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Aabstract

This paper considers a simple pairwise random matching game in the

society populated by two groups of agents: Conformists and Nonconformists.

Depending on the relative frequencies of intergroup and intragroup
matchings, the best response dynamics show three types of asymptotic
behaviors: glebal convergence, hysteresis and limit cycles. 1In the
hvsteresis case, Conformists set the social custom, and Nonconformists
reveolt against it; what action becomes the custom is determined by

"historv."” In the limit cvcle case, Nonconformists become fashion leaders
and switch their actions pericdically, while Conformists follow with delawv.
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"Fashion is custom in the guise of departure from custom.”
Edward Sapir
"Fashion is evolution without destination.”
Agnes Broows TYouns

1. Introduction

Fashion i1s the process of continuous change in which certain forms of
social behavior enjoy temporary popularity only to be replaced by others.
This pattern of change sets fashion apart from social custom, which is time-
honored, legitimated by tradition, and passed dewn from generation to
generation. Fashion is alsc a recurring process. in which many "new" stvles
are not so much born as rediscovered: see, for example, Young (1937). This
cvclical nature, or its regularity, sets fashion apart from fads, which are

1 Although most

generally considered as rather blzarre one-time aberrations.
conspicuous 1n the area of dress, many other areas of human activity are also
under the sway of fashion. Among them are architecture, music, painting.
literature, business practice. political doctrines, as well as scientific
ideas (not least in economic theory). Despite its pervasiveness and its
apparent significance as a determinant of variations in demand, very few
attempts have been made by economists, supposedly experts of cyclical
behavior, to identify mechanisms generating fashion cycles.

On the other hand, there is no shortage of theories in the fields of
psvchology and scciologv; see, for example, Sapir (1930) and Blumer (l9€8).
Two psychological tendencies are often put forward as fundamental forces

behind continuous changes and diffusions of fashion. Many observers point out

the importance of conformity in the establishment of fashion; that is, the

lglumer (1968, p.344) wrote: "The most noticeable difference (from
fashion) is that fads have no line of historical continuity; each springs up
independent of a predecessor and gives rise to no successor.”



desire of people to adopt and imitate the behavior of others, or to join the
crowd. Such conformist attitudes mav result from widely divergent motives.
Pecople may imitate out of admiration for one imitated or by the desire to
assert equality with her. Those who follow fashions may do so with enthusiasm
or may simply be coerced by public opinion exercised through ridicule and
social ostracism. Other observers of fashion also emphasize the importance of
nonconformity. That 1s, thev find the essence of fashlon in the search for
exclusiveness or the efforts of people to acquire individuality and personal
distinction; they treat fashion as an expression of the desire to escape fron
the tyranny of the prevailing seccial custom and to disasscciate one's self
from the common masses.

It should be immediatelvy clear that, for the recurring process of fashion

to emerge and persist, these two fundamentally irreconcilable desires of human

beings -- the desire to act or look the same, and the desire to act or look
different-- both must operate., We cannot explain centinuous changes in the
process of fashien bv merelv peil: g out that it is the product of

conformityv and imitation, because, if evervbody conforms, the process would
eventually cease, and certain forms of behavior would emerge as the social
custom, or convention. The desire for persconal distinction or exclusiveness
must work against universal adaptation of a fashion. Nor can we adequately
explain the regularity cf fashion cycles by saying that it is the product of
nonconformity, because, if evervbedy seeks individuality, the result would be
disorderly, and utterly unpredictable. The forces of imitation and
uniformity need to be strong encugh for any discernible patterns to emerge.
As Simmel ([1904]1957, p.546) wrote, "two social tendencies are essential to

the establishment of fashion, namely, the need of union on the one hand and



the need of isolation on the other. Should one of these be absent, fashion
will not be formed--its sway will abruptly end.™

This paper attempts to demonstrate in a formal model that such a
delicate balance between conformitv and nonconformity is not only necessarw
but also sufficient for the emergence of fashion cycles, while too strong
conformity would lead to the emergence of the social custom, and too strong
nonconformity lead to disorder. To be more specific, I will consider a simpl¢
pairwise random matching game, plaved by two tvpes of agents: Conformists and
Nonconformists. All agents are matched with both tvpes of agents with
positive probabilicyv: there are both intergroup and intragroup matchings.
Each agent must take one of two actions, Blue and Red, at any point in time,
before knowing the tvpe of the agent s/he will meet. When matched, agents
observe the choice made by their partners. One type, the Conformist, gains s
higher payoff if he and his partner have made the same choice. The other
tvpe, the Nonconformist, gains a higher payoff if she has made the choice
different from her partner's.2

