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Abstract

For a steady state to be a Nash equilibrium the agents have to perfectly
observe the actions of others. This paper suggests a solution concept for
cases where players observe only an imperfect signal of what the others’
actions are. The model is enriched by specifying the signal that each player
has about the actions taken by the others. The solution, which we call

rationalizable conjectural equilibrium (RCE), is a profile of actions such

that each player’s action is optimal, given the assumption that it is common
knowledge that all players maximize their expected utility given their
knowledge. The RCE occupies an intermediary position between Nash equilibrium
on the one hand and Rationalizability style Bernheim—Pearce on the other hand.
The concept is demonstrated by several examples in which it refines the

rationalizability concept and still is not equivalent to Nash equilibrium.
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1. Introduction

Games (in normal form) are used to model two very different scenarios. In
some cases they aim at modeling situations which occur only once and in which
players have to choose their actions simultaneously and independently from
each other. In other cases they intend to capture behavior in a continuing
situation. The game is then an episode that recurs often enough, but with no

strategic links among the repetitions.

The discussion in this paper is in reference to scenario of the second type.
Players derive their expectations about others’ actions from past experience
with this situation, and the steady state behavior is viewed as an
equilibrium. However, such a steady state will be a always Nash equilibrium
only if agents perfectly observe the actions of others. But agents need not
have perfect knowledge of the others’ actions — they may observe only an
imperfect signal of what the others’ actions are. For example, a player may
observe only his own payoff, but not the other players’ actions. In such a
case there are outcomes which satisfy the condition that each player’s action
is optimal, given the (less than perfect) knowledge he has about the actions

of others, but are not Nash equilibria.

To formalize these ideas we have to enrich the model by specifying the signal
that each player has about the actions taken by the others, The solution we

present in this paper, which we call rationalizable conjectural equilibrium

RCE), is a profile of actions such that each player’s action is optimal,
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given that it is common knowledge that all players maximize their expected
utility relative to their information. In other words each player chooses an
action which maximizes his payoff given a conjecture regarding the actions of
the others; each agent’s conjectures are consistent with his signal and his
own choice; the conjectures are also consistent with the understanding that
everybody rationalizes his action in this manner. If players do not get any
information, the RCE coincides with Rationalizability, and if they get exact
information about their opponents’ actions, it coincides with Nash
equilibrium. Thus, the RCE occupies an intermediary position between Nash
equilibrium on the one hand and Rationalizability style Bernheim—Pearce on the

other hand.

There are two reasons for why modelers may be interested in RCE. First, as a
solution concept in its own right which refines the rationalizability concept
in a non—trivial way and still is not equivalent to Nash equilibrium.

Secondly, in games in which, given some natural signal, the RCE coincides with
Nash equilibrium, the Nash equilibrium concept is more compelling because the

equilibrium requires less information on the part of the players.

Some related concepts were suggested in the literature. The closest concept
is Battigalli and Guaitoli's (1988)'s notion of conjectural equilibrium. This
concept requires an action to be a best response to some conjecture which is
consistent with the signal he gets but does not impose any rationality
conditions on the conjecture assignment about the other players’ actions.
Fudenberg and Kreps (1989) feature a particular example of conjectural

equilibrium. They pointed out that, if a player just observes the outcome of
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an extensive form game, then the RCE does not have to be a Nash equilibrium.

2. Notation and Definitions

We consider games in normal form. The set of players is N=(1,2,...,n); the
set of player i's actions is A,; the set of outcomes is A=AXA,X...XA;; and i’'s
payoff function is u :A—>R. The new ingredients that we add to the
description of the game are the signal functions g;:A—>§;. The element
s,=g;(a) is the signal that player i privately observes when all players
choose the actions that make up the profile a. It is assumed that the
functions g, (as the other components of the model) are common knowledge (but
the actual signals are not). In what follows we refer to

<N, (ADiews (W) ien» (Bi)iey™> @S a game.

