rather trivial corollary of a result in
Wakker (1989), Theorem A does not rely on any known characterization, and thus
involves some work. Theorems B and D are quite simple given A and C,
respectively.

Before we begin, let us note that in all theorems the necessity of the
axioms (i.e., (ii) => (1)) is straightforward, and we therefore focus on proof
of sufficiency. Finally, the uniqueness results (in Theorems A, C and D) are
easy to verify, and will become even more transparent given the sufficiency

proofs.

3.1 Preliminaries

In Schmeidler’s seminal papers (see Schmeidler (1982, 1986, 1989))
nonadditive measures were introduced into decision theory. By a nonadditive
measure we refer (in our framework) to a set function v: 2¥ - R with v(g) = 0,

v(N) = 1, satisfying v(A) = v(B) whenever A 2 B. A nonadditive measure v is
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symmetric if v(A) = v(xA) for every A ¢ N and every permutation n: N - N.
Obviously, v is symmetric iff there exists and nondecreasing 4: (0,1] - [0,1]
with ¢(0) = 0, ¢(1) = 1, such that v(A) = ¢(}JA|/n).

For £ € F, the Choquet integral of f w.r.t. (with respect to) v (defined

in Choquet (1953-4)) is

[ fdv = [y fdv = [ v((i|f, = t))drt.

It is easily verified that, for f € Fy, setting f, = O,

Jofdv = TR (£ - £.]v(S) = Ty £ [v(Sy) - v(Si)]

where §; = (i,...,n} (and S, = @).

Define f,g, € F to be comonotonic if there are no i,j € N with f, > £,
g1 < g;- Equivalently, f and g are comonotonic if there is a permutation
x: N » N such that »f,ng € Fy. It is well known that the Choquet integral is

linear on cones of pairwise comonotonic profiles. In particular,

J (Af)dv = x [ fdv for A > 0, f € F.

and

f (f + cly)dv = [ fdv + ¢

where 1, is the indicator function of A ¢ N, and whenever f,f + cly € F.
There is, by now, a wide collection of axiomatizations of preferences
which are representable by a Choquet integral of a certain utility function

w.r.t. some nonadditive measure. The first one is due to Schmeidler (1982,
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1989) who used the framework of Anscombe-Aumann (1963). Gilboa (1987)
provided an axiomatization in the framework of Savage (1954), which requires,
in our interpretation, infinitely many individuals. Wakker (1989) axiomatized
these preferences on I'" where I' is some connected separable topological space.
Sarin and Wakker (1990) provided an axiomatization for a domain which may be
thought of as a hybrid between Savage's and Anscombe-Aumann’s.

All of these axiomatizations are greatly simplified if one presupposes
that the range of the functions involved is R (or R,), and that utility is
linear, as is implicitly assumed by the Gini index. It seems that, at least
given that simplification, the most convenient result to use is the "Main
Theorem" of Wakker (1989, Vi.5, p. 117),

Quoting Wakker’s theorem would require too many additional definitions,
which are unlikely to enlighten the reader. We will therefore use it when

necessary, referring the reader to Wakker (1989).

3.2 Proof of Theorem A

In this section we state and prove the following result, which is merely

a restatement of Theorem A:

Proposition 3.2.1: Let » satisfy Al, A2, A3, and A7 on F° and A6 on F§. Then

there exists a nonadditive measure v such that for all f,g € F©

frg<=>[ fdv = [ gdv.

This proposition can hardly come as a shocking surprise to anyone

familiar with related literature. Yet it did not seem to fit nicely into any



14
of the known theorems in the literature. We therefore provide an independent
proof.
First, note that, in view of A3, it suffices to provide a vector

P = (P1,--.,py) such that for all f,g € E,

frg <=>Jien Pofy = Lien Pigi-

(Since p + cly would provide the same representation for all ¢ € R, the p,’s
can later be assumed positive.)
We first need some auxiliary results, which will strengthen the main

axiom, i.e., A6(F§). It will prove useful to focus on the interior of K,

(% = (fe FFI0< f, < f, < ... < ).