In the absence of any inertia in changing actions, this game can be
analvzed as a static game. The Nash equilibria of this static game depend on
the two ratios of intergroup and intragroup matchings, one for a Conformist
and the other for a Nonconformist. They are in turn determined by the two
parameters of the model: the ratio of Conformists to Nonconformists in the

society, and the relative frequencv in which a given pair of agents from the

’This game between Conformists and Nonconformists is inspired by
Gaertner, Pattanaik, and Suzumura (1990). It should be noted that this game
is anonymous in that the type of one's partner in matching does not affect the
payoffs. Therefore, the class affiliation of an agent does not play any role
in this model. See, however, Karni and Schmeidler (1990) and Matsuvama (in
process).



same group is matched, compared to a given pair of agents from the different
groups is matched.

In order to investigate the dynamic path of behavior patterns in the
presence of inertia, as well as to test the dynamic staoility of the XNash
equilibria of the static game, the best response dynamics due to Gilbea and
Matsui (1991) is considered., This dynamics, which can be considered as the
limit case of the perfect foresight dynamics due to Matsuyama (199la,b),
leads to a variety of asymptotic properties, such as global convergence,
hysteresis, and a limit cvcle, depending on the parameters. These results are
used to identify socially stable behavior patterns. In the global convergencs
case, one half of both Conformists and Nonconformists choose Blue and tche
other half chooses Red, so that no patterns emerge. In the hysteresis case,
Conformists set the social custom, and Nonconformists revolt against ic; what
action becomes the custom is determined by the initial conditien, or by
"history.” In the limit cycle case, Nonconformists beceme fashion leaders and
switch their actions periodicallv, while Conformists follow with delay.

The richness of the asvmptotic properties mav be understood in terms of
strategic complements and substitutes: see Bulow, Geanakoplos, and Klemperer
(1985) for the definitions. The two actions are strategic complements for a
Conformist, and strategic substitutes for a Nonconformist. Therefore, the
game, if played by a Conformist and a Nenconformist, or by a pair of
Nonconformists, weuld have a unique Nash equilibrium, in which one half of the
population chooses Blue and the other half chooses Red. This equilibrium is
globally stable according to the best response dynamics. On the other hand,
if played by a pair of Conformists, there would be two additional Nash

equilibria, in which every agent chooses the same action. The best response



dynamics show that these two equilibria are locally stable, while the
equilibrium with mixed strategies is unstable. Allowing for both intergroup
and intragroup matchings blends two games with different properties, therebw
generating much richer dynamic paths of behavior patterns. In fact, the limi:
cvele can be generated by two kinds of bifurcation in this model. The firsc
case 1s when an increase in the ratio of Conformists leads to a loss of
stability in the unique Nash equilibrium in the pgame with strategic
substitutes; the regular patterns of fashion cycles emerge from the disorder.
The second case is when a decrease in the ratio of Conformists eliminates the
two locally stable Nash equilibria in the game with strategic complements;
fashion cycles emerge as departure from custom.

The present paper is partly related to the growing literature omn
evolutionary dynamics and equilibrium refinement in normal form games, such as
Friedman (1991), Gilboa and Matsui (1991), Nachbar (1990), Samuelson and Zhang
(1990), and van Damme (1987, Ch. %.4). 1In this literature, it is typilcally
assumed either that the game is plaved by the homogeneous population or that.
when the population is heterogeneous, consisting of, say, males and females,
all matchings are bestween a male and a female. It should be noted that Cilboa
and Matsui have demonstrated the possibility of limit cycles in the best
response dynamics, but their example is a two person 3x3 game with the
homogeneous population. It is fairly straightforward to show that the best
response dynamics do not produce any cycle in a two person 2x2 game if all

3

matchings are either intergroup or intragroup. The reason why a limit cvcele

occurs in the two person 2x2 game discussed below iIs that the population is

3In this sense, the best response dynamics are similar to the fictitious
play; see Miyasawa (1961} and Shapley (1964).



heterogeneous and both inter- and intragroup matchings are possible.

