Discussion Paper No. 935
ABSORBENT STABLE SETS’
by
Itzhak Gilboa™
and

Dov Samet”

April 1991

“We wish to thank John Geanakoplos, Ehud Kalai, Michacl Maschler, David Schmeidler and
Yair Tauman for comments and relerences.

“Department of Managcrial Economics and Deccision Sciences, J. L. Kellogg Graduate School
of Management, Northwestern University, Evanston, 1L 60208,

"*Recanati School of Business, Tel Aviv University, Tel Aviv 69978, Isracl.



Abstract

This paper suggests a general framework to deal with learning, dynamics
and evolution in games and economic environments. In this general set-up we
define a (set-valued) solution concept and prove some properties, including
existence.

We then discuss more specific dynamical processes and show that the
general solution concept provides quite intuitive results for various

contexts.



1. introduction

Recent years have witnessed a growing interest in dynamic processes,
emphasizing learning and/or evolution, in game and econeomic theory. Various
models describe the interaction of agents, who range on the rationality
gamut from genes to Bayesian-rational decision makers, which can he as few
as two or as numerous as the continuum. (A very partial list of references
include Boylan (19%90), Canning (1989), Crawford (1990), Fudenberg-Kreps
(1988), Fudenberg-Levine (1990}, Gilboa-Matsui (1989), Gilboa-Schmeidler
{1989), Kalai-Lehrer (1990, 1991}, Kandori-Mailath-Rob (1991), Matsui (1989,
1990), and Swinkels (1990).)

In many of these studies, the specification of the dynamics per se is
not clearly separated from the "solution concept" applied to it. The latter
seems to be tailored for the specific dynamical model, and thus tends to be
ad hoc.

With some diffidence, we would like to propose the opinion {(to which we
do not fully subscribe) that one cannot hope to find a universally
applicable dynamical process for learning or evolution. Various set-ups
call for different, sometimes intrinsically incompatible, dynamics. The
quest for universal learning/evolutionary laws may be as futile as the
attempt to specify a single utility function for a "typical” decision maker.
Our goal in this paper is, therefore, primarily to provide a generai
framework which can accommodate a wide range of phenomena of interest, and
define a "solution concept” that will be applicable to all these phenomena.
When analyzing a specific process of learning and/or evolution process one

should use the particular dynamics as a parameter to this solution concept,
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very much like utility functions and the game structure are used to apply
Nash equilibrium.

We start by presenting the general framework, which models a system as
a pair {X.R) where X is interpreted as a state space, and R is a binary
relation to it, to be thought of as the "may evolve into" relation. We will
assume that X is a compact metric space, and define a set-valued solution
concept--called "asborbent stable set"” (ASS)--which is, roughly, a minimal
compact set, small neighborhoocds of which do not lead (according to R) away
from it.

At first sight, our framework may seem extremely restrictive: we only
consider dynamic systems for which the possible evolutions depend solely on
the current state. The classical reply is, of course, that one should
define one's "states” to be elaborate enough in order to contain all
relevant information. Thus, for instance, an economic system's "state" may
specify not only prices and quantities, but also beliefs and expectations to
the extent that these are of relevance. However, some nontrival restriction
may be hidden in the assumption that X is compact in some interesting
metrizable topology.

In this general framework, we show that every system has at least one
ASS. that ASS's are closed and disjoint, and that their definitien
presupposes some transitive and topological closure of the relation R. We
also compare ASS's of different relations between which inclusion holds and
prove some other results.

Thus we provide a uniform framework and general results for dynamic
models. Furthermore, treating the relation R as a parameter of the solution

concept allows us to formally compare different dynamics in terms of the



ASS's they give rise to.

We continue by studying some more specific models, such as best-
response dynamics in games, assuming myopic {but otherwise quiie rational)
economic agents, or better-response dynamics, which is more appropriate for
the analysis of gene behavior, and so forth.

The rest of the paper is organized as follows. Section 2 presents the
general model, defines ASS and proves some general results. It also
includes a generalized definition of CSS (Gilboa-Matsui (1989})) and a
comparison of the two set-valued "solution cencepts.” In Section 3 we apply
the concept of ASS to games played with large, randomly matched populations
and myopic best response. We compare our results to Gilboa-Matsui's (1989)
cyclically stable sets. Section 4 analyzes games with similar assumptions,
" but replacing their "best response” by a "better response.” Thus we can
compare the behavior of {more rational) human agents to that of (less
rational) genes by applying the same solution concept--ASS--to slightly
different dynamics. In Section 5 we briefly discuss some learning and/or
evolutionary models in game and economic theory, and test the scope of our
general model in terms of those that can be embedded in it. Finally,

Section 6 contains some concluding remarks.

2. The General Model

A (dynamical) system is a pair (X,R) where X is a compact metric space
of states and R € X2 is a binary relation on X. We write XRy when
{(x,y}) € R, and this should be interpreted as "x may evolve into y" or "y 1is

accessible from x."

Wwe define R: X = X, the associated correspondence, by R(x) =
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{y € X{xRy}. A correspondence ¢: X —— X is extended to 2X by ¢{(A) = UxeA
¢(x) for A € X.

Topological properties reléting to R should be read as referring to the
product topology on X2. Thus. for instance, R is closed iff R is upper
hemi-continuous. On the other hand. topological set-properties ascribed to
R should be understood pointwise. Thus, R is closed if and only if R(x) is

a closed set {in X) for all x € X.

