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Abstract

We study a general equilibrium model where agents search for production
and trading opportunities, that generalizes the existing literature by
considering a large number of differentiated comrodities and agents with
idiosyncratic tastes. Thus, agents must chcose nontrivial exchange as well
as production strategies. We consider decreasing, constant, and increasing
returns to scale in the matching technology. and characterize the
circumstances under which there exist muitiple steady state equiiibria, or
multiple dynamic equilibria for given initial conditions. We also
characterize the existence of dynamic equilibria that are limit cycles.
Equilibria are not generally optimal, and when multiple equilibria coexist
they may be ranked. Pareto optimal allocations are also described and
contrasted to those that obtain in equilibrium. We analyze comparative
statics and find that certain intuitive results do not necessarily hold

without restrictions on the stochastic structure.



L. intouduciiun

This paper analyzes a general equilibrium model of production and
exchange. We extend the standard search equilibrium framework, as
described, for example, in the work of Diamc)nd,1 by assuming a large number
of differentiated commodities and agents with idiosyncratic tastes. In the
standard framework, agents search for production opportunities, or prejects,
which always yield one unit of homogeneous output at some project-specific
production cost. In our framework, each project yields one unit of a

particuiar type of commodity. As in the standard model, there is an

exchange sector where agents search for trading partners, and when they
meet, if mutually agreeable, they exchange and consume. Because of the
large number of differentiated commodities, in our model agents face a non-
trivial decision over trading strategies, in addition to the decision over
production strategies analyzed in the standard model.

Elsewhere, Kiyotaki and Wright {1989, 1990) use specialized versions of
this framework to study the reole of fiat currency as a medium of exchange.
Having many differentiated commodities is essential for modeling the role of
money endogenously, since this is exactly what makes pure barter difficult.
The extension to monetary economics provides one motivation for the multi-
good generalization of the standard approach; but the non-monetary version
seems interesting enough in its own right to warrant an extended analysis.
Without the complication of fiat money, we are able to consider a very

general specification, and to completely characterize not only steady

1See, tor example, Diamond (1982, 1984a, 1984b)}, or Diamond and
Fudenberg (1989). See also Mortensen (1989) and the references contained

therein.
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states, but also dynamic equilibria. we study constant (CRS ), decreasing
(DRS), and increazing (IRS) returns to scaie in the mitching technolosy.
The latter two cases can lead to multiple steady state equilibria. and aiso
a continuum of dynamic equilibrium trajectories for siven initial
conditions, while the constant return case always entails a uniqie
nondegenerate steady state and a unique equilibrium path leading to it.
These results contrast with the case of homcgenous commodities, where
multiplicity is possible only under IRS

A qualitative implication of the type of multiplicity obtained here is
that economies having the same initial conditions may asympotically converge
toward very different attractors. In other words, given initial conditions,
the dynamics of the system are such that there can exist some equilibria
converging to one attractor and other equilibria converging to a second,
completely different, attractor. These different trajectories can be
thought of as being indexed by expectations. If expectations are initially
optimistic, the economy can set off along one path that Jjustifies the
initial optimism, while if agents are initially pessimistic, the economy can
set off along a completely different path. All of these paths are
consistent with rational expectations.2

We also analyze the welfare implications of the model, some of which
differ from the standard one-good model. For instance, in the simplest case

of constant returns, the equilibrium allocation is inefficient here,

2One can indeed show that the standard search model, as described in
Diamond and Fudenberg (1989), would display similar properties under
certain conditions. Formally, analogous results have been derived by
Boldrin (1990) and Matsuyama (1991) in the context of two very different

models of economic growth and industrialization.



although it would be efficient in the standard mudes. We aiso anitiyze
comparative statics. and find that some intuitively reasonable results
cannot generally be ouarantesd. Tor example, an increase in the arrival
rate of production opportunities deoes not necessarily reduce the number of
agents in the production seclor, nor does it even increase the rate at which
agents exit from that sector.3 However, a straigntforward restriction on
the stochastic structure, log-concavity, can be used to rule ocut the
counterintuitive cases.

The paper is organized as follows. Section 2 describes the model and
defines equilibrium. Section 3 introduces the dynamic analysis by studying
the CRS and DRS cases. Section 4 discusses in detail the dynamic behavior
of the IRS case. Section 5 derives some welfare implications of the

different equilibrium paths. Section 6 contains the comparative statics.

Section 7 concludes. Most of the proofs are relegated to an appendix.

2. The Basic Model

Consider an economy with a continuum of infinite lived agents, with
total measure normalized to one, indexed by points arcund a circle of
circumference two. There is also a continuum of commodities indexed by
points on the same circle. Goods are indivisible and come in units of size
one. They are also perfectly storable, but only a single unit at a time.
Individuals have idiosyncratic tastes for these goods: the agent indexed by

point 1 most prefers the good indexed by i, and receives utility u(z) from

3Agents searching for production opportunities are often identified as
unemployed in the search literature; on this interpretation, reducing the
frictions involved in the job finding process does not necessarily reduce

the unemployment rate or even increase the exit rate from unemployment.



consuming a unit of good j, where z is a the distance between i and j along
the circle, and u: [0.1] - R is twice continuously differentiable with
u'(z) < 0. Thus. one can think of position on the circle as representing a
characteristic such as color, and utility as decreasing in the difference
between a good's actual color and a consumer's favorite color. We do not
require u{+) to be either concave or convex, in general, but for some
results below we do need to assume that u'(z) + zu"(z) < 0 {which is
automatically satisfied if u is concave).

We assume that u(0) > 0 > u{l), where 0 is also the utility from
consuming nothing. We note here for future reference that the distance
along the circle between an agent's ideal commodity and a commodity type
drawn at random from the circle is uniformly distributed in [0,1].

To acquire commodities, agents search in a production sector at a cost

in terms of disutility of w. per unit of continuous time. They locate

0
poctential production projects stochastically according to a Poisson process
with constant arrival rate a > 0. Each project yields a unit of good 1 at a
cost in terms of instantaneous disutility c, where i is drawn randomly from
the circle and ¢ is drawn independently from the cumulative distribution
function (CDF), F(c). Both commodity type i and cost ¢ are observed upon
location of a project, before a production decision is made. Let the
greatest lower bound of the support of F be c; for some results, it is

important whether ¢ > 0 or ¢ = 0. We will also typically assume F(c) is

differentiable and strictly increasing in order to simplify the



presentation.4

Individuals do not consume their own output:; rather, once production
takes place, agents proceed to an exchange sector where they look to trade
their output for something else that they can consume. In the exchange
sector, there is a search {(or storage) cost w1 per unit of time, and
potential trading partners are located according to a Poisson process with
arrival rate B 2 0. The number of meetings in the exchange sector depends
on the number of agents searching, N, and we write m = m(N). This means the
arrival rate for a representative agent is B = B(N) = m(N)/N. We always
assume m(0) = 0. In the CRS case, m(N) = BN, and the arrival rate is
constant, B{N) = 8. By analogy. B' > 0 is referred to as increasing returns
{m convex) and B' < O as decreasing returns (m concave) in the matching
technology.