The solution concept that we are about to present is such that each player’s
action is optimal, given this player’s conjecture about what the other
players’ actions will be. The conjecture of the player has to be consistent
with the signal that he has on the actions the other intend to take, with the
knowledge about his action and with the knowledge that the other players

follow similar reasoning.

Definition 1: The action—signal pair (a;,s,) is g—rationalized by a

probability measure p on A_ =X, A, if
(i) for all a_=(a;,..,a,1,8;4,..,48,) In the support of u, g.(a;,a_;)=s;

(ii) a,; is best response, given u.
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Definition 2: The sets of signal-action pairs B, B,,...,B, are

o—rationalizable if, for all i, every (a;,s;) in B, is g-rationalized by a

probability measure g on A, such that for all a_; in the support of u and for

all j the pair (aj,gj(ai,a_i))eBj

Definition 3: A Rationalizable Conjectural Equilibrium (RCE) is an n-tuple of

actions a*=(a,*,...,a,*) such that there are g-rationalizable sets B,,B,,...,B,

such that for all i, (ai*,gi(a*))eBr

Note that, when g, (a)=a for all i, the concept of RCE coincides with a pure
strategy Nash equilibrium. When g, (a) is independent of a_,, this concept
coincides with the correlated-conjectures version of Bernheim-Pearce'’s

rationalizabilicty.

Definition 2 requires that, for each pair (a;,s;)€B,, the action a; is best
response against a belief on vectors a_; which are consistent with player i's
action a; and the signal s;, and for each pair (aj,gj(aﬂﬁai)) the action a is

j's best response against a belief on vectors b_; which are consistent with

player j's action a; and the signal gj(aﬁ,ai) and so or.

The closest concept to the RCE is Battigalli and Guaitoli's (1988) conjectural
equilibrium. The CE requires that a player behaves rationally in the sense
that his action is a best response given the knowledge of the player about his
action, the signal and the game but it does not require common knowledge of

rationality. Every RCE is a CE.
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Definition 4: A Conjectural Equilibrium (CE) is an n—tuple of actions

a*=(al*,...,an*) such that for all i the pair (ai*,gi(a*)) is g-rationalized.
The rest of the paper is mainly devoted to examples of games which clarify the

RCE concept and compare its predictions with those of other solution concepts.

3. Examples

The case of public signals is such that each player can infer from his own

signal what signals are held by the other players (i.e, gi(a)=gi(a’) if and

only if gj(a)=gj(a')). In the next three examples the signals are public.

(1) The distance game

Two players choose locations in the unit interval. Their payoffs are

decreasing in the distance between their locations, so there is no conflict of

interest and both want to coordinate their location at the same point. The
signal is the distance. Thus, N=(1,2}, A,=[0,1}, gi(al,az)=d(al,a2)=lal—a2
and ui(al,a2)=L(d(al,a2)), where L is any decreasing function. It is

immediately verifiable that the set of Nash equilibria includes all pairs
(ay,a;) such that a,=a, and that all possible pairs of locations are consistent
with Rationalizability. The set of Conjectural equilibria is also very big
and includes all (al,az) such that neither of the locations is in a distance

of less than d(a,,a,) from the edges of the interval.
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Claim: The RCE are all pairs (a;,a,) such that a,=a,.

Proof: Suppose there is a RCE (a,,a;) such that d(al,az)=d>0. This means that
there are g-rationalizable signal-action sets B, and B,, as described in the
definition, such that (ai,d) belongs to B;. The pair (ai,d) can be
g-rationalized only by a conjecture which puts positive probabilities on both
a;—d and a;+d. This is because the action a, is not a best response against a
conjecture which puts probability zero on one of the actions a,-d or a;+d.
Thus, since (a,,d)€B,, both (a;—d,d) and (ai+d,d) must be in Bj. Define

m —max{a,: (a;,d)EB,}. (If there is no maximum, follow the argument with
sup). From the above, (mi+d,d) must belong to Bj and therefore (mi+2d,d) must

belong to B,, in contradiction to the maximality of m, . [ ]

Thus, the RCE coincide here with the Nash equilibria, despite the fact that

players have less information than is required by the Nash equilibrium.