All the following lemmata and claims in this subsection are steps in the

proof of the proposition, and presuppose its provisions.

We will now show that a transfer from individual j teo i, which respects

comonotonicity, does not induce preference reversal.

Lemma 3.2.2: For all f,g,f',g" € (FD?, and all i,j € N, i » j, if

£y - £, gy = g for all k g (1,])

and for some t € R

f! - £, + ¢t gi =g + ¢



then

frgiff £' = g'.

Proof: W.l.o.g. (without loss of generality) assume i < j.

Furthermore,

w.l.o.g. we can also assume that t > 0, for if t < 0 one can switch the roles

of f and f', g and g’'.

For h € (F)?, let

d(h) - minlsi<n (hi"’l - hl)'

Choose € > 0 such that ¢ < (1/2)min{d(f),d(f"),d(g),d(g')}.

i<ks<sjand 0=<r= [t/e] =M define

cx = L - reed + (r - l)ee + eeX
g:x = & - reed + (r - lyee* + ee*
where

e! € R” satisfies (e'), = 1, (e'),

Further, let § = t - Me = 0 and define

=0 for s = £.

fH""l,k = f - (ME + 6)6‘] + Mee® + 5ek

Bur1 x = & - (Me + §)ed + Mee® + §eX.

Note that for all i < k = j and O

1A

For

rsM+1, f.,8.% € (§)° and that



fO-J - £ Bo,j = &
fuer,s = £ g1, = B
and
foo = frays Br,i = Br+1,; for r <= M,
Finally, for k > i, A6(F;) implies that
fre = 8Brx <=> £r 41 = Brxa
for all 0 <= r <M + 1, whence the result follows,. | |

Remark 3.2.3: Note that for Ef the same result cannot be similarly proven.
Consider, for instance, f = (0,1,2) and £’ = (1,1,1). Although one can obtain
f' from f by a single order-preserving transfer from 3 to 1, no (finite)
sequence of order-preserving transfers between "adjacent" individuals would
yield f* from f.

Obviously, an "infinite" sequence will do the trick, i.e., f’' can be
obtained as the limit of f,, where each f, can be obtained from f by a finite
sequence of adjacent transfers. However, starting from f » g, continuity of :
only guarantees f' > g', which is not sufficient for our purposes.

This is the main reason to focus on (K)? (rather than E§) first. Only
when enough structure is proven to exist in the preference over (F)? will we

use continuity to derive representation on its boundary as well.

We will also need the corresponding extension of A7:

Lemma 3.2.4: Let f,f' € (F)? where for some 1 € i < j < n and some t > O,



f! - £, + ¢ £ - f; - ¢
and
fy = £ for all k g (i,j},

then f' » f.

Proof: As in Lemma 3.2.2, by successive applications of A7 and

transitivity. |

A further extension of ASb is the following:

Lemma 3.2.5: Let f,g,f',g' € (K)" where £' = f + t, g’ = g + t for some

teR. Then f = g iff £' > g’'.

Proof: We will prove the following claim for all 0 < k < n. For all
f,8.f',8" € (F)? such that £’ = f + t, g’ = g+ t for some t € B? and t; = O
for all 1 =i <k, f = g iff £’ » g'. Note that for k = 0 this is the desired
result.

The proof is by induction on (n - k). For k = n - 1 or k = n the claim
is trivial since f’' = f and g' = g. Assume, then, the claim was proven for
k = r + 1 and consider the case k = r.

Let there be given, then, £,f',g,g' and t as in the claim. Note that
f{ = f;, and g/ = g; for 1 < i = r. Assume w.l.o.g. that t4, < 0. (If
tre; » 0, reverse the roles of f and f', g and g'.)