In any case, locating a partner does not necessarily imply an
opportunity to trade, since the partner may not want what you have. If both
agents want what the other has, then they swap inventories one-for-one:
otherwise, they part company. For now, we simply denote the probability
that a randomly located trader is willing to accept good i at date t by
Bt(i). When a good is accepted in trade, there is a disutility cost € > O
that must be paid by the receiver. Let u _(z) = u(z) - €; then we assume

€
u_(0) > 0, and define z_< 1 by u (z ) = 0. Thus, z_ is the greatest
€ € € € €

4It is worth noting that all of our results would still obtain in the
special case in which ¢ = 0 and F(c) = 1 for all ¢ > 0, i.e., when there is
no search problem on the production side. This means that the existence of
search among differentiated commodities in the exchange sector is enough to
bring about the complicated structure of the set of equilibria described

below.
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distance from one's ideal good that generates nonnegative utility.

It may seem natural to assume that after trading an agent can consunme
and return to production at any time, or stay and try to make an additional
trade. However, we assume that upon accepting a good in trade, the receiver
must decide immediately if he is going to consume it or try to trade it
again for something else. Obviously, this assumption is not restrictive in
a steady state, although it could potentially be restrictive along a dynamic
path.

Further, in this paper we consider only symmetric equilibria, in which
no agent or commodity type plays any special role, and in particular the
decision to accept good j by agent i will depend only on the distance
between i and j. It turns out that under these conditions, there is no
indirect trade, and agents accept a good in exchange if and only if they are
going to consume it.

To understand this, observe that our notion of a symmetric equilibrium
implies that the probability of a randomly located individual accepting good
i is in fact independent of i: Gt(i) = Bt for all i at every date t. Now
consider an individual holding good i deciding whether to accept a trade for
good j. If he is not going to consume good j, by accepting it he pays
transaction cost € and gains no benefit, since his trading position is not

enhanced as long as Bt(j) = Bt(i) =8 Hence, he will not accept unless he

.
is going to consume j. This implies that all trades are made for direct

consumption, and there is no indirect exchange. Furthermore, once a trade

is made, consumption and the return to production will take place
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SRmediate sy, S omp iy Dedadae dneiiny dlseotis whie THldr .
we procesd using dynamic programming. Let the state variable j

indicate sector, § = 0 for production, and j = 1 fov exchange, and let \'jt

be the optimal value function for a representative agent in sector j at date

t. Note that V‘t (ioes not depend on the type of good in storase for the
By

same reason that Bt does not: the probability of a random trader accepting
good i is independent of i. Then the continuous time version of Bellman's

equations that must be satisfied by the vjt are

(2.1) OV aj: max{0,V, _ - V_ - c]dF(c) + V

ot 0 1t ot 0t

1
= - + hy 2 - !
(2.2) rv W, B(Lt)et jo maY[O,VOt %

1t tuglz)ldz = Vo,

1t

. ) 6
where r is the constant discount rate.

“We are not claiming there could not exist asymmetric equilibria where
certain goods become focal points for indirect trade--we simply choose to
concentrate on symmelric outcomes. A similar model with a finite number of
agent and commodity types is used in Kiyotaki and Wright (1989) to discuss
asymmetric equilibria, in which some commodities are used in indirect trades
as media of exchange, or commodity money {see also Kehoe, Kiyotaki and
Wright (1990), Aiyagari and Wallace (1990a.b), and Marimon, McGrattan and
Sargent (1990)).

6Intuitively, these equations set the return to searching in sector J.
er, equal to the flow vield wj plus two “capital gain" terms, an expected
option value plus a pure time change in Vj. In (2.1), the expected option
value is the rate at which projects arrive times the value of rejecting or
accepting the opportunity, whereas in (2.2), it is the rate at which
partners arrive times the probability that they are willing to trade times

the value of rejecting or accepting their offer. A simple way of deriving



The maximization problems in (2.01) and (2.2) e suived by ressvaiiol

strategies: (1) accept a production project at date t if and only if the
cost ¢ is less than K, where

[
(2.3) K =V -V

{ii) accept a trade offer at date t if and enly if the distance z between

the good being offered and your ideal good is less than X,, where

If we insert (2.3) and (2.4) into (2.1) and (2.2), we have

ot

1t i

where. to reduce notation, we introduce the functions

so(K) = fg (k - c)dF(c) = jg F(c)de
s (x) = jg [u(z) - u(x)]dz = jg zdu(z) .

Because s0 and s, are important, we catalog some of their basic

properties in the following lemma. The proofs are easy and left to the

{2.1) and (2.2) formally is described in the Appendix.
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resder . Nole, Dowever, wnal the convexiiy ol S, e} requires the assumption
u'{z) - zu'{z) £ 0, and then the ineguality Z(x) > 0 asserted in the lemma

follows directly from convexity.

Lemma I: For all k. so(k) is positive, increasing and convex. For all x,

Sl(x) is positive, increasing, convex, and satisfies

For arbitrary time paths of Nt and et a solution to the representative
agent's decision problem is given by a set of nonnegative functions
{xt’kt’VOt‘Vlt} satisfying equations (2.3)-(2.6), and the condition X, < Ze
for all t. This condition rules out the consumption of goods yielding
negative utility, and also implies that V1t - vOt = ue(xt) > 0 for all t,
or, that the value to being in the exchange sector is never less than the
value to being in the production sector (which would conflict with an
obvious free disposal condition). As discussed earlier, we concentrate on
symmetric outcomes, wiich means all agents use the same reservation
strategies. This implies the probability that an agent chosen at random
will accept a trade for a given good at date t equals the probability that
the distance between it and his ideal good is less than his reservation
distance: Gt = pr{z < xt) = Xy (given the uniform distribution of agent and
commodity types).

Since the probability that a representative agent accepts a trade is

X the probability of two agents trading in any particular meeting is given

by the probability that each has something that the other finds acceptable,



]
X . This turitber amplies Uhat the measure of agenis o the exchanee secior

evolves according to the law of motion

s o v yL2
(2.7) Rt = aF(kL)(l At) m(Nt)xt.

Putting these results together, we have the following definition of a

(symmetric) equilibrium for the model.

Definition: An equilibrium with initial condition NO at t = 0 consists of

nonnegative time paths for {kt'xt’VOt’vlt'et’mt} defined for all t € [0,w)
and satisfying:

a. N({(O) = N

O;
b. Conditions (2.3)-{2.6) and xt < 2€ for all t, implying agents are
following maximizing strategies given Nt and et;
C. Condition (2.7) and et = Xt for all t, implying expectations are
rational.
3. Equilibria with Constant or Decreasing Returns to Scale

Without any loss in generality, we set Wy = w1 here to ease the

presentation. Then, subtracting (2.3) from (2.6), we obtain

P(Vl - VO) = B(N)le(x) - aso(k) + V1 - V0
(time subscripts will be omitted from now on). The eguilibrium conditions
8 = = - = 4 > i i S v - ¥ = ! ‘.—, ¥ b = -d
x, k V1 VO ue(x), and the conditions Vl VO u'{x)x, can be use

to reduce this expression to



rue(x) = B(N)xsl(x) - s [ue(x)j - u’(x)ﬁ,

0

which implies

X = ) = fut (% o+ s - N)xs
(3.1) X TIN,X) = (1/u (4)){ru€(x) aso[ue(x)] B(V)xbl(x)}
Also, k = ue(x) can be used to reduce (2.7) to
(3.2) Ve s(x) s elu (010 - N - mnxd

Equations (3.1) and (3.2} define a dynamical system over the set

U= {(N,X): 0 E£N<1, 0 <€x¢%< ze}. Given an initial value of NO € [0,1]
and an initial value of X, € [0,z€]. any solution [N(t}),x(t)] to this systen

¢ and remaining in U for all t > 0 constitutes

1y

oing throug! N WX ¢
going ol(oxo)ﬂt

[od

an equilibrium for the model.' The boundaries of U are: (i) Ul = {{(N,x):
X =0, 0 £N<1}; (ii) U2 = {(N,x): x = Zgo 0 <N < 1}; (iii) U3 = {(N,x):
0 < x < Zg N =0}, (iv) U4 = {{N,X): 0 < x < Zg N =1}. Any trajectory

satisfying (3.1) and (3.2) and starting in U, or U2 will leave U and never

1

return, while any trajectory starting in U, or U4 will enter U, and remain

3

in U at least for smali t > 0.