The rest of the paper is in four parts. Section 2 describes the
matching game and finds all Nash equilibria (Proposition 1). Section 3
introduces the best response dynamics and characterizes its asymptotic
properties (Proposition 2). Section & interprets the results. Section 5

discusses related work in the economic literature.

2. The Matching Game

Time is continuous and extends from zero to infinity. There is a
continuum of anonymous agents in this society. They are divided into two
groups: Conformists, whose measure is equal to § ¢ (0,1), and Nonconformists.
whose measure is 1-%. Agents randomly meet each other in pairs. The pairwise
matchings occur according to the following Poisson process. At any small Uime
interval, dt, a Conformist runs into another Conformist with probabilicy
{(1-8)8dt; he runs into a Nonconformist with probability 5(1-§)dt, where 3 ¢
{(0,1). On the other hand, a Nonconformist runs into a Conformist with
probability S6dt: she runs into another Nonconformist with probability
(l-3)(1l-43dt. This matching process assumes that the prebabilicy with which
one is matched with an agent from a given group is proporticnai to the size of
that group. The matching distribution also depends 3/(1-3), which represents
the relative frequency with which a given Conformist-Nenconformist pair is
matched compared to a given Conformist-Conformist pair or a given
Nonconformist-Nonconformist pair. Thus, if 5 = 1/2, the matching process is
uniform; if B > 1/2, it is biased toward intergroup matchings; if 8 < 1/2, i:

is biased toward intragroup matchings.4

“4e have used similar nonuniform matching technologies in Matsui and
Matsuyama (in process) and Matsuyama, Kivotaki and Matsui (1991).



It should be noted that, from each agent's point of view, the relative
frequency of intergroup matchings to intragroup matchings depends not onlv on
A but also on §/(1-9), the relative size of the two groups. For a Conformisc.

the ratio of inter- versus intragroup meetings is equal to
(la) m = 8(1-8)/(1-3)6

while, for a Nonconformist, 1t is equal to
(1b) m* = 36/(1~p) (1-§)

Note that Equations (la) and (ib) define a one-to-one mapping between (m,m*)

€ Ri and (7,8) ¢« (0,1)2. There are six generic cases to be distinguished:
Case 1: m< 1 < mm* , or /2 < g <4
Case 2: m < mm* < 1, or 1-4 <« g < 1/2
Case 3: mm* < m < 1 , or A< 8 <1 -8,
Case 4: m> 1 > mm* , or 1/2 > 8 >4
Case 5: m > max > 1 , or 1-8 >8> 1/2 ,
Case 6: mm* > m > 1 , or 83>6>1-23

Case 6 is further divided into the two cases:

Case 6a: m=m > 1, or /2 =89>1-38,
Case 6b: m*>m>1, or f>8>1/2
For the sake of brevity, [ will not discuss nongeneric cases, 8 = 1/2 (mm* =

1), 4 =3 (m=1), or 4 + 5 =1 (m" = 1).
At any moment, every agent has to choose between Blue (B) or Red (R).

When matched n agent observes the choice of his/her partner. A Conformist



gains the payoff, S, if his partner has made the same choice with his, and
otherwise gains D, where S > D. A Nonconformist gains $* if her partner has

. . . . % * %
made the same choice with hers, and otherwise gains D", where S° < D”. Let

*

5

(At,Af) be the behavior patterns in the society as of time t, where X_ (A
[ [

denotes the fraction of Conformists (Nonconformists) that chooses Strategv B.
Then, the (instantaneous) probability with which a Conformist runs into an

agent who chose B and R, are equal to

= A _(1-8)6 + AT3(1-4) L= (I=A ) (1-8)5 + (1-At)ﬁ(l—9)

Ppe Pr

respectively. Likewise, the probability with which a Nonconformist runs into

an agent who chose B and R, are

P 2 A 88 + AF(1-80(1-8) . pY = (L=x 8% + (1-2F)(1-8)(1-%)
Bt el C Rt C =

[

Then, a Conformist’'s euwpected pavoffs per unit of time if he chooses B and R.