Define f,é as follows:
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£, - £ = £f & =g -gl forisr

oy = £lu Bet1 = Biel

ﬂ - f; é =g, forr+1<i<n
.= fu - ton & = &n - Crei-

It is easily verifiable that f,g e (F)°. Furthermore, f = g iff £ g

by Lemma 3.2.2. However, by the claim for k = r + 1, [ é iff £ >z g'. a

Equipped with these tools, we now turn to the proof. The general
strategy is as follows: for every triple (i,j,t) where 1 < i < j < n and
t € R, consider the "improvement" obtained if, in a given profile, a transfer
of t from j to i takes place. We will show that these triples can be ranked
(in terms of the "size" of improvement) regardless of the base profile. We
will further show that this binary relation is homogeneous, i.e., that the
"improvement" in (i,j,t) is "greater" than that implied by the transfer
(k,2,s) iff the same holds for (i,j,at) and (k,£&,as) for a > 0.

This homogeneity will give rise to coefficients o;;,, which will provide
the "substitution rate" between transfers from j to i and transfers from £ to
k. We will show that a given profile is equivalent to a profile generated
from it by offsetting transfers (according to these substitution rates).

Next we will use these coefficients o,;, to define the "weights" p;, and
will show that the weighted average J(f) = ), p;f; is also unaltered when
offsetting transfers are made. Finally, each profile f will be "normalized"
(in some appropriate sense) by a sequence of offsetting transfers and it will
only remain to show that J(e) represents : on the "normalized" profiles.

Let us begin by using the following notation: for f € F*, i,j € N and
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t € R, let £ ; .y € R* be given by f; ; ., = £ - tel + tel.
Denote T = {(i,j,t)]l1 =i < j =<n, t ek}

Lemma 3.2.6: Let f,g € F¢, and (i,j,t),(k,£,s) € T be such that

0
fH,Lt)’fﬂ,hs)lgﬁ,Lt)'gﬂ,lj) e (Fn°.

Then, £ j o) 2 £0,0 LEE B 50y 2 Be, ey

Proof: Let t =~ g - f, and use Lemma 3.2.5 (with f = £ii.00 g =

£ = B0 8 = fai ) u

In view of this lemma, we will write (i,j,t) = (»,-) (k,£,s) iff there

exists f € F¢ such that f ; ., = (»,~) f4 , 4 and both are members of (E°.
Lemma 3.2.7: Let (i,j,t),(k,£2,s) € T with t,s > 0, and assume that for some
f.8 € F, £ 50,8050 Eae s B,y € (BD®. Then (i,j,t) » (k,£,s) iff
(i,j,-t) < (k,2,-s).

Proof: Define h = (g¢ j.-u;).e,-s) € FC and note that

Bi,y,-t) = Dk e,s) and B.,e,-5) = Ny

Considering h and f and applying Lemma 3.2.6 one obtains the desired

conclusion. [ |
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Lemma 3.2.8: Suppose that for (i,j,t),(k,£,s) € T and a > 0 there exist

f.g € (RD° such that £ ;)0 fieans Basor 8ae,s € (BD°. Then (i,j,t) =
(k,8,s) iff (i,j.at) = (k,2,as).
(Notice that in the statement above the existence of f and g is only

required to guarantee that the triples invelved are comparable.)

Proof: First consider the case t,s > 0. Let us begin with a = r € N, and
prove by induction on r.

Assume f € (Hﬂo and (i,j,t),(k,£,s) € T are such that

0
fougofaen fa s fae e € (B
(Note that if f and g are given as in the lemma, for a > 1, t,s > 0 we also

have £y j ¢y, fx.0.50 € (BD%)

Define, for 0 = v,u 2 ¥ with v + 4 < r,

hv,u = (f(i,j,vt.))(k,l L Hus) -

Note that

=2
<
m

" ()Y for all v,p = Q0 with v + u < r

hO,U - f

hr,U - f(i,j,rh)! hO,r = f(k,l,rs)'

Further observe that, for 0 s v < r - land y=r - v = 1,
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hv,u - (hy,#-l)(k,l,s); hu+1,u-1 = (hu.u-l)(i,,j,r.)r

whence, by Lemma 3.2.6,

hV*l.u'l x hv,y iff (ivj!t) z (kliys),

and by transitivity

heo = b, iff (i,j,t) = (k,2,s).