We now characterize the behavior of the system on the set U = int(U).

We analyze separately the cases where B' = 0, B' < 0, and B' > 0, as they

7The standard theory of ordinary differential equations (see, e.g.,

Lefschetz (1957)) assures that, for any (N .xo) in U = int{U), there exists

0
a unique local solution to (3.1)-(3.2}). Such a trajectory can be uniquely

extended for all t > 0 if it remains bounded.
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have rather ditferenl vroperties. We also someiines make o distinction
between the cases in wnich ¢ =0 and ¢ > 0, wherc we recail that c is the
greatest lower bound of the production cost distribution Ff{c). The case

where B' > 0 for smaJl N and B' < 0 for large N (which may be the most
realistic) can be understood by combining the results obtained in the two
cases separately. Tn what follows, we call the set of points in C
satisf{ying S(N.x) = 0 and T{N,x} = 0 the S-locus and T-locus, respectively,
and a critical point or steady state of the system is a point (N,x) solving

S(N,x) = T(N,x) = 0.

3.1 Constant Returns to Scale

We begin with the simplest situation where m(N) = gN, which implies
B{N) = 8, for all N > 0. The horizontal line {(N,x): 0 £ N €1 and x = zs},
where z_ is the unique solution in (O'Ze) to

8

(3.4) rue(x) + aso[ua(x)] - Bxs_(x) = 0

1
describes the T-locus. With regard to the S-locus, it is easy to see that
if ¢ = 0 and F'(0) > 0, it begins at the point (O'Ze) and slopes downward to
the point (0,1). On the other hand, if ¢ > 0 and we define zZ. by ue(zc) =
¢, then the S-locus coincides with the vertical axis over the nondegenerate
interval [zc,ze] and slopes downward from the point (O,zc) to the point
(0,1).

In either case, if we assume that c is small enough so that z. > ZB,
there exists exactly one nondegenerate steady state, with x = z_ and N = N

B B
given by



A%

(3.5) Noo=oaria_tu_i| faffu () YA
£ e gl e gttt !
A straightforward local analysis of the system around (No.z_ ), together with

B E

consideration of its global behavior yieids the following result, depicted

in Figure 1.

<Insert Figure 1 here>

Proposition 1: Assume CRS and Z . > Z then there exists a unique

B;

equilibrium path for any initial condition NO € [0,1]. This equilibrium

satisfies xt = zB for ail t and Nt - NB as t - +ow,

Proof: See Appendix.

3.2 Decreasing Returns to Scale

The assumptions on B(e) in this case are: B{0} = 8, B(N}) > 0 and
continuous for all N > 0, and B'(N) < 0 for all X > 0. This kind of
functional form may seem unrealistic although a negative relation between
arrival rates and number of individuals searching may well arise {due to
"congestion”) at high levels of N. The extreme case we are considering is
nevertheless worthy of study because it reveals that IRS in the matching
technology is not necessary to obtain a multiplicity of interior steady

states nor to originate a continuum of competitive equilibria in search
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moade LS.

Tite T-locus slopes upward, while the S-locus slopes downward when the
elasticity of B is less than 1. but may well siope upward, if this
elasticity is greater than 1. As long as ZB < Z. at least one nondegenerate
steady state exists. The existence of others depends on the elasticity of
B(N), but it is clear that it a second intersection of the S-locus and T-
locus exists then a third must also exist, since the T-locus must eventually
reach the point (0,1). In other words, there is generically an odd number
of steady states.

Proposition 2 describes the global dynamics for the case where the
elasticity of B(N) is everywhere less than 1, which guarantees the existence
of exactly one interior steady state. Notice that it is in all relevant
respects the same as the CRS case (see Figure 1). If the elasticity
condition is violated there can be multiple interior steady states. We will
not pursue this here because it turns out to be formally equivalent to one

of the IRS cases analyzed in the next section.

Proposition 2: Assume DRS and |[NB'/B| < 1 for all N; then there exists a

unique equilibrium path for any initial condition N_. e [0,1]. The

0
equilibrium path coincides with the global stable manifold of the unique

interior critical point of (3.1) and (3.2)}).

4. Equilibria with Increasing Returns to Scale

Consider now the case in which B is increasing with B{0) = 0, B'(N) > 0

YV N> 0. In this case, the T-locus begins at (O,ze} and slopes downward in

8We will show in Section 4 that IRS is also not sufficient for this purpose.



the (N, x) plane to the point ii.Zl). where z. is the unique valiue of
1

N € (0,16) that soives

rue{x)+ aso[ue(x)] - B(l)xsl(x) =0,
The qualitative behavior of the S-locus is the same as above. it slones
downward from (U.ze) to (1,0), and is coincident with the vertical axis
between z. and z, when ¢ > 0. It lies below the T-locus in a neighborhood
of N = 1 because z, > 0, and as long as ¢ > 0, it will be below the T-locus
at N = 0 alse. Hence, there exists an even number of interior steady
states, Ej = (Nj,xj), j=0,1,...,2n. Assuming n > 0, we will concentrate
most of our analysis on the quite general situation shown in Figure 2, in

0 1 0

2
winich there are three critical points, E°, E°, and Ez, with 0 = N~ < N1 < N~

and Z€ = x0 > xl > x2.

4.1 Local Analysis

Around some critical point EJ the linear part of (3.1)-(3.2) is

described by:

i = T T X - X

3 N . 2 L2

(4.1) X J + olixd®, NS
| = |s s N - N
X N J

where o(e,) is of order smaller or at most equal to fx - xjH2 and

N - NjH2. The determinant of the Jacobian matrix is

(4.2) det = TSy = STy = 8, T {dx/dN 0 o = dx/dN o).



Hence, det is positive or negative depending on whether the T-locus is
steeper or flatter than thce S-locus at their intersection.

At the steady state wilh the greatest value of N (E2 in the figure),
the T-locus is flatter than the S-locus, and so det < G. At the steady
state with the next hishest value of N (E1 in the figure), the T-locus is
steeper than the S-locus, and therefore det > 0. Finally, at the steady
state EO with N = 0 and x = ze the local structure of the vector field
depends on the nature of our assumptions on ¢ and F. We need to distinguish
two cases:

(i} ¢ > 0, and therefore F(0) = F'(0) = 0;

—_
[ ]
[

~—

10

[]

0, F(0) = 0, and F'{(0) > 0.

In case (i) both SN and SX are zero at EO, which implies det = 0; the steady
state is a degenerate critical point with one eigenvalue being zera. In
case (ii) SN is zero but Sx is positive, which implies the determinant is
positive at EO. By the implicit function theorem, the S-locus is fiat at EO
while the T-locus is downward sloping.