(2) TIwo—characteristic quality competition game

Two firms compete on the business of a fixed population of buyers by selecting
for their products two characteristics (x,%;) in (1,2,3¥%x(1,2,3). The
action of firm i is denoted by (xf,sz. The total measure of the buyer
population is 1. The population is evenly split so that half of it relates
lexicographic priority to the first characteristic and the other to the second
characteristic. Thus, if for example, xf<xf and X;SXJ then firm j gets the
whole market while if xf<xf and x;>x; both firms split the market equally.
Firm i's signal is its share of the market. When choosing (xl,xz), a firm

incurs a fixed cost of x;+x,. A firm’'s gross profit (before subtracting the
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fixed cost) as a function of its market share is as follows:

Market share Gross profit Marginal profit
1 5.5 1.5
1/2 b4 4
0 0

This pattern of profit will obtain, for example, if the prices of the products

are fixed and the marginal cost is increasing in quantity.

The only Nash equilibrium of this game is (xllg%1)=(x129%2)=(3,3). To see
this first note that in Nash equilibrium there may not be some characteristic
k such that xk{¢%?=2, since then player 1 can profit by reducing his
characteristic k by a unit. Next, note that in Nash equilibrium the firms
split the market. This is because, if firm i's market share is 1, then it
must be that, for some k#f, Xk{ﬂ%j:l and xﬂi—x£j=0. Otherwise, firm i can
reduce its cost without diminishing its market share. But then firm j can
gain 4-1 by deviating to (Xf,x£)=(x;,x;). It follows that either for some
k=2, Xk{ﬂ%jZl and Xﬂj—X£i=1 or (xf,xzj}=(xf,x2i). In both cases, with the
exception of the configuration in which both choose (3,3), player j can

increase its revenue by 1.5 by increasing k by omne.

No other configuration in which the firms split the market is a Nash
equilibrium, since there is in which case i can profit by reducing his

characteristic k by a unit, or Xk{ﬂ%j=l so that j
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Every action (x,%;) is rationalizable. To verify this, notice that (1,1) is
best response to (3,3) and any other (x%,,X,;) is best response against either

(x,-1,%,) or (x,%,71).

In contrast, the RGE outcome must be an equal split of the market.

Claim: All RCE are the action-signal pairs ([(xll,le),l/Z],[(xlz,xzz),l/Z])
such that (xll,le) and (xlz,xzz)
(i) split the market equally and

(ii) belong to ((2,1),(1,2),(3,1),(2,2),(1,3),(3,3)}.

Proof: There is no RCE in which one of the firms has market share 0. If
there is a RCE in which firm i’s share is 0, then the only action-share pair
in B; in which the share is 0 must be [(1,1),0]. Otherwise, firm i can profit
by deviating to (1,1). Therefore, the only action-share pairs in Bj in
which firm j's share is 1 are [(1,2),1] and [(2,1),1]. But then [(1,1),0] is
not g-rationalizable by any belief on B, since a deviation to (2,2) is

profitable.

Consider next a RCE with equal split of the market. There is no such RCE in
which firm i chooses (1,1), since equal shares imply that player i believes
that j's action is (1,1) and then i can profitably deviate by increasing any
coordinate by 1. As well, there is no such RCE in which firm i chooses (3,2)
or (2,3), since then the equal share implies that i believes with probability
1 that j's action is not (3,3) by deviating to (3,3) firm i increases its

share from 1/2 to 1 and profit. Finally, B,=B,=
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([(2,1),1/2],0(1,2),1/2],0(3,1),1/2],((2,2),1/2],[(1,3),1/2],[(3,3),1/2]) are
g-rationalized:

[¢(3,3),1/2] is g-rationalized by the belief concentrated on (3,3).