We therefore conclude that for a rational a, (i,j,at) = (k,Z,as) iff
(i,j,£) =z (k,2,s), whenever there are f and g as in the provisions of the
lemma.

Next consider irrational a > 0. It will here be useful to distinguish
indifference from strict preference. If (i,j,t) - (k,£,s), then for every
rational e (for which the involved triples are comparable) (i,j,at) - (k,£,as)
and the conclusion follows by continuity of >. If, however, (i,j,t) » (k,£,s)
we invoke Lemma 3.2.4 to deduce (k,2,s) > (i,j,0) whence, again by continuity,
there is t € (0,t) such that (i,j,t) - (k,£,s). Therefore, (i,j,at) -
(k,2,as). However, Lemma 3.2.4 also implies (i,j,at) » (i,j,a&).

We can now turn to the cases in which s, t or both are not strictly
positive. Obviously, by 3.2.4 again, if ¢ > 02 s or t =2 0 > s, for all i < j
and k < 2 (i,j,t) » (k,2,s) and the same holds for at, as where a > 0.

Finally, the case s,t < 0 follows from s,t > 0 in view of Lemma 3.2.7. B

As in the above proof we conclude that for every i < j, k < £ and for
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every small enough t > 0 there is an s > 0 such that (i,j,5) ~ (k,ﬂ,;).
Furthermore, for s < s we have (i,j,t) » (k,2,s) and for s > s
(k,2,s) » (1,j,t). Since, moreover, for a > O, as would correspond to at, we

define

Uijkl - t/—s > 0.

Conclusion 3.2.9: For all (i,j,t),(k,£,s) € T, with t,s > 0, if there is
f € (§)° such that fiiio.faesy € (BD?, then (i,j,t) = (»,-)(k,£,s) iff
t = (>,=) gypS.

To facilitate notations, we extend » to all of T, using 3.2.9 (together
with 3.2.4 and 3.2.7) as the definition of > if such an f does not exist.
(For instance, if t > C.)

We will need two properties of the "substitution rates" o...,:
P P ijkt

Lemma 3.2.10: For all i,j.k,£,r,q e Nwith i < j; k< ; r < q,

9i5xt%rq = %ijrq-

Proof: Take t,s,u > 0 such that (i,j,t) - (k,£,s) ~ (r,q,u). Then,

Oijke = t/s

Ogetrq =~ s/u

and, since (i,j,t) -~ (r,q,u)
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Jijrq = t/u = (t/s)(s/u) = Tkt I%iarq-

Lemma 3.2.11: For all i, j, k, r, 2 with i< j, r<k«< 2,

Oijex ¥ Ok ™ Tijre -

Proof: Let t,u,s,v > 0 satisfy

(i,j,t) ~ (r,k,s)
(i,j,u) = (k,2,s8)
(i,j,v) - (r,4,s)

whence
Tyyrx = /s
oijkl - U/S

Tijm = V/s.

Further assume w.l.o.g. that all of t,u,s,v are small enough so that
there is an £ € F for which f(; o), £ 50 Ei v B s o Bk, a0

0
fx sy fras) € (ED°.