A set A € X is R-self-absorbent, or simply absorbent if x € A and y € A

imply not (xRy)--that is. if ﬁ(A) c A.

We note the following.

Observation 2.1: The class of absorbent sets is closed under arbitrary

unions and intersections.

Yotice that this class is also nonempty as & and X are trivially

absorbent.
A set A C X is (R-)stable if: (i) A is nonempty; and (ii} there are
{F } , with F_ € X closed and absorbent, such that A & FO for all n =2 1
n'n21 n n
and A = nn>l Fn {where 80 denotes the interior of B).

Observation 2.2: In the definition of stability above, one may restrict

one's attention to decreasing sequences {Fn} (i.e., Fn+1 c Fn for all n > 1)

without loss of generality.

. . s ' - k
Proof: For an arbitrary {Fn}nzl' define {Fn}n21 by Fn = ﬂk=1 Fn. These

sets are obviously closed and absorbent by (2.1). Moreover, A & FO for 1 £

k
n 0 N . '
k € n. Hence, AC ﬂk=1 (Fk) = (Fn) . Finally, N Fn =N Fn =A. //



Note that every stable set is compact and, by (2.1), also absorbent.

This definition of stability basically says that small perturbations
outside of a stable set A cannot lead to "remote” points. However, stable
sets may be very large; indeed, X itself is always stable. We therefore
define our "solution concept' as follows: a set A &€ X is (R-)Absorbent
Stable Set (R~-ASS) if it is a minimal stable set (with respect to set
inclusion). English permitting, we will use the term "ASS" as an adjective

and as a noun interchangeably.

Theorem 2.3:1 For every system (X.R) there is at least one R-ASS.

Proof: Let B be the set of all stable sets. As noted above, X € B so that
B is nonempty. B is partially ordered by set inclusion, and in order to
apply Zorn's lemma all we have to do is convince ourselves {and possibly

also the reader) that for every decreasing chain there is a minimal element.

Let A be a >-linearly ordered set of indices, and let {Aa}aeA be such a

chain, i.e., Aa € B and @« 2 B implies Aa cA

8

Define A =1 Note that each Aa is compact; hence, A is compact

aed Aa'

and nonempty. We now wish to show that there are indices {an}n>1'

a >a , such that A = N_ A .
n+1 n n o«
Let {Bn}n>1 be a decreasing sequence of open sets in X such that
A = nnZl Bn. (For instance, let Bn = UxeA Nl/n(x) where Ne(x) =

1Both the definition and existence proof for ASS's were inspired, to
some extent, by Kalai-Samet (1984) and Gilboa-Matsui (1991). We later found
out that our general framework is similar to those of Maschler-Peleg (1976)
and Kalai-Schmeidler (1977).
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{y € Xid(x.y) < €} and d(-,+) is a metric for X.) Fix n 2 1. For all
a € 4, Aa M (Bn)C is compact. If it is also nonempty for all a € &, then
na[Aa N (Bn)C] = AN (Bn)C # @, which is a contradiction. Hence, for some

a €4, A c Bn. Picking such an for each n we obtain A & ﬂn Aa c
n n

AO[n being stable, there is a sequence {Fn,k}k21 such that F . are

. 0 .
c =
closed, abhsorbent and satisfy Aan c Fn.k and Aan ﬂk Fn.k‘ Obviously,
ACA c F0 and A = N_ A = F . Hence, A is stable, and by
an n. k n an n.k n,k

7Zorn's lemma, there exists an ASS. //

Before we proceed to analyze and apply the concept of ASS, we would
like to compare it to cyclically stable sets (CSS) defined in Gilboa-Matsui
(1989) as a solution concept for finite games. Gilboa-Matsui defined a
specific accessibility relation, a version of which we will introduce in the
sequel. At this point. however, we may suggest the following generalization
of their definition of CSS: given a system (X,R), a set A& X is an (R-)CSS
if: (i) A is nonempty; (ii) for X,y € A, XRy; and (iii) for x € A, y € AC,
not (XRy).

Iin other words, A is a CSS iff A is nonempty and for all x € A,

Recalling that R is said to be closed (nonempty) iff E(x) is closed

(nonempty) for all x € X, we have:

Theorem 2.4 (Gilboa—Matsuil:2 Let (X,R) be a system and assume that R is

21t turns out that both the theorem and proof we provide are very
similar to Theorem 3 in Kalai-Schmeidler (1977).



T

transitive and R is closed and nonempty. Then (X,R) has at least one CSS.

Since Gilboa-Matsui formulated the theorem in a much more specific
framework, we provide here the general procf. It is, however, a

straightforward adaption of the existence result in their paper.

Proof: Let B be {ﬁ(x)ix € X}). We first show, using Zorn's lemma, that B

has a set-inclusion minimal element. c X be such that

Let {xa)aea
{R(xa)}aea is a decreasing sequence, 1i.e., R(xa) c R(xB) for a 2 B.

Since R is closed and nonempty, ﬁ(xa) is nonempty and compact for all
a € A. Hence, A = ﬂa ﬁ(xa) is nonempty and compact. Choose x € A. If xRy,
then, by transitivity, xaRy for all o € &. Hence, ﬁ(x) C A, which means
that {ﬁ(xa)}a has an lower 2-bound in B. This implies the existence of
AO = ﬁ(xo) which is minimal with respect to inclusion.