When ¢ = 0, one cannot exclude the situation in which the T- and S-loci
intersect only once in U. It is therefore possible to have a unique
interior steady state even in the presence of IRS when c = 0.

In summary, under the assumption of IRS in the matching technology the
following two situations are possible: (i) when ¢ > 0 either there are no
interior stationary states or there is an even number of them: (ii) when

€ =0 and F'(0) > 0 there always exists at least one interior steady state

and when there are more than one there are an odd number.
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We bepin with the case where C = 0 and there are only two steady

states: EO = (O.ze) and El = (N},xi), as in Figure 3.

<Insert Figure 3 here>

The global characterization of the dynamic equilibria for this case is:

Proposition 3: Assume IRS, ¢ = 0 and a unique interjor steady state. Then

for every NO in {0,1] there is a unique equilibrium. When NO = 0 such an

equilibrium coincides with the stationary point (O'Ze) for all t 2 0. When
N >0, NO # N1 such an equilibrium starts at the unique value x(0) such that
(No,x(o)) belongs to WS(El) {the global stable manifold of El) and converges

to El.9

Proof: See Appendix.

We now proceed to the case where c > 0. In this case there is an even

number of interior steady states. We will concentrate on the case in which
. 0 1 11 2

there are two of them (Figure 2): E~ = (O,ZS), E~ = (N ,x") and E° =

(Nz,xz) in order of increasing values of N.

The local characterization is simple:

gTo be complete we have to add that, in exceptional and structurally
unstable cases, the stable manifeld of the saddle point E1 may go all the
way up to EO and therefore connect the two critical points. The fact that
the S-locus is horizontal at EO, prevents Wu(El) {the global unstable

manifold of El) from getting into EO.
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- ~ ; - . : U
Proposition 4: Assume IRS and ¢ > 0. Then the boundary steady state £ is

a degenerate saddle-node (or saddle-focus) at which a transcritical

. . , . . . 1 .
bifurcation occurs. The first interior steady state, E, is (generically)
either a sink or a source depending on parameter values, whereas the second

one, E2, is a regular saddle.

Proof: See the Appendix.

<Insert Figure 4 here>

Figure 4 reports the local behavior of the flow around the boundary
steady state for the case in which the slope of the T-locus at EO is, in
absolute value, less than r/TN, which is the slope of the (local) center

manifold. This cccurs when TN > r, whereas the opposite is true in the

other case.

4.2 Global Dynamics

The presence of a center manifold at EO can complicate cour analysis
purposelessly. We will therefore restrict attention to the case in which
the center manifold (WC(EO)) is unique with the motion on it converging to
EO. Even with this simplification the structure of the equilibrium set
remains quite complicated, as a number of different configurations are
generated by different combinations of parameter values.

One has to distinguish, first of all, between the case in which El is a

sink and the case in which it is a source. Second, the stable (WS(EZ)) and

unstable (Wu(Ez)) global manifolds of the saddle point E2 may or may not be
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representable as graphs of functions in (N,x) space. When the latter
situation occurs for either of them, dynamic equilibria that are limit
cycles may originate and, under the circumstances detailed below, they may
become the attractors of other equilibria beginning nearby.
From an economic point of view, the relevant features of the set of
equilibria can be summarized as follows:
(i) to a given initial condition NO, one can often associate a
multiplicity (indeed, a continuum) of dynamic equilibria;
(ii) the latter need not converge to the same attractor:
depending on essentially arbitrary expectations, equilibria

beginning at a common value N_ may converge to very different

0
asymptotic positions;

(iii) on the other hand, as the initial condition NO moves in
[0,1], different sets of attractors emerge for the equilibria
beginning at NO: initial conditions matter in this economy;

(iv) expectations may nevertheless matter more than initial
conditions: wunder certain configurations, even when NO is
very close to one, an equilibrium path exists that
asymptotically converges to E0 if expectations are
pessimistic enough. Conversely, very optimistic expectations
will produce equilibria converging to E2 from initial
conditions near NO = 0;

(v) cyclic equilibria exist and, under certain circumstances,
a cycle can be the global attractor of almost all the
equilibria departing from any given initial condition 0 < NO

< 1.
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Propositicns 5 and 6 are dedicated to a precise mathematical
description of the various cases. They are inevitably tedious and the
impatient reader should make use of Figures 5a-5e and 6a-6e to facilitate
geometrical understanding. Shaded areas describe "basins of attraction” for
the attractor contained within. They correspond to a continuum of
equilibria having a common asymptotic behavior.

We consider first the case in which E1 is a sink, in Proposition 5.

. . . 1. . -
Then we consider the case in which E° is a source in Proposition 6.

Proposition 5: Assume IRS, c > 0, and that El is a sink. The

global dynamics of the system can be as in either one of the five

figures Sa-e. The latter originate three distinct configurations of the

equilibrium set.

1. (Figure 5a.) There exists a repelling limit cycle ¥ around El and
WU(EZ) and ws(E2) are the graphs of two functions from N to x. Denote
by N < N1 and N > Nl the westmost and eastmost points of %,
respectively. Then:

a. for N0 < N there are only two equilibria given by WC(EO) and
WS (E);

b. for N £ N < N there are four types of equilibria: WC(WO),

0

WS(EZ). Y., and the continuum of paths converging to El;

~

C. for N < NO < N, where N denotes the eastmost point on WC(EO),

there are again two equilibria given by WC(EO) and wS(Ez);
d. for NO > N there is a unique eguilibrium given by wS(Ez).
2. (Figures 5b and 5c.) There exists a repelling limit cycle ¥ around E1

and either wu(Ez) or Ws(Ez) or both are not the graph of a function
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from ¥ into x. Let N, N, and ¥ be as in 1. and denote with N < § the

westmost point on wS(Ez). Then:

a. for NO < N there exists only one equilibrium: WC(EO):

b. for N < NO < N and N < NO < N there exist two equilibria: WC(EO)
and WS (£%),

c. for N < NO < N there are four types of eguilibria: WC(EO),

wS(Ea). Y, and the continuum of paths converging to El;
d. for N0 > N there exists only one equilibrium: WS(Ez).
3. (Figures 5d and 5e.) There exists no limit cycle around E1 and wC(EO)

is the graph of a function from N into x. Let N be as defined in 2.

Then:
a. if 0 £ NO < § there exists a unique equilibrium: WC(EO);

. . . . . c,.0 s,.2
b. for N_ > N there exist three types of equilibria: W (E"), W (E7),

0

and the continuum of equilibria converging to El.

Proof: See Appendix.

<Insert Figures 5a-e here>

Proposition 6: Let the hypotheses of Proposition 5 be true but assume that

El is now a source. The glebal dynamics of the system in this case can be

as in either one of the Figures 6a-e. The latter are associated with three

distinct configurations of the equilibrium set:

1. (Figure 6a.) There are no limit cycles around E1 and both Wu(Ez) and
WS(EZ) are graphs of functions from N intoc x. Then:

a. for all 0 £ N0 < N, where N is as in Proposition 5, there are two
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equilibria: WC(EO) and WS(Ez);

b. if NO > N there is a unigue equilibrium WS(EZ).