Then we have

fu,mt) - f(nk.ﬂ

and, by Lemma 3.2.2,

Eayedaswm ~ Ecxsda -
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However, since (i,j,u) - (k,%,s),

(f(r,k,s))(i.j.u) - (f(r,k,s))(k,l,s)

which implies

(f(i,j,t))(i,j,u) - (f(r,k,s))(k,l,s)
or

f(i,j,cm) - f(r,!,s)

whence t + u = v,

Finally, t/s + u/s = v/s and

Tisrk + Oigee ™ CFijre - u

We can finally define the "weights" p; for i € N: Let p, = 0, p, = -1

and for 2 <k <= n, py = -0y5;x- (So that

12 = (P1 - Px)/(P1 - P2) )

Next define, for all f e F¢,

J(E) = =1 pefy,

We now wish to show that equivalent transfers have identical effect on
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Lemma 3.2.12: Let (i,j,t).,(k,2,5) € T satisfy (i,j,t) - (k,4,s). Then for

all fe FC such that f(; ;) fu,s € (FDY,

J(f(LJ,U) = J(fu,us))~

Proof: Notice that

J(fi,5,00) = J(E) + t(p; - py) = J(E) + t(oyzy - 91515)

(with o,5;; = 0).

Similarly,

JE i, = J(E) + s(o12y - 91210) .

However, by Lemma 3.2.11,

01215 - 91218 ™ 912ij

Tr210 - O121x ™ P12kt -

Hence,

J(Ey y.e9) = J(E) + toy,y,

J(f(k,l,s)) - J(f) + Sallk..

However, t = so;;, and, by Lemma 3.2.10,
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01215 = S04 T1215 = SOT124¢ u

As for the converse:

Lemma 3.2.13: Suppose that for some f € (F)° and (i,j,t),(k,£2,s) € T such

that £, 5 o), fxasy € (B, J(£ 5.00) = J(fxs)). Then (i,j,t) - (k,2,s).

Proof: By the computations of the previous proof one obtains

Loy2i5 = SO

t/s = Ok /C1215 = Tk

which suffices by 3.2.9. |

We are approaching the final steps of the proof. It will be useful,

however, to have explicit mention of the following:

Lemma 3.2.14: Suppose that (i,j,t),(k,%,s) satisfy (i,j,t) ~ (k,£,s), and

assume that f € F satisfies

fof e fxa sy (B s e) e 50 € (BDC.

Then £ ~ (£ 5 001, -5)-

Proof: Since f(; j .y ~ fx,1 s), we may use Lemma 3.2.2 to obtain



27

(f(i,J,t))(k,l,-s) = (f(k,!,s))(k,l,-s) - f. L

The next step is to show that for every f € (E)° there is an f € (F)°
such that f ~ f and J(f) = J(f), where f is "normalized" in some sense. If we
could choose f from K, we would like it to be of the form (a,a,...,a,B) where
B > a, and then to show, for the unique a and g determined by fe F¢ and
J(f) = J(f), that f can be obtained from f by a sequence of pairs of
offsetting transfers (i,j,t),(k,£,-s) where t = g;j,s.

However, given that our results are guaranteed to hold for (FD?, we
have to choose f which is strictly monotone. This does not make a fundamental

difference, though it complicates both the statement and the proof.

Lemma 3.2.15: Given f € (F))? there is an ¢ > 0 such that for all ¢ € (0,¢)

there are a = a(e¢) and 8 = f{(e) such that ﬁ ~ f and J(ﬁ) = J(f) where
ﬁ € (F)° is defined by
(£), =a + (i - 1)e for i < n

(£), = 8.

Furthermore, a(e¢) and B(€¢) are given by

n-1 n-2

a = {;pl -{n-1)p ) tJ(f) - p,C - EZ ip; + ep,in - 2)]

1=2

-

-
L[}

n-1
[;pi -(n-1p,)+

n-1 n-1 n=1
(CY p; - (n-1)J(f) -eln-2)Y p, +e{n-1) ip,]
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Proof: It is straightforward to check that should ﬁ belong to F¢ and satisfy
J(ﬁ) = J(f), a and B8 can be computed from these two equaticns and should
equal the expressions above.