We wish to show that for all y € AO’ ﬁ(y) = AO. The inclusion
ﬁ(y) c AO follows from transitivity, while the converse follows from

minimality. This completes the proof. //
Comparing the two notions of "stable sets" we note the following:

Remark 2.5: In general, CSS's may fail to exist even if R satisfies any two
of the conditions of Theorem 2.4 (nonemptiness and closedness of ﬁ, and
transitivity of R). The example R = @ clearly shows that nonemptiness
cannot be dropped from the theorem's provisions. Next consider X = [0,1]

and R = {(x,y)i0 € x £y <1} U {1} x [0,1]. R is transitive and R is

nonempty, but it is not closed and there is no €SS. Finally, if R is
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nonempty and closed but R fails to be transitive, it is not difficult to see
that CSS's may fail to exist. (For instance, take X = {0,1,2} and
R = {(0.1).(1,2),(2,0)}.)
By contrast. ASS's will always exist.
Given a relation R, R-ASS's, as opposed to R-CSS's, can be thought of
as taking the transitive and topological closure of R.

Formally, given a relation R, one may consider the class of relations:

& ={R" CX"IRER", R' is closed, R' is transitive}.

Since X2 € £, & is nonempty. Thus, we may define

It is easy to check that R € & Hence, it is its (unique) minimal

element and may be dubbed the semi-closure of R. We note that:

Theorem 2.6: Let (X,R) be a system. A set A € X is R-ASS iff it is R-ASS.

Proof: We first show that a closed set ¥ € X is R-self-absorbent iff it is
R-self-absorbent. The "if" part is trivial since R & R. As for the "only

if" part, assume F is R-seif-absorbent, and suppose, contrary to our claim,

that xRy for x € F and y € F®. Define

R' = R\V(F x F°).
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We claim that R' € & where & is defined as above. Indeed, R € R' since
F is R-self-absorbent, that is, RN (F X FC) - &. To see that R' is closed,
notice that for z € FC, R'(z) =‘§(z) and for z € F, ﬁ'(z) = é(z) NnF.
Hence, R'(z) is closed for all z € X. Finally, to show that R' is
transitive, let zR'w and wR't. If z € F, w € F and t € F follow. Hence,
zRw and wRt., whence zRt and zR't. If, however, z € FC. zR'w and wR't imply
zRw and wRt (by R' & R). Transitivity of R implies ZRt, which vields zR't
since z € FC. Thus, we obtain R' € &, but (x,y) € R\R', contrary to the
minimality of R.

Since every closed set is R-self-absorbent iff it is R-self-absorbent,

every set is R-stable iff it is R-stable and, perforce, every set is R-ASS

iff it is R-ASS. //

Remark 2.7: This result shows that the notion of ASS "presupposes” the
semi-transitive closure of a given relation. Given a system (X,R}, with R
being nonempty, one may conjecture that the R-ASS's (R-ASS's) would coincide
with the R-CSS's (guaranteed to exist by (2.4)).

However, it should be pointed out that ASS's also have some
“robustness” inherent in their definition. For instance, consider X = [0,1]

{with the natural topology) and
R = {(0,0)} U {(x,y)[{0 < x £y}
R satisfies all provisions of (2.4), and X indeed has two ¢sS's: {0} and

{1}. However, only the latter is an ASS.

we find that, at least for the applications we have in mind, the
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analysis is greatly simplified by defining the stable set in a way that
would guarantee not only transitivity and closedness, but also robustness
with respect to small perturbations. For instance, one may define a
relation R to capture a dynamical process only where it is intuitively well

defined, and let the ASS take care of the rest.

Remark 2.8: We have seen that even if R satisfies the conditions of (2.4),
some CSS's may fail to be ASS's. It is only natural to ask whether all
ASS's are €SS's, and it is quite simple to see that the answer is negative:
let X = [0,1] and R = {(0,0),(1,1)} U {{x,y)}ix € (0,1), y € [o,11}.

R is nonempty and closed and R is transitive. The €SS's are, as in the
previous example, {0} and {1}. However, the unique ASS is {0,1] = X.

In both these examples, the ASS contained a CSS. Indeed, we have:

~

Proposition 2.9: Let (X.R) be a system where R is nonempty and closed and R

is transitive. Then every ASS contains a CSS.

This will be a corollary of:

Proposition 2.10: Let {(X,R) be a system where R is nonempty and closed and

R is transitive. Let A € X be nonempty. closed and absorbent. Then A

contains a CSS.

Proof: Given the set A, define the subsystem (A,R) by restricting R to A
and endowing A with the relative topology. A is compact; hence, it will

have a CSS. However, since A is also absorbent, this €SS will also be a CSS
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of X. //

Another conclusion is

Corollary 2.11: Let (X,R) be a system with R nonempty and closed and R

transitive. Then for every x € X there is a €88 C € X such that C &€ ﬁ(x).

That is, every point x and X is "attracted” by at least one CSS.

In the examples we have seen above, the CSS's were strictly included in
the respective ASS's since the notion of CSS has no "robustness” built into
its definition. One may be tempted to conjecture that this fact is due to
some lack of continuity of R. Indeed, R was not closed (alternatively, R was
not upper hemi-continuous) in these examples. It is therefore natural to
consider the "topological closure" of R in a stronger sense, i.e., to

require that R itself be closed, rather than merely R.

Formally, given an arbitrary R &€ Xz, define the full closure of R,

denoted ﬁ, to be the minimal transitive and closed relation containing R.
(As above, let R = nR'eg R' where £ = {R™ € XZ‘R C R', R' is closed and
transitive}. & is nonempty since X2 € £ and R is easily verified to belong
to &.)