are given by

Hge = Ppes T PRcD Moo = Pael + PRes o

and, for a Nonconformist,

% F oK F & * % O
= + —_-
Uge = Ppe? Pre? Moo = Ppel” PRy

Before proceeding to describe the evolution of the behavior patterns, it
is useful to look briefly at the nature of social interactions in this societw
1f there were no inertia in changing the behavior patterns. Agents, being
atomistic and anonymous, could play this game at any point in time as a
static, one-shot game, in the absence of any inertia. Dropping the time

subscript, note that $ > D implies @iy > T if and only if p, > p, and s¥ <D



implies pg < p§ if and only if pg > p;. The best responses are thus given b

_ . S v _ . i * L.k %
A 1 if Py > Py g, 171 if Py PR 0 if Py < P and A 1 if Py < Py
i0,1; if p; = pz; =0 if p; > pg. After some algebra, these cenditions can be
written as
(1} if (A=1/2) + m(AF=1/2) > 0 ,
(2a) A€ 0, 1] if  (a-1/2) + m(x*=1,/2) =0 ,
10} if (A-1/2) + m(A¥~1/2) < O
(0! if mT(A=1/2) + (AF=1/2) > O
(2b) 2F e 0,1] if w¥(-1/2) + (AF-1/2) = 0 |
(1) if  m(A-1/2) + (A¥=1/2) < 0O

The Nash equilibria of the static game are defined by the fixed points of

Equations (Z2a) and (2Zb).

Proposition 1. The Nash equilibria of the static game are

Case 1: (A5 = 172,172y, (1,0), (0,1, ((i-m)/2.1) and ((l+m)/2,0).

1l

Case 2: (X, 0%y = (1/2,1/2), (1,0) and (0,1).
Cases 3 and &4: (A, A%) = (1/2.1/2), (1,(1-m™)/2) and (O, (l+m™)/2).

Cases 5 and 6: (A, 2™

]

(1/2.1/2).

Figure 1 shows the Nash equilibria on the (A,A*) space for each of the six

generic cases. The two loci, Py and pg = p;, are both negatively sloped

Pp

and pass through (1/2, 1/2). The slope of locus of Py =P is 1/m; a

R

Conformist’s best response is B above the locus and R below it. The slope of

locus of pg = pE is m*; a Nonconformist's best response is R above the locus

and B below it. The Nash equilibria are depicted by dots.

Multiplicity of Nash equilibria of the static game poses some conceptusl
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problems. To justify studying a Nash equilibrium, it is commonly assumed tha

0t

all agents know the entire structure of the game and also agree on which
equilibrium is being played. In other words, the strategy profile is assumed
to be common knowledge among the agents, so that they know how to coordinate
or to focus on a specific equilibrium. This assumption, which is often
justified by pre-play negotiation, seems too hercic in a game with a
continuum of agents, such as ours. In order for agents to hold cenfident
conjectures about the actions of others, some sorts of inertia must be
introduced in the behavior patterns of the society. Evolutionary processes
are considered appealing as a way of explaining how a particular equilibrium
is chosen and emerge in a dynamic context. Although the literature is mainly
interested in the power of evolutionary dynamics in equilibrium selection, I

will be also concerned with the dynamic path of behavior patterns itself.

3. Best Response Dvnamics

In an attempt to exXamine the dynamic stability of Nash equilibria, many
evolutionary dynamics have been proposed, all of which share the following
three properties. First, as in a perfectly competitive market, each agent is
atomistic and ancnvmous and thus maximizes his/her expected payoffs without
getting involved in complicated strategic interactions such as retaliation or
reputation. Second, it is assumed that some sorts of inertia are present in
changing one’s behaviers, and that only a tiny fraction of agents are changing
their actions at each moment. Thus, a change in behavior patterns is made In
a continuous way. Third, actions that are more successful, given the current
behavior patterns, replace less successful actions. These properties as well
as some regularity conditions are often sufficient to test asymptotic

stability of Nash equilibria.
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In order to investigate the limit properties of evelution of behavior

;1

patterns, however, one needs to specify the dynamic process in de=zai Here.