These horrendous expressions are given here explicitly for two reasons.
First, we must convince the reader that this system has a unique solution
(which is obvious since p; > p; for i < j), and that for small enough ¢ it
will be in (E)°. To this end, note that--again, since p; are monotonically

decreasing--J(f) = }%; f;p; > pnC. Hence, a > 0 for small e¢. Further,

n

-1
B - a = [;pi- (n—l)pn]-l[czpi —nJ(f)] +O(€):
-1

1=1

where the first expression is positive.

The second reason will become clear later on, when we shrink ¢ to zero
and claim convergence of ﬁ.

Let, then, ¢ be small enough to guarantee f, € (E)° and to satisfy
e< (f, - f,.,) for all 1 < i <n.

Considering ¢ € (O,;), we will show that for every 1 <= k < n - 1 there
exists fX such that: (i) (f9, - (£9,., = ¢ for 2 < 1 < k; (ii)
(£, - (f9,., 2 ¢ for k < i < n; (iii) £f~ f; and (iv) J(f9 = J(f). The
proof is by induction on k, and the existence of £ = f will complete the
proof of the lemma.

For k = 1, condition (i) is vacuous and we may take ﬁ1= f. Assume,
then, that f¥ was found and consider £'!' (for k < n - 2).

If (£f9,4 - (f5, = €, we may choose f&'! = fX Assume then,

(954 - (£, = ¢ + ¢, for t > 0.
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One may obtain £'! from f¥ by the following: we will make an identical
transfer s > 0 from k + 1 to each of 1,...,k, and a transfer of r > 0 from
k + 1 to n, such that these transfers will offset each other. However, in
order to use Lemmata 3.2.6 and 3.2.12 (which will guarantee the preservation
of properties (iii) and (iv)) we need to split this transfer into a sequence
of pairs of offsetting transfers.

First, we set

k

k
r =t} (P - Py * (k1) (D - )] Y (D - Pray)
1=l ie1
k
s =ty (p, - D) + (k+ 1) (Dyy - P Dy, - D)
i=1

Notice that r,s > 0, and that

r + (k+ 1l)s =t

L{Pg+1 - Pn) = S 23;1 (P: - Px+1)-

The first equation guarantees that the difference (f9,,, - (f9, will be
decreased by t exactly. The second one--that the overall transfers will
preserve the value J(f5.

We now split these transfers as follows: for 1 < i < k, define

r; = (Pi - Pws1)/{Px+1 - Pn)sS.

Note that r; > 0 and )X, r; = r. Next define £° = f¥ and for 1 < i < k,

Xk, L _ k,i-1
(£ = ( (£, ) (kol—i,bl,s)) tkel,n, =Ly
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That is, we first transfer r, from k + 1 to n and s from k + 1 to k.
Only then do we transfer r,.; from k + 1 ton, and s from k + 1 to k - 1, and
so forth.

Thus, £ € (F)° for 0 < i < k. Furthermore,

(k + 1 -1,k +1,s) ~ (k+ 1,n,r5-,)

by 3.2.13. Hence, by 3.2.14, £ ~ £.i"! and J(&£1) = J(&£ i) for all i < k.

In particular, for i = k we obtain 5! satisfying (i)-(iv), and this completes

the proof of the lemma. |

We can finally return to K, including its boundary:

Lemma 3.2.16: For every f € K there is f € F with the following properties:

(1) f, = a for i < n
£ -8
for some B8 = a;

(ii) f~ f: and

(iii) J(H = J(f).

Proof: Starting with f € (RF)°, we obtain f, for every ¢ € (0,¢) by 3.2.15.
Letting ¢ tend to zero, the explicit formulae of 3.2.15 show that £, converge
to some f € Ef, satisfying (i). Condiction (ii) would follow from the
continuity of =, while (iii) follows from the continuity of the (linear)
functional J.

as for f € RA(RD®, let f, € (F)° satisfy f, - f, and let f be the
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corresponding profile for f,. Given the explicit formulae of 3.2.15 we know
that ﬁ -+ f where f satisfies (i). By continuity of J, (iii) also holds.