Given R with R nonempty, it seems natural to compare R-CSS's to

R-ASS's. However, we note that:

Remark 2.12: Given R which is closed and transitive with R nonempty, an

R-ASS may still strictly include an R-CSS.
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Proof: Consider X = [0,1] and

R = {{x,x)ix € [0,1]} U {(1/(2k + 2}, 1/(2k - 1) + k 2 1}.
R is nonempty. and R is closed and transitive. Yet {0} is a CSS which is

not an ASS. //

if one's research goal is to obtain equivalence of ASS and CSS, one
path to follow is to slightly modify the definition of a "stable set” and
redefine ASS accordingly. The interested reader is referred to the
Appendix. It is far from being clear which definition is, in general. more
appropriate. Fortunately, for our applications the distinction is
immaterial, and we therefore stick to the original, simpler definition.

One more point, however, has to be settled hefore we relinquish the
concept of CSS in favor of ASS: (CSS's have the intuitive property that they
do not intersect. Indeed, if x € C1 A C2 where both C1 and C2 are CSS's,
then C1 = C2 - R{x). It is comforting to know that the same is true of
ASS's. We first prove:

Proposition 2.13: If A1 and A2 are stable and A1 N A2 is nonempty, it is

also stable.

. 1 2 1 2 .
Proof: ‘leen sequences {Fn}nZl and {Fn}nZl for A- and A", respectively,

define F_ = F1 n F2. F is closed and absorbent. Moreover, AL N A, C
n n n n 1 2
1,0 2.0 .0 ) ~
(Fn) N (Fn) = Fn' Finally, A1 N A2 = nnzl Fn. //

Now we derive:
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Corollary 2.14: If Al and A2 are distinct ASS's, they are disjoint.

Proaf: Otherwise, at least one of them is not minimal. //

It is interesting to note that although the definition of ASS has some
robustness flavor, it does not "presuppose” the full closure of R. More

formally, a version of Theorem 2.6 with R instead of R cannot be proven:

Remark 2.15: For a system (X,R), the set of R-ASS's and that of R-ASS's do

not always coincide.

“ proof: Consider the following example:

X = [0,1], R = {(0,0)} U {(x,y)i1/(n + 1} < x £y £ 1/n for some n > 1},

R is transitive, R is nonempty and closed, but R is not closed. Taking
Fn = {0, 1/n}, which are closed and abseorbent, we can prove that {0} is a
R-ASS. However, R is simply < and the unique R-ASS is {1}. //

It will prove useful to note that:

Proposition 2.16: Let (X,R) be a system and let A € X be R-stable. Then A

contains at least one R-ASS.

Proof: Almost identical to that of Theorem 2.3, with the obvious
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modification that only subsets of A, which are R-stable, are considered. //

One of the advantatages of a general solution concept, parameterized by
the relation R, is the ability to compare formally ASS's of different
relations. In particular, it is interesting to ask what happens if one

relation allows for more points to be accessed from every given point.

Theorem 2.17: Let X be a compact metric space and let R1 c R2 < X2. Then

every RZ—ASS contains an Rl—ASS.

Proof: [t is immediate that every R2—self absorbent set is also Rl—self—
absorbent. This implies that every R2—stable set is also Rl—stable.
Considering an R2*ASS. it is Rzﬂstable~ﬁhence. Rlvstable——and by 2.16

it contains an Rl—ASS. //

Notice that the converse if false, i.e., under the conditions of the
theorem it does not hold that every Rl—ASS is also contained in an R2—ASS.
(Consider, for instance, X = {0,1} with R1 = @ and R2 = {(0,1)}, where {0}
is an Rl—ASS which is not contained in the unigue RzﬂASS {1}.) Yet, Theorem
2 17 shows that the cardinality of the set of Rl—ASS's is at least as large
as that of the R2—ASS's, and that each R2—ASS is at least as large as (at
least) one Rl—ASS. Roughly, if R1 c Rz, the R.-ASS's are larger and fewer

2

than the Rl—ASS's.
We conclude this section with a comment regarding connectedness of

ASS's. As we have seen, the definition and existence of ASS's does not

depend on any property of R. Indeed, R need not even be transitive.
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However, with the interpretation we bear in mind, i.e., understanding R as
representing the "may follow" relation, transitivity seems quite natural.
Furthermore, for applications to dynamical systems in continuous time, it
seems natural that R be connected, as the "way" from a point x to a point y
"should"” be along some continuous path.
Since many applications will involve connected relations, the following

is of interest.

Theorem 2.18: Let (X,R) be a system in which R is connected. Then every

ASS is connected.

Proof: Let A be an ASS and assume it is not connected. This implies

A = Al U A2 where A1 N A2 = @ and Ai (i = 1,2) is nonempty and closed.

A being stable, there is a sequence {Fn} of closed absorbent sets such

that A € F0 and A = N F . By (2.2) we also assume without loss of
n n>1 n

i c >

generality that Fn+1 c Fn' for all n 2 1.
Choose two disjoint open sets 01 and 02 such that Al c O1 (i =1,2),

. i i . 1 2

and define F!f = F No for i = 1,2. For large enoughn, F =F UF .
n n n n n
2.¢c

(Otherwise, by compactness, there exists X € (ﬂn Fn) N (01 U 07) ", which is
a contradiction.) This implies that F; {i = 1,2) is closed. Furthermore,
since Fn is absorbent and R is connected, F; has to be absorbent, which

means that Ai (1 = 1,2) is stable, contrary to the minimality of A. //

3. Best Response Dynamics in Games

In this section we discuss finite games in strategic (normal) form.