[(2,1),1/2] is g-rationalized by (1,3) and [(1,3),1/2] is g-rationalized by an
equal mixture of (1,3) and (3,1) which also g-rationalizes [(2,2),1/2].

Analogously, [(1,2),1/2] and [(3,1),1/2] are also g-rationalized. |

Notice that this is a Bertrand—like game in which the incentives for
"undercutting” lead to a unique Nash equilibrium in which the joint profit is
minimized. The RCE relaxes the "Bertrand Paradox" by not insisting that each
player knows perfectly his opponent’'s action, yet it rules out some of the
rationalizable outcomes by allowing a player to have the information that can

be derived from observing its own payoff.

Note that the set of CE is quite large and includes the configuration where
one firm chooses (1,1) and the other chooses any (Xl,xz)#(l,l). The
additional requirement of the RCE concept, that the signal—action pairs which
g-rationalize an action should be g-rationalizable themselves, is used in the
first part of the proof to rule out configurations in which one of the firms

dominates the market.

(3) Fudenberg—Kreps' example

Fudenberg and Kreps (1988) bring the following example of an extensive form

game .
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I a 1T a 1
____________________________ 1
1
d d
..... ITI.......
/\ / N\
2/ \ r £/ \r
/ \ / \
3 0 3 0
0 3 0 3
0 0 0 0

The pure strategy Nash equilibria are (d,a,®), (d,4,2), (d,d,¥) and (a,d,xr).
That is, in all Nash equilibria at least one of the players I or II chooses d,
and so there is no Nash equilibrium in which both I and II play a. Also,

every configuration is rationalizable.

If, for all i, the signal g, is the actual outcome of the game, then in the
case that players I and II play a they do not see player IIl's strategy. Let
aa be the outcome of the game when players I and II choose the action a.

Then, B1={(a,aa)} B2={(a,aa)) and B3={(r,aa),(2,aa)) are g-rationalizable.
Player I holds the belief that IIT plays r and player II holds the belief that

player I plays £.

In the next examples the signals are not public and each player forms

conjectures regarding the other’s signal as well as the other’'s action.

(4) A Discrete Nash'’s Demand Game

The players simultaneously announce numbers between 1 and K. If the sum is
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less than or equal to K+l, they get their respective demands. Otherwise,
they get zero. The signal function g, is i's payoff. All (a,,a,) such that

a,+a,=K+1 are Nash Equilibria and all entries are consistent with

Rationalizability. Any pair (al,az) with a1+a25K+l is a RCE since a; is best
response to aj=K+1—ai. Thus, unlike the Nash equilibrium outcomes, the RCE
outcomes include inefficient ones such as (1,1). But the RCE, (and even the

CE) rules out the no-trade outcome of both players submitting incompatible

demands, since then player i can profitably deviate to demand 1.

(5) Location choice game

Each of N players chooses a location k=1,...,K from among K locations (suppose
that K divides N). Let n, be the number of players in location k. Each
player’'s payoff is a decreasing and convex function of the number of players
in his location. For example, suppose that the players are firms and in each
location there is a unit of profit potential to be split equally among those

locating there. The payoff to a firm locating at k is in this case 1l/n,.

The Nash equilibria are such that there are exactly N/K players in each
location, All the possible configurations of players in locations are

rationalizable.

Let player i's signal, g,, be the number of players in his location.

Observe that all RCE as well as all CE are such that there are exactly N/K
players in each location. This is because a player who is at a location with
more than N/K knows that the expected number of players at any other location

is less than N/K. Since the payoff is convex in the number of neighbors,
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such a player profits by deviating. Thus, the RCE and the CE coincide with

Nash equilibrium, but they require less demanding assumptions on what the

players know.