I will consider the best response dynamics proposed by Gilbeoa and Matsui
{1991). According %o this dvnamics, the behavior patterns change onlv i the
direction of the best response to the current behavior patterns. For
example, if (1,0) is the best response profile {i.e., B is the Conformist’'s

. . *
best response and R is the Nonconformist’'s best response) to (AL,At), then
[

(Ak,if) = al(1,0)=(r_,A7)) = (a(l—kh),—aAf) for a constant a > 0, where the
upper dot denotes the (right hand) derivative with respect to time. More
generally,
1 - —_ *_
fa(l-x ! i (A -1/2) + m(AT-1/2) > 0,
(3a) it € [~ad ,a(l=2 ) if (A_-1/2) + m(A*-1/2) = 0 ,
[ [ [
f—a) tE (A =172y + m{AT-1/2) < 0 |
[ L [
" Tf 0 mt(A_-1/2) ¢ (AF-1/2) > 0
Tk . % * - . * . * _
{3b) At € \faAt,a(l—At)j if m (At 1/2) + (At 1/2) o,
{a(l—xi)} LE m (A -1/2) + (A7-1/2) < 0
[ [

A dynamic path of behavior patterns is given by an absolutely continuous

function, (At,kﬁ):{o,w) - {0,1}2, which satisfies (3a) and (3b) for all t «

“

“0,») and the initial condition, (AO’AS)' which 1s determined by "history.

Note that the set of ti. stationary points of dynamical system (3) is equal to
the set of the Nash equilibria of the static game given in Proposition 1.

Instead of the Nash equilibria, I will focus on the socially stable behavior

patterns, defined by the attractor of (3): that is, the set of w-limit points



of (3) for an open set of initial conditions, (AO,AS).S

The best response dynamics have some attractive features. First. it
leads to a piecewise linear dynamical system, which is simple but rich enough
to allow for a variety of dynamic behaviors. It permits a simple geometrical
analysis. Figure 2 depicts the vector field defined by (3) for each of the
six generic cases. As shown, the gradient of the vector field points to the
vertex of the unit square that corresponds to the best response in any of the
four subspaces, in which the best response is unique. When the best response
is not unique, the gradient belengs to the cone formed by the best response
direction. Seceond, it does not rule out revival of "extinct" strategies,
unlike the standard formulation of evolutionary dynamics.6 Third, socially
stable behavior patterns due to the best response dynamics are independent of
a, or the degree of inertia assumed. Fourth, it can be interpreted as the
limiting case of the perfect foresight dynamics introduced by Matsuvama
(1991a, 1991b).

According to this perfect foresight dynamics, each agent has to make a

’Strictly speaking, this is different from the way Gilboa and Matsui
defined the best response dynamics and the associated notions of
accessibility, cyclically stable sets and social stability. In order to
formalize perturbations, or mutations, they allow agents to use any
distribution when randomizing, and they introduce trembling by considering
best response to the e-neighborhood of the current behavior patterns. See
Gilboa and Matsui (1991) for more detail.

ct
ay
0]

bFor example, in the replicator dynamics, adapted from the literature of
population biology, the growth (reproduction) rate of strategies (species)
depends continuously on their relative payoffs (fitness): see Friedman {1991},
Nachbar (1990), Samuelsen and Zhang (1990), and van Damme (1987, Ch. 9.4),
One implication of this specification is that any extinct strategy cannot be
revived, except the possibility of mutations. It seems hard to defend this
implication in our context. For example, even if all Conformists choose B at
the beginning, they might get the idea of choosing R for a wvariety of reasons,
such as watching Nonconformists choose R, And if they start switching from B
to R, there is no reason to suppose that the pace of switching should be
slower initially when a relatively small fraction of Conformists chooses R.



commitment to a particular action in the short run. The opportunity to change
one’s action follows the Poisson process with a being the mean arrival rate.
In other words, the duration of the commitment, X, is a random variable, whoss
distribution function is exponential, 1 - exp(-ax). It is independent

across agents and thus there is no aggregate uncertainty. When the commitmen:
is over, agents choose the action which results in a higher expected

discounted payoff over the next duration of commitment, knowing the future

-

/

path of behavior patterns. Under this formulation, the behavior patterns

evolve according to

ta(l-)_) i fhug - HRS}e(a+6)(t_s)ds > 0
(4a) i e (—ad e (1A ) ] i [T - HRs}e(a+6)(t_S)ds -0
(-ad | ie [, - HRS}e(a+6)<t_S)ds <0,
{—aki} if f:{ngs - st}e<a+6>(t_s)ds <0,
(4b) it € :—akj,a(lﬁki)] if f:fngs - ngs}e(a+5)(t"s)ds =0,
(130 e ST - H;S}e(a+6)(t_s)ds >0