The interpretation we bear in mind is a "large population” one: to each
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player in the game there is a corresponding large population (a type}. The
game is played repeatedly where the role of each player is taken by an
individual drawn at random from the corresponding type. A mixed strategy of
a player is interpreted as the distribution of the corresponding type among
the pure strategies. (For a more explicit model of random matching with
large populations, see Gilboa-Matsui (1990).)

Formally, a game G Is a tripie:

G = < H : 4 3
LS e ) fer?

where I = (1,2,..., n} is the set of types of individuals, Si(i € 1) is the

finite and nonempty set of strategies for each individual of type i and

m, Xj#i Sj x S1 - R is a payoff function for each individual of type 1,
where a typical value ni(sl....,sn;si) is the payoff for an individual of
type i when he/she takes s while others take (sl....,sn). This somewhat

awkward definition of the domain will simplify notations in the sequel. Let

Fi = A(Si) be the set of probability distributions over Si' i.e.,

F. = A(S,) = {f

i i i: Si - Rlzs

e, fifsg) = 1
1 1

>
and fi(sj) > 0 for all s, € Si)'

we may call F = xieI A(Si) the class of strategy profiles and

f = (f ,....fn) € F a strategy profile. F is considered as a

1
(Eiellsii - n)-dimensional space on which Euclidean norm, f«}, and linear

operations are defined. Given a strategy profile f € F, the expected payoff

for an individual of type i (i € I) if he/she takes a strategy ry € Si is:
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M, (f;r.,) = E I... f.{(s.)m, (s;r,).
i i sexjelsj S S R I | i
Let BRi(f) be the set of pure strategies for individuals of type i € I
that are best responses to f, i.e.,
BRi(f) = argmax

es. Milfirg).
1 1

. c _
Given G € F. we dencte BRi(G) UgeGBRi(g)'

We denote by [Si] the mixed strategy that ascribes probability 1 to
s, € Si' When no confusion is likely to arise, we will identify s, with

[sj}.

Thus far we have only specified the set X = F of states. We have
already (implicitly) assumed that the strategy distribution profile suffices
for the determination of the profiles which may succeed it. In particular,
the history of the system is assumed to be irrelevant in this model.

While this assumption cannot be claimed universally plausible and,
indeed, in many situations people would predict future developments based on
"trends" and so forth--it is still rather reasonable in a variety of
applications. FPor instance, whenever "most people" happen to believe that
history is irrelevant, history indeed becomes irrelevant. (Recall that no
external uncertainty is assumed here.) In other words, if we embed our
system.in a meta-system that would also describe belief formation, a

stationary system as we discuss here is likely to be "stable."

Coming to define the dynamics of this system, many ways may be
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followed. Indeed, so many ways that every choice may seem somewhat
arbitrary. However, we do not purport to have found the "right"” one. We
will study one such relation, which we find reasonable for certain set-ups.
Undoubtedly, it will fail to capture the essence of others. We therefore
present this section more as an example of an application of ASS rather than
as our proposed theory. The general procedure one should follow in
analyzing a certain interaction is to model it as a game, inducing X = F,
model the appropriate dynamics as a relation R on it, and apply ASS to
(X.R}).

The relation we deal with in this section is best response

accessibility, denoted B, and defined as follows: for f,g € F, fBg if 3 a €

(0,1} and h € F such that:

(i) g = (1 - a)f + ah;
(ii) for all t € [0,a), hi € BR; ((1 - t)f + th) for all i € I;
and
(iii) For all i € I, if fi € BRi(f) then hi = fi'

In other words, fBg if g is on a line segment from f to some best-
response point h. (This definition is very similar to those of Gilboa-
Matsui (1989), Matsui (1989), and, especially, Matsui (1990})}.) It is
required that all types would move toward h along the way from f to g, and
that only those types that have an incentive to change their behavior (fi é
BRi(f)) actually do so (for the others hi = fi).

Before we analyze the system (F,B) for some interesting games, we would
like to comment on the underlying intuition behind the relation B.

One scenario which would give rise to this accessibility relation is

the following: suppose that individuals get the chance to change their
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selected (pure) strategy only every so often, but not instantly. (One may
assume this opportunity occurs in random time intervals, or possibly only
once in each individual's life.) Further, suppose that the individuals are
boundedly rational, and since they cannot fully analyze the dynamics (or are
unaware of it), they respond to the current state f in a best-response
direction h.

Alternatively, one may not regard B as specifying the complete
dynamics, rather it may be interpreted merely as a class of possible small
perturbations. Thus, the fact that the society's strategy profile moves
from f {slightly) in a direction to a best-response h {with a small a) is
simply a first approximation to a perturbation that is likely to occur if f
is not a best response to itself.

Notice that B satisfies f € §(f) for all f € F and that f = §(f) iff £
is a Nash equilibrium (Nash (1951)) (i.e., fi € BRi(f) for all 1 € 1}.

However, not every Nash equilibrium will constitute or even be included

in a B-ASS of F. PFor instance, consider "the battle of the sexes":

(2,1) (0,0)

(0,0) (1,2)

It is not difficult to see that the only ASS's are {(T,L)} and {(B,R)},
and that the mixed-strategy Nash equilibrium is not in any ASS.