(6) The Aggression Game

Player 0 assigns a distinct natural number k, to each of the players 1,...,n.

Then each of these players learns only his own number and chooses one of two

possible actions from A ={attack, defend). Their payoffs are

u, (defend; ky,...,k)=0, and

1 if kizmin(kj:j=l,<.,n}

u (attack; k,,..., k) ={

-1 otherwise.

Player 0 is indifferent among all outcomes. He is just a device to model

deterministic but unknown information, without giving the players common

beliefs about it,

1 if there is an i s.t. ai=attack

Define F(a) = {

0 otherwise.

Let g, (a,k;,..., k) = (k;, u (a,k;,... k), F(a)). That is, each player knows

his number, his payoff and if there is any player who chooses to attack.
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An interpretation of this model is that the player with the lowest number is

the strongest party. He can take advantage of this strength only if he
attacks. However, if he attacks when he is not the strongest party, he is
beaten.

In any Nash equilibrium only the player with the lowest number chooses to
attack. The set of rationalizable outcomes includes almost all possible
configurations — the only configurations which are ruled out are those in
which some player is assigned the number 1 and chooses to defend. The set of
CE includes the outcome that all players get numbers of at least 2 and choose

to defend.

Claim: In all RCE the player with the smallest number is the only player who

chooses to attack.

Proof: There is no CE in which a player other than the lowest numbered one
chooses to attack. This is because each player’s signal includes his payoff
which would be negative if he attacks when his number is not the lowest. To
see that there is no RCE in which no player attacks, note first that there is
no such RCE in which one of the players is assigned the number 1, since that
player always benefits from attacking. Therefore, there is no RCE in which
the lowest number is 2 and nobody attacks, since a player numbered 2 cannot
g-rationalizes his decision to defend by a belief that puts positive
probability on the existence of a player numbered 1 who does not attack. By
induction, for any n, there is no such RCE in which the lowest number is n and

hence there is no RCE in which nobody attacks. ]
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4. Comments

(a) Many Players

Recall definitions 1 and 2. The fact that the measure u which g-rationalizes

a pair (a;,s,;) is defined over x A; means that we allow for correlated

i*i
conjectures. That is, for example, in a three person game, player 3 may hold
a belief which assigns probability 1/2 to each of two pairs of actions (a;,a,)
and (b,,b,). The following two reasons may give rise to correlated beliefs.
(1) Player 3 learns from his signal that players 1 and 2 definitely do not
play (a,,b,) or (b,,a,).

(ii) Player 3 knows excludes (al,bz) from the support of his belief because
one of the action-signal pairs (a, g.(a;,by,a5)) or (b,, g,(a;,b,,a;)) does not
belong to B, or B, accordingly.

In the absence of these reasons, we may sometimes be interested only in
beliefs that do not exhibit any additional correlation. Then the proper
modification of definitions 1 and 2 is to require that player i g-rationalizes
a palr (a;,s;)€B, by a conjecture p satisfying that, if there are sets (Cj)j#i

such that for all ¢_;€X4,;Cy, g, (a;,c_;)=s,

1

and for all j, (cj,gj(c_i,ai))ij,

then the belief 4 conditional on X,,C, is a product measure.

(b) Random Signal and Mixed Strategies

So far we confined attention to deterministic signal and pure strategies while

the conjectures of the players could be probability distributions.

Assume first that the signal g, is random. Since we have in mind a steady
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state scenario in which information is accumulated through repetition we may
identify S, with the set of probability measures on the original space of

signals. Our basic definitions are valid without any modifications.