2. (Figures 6b and 6c.) There are no limit cycles around El but either

wu(Ez) or WS(E2) or both are not graphs of a function. Then:

a. for 0 £ NO < N there is only an equilibrium: WC(EO);
. ~ e c,.0 S ,.2
b. for N < N0 < N there are two equilibria: W {E’) and W (E);
C. for NO > N there is a unique equilibrium: WC(EO).
3. (Figures 6d and 6e.) there is an attracting limit cycle ¥ around E1
and WC(EO) is the graph of a function. Then:
a. for all 0 < NO < N there is a unique equilibrium: wC(EO);
b. for all N < NO < N and N o< NO there are three types of equilibria:

WC(EO), wS(Ez), and the continuum of equilibria converging to ¥;

C. for all N £ XN, < N there are four types of equilibria: the three

0
in (b) and the limit cycle Y.

<Insert Figures 6a-e here>

Proof: See Appendix.

From a practical point of view one is obviously interested in finding
computable conditions that can be used to discriminate between the various
cases. Checking the local stability-instability of El is only a matter of
linearizing and computing the associated eigenvalues. The interesting thing
is to have a simple set of conditions that could detect the existence of the
(attractive or repulsive) limit cycles. The Andronov-Hopf bifurcation

theorem turns out to be quite useful for this purpose.
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Propesition 7: Assume that the trace of (4.1) equals zero, i.e., that

B'(Nl)fo1 + B(Nl)sl(xl)/u'(xl) = r > 0. Then there exists a M > 0, such
that for all r in either (r + g) or {r - M) the system (3.1), (3.2) has a
limit cycle around the critical point El. If such a cycle is unique it will
be locally asymptotically stable when it exists for r € (r = #) and unstable

when it exists for r € {r - u).
Proof: See Appendix.

5. Welfare

We now turn to a discussion of welfare. In the IRS case with multiple
steady states, it is easy to see that those with greater values of N are
Pareto superior.lo Thus, for the IRS case, consider two steady states

), with N, > N_ and, therefore, x, < x,. Since (2.5)

(Nl‘xl) and (N2,x 5 1 5 1

2

implies rVO = Wyt aso[ue(x)] in steady state, V. is decreasing in x.

0

Since (2.4) implies V, = V_ + ue(x), V. is also decreasing in x. Hence, all

1 0 1

agents are better off in the high N-low X outcome. We now argue that the
steady state with the greatest N is not generally Pareto optimal in our
model. To make the point in a simple way, we assume that ¢ = 0 with
probability 1 (production is free, although agents still have to search for

projects). We begin with the case of CRS, and consider IRS below. We also

0The same is not true in the case of DRS: in this instance higher
values of N go together with higher values of x (the T-locus is upward
sloping) and the simple argument we give below may not go through or may

even be reversed.
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. 11
set w_ = w 0 to reduce notation.

0 1
When ¢ = 0, equation (2.1) immediately implies PVO = a(vl - VO) in a
steady state, and thus VO - Vl = —rvl/(a + r). Further, if we let any value

of x determine the reservation trade, and not necessarily the individual
utility maximizing value of x, then by equation {2.2), in steady state we

have

(5.1) V) = Bex(V, - V,) + 86 jg u (z)dz

-(BOx/ (& + r))rv1 + BB jg ue(z)dz.

Differentiating and setting avl/ax = 0 yields the first order condition for

the value of x that maximizes Vl. If we substitute this into (5.1) and use

the equilibrium condition 8 = x, we arrive at
(5.2) ue(x) = (B/(a + r))xsl(x).

The x that satisfies this equation is the unigue nondegenerate steady state
equilibrium for this case. We claim it is not Pareto optimal.

To see why, consider a social planner's problem of choosing x to

maximize V1 and Vo.l2 If we insert & = x into (5.1) and then differentiate,

we find that the first order condition for the planner's cheoice of x

11With CRS and ¢ = 0, the standard model predicts the unique

nondegenerate steady state is efficient, which illustrates one way that

having differentiated commodities makes an important difference.

12There is no ambiguity as to the correct welfare criterion for a
social planner in the special case under consideration (CRS and free

production), because V1 and VO are proportional.



satisfies
exrv, = (« + r)xue(x) + (ax + r) jg ue(z)dz.

Substituting this into (5.1) and simplifying vields

<l
w
—

X
Ue(x) = (B/ (o + r))xsl(x) - (l/x)fO ue(z)dz.

The solution to this equation is the socially optimal reservaticn good.
Comparing (5.2) and (5.3), the right side of the latter has an additional
term, which is negative, and thus the planner chooses a greater x than the
egquilibrium value.

In equilibrium, therefore, there are too many people in exchange and
too few in production. Agents searching for production opportunities are
often identified as unemployed in this literature, and so we could say that
there is too little unemployment in laissez-faire. The intuition is
somewhat different from existing theories. 1In this model, individuals are
only willing to trade when they meet a partner who has something they want,
which means a good within the distance x of their ideal. In order for trade
to occur, both partners have to have something the other finds acceptable,
and therefore individuals often get denied things they want because their
partners do not want what they have. All agents would be better off if they

would all lower their standards. This would reduce the amount of time spent



26
. . : . . i3
in exchange and increase the time spent in the production process.
We now consider the IRS case. An argument similar to the one used
above implies the decentralized steady state is characterized by (5.2),
except that now B is replaced by B(N(x)), where N(x) solves

N = a(l - N} - B(N)Nx2 = 0. Now the steady state equilibrium satisfies

(5.4) u (x) = (B(N(x))/(a + r))xs, (x).
There can, of course, be more than one solution to (5.4); for the sake of
argument, consider the best steady state (with the lowest x and greatest N).

As above, it can be shown that the optimal reservation level satisfies
(5.5) u (x) = (B(N(x))/(a + r))xs (x) - [1/x + B'N'/B] [} u_(z)dz

(notice that when B' = 0, this reduces to equation (5.3)). By comparing
(5.4) with (5.5), we see that whether the optimal x is above or below the
equilibrium x depends on the sign of the expression is square brackets in
{5.5).

The first term in the bracketed expression represents the effect
discussed above for the case of CRS--individuals neglect the external effect
of x on the frequency of trade, which leads to too little trade and too
little unemployment. However, the second term inside the square brackets in

(5.5) is negative, since N' < 0 along the N = 0 locus. This effect tends to

13This gives some insight into the welfare improving role of fiat

currency in the versions of this model studied in Kiyotaki and Wright (1989,
1990). A generally accepted fiat medium of exchange increases the frequency

of trade=, and there is too little trade in laissez-faire.
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In any case, our generalization does point out an important qualification to
the prediction of the standard modei. Such a qualification becomes more
relevant in the DRS case, even when only one stationary state exists. In
this instance the sign of 8' is negative and the whole expression within
square brackets becomes positive. Therefore, the equilibrium level of x is
unequivocally too low and N is too high: efficiency requires an increase in
"unemployment" and a decrease in the "quality" of the goods accepted in

exchange.

6. Comparative Statics

In this section we study the effects of changes in the exogenous
variables, concentrating on the case of CRS. 1In this case. the unigque

nondegenerate equilibrium is characterized by

(6.1) dP(x) = rue(x) + aso[ue(x)] - Bxsl(x) + W,oo Wy = 0.

If we let A

1

-1/¢' > 0, then (6.1) and k = ue(x) yield:

ax/aw] =A>0 8k/8w1 = u'A <O

ax/awo = -H <0 Bk/awo = -u'A >0
dx/3r = Aue > 0 ak/or = u'Aue <0
AN/ = ASO > 0 dk/dx = u’AsO <0
dx/dg = -Asl <0 dk/ag = fu'Asl > 0
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All of these are fairiv intuitive and interpretasinn 15 left ta the peace:s.