Another classical example is "matching pennies”:
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{1,-1) (-1,1)

(-1,1) (1,-1)

In this example, we find that the unique B-ASS is the Nash equilibrium
((1/2)[T] + (172){B], (1/2)[L] + (1/2)[R]).

These two examples have exactly the same £SS's as B-ASS's. (Here we
refer to CSS as defined in Gilboa-Matsui (1989), which is a special case of

the "R-CSS" notion defined in Section 2 above.)} However, consider the game

(1,1) (1,1)

(1.1) {0,0)

The (unique} CSS in this game {according to Gilboa-Matsui (1989) or

Matsui's (1990) modified definition) is

{([T],«[L}] + (1 - «)[R])]0O <1y U

A
R
A

{(«f[T] + (1 - «)[B]., [L]]O

1A
R
A

< 1}.
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However, the unique B-ASS is {(T,L)}, which may be somewhat more
intuitive. This example shows the strength of the general theory developed
in Section 2: the properties of ASS's and, most importantly, its existence,
which guarantees some prediction of the theory, allow us to define an
intuitive relation R without worrying about existence, compactness of ASS's,
and so forth.

The last example may tempt one to conjecture that B-ASS's would not
include strategy profiles that ascribe positive probability to weakly

dominated strategies. However, this is false hope, as is shown by:

Example 3.1: Consider the game

type I1
| L C R
I
T | (1,-1) (-1,1) (3,-3)
I
I
I
type 1 M | (-1,1)} (1,-1) (3,-3)
|
I
I
B | (-1,1) (1,-1) (2,-2)
I

in which B is weakly dominated by M. Yet, if we ignore R (which is strictly
dominated by both C and L), B is indistinguishable from M. In fact, the
game restricted to {T.M,B} x {L,C} is "matching pennies"” with one of type
I's strategies duplicated. Every Nash equilibrium ((1/2)[T] + x[M] +

((1/2 - a)[B], (1/2)}[L} + (1/2)[c]) for a € [0, 1/2] is a B-ASS (as a
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singleton) of the restricted game. It is also easy to see that every such

B-ASS will also be a B-ASS of the system (F,B). //

It is not surprising, however, that strictly dominated strategies will

not be played in a B-ASS:

Proposition 3.2: Let G be a game and let (F.,B) be its assocliated system.

Assume that for some 1 € I, S, € Sj is strictly dominated by fi € A(Si).

Then, if A is a B-ASS of F, gi(sj) = 0 for all g € A.

Proof: It suffices to note that S is never a best response (not even a
weak best response). Hence, if gBh and g5 £ hi {(for some g,h € F), then
gi(si) > hj(si). Now, if C is a closed, B-self-absorbent subset of F, so

will be
c,=cnige Flg,(s;) = 1/n}

for all n 2 1, and Cn will be nonempty. Hence, a minimal stable set A

cannot have gi(sj) >0 for any g € A. //

For a game G, it Is interesting to ask what happens to B-ASS's when the
structure of the game is fixed, but the payoffs are perturbed. Formally,
fixing <I'(Si)iel> we define a correspondence #i: ('rri)ieI - F by ﬂ((ﬂi)ier)
= U {A]A is B-ASS of F}.

The following point is unlikely to surprise the reader:
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Remark 3.3: A is neither upper- nor lower-hemi-continuous.

Proof: As for lower-hemi-continuity, consider the game

{e.€) (0,0)

(0.0) (0.0)

in which for all € > 0, {(T,L)} is the unique ASS, but for € = 0 every f €F
defines a singleton ASS.

To see that A fails to satisfy upper hemi-continuity, consider the game

(1,1) (0,0)

{0,0) (e.€)

in which, for € > 0, (B,R) is an ASS (as well as (T,L)), but for € = 0 it is

not. //

We conclude this section with the following.

Remark 3.4: The definition of the relation B implicitly assumes that the

"rate of change” (or "birth") in each type is identical and f "moves towards

h" along a straight line segment in F. Alternatively, one may want to
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consider the following definition: gB'f if for all i € I these are

o, € [{0,1] and hi € Si such that:

(i) gi = aifj + (1 - ai)hj;
(ii) for all i € I and all t € [0,1), hi € BRi ({(1 - taj)fi -
toihy) )i and
(iii) hi = fi or fi € BRi(f).

(A version of this definition was also suggested by Gilboa-Matsui.) It
seems that, while this definition is equivalent to the previous one in the
neighborhood of a striect Nash equilibrium, it is quite different when the
stability of a mixed-strategy Nash equilibrium is considered. In "matching
pennies,” for instance, the unique B'-ASS is F itself.

The choice between B and B' as "best-response dynamics" relations is
not always easy to make. There are situations in which a constant change
rate (across types) makes sense, there are cases in which it does not.
Especially in view of the variety of reasonable definitions, the general

approach of Section 2 seems to be appropriate.

4. Better-Response Dynamics

In this section we will borrow Section 3's definition of a game, but
will propose a slightly different relation on F.

When we consider the model as describing evolution, with genes as
implicit "decision makers," the dynamics would naturally change. while
myopic behavior is not as controversial, the assumption of "best response”
seems too demanding. 1In gene competition the best of the existing genes
should prevail, but not necessarily the best of all. Until some

perturbation (mutation) introduces a new gene, that gene will not appear
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with positive probability, even if it is a better response to the
environment. Furthermore, even after the gene has been introduced, it will
not automatically dominate all new-borns (as should be expected of rational
economic agents once a new strategy has become a best response)--rather, it
will reproduce alongside, albeit faster than, the other genes. (See also
Gilboa-Matsui (1989) for a discussion of this point.)