The above case of random signal can be used to consider games with mixed
strategies by letting g, (m;,m,) be the distribution of signals which occur
when the two players use the mixed strategies m; and m,. Treating g;(m;,m,) as
the random signal (as discussed above) is appropriate for the case in which a
player chooses the mixed strategy without observing the particular action that
he ends up playing. It is inappropriate for the case in which the player
observes the realization of his own mixed strategy. Recall the understanding
that the signal reflects information accumulated through repetition. 1In the
former case, player i will be able to learn only the distribution g;(m;,m),
while in the latter case he can learn g;(a;,m;) for any a, in the support of
m,. In the latter case the proper definition is as follows:

Let M, denote the set of mixed strategies of player i and let K, be the set of
probability measures on §;. The random signal gi(ai,mj) is an element of K,
interpreted as the distribution of signals when players i and j choose a;, and
m; respectively. Denote by L, the set of all pairs (mi,(ki(ai)%ESmm(mﬂ))
where m,eM; and k,(a,)ekK,.
Definition 1: The pair (m,, (k,(a,)

aiesupp(mi))) in L, is g—rationalized by a

conjecture (probability measure) u on Mj if
(i) for all a, in the support of m; and m, in the support of pu, ki(ai)=g(ai,mj)

(ii) m; is i's best response, given pu.
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Condition (i) requires that, for any action a, that i takes, i's conjecture be
consistent with the distribution of signals, k,(a,;), that he receives. The
fact that this requirement i1Is made for any m; in the support of u means that
the signal distribution that i receives does not allow him to distinguish
between the alternative patterns of behavior that he conjectures as possible

for j.

Definition 2: The sets B;, B, where B, is a subset of L, are g-rationalizable

if, for all i, every (mi,(ki(ai)ae&mpmr)) in B, is g-rationalized by a
1 1

probability measure u on M, such that for all m, in the support of u the pair
(my, (g5 (m;» 850 4 csuppimy)) VEB; -

Definition 3: A RCE is a pair of mixed strategies m*=(m*1,m*2) satisfying

that there are g—rationalizable sets B, and B,, such that

(mi*,(ki(ai) w))EBi for both i.

a;€Supp{m;

Notice that, under the last definitions, it follows from the existence of Nash

equilibrium that for any signal functions g,, there exists a RCE.

(c) Experimentation

Recall that we view an equilibrium as a sort of steady state in a recurring
situation. When thought upon along these lines, the RCE concept can be

criticized on the grounds that RCE points which are not Nash equilibria are
"unstable” in the sense that a player will presumably want to experiment in

order to learn more about the strategies of his opponents. Alternatively,
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such information will be revealed if players tremble in their choice of action
or otherwise deviate, even if quite infrequently. Fudenberg and Kreps (1988)
analyze the experimentation issue. It should be noted that such
experimentation technology has to be of a rather special form, if it is to
expose completely the strategy profile being played. Experimentation
technologies which are short of this may suggest some restrictions on the form
of the signal function g;(a), but we do not think they disqualify the entire

concept.

(d) Equivalence to Nash Equilibrium

In three of the examples considered above (the distance, location and
aggression games) the RCE coincided with Nash equilibrium. In games with
this property the Nash equilibrium concept is more compelling, because in a
sense the equilibrium requires less information on the part of the players.
It may therefore be of interest to identify conditions under which, for some
natural signal function such as one'’'s own payoff, RCE and Nash equilibria are
equivalent. Bernheim (1984) analyzes the analogous question for
rationalizability -- he presents necessary and sufficient conditions for such
equivalence between rationalizable and Nash equilibrium. As a corollary of
his analysis he shows that, in two-player Cournot game, the unique pair of
rationalizable strategies is the unique Nash equilibrium. This equivalence
fails for n=3, where any outputs between zero and the monopoly output are
rationalizable. In contrast, the RCE lends some support to the Cournot
equilibrium for n>3 as well: when each firm’'s signal is its own profit, the
unique RCE coincides with the Nash equilibrium for any n. Notice that in this

example the CE already coincides with the Nash equilibrium so that the power
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of RCE is not used. In the distance and aggression games the RCE coincides

with the Nash equilibrium while the CE is not. This research direction

provides well defined analytic questions.
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