Finally, since > is continuous, it is also closed (as a subset of R*®), and

since £, -~ ﬁ1, £~ £ |

It therefore suffices to show that J represents z on the one-dimensicnal

half-space {(a,a,...,af)|(n - l)a + 8 =C, 82 a 2 0}). Indeed, we have

Lemma 3.2 .17: Let a,8,v,6 satisfy 8z a 20, 6 =2z v =2 0,

(n - 1)a+B8=(n - 1)y + 6§ =C.

Then the following are equivalent:

(1) B -a<ié -,
(ii) J((a,a,...,a,B)) > J((y,v,....7.8));
(iii) g= (a,a,...,a,8) » (v,7,....7,86) = f.

Proof: the equivalence of (i) and (ii) follows from the definition of J,

combined with the observation p;, > p, for i < j. To see that (i) implies

(ii), consider f, € F° defined by

(f); = v+ (1 - )¢ l1<i<n

1A
=

(£)y = 6 - (1/2)i(i - 1)e.

If ¢ is small enough for f, € K, f, can be obtained from f by successive

adjacent transfers of size e¢. Thus, by A7, £, » f. Choose ¢ > 0 such that
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(£), > B and (f,),-, < a.

Similarly, for § > O consider g; defined by

(gs); = a + (1 - 1)6 1 i <n

IA
-

(Bs)n = B - (1/)1(i - 1)6.

Consider small enough é§ such that g; € E{. Since f,,g; € (F)°, g; may be
obtained from f, by successive adjacent transfers. Hence, g, » f,. Letting $
tend to zero, one concludes that g = f, » £, and (iii) is proven. Finally,

since 8 - a = § - vy immediately implies f ~ g, (iii) => (i) follows. [ |

Normalizing the numbers {(p;} such that they are all positive (by adding
a constant throughout) and sum up to 1 (by multiplying by a positive
constant), and employing symmetry of =, we conclude the proof of Proposition

3.2.1. |

3.3 Proof of Theorem B

Given Theorem A, we know that for every f,g € F¢

£ g iff Yoo PifY = Jion pig®

for some p; > p; > ... > p,. We now further assume that A6 holds on all of F©.

3.3.1 Lemma: For every i < i<n - 1,

Pi - Pi+1 = P1 - P2
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Proof: Assume w.l.o.g. i > 1. Choose f € (F§)?. Let ¢ > 0 satisfy
€ < (1/2)(fy4, - £;) for all i 1 = n - 1, and define £' = f +
cel - ce? e (Fﬁ)o.

Define a pertumutation «: N - N as follows:

(i) if 1 > 2, x(l) = 1i m(2) = 1 + 1
(i) =1 (i + 1) = 2
and (k) = k for kg (1,2,1i,1i + 1}.

(ii) 1if i =2, m(l)

2 n(2) =3 m(3) =1

and m(k)

I

k for k g {1,2,3}.

Define g = nf, and notice that in g, individuals 1 and 2 are ranked as

the i- and (i + l)-poorest, respectively. Finally, define g' = g + eel - cel.

’

By symmetry, £ ~ g. However, individual 1 f-, g’-, g- and g’- precedes

2, and A6(F°) implies that f' ~ g’. Hence

JUE'Y - J(E) = J(g") - J(g)

where J is defined as in Section 3.2, This implies

€(Py - P2) = €(Pi - Pir1)

which completes the proof of the lemma.

To complete the proof of Theorem B, recall that for every a > 0 and

b € B the vecter q = (q;,...,q,) defined by q; = ap; + b also satisfies

£ g iff <=> Ly @ifY 2 Yiew qi8*Y
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for all f,g € F°. Setting

a=2(m - L)/{p, - pn)
and

b={(n- 1I[1l - 2py/(p; - Pn)]
yields

q; = n+ 1 - 21

On the other hand,

- £, - f,] = (n+1-2i)fd,
1;2511 I ! jj Z;'

and the theorem is proven. u

3.4 Proof of Theorem C

We first state and prove the following:

Proposition 3.4.1: Let » satisfy Al, A2, A3, A4 and A5 on F. Then there

exists a nonadditive measure v such that for all f,g € F,
frg<=>{ fdv = [ gdv.