We would also like to consider changes in the production cost
distribution, F{c}). An efficient way to parameterize things is to suppose
that F belongs to a family of CDFs indexed by o, {F{c,o)}., with the property
that 02 > Gl implies F(c,cz) second order stochastically dominates F(C,Gl);
that is, 02 > g, implies

1

Ig [F(c,cz) - F(c,cl)]dc < 0 for all K > 0.

Dividing by 02 - 01 and taking the limit as 02 - Gl reduces this to

fg Fz(c.c)dc < 0 for all K > 0,

where Fz(c,o) = dF/do0. Differentiating (6.1), we now immediately obtain the

result
(6.3) dx/co = A jg Fz(c,c)dc £ 0.

Also, since k = ue(x), we have 3k/3g = u'dx/30 > 0.

We conclude that changing F(c) so that it second order stochastically
increases makes agents more demanding in exchange and less demanding in
production. Several interesting effects are special cases of this general
result. For example, suppose that the mean of F(c.g) is independent of o;

then reducing o implies an increase in risk in standard mean preserving
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dominance. In particular, reducing ajl costs by a fixed amount (a

translation of F). or proportionally {a scale transformation of F). first
order and therefore second order stochastically decreases ¥, which reduces o
and thereby raises x and lowers k.

Another way to show tiitis last result is to define net cost as
cn = (1 - ¥)c - T, where we could interpret ¥ and T as proportional and lump
sum production subsidies. An increases in T is equivalent to a translation
of the CDF, while an increase in ¥ is equivalent to a scale transformation.

Generalizing the arguments leading to {6.1)}, the steady state condition

becomes

(6.4) P(x) = w_ -~ W rue(x) + a{l - Vs

; (k) - BXSI(X),

0

where now k = (ue(x) - T)/(1 - 7). Differentiation yields 3x/8T > 0 and
9x/3y > 0, as argued above using stochastic dominance. However, we also

find after simplification that

ak/3t

(8/(1 - 7)) Bs, - (r + Bx)u'] > 0

(6.5)

"

ak/av (&/(1 - T))[kBSl - (kr + kg + aso)u'] > 0.

The results in (6.5} may appear to contradict our earlier conclusion,

that reducing c by a fixed amount or proportionally should lower k.
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define Lhe nel reservaticon cost. Theno Kn = ueix), and hence we immediately

have Bk“ long u'dx ST - 0 and Ekn SY uCH, TY < 0. In other words, the net
reservation cost definitely falls when all costs are reduced by a fixed
amount or proportienally., consistent with cur earlier results, and it is the
"after-subsidy"” value of k that is relevant. As shown in Figure 7, a lump
sum cost subsidy increases k but by less than the amount of the subsidy, so
that kn fails. This makes agents more willing to take on expensive
projects, in gross terms, but not in net terms. Figure 7 also shows the
effect of a translation of F(s), which results in exactly the same net
effect.

We now investigate how the steady state value of N depends on the
parameters. Let ”0 = aF (k) be the hazard rate in production (the rate at
which projects arrive times the probability they are accepted), and let
H1 = sxz be the hazard rate in the exchange sector (the rate at which
partners meet times the probability they agree to trade). As discussed
above, agents looking for an opportunity in the production sector are
sometimes referred to as unemployed. On this interpretation, I/H0 is the
average duration of an unemployment spell, l/H1 is the average time between
such spells, and 1 - N = Hl/(HO + Hl) is the aggregate unemployment rate.
Notice that an increase in x or a fall in k, holding « and B constant, will
raise Hl’ lower HO’ and lower N. Thus, for example, our earlier results

imply that an increase in W, W, orr reduces N and leads to more
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The impact of changes in the arriva’ rates, o ami B, are cosplicatod,
bhecause they affect N directiy as woll os indireatly thronwh X oand &0 Yo
develop some intuition. we begin with the case where F(k) = 1, which means

that all projects are acceptable (this would certainly be true. e.g.. if

¢ = 0 with probability 1). We also assume wO = w1 from now on to reduce the

. , , 2 L. C o . o
notation. Then N = «¢/{(& + Bx™), and alter simpiification we find

aN/oox = ¥3[2rk - (r + a)xu' + BE] > 0
(6.6)

aN/3s oX[(r + a)u' - BE] < O,

i - X, > 0 by Lemma 1. At least when

wihere & = AX/(a + 8x“)° > 0, and £ = xs

F(k) = 1, then we have the reasonable result that an increase in « or

decrease in B increases the number of agents in the exchange sector.
Returning to the general case, one can easily verify 8H1/8a > 0, aﬂl/as

> 0 and BHO/as > 0, but perhaps surprisingly, the effect of « on

H = aF[ue(x)] gives us some trouble. Differentiating, we have

0

(6.7) BHO/aa = F + aF'u'dx/3a = F + aF'u'd jg F(c)dc.

The sign of (6.7) cannot be determined in general. This is analogous to a

result in the partial equilibrium job search model, where an increase in the

14An increase in € is more complicated since it lowers both H1 and HO,
and the net effect apparently cannot be determined in general. The same is

true for changes in the production cost distribution.
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here.

The Important fact about log-concavity for ocur purposes is that it

impiies the left and right truncated mean functions.

(€)= [ edF(e)/(1 - F(K)) and w (X) = fﬁ cdF () /F(R).
have slopes that are less than one {sce, e.g., Goldberger (1983)). In

particular, p; = F(c)ch'/F2 £ 1. Inserting y; into (6.7) and simplifying,
Bl /3 = AF(Bs, - (v gxZiu’ « aru’ () - 1)].

Since log-concavity implies y; <1, it guarantees Bﬁo/aa > 0, and therefore
increasing the arrival rate « will necessarily raise the hazard rate and
lower the average length of a spell in the production sector.16

Even if an increase in « raises HO' this does not mean that it will

necessarily lower the steady state proportion of agents in the production

10Log—concavity means that log[f{c)] is a concave function, where
f = F' is the density. This restriction has been used frequently in search
theory since Burdett's work (see Wright and Loberg {1987), e.g., for

extended discussion and references).

1Gthhout log-concavity, we could have #; > 1, and hence aHo/aa < 0,

for small values of g and r.
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aN/aa = @[le - {r - Bx I’ - aFui{l = yr) - 2asO/x]
where @ > 0. The sign of this expression cannot be determined in general.

But if we assume log-concavity then #g £ 1, and after some algebra, we have

an/aa 2 agxFgs, - (r - p)u' - 2cts  /x]

it

ABXF[BZ - ru' + 2rk/x] > 0,

wiere, again, ¥ > 0 by Lemma 1. We conclude that log-concavity not only
guarantees that an increase in « raises HO, but by more than enough to

compensate for the increase in Hl' so that the net effect is to increase N.