where § > 0 1s the discount rate. It can be easily verified that (3) is the
limit case of (4), where § goes to infinity. Furthermore, the phase pertrait

of (3) is identical to that of the limit case of (4), where a goes to zero, ov

7Alternatively, this dvnamics can be interpreted as follows. The scoclecy
is populated by overlapping generations of agents. At each point in time,
Conformists of measure equal to af, and Nonconformists of measure equal to
a{l-4), are born. All agents alive face an instantaneous probability of
death, a. The risk of death is independent across agents and hence there is
no aggregate uncertainty; Conformists of measure, af, and Nonconformists,
a(l-4§), die at any point. The population thus remains constant over time.
Each agent has to choose his/her strategy at the time of birth, and is
restricted to stay with the strategy of his/her choice during his/her
lifetime. This interpretation, while unrealistic in the context of fashions
in dress, may be reasonable in other contexts, such as fashions in art,
lifestyle, political ideology, and so on.



the expected duration of commitment, l/a, pgoes to infinity. Thus, the best
response dynamics can be used to identify the long run behavior patterns in
8

the perfect foresight dynamics when adjustment is sufficiently slow.

The main results can now be put forward.

Proposition 2.

The socially stable behavior patterns of (3) are given by:

Cases 1 and 2 (m" > 1 > m): (3, 2% = (0,1) and (1,0) ,

Cases 3 and 4 (m* < 1, m < 1/m%): (A, A%) = (1,(1-m")/2) and (0, (l+m™)/2) ,

*

Cases 5 and 6a (m = m" > 1/m): (A ATy = (172, 172y
Case bb (m* >m > 1): the limit cvcle
Proof. Figure 2 would be sufficient for Cases 1 through 5. In Case 6,

dynamic paths circle around (1/2,1/2) clockwise. To examine the limit

and {Yn}CO as follows:

property of a path, define sequences {Xn}m -0’

n=0

(5a) Poo= (K, /) /20 (1=K, /2 )
(5b) Q= =Y, 02,0 (e, /m)/2 )

(5¢) PY= (1K /w2, (1R, 10/2 )
(5d) 0= Y, /2, (LY, L /m /2 )

where P (P') is the point at which the path crosses the locus of pz = pg to
the southeast (northwest) of (1,/2,1/2) for the k-th time and Q (Q') is the

point at which the path crosses the locus of Py = to the northwest

PR
{(southwest) of (1/2,1/2) for the k-th time, as depicted in the diagram for

Case 6 given in Figure 2. Since PQ points to (0,1), and QP’ points to (1,1)

870 quote Young (1937, p.5), the process "must be sufficiently rapid to
cutmode previous fashions every year, but it must be sufficiently slow to
prevent the leaders from outdistancing their fellowers.”
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these sequences satisfy

m*(1+m)xn m{m*-1)Y
Yn= , X = a ]
n(l+m™) + (mm*—l)xn m* (m=1) + (mm*-l)Yn

or

(m"-—l)(l+m)Xn

(6) el = *
(m=1)(1+m™) + 2(mm*—1)xn

Equation (&) implies that, if m = m > 1, then an}z=O converges to 0 for any

XO' so that all paths converge to {(1/2,1/2) in Case 6a. If mt > m o> 1,

=
{Xn]n:O converges to
(7 X, = (0F-m)/ =1 = (26-1)8(1-8)/(26-1)6 (1=8) |
for any XO > 0, and so does {Yn]::O. All paths thus converge to a unique

limit cycle in Case 6b. This completes the proof of Proposition 2.

4. Discussion

Figure 3 summarizes how asymptotic behaviors of the soclety depend on
{m, m*) or (4, 8). In Case 1l and Case 2, socially stable behavior patterns
are (A,A*) = (0,1) and (1,0). All Nash equilibria that involve mixed
strategies are dynamically unstable. In these cases, the ratio of Conformists
to Nonconformists is sufficiently large (4 > g, 1-8), so that all agents are
matched more frequently with a Conformist, rather than with a Nonconformist
(r > 1 >m). Thus, Conformists effectively play the game among themselves,
while Nonconformists play the game against Conformists. 1In these two stable
equilibria, the Conformist, the majority, sets the social custom and the

Nenconformist, the minority, revolt against it and acts like a social misfit.