With this intuition in mind we would like to define a relation T on F

as follows: for f,g € F, gTf if there are @ € [0,1), h € F such that:

(i) g = (1 - a)f + <«h;
(ii) hi(si) > 0 only if fi(si) >0, VielIl, V¥ S5 € Si;
(iii) for i € I, if STy € Si satisfy fi(si),fi(ri) > 0, hi(si) >

hj(ri) implies that for all t € [0.,a), Hi((l - t)f + th,si) 2
Hi((l - t)f + th,ri);
(iv) hi = fi or fi ¢ BRi(f) for all i € I.
(where Hi(f.si) is type i's payoff from S when the others are playing
according to f, and so forth.)

Consider the example of the "rocks-scissors-paper” game (also discussed

in Gilbca-Matsui (1989)):

| R S P
|

R | (0,0) (1,-1) (-1,1)
|
|

S | (-1,1) (0,0) (1,-1)
|
|
I

P | (1,-1) (-1,1) (0,0)
|
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where both players are of the same type, and F may be identified with
{{pg.pg.pp) Py 2 0. Eie{R,S.P} p; = 1}

consider, for example, f = (¢, 1 - ¢, 0} for some small € > 0. Then
h = (1,0,0) satisfies (ii) and (iii) for t € {0,1]. Hence, hTf. Similarly,
(0,0,1) T (1 - €, 0, €) and (0,1,0) T (0, €, 1- €). Hence, any T-stable set
containing one of the pure strategies will also contain the other ones.

To analyze the interior of F, consider points at which none of

{pR,pS.pP} is 1/3. Take such f = (pR.pS,pP)‘ Defining h as

(1) (1/2 - g, 0, 1/2 + £) when Pp» Py < 1/3;
(ii) {0, €, 1 - €) when PrPp > 1/3;
(iii) (0, 1/2 + €, 1/2 - €) when Pg: Py < 1/3;
{iv) (¢, 1 - €, 0) when PpiPg > 1/3;

(v) (1/2 + g, 1/2 - €, Q) when Pg:Pp < 1/3;
{vi) (1 - ¢, 0, £€) when Pg Py > 1/3;

for appropriately small e (depending on the chosen f € FO), we conclude that
the unique T-ASS is F. By comparison, the unique B-ASS of this game is the
Nash equilibrium {{(1/3,1/3,1/3)}.

Indeed, more generally, we have:

Proposition 4.1: For every game G, every T-ASS contains a B-ASS.

Proof: Define a relation T' by dropping requirement (1i) in the definition
of T above, i.e., by allowing strategies to be chosen (as "h") without
already existing in the population (as "f"). It is not hard to see that,

since T and T' coincide on RO, a set is T-ASS iff it is T'-ASS. However,

T' includes B and Theorem 2.17 completes the proof. //
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In other words, the economic-rationality dynamics captured by B is
"more stable” than the evolutionary one, represented by the relation T.
With a non-trivial leap of imagination this simple result may be
reinterpreted as saying that rationality is stabilizing: the fact that
reasoning individuals should obtain the same conclusions from the same
premises may make the corresponding ASS's smaller.

This example is supposed to convince the {skeptical) reader that the
concept of ASS is useful. Not only is it convenient to define the dynamics
in an arbitrary way and be guaranteed that some nice properties hold, the
generality of ASS's may help us to better understand different dynamics by

comparing the ASS's that correspond to various "accessibility"” relations.

5. Additional Examples

In this section we will briefly discuss other models, and will attempt
to exhibit a wider range of applications of ASS's than hitherto discussed.
For obvious reasons (of time and space) we will not attempt to actually
compute ASS's for each model, or to prove/disprove equivalence to the
specific solution concept in each. We will only try to point out that our
general framework can accommodate them.

The first class of models that comes to mind is probably systems of
differential equations or differential inclusions. (In these models,
singleton ASS's would typically correspond to stable steady states, and
ASS's t6 attractors.) Providing here even a very partial list of references
is rather hopeless.

Another class of models are repeated games where some statistics of the
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history are retained. The first such example is probabiy Shapley’s (1964)
"fictitious play,” in which a player's move is best response to an averaged
distribution. Since only the distribution matters for optimization at each
stage, the model fits into Section 2's framework almost perfectly.
{(Updating this distribution, however, calls for knowledge of the number of
stages. Thus, a certain compactification may be required.)

More recently, Gilboa-Schmeidler (1989} and Fudenberg-Levine (1990)
have studied repeated games with infinite histories, in which each player
has a bounded memory and reacts optimally to his/her own experience.
Focusing on the information available to the players, one may reduce the
system to a finite-dimensional one.

The models of Fudenberg-Kreps (1988) and Canning (1989) study more
. general belief formation and update, which may guarantee convergence of a
repeated play to a one-shot Nash equilibrium. Canning's model, for
instance, is formulated in terms of finite spaces which automatically lend
themselves to be embedded in Section 2's framework.

Kalai and Lehrer (1990, 1991) study convergence of a repeated game play
to a repeated game Nash equilibrium play. Although their results are quite
general, at least a restricted version (of beliefs with finite support) may
fit into our model, where the dynamic process consists of Bayes update and
cptimal behavior.