7. Conclusion

This paper has analyzed the dynamic and steady state behavior of an
equilibrium search model with heterogeneous commodities. Some of the
results are similar to the standard one-good search model, while others are
rather different (e.g., welfare properties). The multiplicity of dynamic
equilibrium paths displayed by the model are very robust: as described by
Propositions 5 and 6, two eccnomies beginning at identical initial
conditions can converge to remarkably different attractors. Which of these
trajectories we follow depends on the way expectations are formed, and on
the emergence of focal points upon which agents can coordinate their

beliefs. The model is essentially silent on these issues and, given the
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monetary economics. Future work may attempt to upply the model to other
substantive areas in economics. or may attempt to incorporate the
complications introduced in this paper into the versions of the model with
fiat money. There are alsc other types of dynamic phenomena that we have
not investigated, such as the emergence of "sunspot equilibria" in which the

economy fluctuates stochastically even though the fundamental structure is

deterministic and time invariant.
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Shaded areas denote continua of equilibria.
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Derivation of 12.1) and (2 2)

Here we discuss a simple way to derive the continuous time dynamic
programming equations (2.1) and (2.2). Consider a discrete time model with
periods of length At. Then the value of being in state 0, for example, is
the instantaneous search cost plus the discounted value of next period,
whtich is the probability of finding a project times the expected maximum
value of rejecting it or accepting it and switching to exchange, plus the

probability of not finding one times the value to remaining in production

VOt = —WOAt - o{&t)

+ e TPt 1% max([v - cldF(c) + (1 - aAt)V

0, t+At’ " t, t+At 0. t+At?

where o(At) represents the probability of two or more Poisson arrivals in a
period, and hence satisfies o(At}/At - 0 as At — 0. Rearranging the

previous expression,

((1 - e“m)/m)vot - —w. + o(At)/At

0

+ eﬂrAt{ajg max[0,V -V - c}dF{c) + (V

1, t+At 0, t+At - Vo) /At

0, t+At

Letting At » 0 we arrive at (2.1). The derivation of (2.2) is similar.

Proof of Proposition 1: We consider in detail only the case of ¢ = 0. The

same proof goes through when ¢ > 0 with a minor adjustment for the behavior

of the flow on the upper portion of the boundary segment US‘ The only
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critical point ia &7 = \Ns,zej. Staidard Dincarization teciniiques snow Uhat
E5 is @ regular saddie with one negative eigenvalue Al = SV < 0 and one

[
paositive eigenvalue \2 =T, > 0. The associate {local) stablie and unsinbloe
N

manifolds are tangent to the eigenspaces spanned by {[0.1)} and

. S, ..B . u, ..B
{J,(TY - SV)/SY}’ respectively. Global stable W {E”) and unstable W (E”)
manifolds also exist (see Irwin (1980)). The first is easily seen to

coincide with the straight line x = z as the latter is an invariant set of

g’

the flow and WS(EB) is tangent to it around (N As for WU(EB) the fact

B,ZB).

that, around EB, it is steeper than the S-locus (because Tx - S,, is larger

N
than —SN) implies that it will never cross the S-locus again and it will
therefore point outward as indicated in Figure 1. It is representable as a
function, as points on the stable or unstable manifolds have to satisfy
dx/dN = T{N,x}/S{N,x) and Wu(EB) cannot cross the S-locus. The remaining

part of the global behavior of the system can be filled in using our

knowledge of the boundary dynamics. Q.E.D.

Proof of Proposition 3: Linearization around EO gives the following two

(1/2){r + (r° + 4TNSY)1/2}. Therefore, Re(A;) > 0 for

It

eigenvalues: A1,2
i=1,2, and EO is a source. The position of the two lecal, unstable
manifolds is given by span {AI/SX,l} and span {A2/Sx,1}. This, together
with the fact that the S-locus is flat in a small neighborhood of EO fully
characterize the local behavior of the solution to (3.1)~(3.2). To check
that the other stationary state is a saddle is trivial. The same type of

argument used in the Proof of Proposition 1 applies here to Wu(El) and

WS(El). Q.E.D.



Prood of Proposition 4 Cnat the Dloa arvund ©7 opaes a4 saddie poild
structure s immediote {vom [ineacization. Denote by %1 the positive and

. . .. 5 . . . . s ,.2 R
by M the negative ront. A Jittle aleebria siows that W LETY and W (E7) are

negatively sloped, with the unstable one heing steeper than the stable one.
Moreover, the unstable manifold is steeper than the S-locus, which is
steeper than the T-locus, which is steeper than the stable manifold at Ez.
As for E]. the Jacobian of the linearized system has a positive
determinant there, so both roots will have real parts of the same sign. The

trace of the Jacobian is:

2
= _ N 3 1 . _ “NB! v
SN + TX r B(\)s](w)/u (x) XTNB'(N)

and therefore the two roots may have either a positive (source) or a

2

negative (sink) real part. They are complex when (S, - TX) < _4SYTN'

N

Now let us consider the boundary point EO. Linearization shows that

there exists one positive root (Al) and one zeroc root (Az). The associated

elgenspaces are, respectively:

g4 (£0)

It

span {1,0} and

EC(EO) span {1,-r/T }.
N
The (local) unstable manifold will therefore coincide initjally with the

vertical axis. In fact, we know already that the whole segment {{N. = 0, z

0] C
< x =< 28} is invariant for our flow, so it will coincide with the initial

portion of the global unstable manifold wu(EO), which then extends from
(O,ZC) in a southeast direction.

To understand the effect of the zero root we have to appeal to the

center manifold theorem (see, e.g., Guckenheimer and Holmes (1983, p. 127)).
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This guarantees Uhe existencs ol o (differentlaoie) cehoer maniioid W (L)

c, .0 : L . . . . . . .
tangent to E7(E7) at ((.ze) witich will be invariant for the fiow senerated
by (2.1} and {3.2). Such a aarifold, nevertheless, neods not he onloos

s U N . ) . . .
(contrary to W° and W . which are). Moreover, the direction of the motion

>, .0 . . . .
over WC(E ) cannot be inferred from the first order approximation. but
requires higher order derivatives of S and T that cannot be signed under our

assumptions. Q.E.D.

Proof of Proposition 5: Two simple facts are key to understanding our

argument:

1. As the center manifold, WC(EO), of EO exists and we have assumed
it to be unique with the flow on it pointing toward EO it has to extend
backward all the way from EO toward the boundary line U4. It may or may not
reach such a line depending on the behavior of the unstable manifold of 52,
wu(Ez): when the latter is the graph of a function it will exit U through
U2 and therefore bound the extent to which WC(EO) may be prolonged in
direction southeast.

2. The stable and unstable manifolds of E2 exist but need not be the
graphs of two distinct functions from N into x. Recall that both WS(E2) and
Wu(Ez) are solutions to our system of differential equations. Recall alseo
that they are differentiable manifolds: peints on WS(EZ) and wu(Ez) have to
satisfy the relation dx/dN = T{N,x)/S(N,x). Note also that, in a
neighborhood of E2, they are tangent to the eigenspaces associated with the

Jacobian of the linearization of (3.1) and (3.2) at E2.

. c .. . . . . 2
Consider the partition of the domain given in Figure 2. wS(E ) belongs

to Ql on the right of E2 and 03 on the left of E2, whereas WU(Ez) belongs to
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vackwiard extension of fne civht portion of W(EY). Could it coire {rom 92?
Cliearly not, as the divection of metion a3 and on ins upper boundar, (the
2 P
- . . o s s . wS e . — S
T-locus) contradicts the directicn of motion on W7 (£%). 1t has therefore to

come from outside the phase plane and enter the latter through U4. The
southeast portion of WS(Ez) is therefore the graph of a function from N into
X lying completely in Ql‘ Similarly, it is easy to see that the southeast
portion of WH(EQ) is also the grapn of a function from N into x lying
completely in 03.