Multiplicity of stable outcomes is not surprising because Conformists form the
majority and because the two actions are strategic complements from a
Conformist’'s point of view. Which of the two stable equilibria the societw
would converge to depend on the initial conditions (or in other words, whether
B or R becomes the social custom is determined by history.) Thus, the dynamic
process exhibits hysteresis phenomena. As shown in Figure 2, if the
Conformist’'s initial best response is B (that is, (AO,AS) is such that pBO >
), B emerges as the social custom and the society converges to (1,C). If

PRO

pBO < pRO' onn the other hand, R becomes the social custom and the society
converges to (0U,1).

In Case 3 and Case 4, socially stable behavior patterns are (A,A*) =
(1.(1l-m™)/2) and (0, (l+m")/2), while (A\,2™) = (1/2,1/2) is unstable. The
mixed strategies by Conformists are ruled out by the dynamic stability, but
not those by Nonconformists. XNote that 8 < 1 — 8, or equivalently m* < 1, in
these cases. Because the ratio of Neonconformists to Conformists is
sufficiently large and the matching process is sufficiently biased toward
intragroup matchings, a Nonconformist is matched with another Nonconformist
more frequently than with a Conformist. This implies mixed strategies by
Nonconformists. On the other hand, a Conformist meets another Conformist
more frequently than a Nonconformist does (8 < 1/2, or m < l/m*). This
implies that, for any behavior patterns to which Nonconformists are
indifferent between the twe actions, a Conformist follows what the majoritv of
Conformists does. As a result, X_ converges to either O or 1 aleng the locus

~

of pg = pg, depending on the initial condition. In Case 3, it converges to

* . * .
(1,(1l-m™)/2), if pBO > Pag and to (0,(l+m™)/2), if pBO < pRO' In Case 4,

it converges to (1,(1-m")/2), if A + Ag > 1, and to (0,(1m*)/2), if Xy + A7



In Case 5, the dynamics is globally stable and converges to (A,A*) =
(1/2,1/2). As in Cases 3 and 4, m* < 1 so that Nonconformists effectively
play among themselves, which imply mixing. Unlike Cases 3 and 4, however, the
matching process is sufficiently biased toward intergroup matching (3 > 1/2)
so that a Conformist runs into Nonconformists more often than a Nonconformist
does (m > l/m*). This implies that, for any behavior patterns to which

Nonconformists are indifferent between the two actions, a Conformist follows

what the majority of Nonconformists does. As a result, A_ converges to 1,2
L=

%
Pp -

along the locus of pE =
In Case 6, the best response dynamics generate a spiral path around
(A,A*) = (1/2,1/2), as shown in Figure 2. For any Conformists-Nonconformists
ratio, this case occurs 1f the matching process becomes sufficiently biased
toward intergroup matchings (8 > §, 1-4 or m, mc > 1). Whether the
fluctuation persists forever or eventually settles down, however, depends on
the ratio. If there are more Conformists than Nonconformists (4 > 1/2), so
that Nonconformists are more concerned with intergroup matchings than
Conformists (m* > m > 1), then socially stable behavior patterns become
cvclical. Aleng the cycle, a Nonconformist, wishing to differentiate herself
from the masses, changes her action, before it becomes too conventional. A
Conformist, whose matchings are more often intragroup than a Nonconformist’s,

g

follows the continuing trend for a while. Then he switches his acticn only

after sufficientlvy many Nonconformists switch their actions. Nonconformists

Y0ne can show that sgn [93»+(1ﬁ5)if} = sgn i along the limit cycle: that
is, the fraction of the population that chooses B goes together with that of
Conformists.



10 On the other

act as fashion leaders and Conformists act as followers.
hand, i1f there are more Nonconformists than Conformists (4 =< 1/2), then
Conformists are more concerned with intergroup matchings than Nonconformists
{m > n* > 1). Conformists are much quicker to follow Nonconformists in this
case, so that Nonconformists cannot maintain the lead forever. The
distribution of strategies eventually settles down to (A,A*) = (1/2,1/2). The
best response dynamics converges globally to the unique Nash equilibrium.