Taylor and Jonker (1978) and, more recently, Boylan (1990), Swinkels
(1990), and Kandori, Mailath and Rob (1991) study evolutionary stability in
games with explicit dynamics. In these models, as in Gilboa-Matsui (1989)
and Matsui (1989, 1990), the state space is simply the product of mixed

strategy spaces.
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The studies mentioned above are by no means all the relevant or
important ones. An exhaustive survey, though much needed in face of the
growing interest in these subjects, is far beyond the scope of this paper.
We only hope the few examples given here suffice to exhibit the potential

scope of applications of our model.

6. Concluding Remarks

Some of the applications mentioned in Section 5 seem to be constrained
by the assumption that the state space X is a compact metric space. It is
natural to ask to what extent the results can be generalized.

While compactness seems essential to the analysis, the assumption of
metrizability can be relaxed without devoiding the theory of all content.
Some modifications are, however, needed: in the definition of a stable set,
instead of a sequence of closed and absorbent sets {Fn}' one should consider
arbitrary sets {Fa}a (where each Fa is closed and absorbent). The existence
theorem for ASS will hold with this definition and, as a matter of fact, its
proof will be simplified. (Given a nonincreasing chain of stable sets

x . a x . . .
{Aa }a' with {FB}ﬁ' a set for A, one should only take their union to obtain
a set for A =N Aa )

=N, .

The existence of CSS's in every closed and absorbent set will also hold
whenever R is transitive with R closed and nonempty.

However, for many applications the topologies in which X is compact may
be too weak, and in more useful topologies compactness will be lost. We
therefore chose to assume metrizability and use a somewhat more intuitive

definition of stable sets.
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Appendix

In this Appendix we suggest an alternative definition of "stable sets”
that will clarify the relationship between ASS's and CSS's. This definition
is very similar to (and probably partly inspired by) that of "stable sets”
in Maschler-Peleg {(1976).

Define a set A € X to be stable' if:

(i) A is nonempty;

(ii)}) there are {Fn}nzl’{Gn} such that A € Gn cCF cX, Gn is open, Fn

n
is closed, R(Gn) c Fn’ and A = nnzl Fn.

Obviously, taking Gn a Fg would vield ocur original definition. Thus,
every stable set is also stable'. Remark 2.12 has shown that the converse
is false.

As with the original definition, no loss of generality is involved in
assuming that G ¢ G and F € F for alln?21.

n+1 n n+l1 n

If A is stable', then A = ﬂn>1 Fn implies that A is compact. However,
A=nN G also implies that A is absorbent.

nzl n

Define a set to be ASS' if it is a minimal stable' set. We note that:

Theorem A.1: For a system (X,R) there is at least one ASS'.
(The proof is identical to that of Theorem 2.3 with gslight editorial

modifications.)
We now have an equivalence theorem for "nice" relations R.

Theorem A.2: Let (X,R) be a system in which R is closed and transitive, and
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R is nonempty. Then a set A ¢ X is ASS' iff it is a CSS.

Proof: We first show that every CSS is stable'. Let C € X be-a (€SS, and

define Fn to be the closure of U

ec Nl/n(x)' (Ne(x) = {y € X|d(x.,y) < €}

where d is a metric for X.) R is closed; hence, R is closed and C is
compact. Hence, C = ﬂnzl Fn'

To show stability of C we need to find for each Fn an open set Gn such

R c > i = 3
that C € Gn c Fn and R(Gn) c Fn' Fix n 2 1. Consider Gm UxeC Vl/m(x).

If for all m 2 1, ﬁ(G ) n FC 2 ¢, choose x ,y_ such that x € G , y € FC
m n m m m m m n
and meym. By (sequential) compactness, there is a subsequence
{(xm Vo )}k21 such that (xm Vo ) ko (x,v). This implies x € € and
kC k k k
y € Fn' However, closedness of R yields xRy, in contradiction to C being a
. CSS. Thus, for every n there is mn 2 1 such that E(Gm } € Fn' and we have
n
established that every CSS is stable'.

We now turn to the theorem's statement. If A is a CSS, it is stable'.
However, it has to be minimal since every stable' set is absorbent and a CSS
cannot contain a proper absorbent subset.

Conversely, let A be an ASS'. As in Proposition 2.9, A contains a CSS

C. Since C is stable' and A is minimal, A = C follows. //

Since theorem A.2 requires that R be closed and transitive, one may be
tempted to conjecture that given R with R nonempty, R-ASS' would coincide
with R-CSS. Indeed, this would follow from A.2 if R-ASS' were to coincide
with R-ASS'. However, this is not the case in general, as Remark 2.11 has

shown. Worse still, under the new definition of stability, Theorem 2.6
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fails to hold.

Remark A.3: For a system (X,R), the set of R-ASS' is not always identical

to that of R-ASS'.

Proof: Consider X = [0,1] with

R={(x,y)]0 £x <1, x £y £min(2x,1)}

~

R is nonempty and closed but R is not transitive. It Is easy to see that

{0} is R-ASS' (though not R-ASS). However, the semi-closure of R is

R = {(0,0)} U {(x,y)]0 < x £y <1}

and the unique R-ASS' (and unique R-ASS) is {1}.

To sum, we have seen that the new definition of stability has an

advantage of coinciding with CSS for transitive and closed relations, but

the disadvantage of failing to "presuppose” the semi-closure of a relation.