Now consider the northwest portion of WS(EZ); it is the graph of a
function as long as it lies in QS' This is the case represented in Figs. 3a
and 3e. On the other hand, its backward extension cannot enter 03 through
the T-locus, coming from 04. Once again, this would conflict with the
direction of motion on wS(Ez) and on the T-locus. Nonetheless, it is clear
that the directions of motion on WS(E2) and the S-locus are consistent with
WS(E2) entering 03 from Q5 through the S-locus, which is the lower boundary
of the latter region. This amounts to saying that WS(EZ) need not enter QS
from the boundary line US‘ When this occurs, WS(Ez) enter 03 from 05.
Proceeding backward, WS(E2) has, in turn, to enter QS from Ql' At this
point, with WS(Ez) in Ql' two new possibilities arise: it may have entered
Ql from 94 and 04 from 03. This case we have represented in Figures 5a, 5b
and 5c. Alternatively, it may have entered Ql from outside of the phase
plane, cutting through the boundary line U4. This is the case we have
represented in Figure 5d. It should be now reasonably simple for the reader
to carry on the same exercise for the northwest portien of the backward

2

extension of wu(E ). Three cases, perfectly analogous to those for WS(Ez)
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witl arise. Obvicusiy, not aii the pussioie combinations of Uiese Lso

vroups of

individual configurations are admissible as solurions =9 our
svstem of ODE.  Tor exampie, {t is clear that aniogueness of the solution o
{3.1) and {3.2) for any given initial condition will rule out the case in
L S 2 . : . " . noq-
which W™ (E7)} is the graph of a function "coming from U, and at the same
. . . u, 2
time the backward extension of the northwest portion of W (E”) comes fronm
the boundary line Cl.

These considerations prove that only the five qualitatively distinct
types of phase planes given in Figures 5a-e are admissible. Notice that
various non-generic and structurally unstable cases have not been considered

. , : S, .2 u, 2

here, as, for example, the heteroclynic case in which W (E®) and W (E®)
. . . . 2
coincide on the left side of E”.

In order to complete the proof we need only to justify the asserted
existence of (at least one) unstable limit cycle in the cases of Figures 5b

and 5c¢. This can be easily done by a straightforward application of the

following:

Poincare-Bendixson Theorem: A nonempty compact @- or w-limit set of a two-

dimensional flow, which contains no fixed points of the flow will contain a
ciosed orbit.

For a proof the reader may consult Lefschetz (1957). Consider first
the case of Figure 5b. Let € > 0 be small enough to guarantee that all
orbits with initial conditions in the open ball of radius € around E1 will
remain in such a ball and converge to El. Such an € has to exist because E1
is a sink. Define as N the largest value of N for which there exist at

least two values of x, call them §1 < §2 such that (ﬁ,ii) € ws(Ez), i=1,2.
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2 : 2
. : . v S L . s . 5,2 ) .. . o,
beglnning at (N.x.) continuing fronm there aiong W (ET) in direction opposite
. -
to the flow until the voint (N, ) and then coinciding with She vertien!
line connecting (N.iz} to (N,X.). Denote with v, the closed curve which is
1

the boundary of the g-ball around E] we constructed before. The anular
region ¥ contained between 71 and 72, boundaries included, has the following
properties: ({a) it is compact; (b) it contains nn critical point of the
fiow; (c) it contains the a-limit set of all the orbits beginning in it.
Therefore it has to contain at least one closed orbit which belongs to the
flow. In fact, it may contain more than one closed orbit. Nevertheless,
the outermost and the innermost among these cycles have to be repulsive and
equilibria will leave them when time goes forward. If only one such limit
cycle exists, as in the figures, it has to be unstable.

A brief inspection of Figures 5a and 5c will reveal that a completely
similar construction can be carried out also in those cases. Our proof is

therefore complete. Q.E.D.

Proof of Proposition 6: There is very little to prove. The five types of

different configurations for the three manifolds WC(EO), WS(EZ) and wu(E2)

have already been justified in the proof of Proposition 5. The existence of
the limit cycles in the case of Figures 6d and 6e also follows from the
Poincare-Bendixson theorem. The inner boundary 71 of the compact region L
can be constructed here also by choosing an g€-ball around E1 such that all
the orbits beginning on 71 point toward I and remain there for large values
of t. Such a ball exists because E1 is a source. The outer boundary 72

will now be given by an appropriately chosen portion of the unstable
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tower bDranch of W IST) to is upper bLranch. In thils way o region L s
created that satisfies the theorem. Noatice “hat it i3 “hre - oot 08 0nDosoe

to the a-set, of the trajectories starting inside T that is now contained in
L. For this reason the cutermost and the innermost among the cycles will be
attractive. Hence, the asymptotic stability statement for the case in which

there is only one such cycle. Q.E.D.

Proof of Proposition 7: We only need to show that the condition given in

the text is sufficient to guarantee that all the hypotheses of the following

theorem are satisfied:

Andronov-Hopf Bifurcation Theorem: Suppose that the system x = f#(x,y).
y = g#(x,y), for x, y and u in R has a critical point at (x.y) for g = u.
Assume that:
(H1) D(f#.g#)(§,§) has a simple pair of pure imaginary eigenvalues,
i.e., assume one can write the Taylor approximation {in deviation

form) of degree three around (x,y) as:

e
1

2 2 2 2
-wy + oa(x” o+ ¥y )x ~ b(xT o+ vy

§ = WX + b(x2 + y2)x + a(x2 + Y2JY-

(H2) The real part of the two eigenvalues varies with g around u = A,

d{Rex(u))/dpu| # 0.
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(i) The eiement a of fhe Tayior approximatlon in {dl) Is difierenc

from zero when evaluated at (X,y,u).

Then there is a unique three-dimensional center manifold of periodic
solutions to the original system of ODE. If a < 0 these periodic solutions
are stable limit cycles, while if a > 0 the periodic solutions are

repelling.

The reader may consult Marsden and McCracken {1976} for a proof.
Denote with J the Jacobian matrix associated with the linear
approximation of (3.1), {(3.2) around El. The two eigenvalues of J are:

/!
2x, ., = Trace(J) + (8)1?, with A = (Trace(J))? -

4Det(J)}. When
B'(N)XZN + B(N)sl(x)/u'(x) is larger than zero at El the value r, defined in
the preoposition, can be chosen for the interest rate, It implies Trace(J) =
0 and A < 0. This yields the two purely imaginary eigenvalues at the
bifurcation value r = r. In fact, continuity implies that the two
eigenvalues will remain complex, i.e., A will remain negative, for values of
r in a small neighborhood of r. The M > 0 in the statement of the
proposition will have to be chosen appropriately to guarantee that
(r ¢, ﬂ + p) contains the neighborhood in which A is negative, (H1) is then
satisfied and (H2) is also satisfied as Re(\) = Trace(J) at the bifurcation
point and Trace(J) varies smoothly with the parameter r.

Finally, condition (H3) is known to be generically true for smooth two-
dimensional vector fields like ours (see Arnold (1980, Ch. 6)).

We cannot verify the sign of a. Given our assumptions, the stability-

instability of the closed orbit follows from our discussion of the global
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. 1 . - . .
behavior of the [low around E (see Propusitions 5 and 6). Q.E.D.
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