To understand the emergence of the limit cycle further, it would be
useful to consider the following two thought experiments. First, starting
from the case, _-3 < 4 < 1/2 (or m > m* > 1), where (A,2%) — (1/2,1/2) is the
unique, globally stable Nash equilibrium, let § increase. As the society
crosses the line 5 = 1/2 (or m = m*), (A,A*) = (1/2,1/2) loses its stability
and bifurcates into a limit cvecle. Although the Conformist is still concerned
with intergroup matchings more than intragroup ones, he becomes less so than
the Nonconformist is, which makes it possible for the Nonconformist to take
the lead in switching actions. The regular patterns of fashion cycles thus
emerge out of the discrder, as the force of conformity increase. Second,
starting from Case 1 (§ > 8 > 172, or mm* > 1 > m), where (A,2™) = (0,1) and
(A,A*) = (1,0) are two locally stable Nash equilibria, let # decline or 3
increase. As the society crosses the line § = 8§ (or m = 1), the two Nash

equilibria first lose their stability and then disappear. A Conformist

becomes more concerned with a Nonconformist rather than another Conformist,

1OAlthough the matching process needs to be biased toward intergroup for
the existence of cvcles, there also needs to be some intragroup matchings.
When B approaches the unity, the cycle eventually shrinks to the Nash
equilibrium, as can be verified from Equation (7). If there is no matching
between a pair of Conformists, the game would be one of strategic substitutes
and the mixed equilibrium would become globally stable.
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and begin to imitate her. This bifurcation creates a limit cycle. Fashion
cyvcles thus emerge as departure from custom in this case, as the forces of
nenconformity increase.

As easily seen from the two Propositions, the Nash equilibrium and the
socially stable behavior patterns coincide only in Case 5 and Case 6a, when
the best response dynamics are globally stable. In Cases 1 through 4, only a
subset of Nash equilibria are selected so that the best response dynamics
serve as an equilibrium refinement. In Case 6b, a globally stable cycle
emerges, which is not captured by the Nash equilibrium of the static game.
This is not to be interpreted as a flaw of the best response dynamics; rather
it seems to suggest that the Nash prediction of the static game i1s unrobust

with respect to a natural perturbation of the game into a dynamic setting.

5. Related Work in the Economic Literature

Both positive and negative consumption externalities, built into the
paveffs of Confermists and Nonconformists, have been the impertant subjects in
the theory of consumption. For example, in a classic article, Leibenstein
(1950) discussed the implications of what he called the "bandwagon effect" and
"sneb effect" on the static market demand curve. By the bandwagon (snob)
effect he referred to the extent to which the demand for a commedity is
increased {decreased) because others are consuming the same commodity. In the
game presented above, Conformists persconify the bandwagon effect and
Nonconformists the snob effect. Leibenstein’'s analysis is static and thus he
did not discuss any dynamic impilication of combining these two effects,
although he stated "{i]n all probability, the most interesting parts of the
problem, and also those most relevant to real problems, are its dynamic

aspects (p.1l87)."
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Although payoff externalites are simply assumed in the present game, it
would be worthwhile to model the mechanisms that could generate conformicy
and noncenformicy in human behaviors. In this respect, recent work by
Banerjee (1989) and Bikhchandani, Hirshleifer, and Welch (1990) deserve
special mention. They demonstrated how informational externalities could lead
to conformist behaviors. In particular, Bikhchandani, Hirshleifer, and Welch
explored the role of informational externalities in the emergence of fads and
discussed their fragilitv at the arrival cof new information.

The paper by Karni and Schmeidler (1990) is most closely related to the
present paper, both in its approach and in its spirit. They have constructed
a (discrete time) dynamic game played by two classes of agents, a« and 8, who
choose among three different colors every three periods. The crucial feature
of their model is that the preferences of a-agents for a given color decrease
with the fraction of J-agents that use the same color, while the preferences
of B-agents for a given color increase with the fraction of a-agents that use
the same ¢_ior. Thus, fashion is driven by an emulation of the elite class,
a, by the rest of the societv, B. The elite class seeks to set itself apart
from the rest of the soclety by adopting different colors, which in turn leads
to a new wave of emulacion. The class affiliation of an agent plays a
significant role in their model, and thus captures the dominant sociological
view of fashion, usually associated with Simmel ([1904]11957). Due to the
complexity of the model, however, they were only able to generate a numerical
example of fashion cyele equilibria. One advantage of the present model is
that its simple structure permits characterization of different types of
behavior patterns on the two dimensional parameter space and thus enables one

to explain both custom and fashion in a unified framework.
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