Proof: Consider a,8,7,6 € R such that 8 - a = § - y. Take f,g,f',g’ € Fy and
i € N such that f; = f] and g; = g; for all j = i, and £, = a; £/ = 8; g = 7;
gi =§&é. By Ada, £ » g iff £’ = g’. By monotonicity, if in the above

structure 8 - a > § - y and £ > g, then £’ » g'. Hence, the relation = does



35
not reveal "comonotonic contradictory tradeoffs as consequences" (see the
definition in Wakker (1989, p. 113)) and, together with Al and A2, one can use
Wakker’'s theorem V1.5.1 (p. 117) to conclude that there are u: R, - R and a

nonadditive measure v such that

fxg<=> [ u(f)dv 2 [ u(g)dv.

(Notice that the axiom of symmetry is actually redundant. However, if

it is to be dropped, A5a should be strengthened to hold for any four pairwise

comonotonic £,f',g,g’'.)

Furthermore, one obtains

B -az=é -y <=>u(B) - ula) =2 u(s) - u(y)

whence u must be linear and the result follows. [ |

Given this result, imposing A7 proves Theorem C.

3.5 Proof of Theorem D

Given Theorem C, we know that for all f,g € F

£ rg 1ff <=> Jion Py 2 Ty pig®™’

with p; > p; > ... > p, > 0. Furthermore, A6 is known to hold on F, and in
particular also on F® for all C > 0. Thus, by Lemma 3.3.1, p, - Pis; = P1 - P2

for all 1 =i <n - 1.
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Setting

a=2/(p, +py) >0

and

6_ 1 pl—pn
{n~1) p, + p,

it is easy to verify that for all 1 < i <n
ap; =1+ (n-21i+1}48,

It only remains to note that, for all f € F,

Yiew [1+ (n - 21 + L)§IEW =} o £, - 6 ZMiﬁSn £, - £

and that § < 1/(n - 1) follows from p, > 0. |

4, Concluding Remarks

1. In both Theorems And C, one may use Schmeidler’s comonotonic
independence axiom rather than A5 or A6. (See Schmeidler (1989).) As a
matter of fact, this axiom would have greatly simplified the proof of Theorem
A, since it provides a von-Neumann-Morgenstern (1947) representation on K.

However, we found axioms A5 and A6 much more natural for our context.
It is scmewhat difficult to justify the mixture operation in this framework
without resorting to uncertainty, which would have cluttered the issue. We
therefore used A6, at the cost of a long subsection 3.2. Note, however, that
with comonotonic independence one can use precisely the same axiom for F¢ and
for F (as in the case of A6(F)). Therefore, accepting the Gini index for

inequality measurement on F° while rejecting linear tradeoff between
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inequality and total income requires one to justify why comonotonic
independence makes sense on F° but does not on F.

2. It is sometimes convenient to model a population as a continuum of
agents, say [0,1], endowed with a o-algebra, say, the Borel sets. All our
axioms will have natural counterparts if one assumes a nonatomic o-additive
measure on these Borel sets to be given in the model. Symmetry is then
required to hold with respect to the group of measurable and measure-
preserving permutations, and the continuity of : should be stipulated with
respect to convergence in the measure. In this topology one may approximate
every profile by a simple profile, which is constant on every element of an
equi-measure finite partitions. With the representations obtained above, the
derivation of similar ones for this setup is then straightforward.

3. It is easy to verify that, in each of the theorems, the axioms are
independent. We omit the simple examples (some of which appeared above).

4. Finally, note that Theorem A provides a Choquet-representation on
F¢ only for inequality-averse preferences. This condition, however, is not
crucial. We used it since it eliminates some non-insightful complications

into the proof, while being natural in ocur context.
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