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ABSTRACT

A strengthened mixed integer cut for solving the all integer
program may be deriQed from a combination of the Gomory cut{3] and
the modified Dantzig cut [1]}. Experiments with this method employing‘
three cut selection rules indicate a strong potential of this approach.
This paper presents a derivation of the strengthened mixed integer cut,
a description of ﬁhe three suggested rules for selecting a cut among

several alternatives, and a summary of computational experience.
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I. Introduction

In this paper we derive a strenthened mixed integer cut for solving the
all integer program. This cut is a combination of Gomory's cut [3] and the modi-
fied Dantzig cut [1)]. Experiments with this method employing three cut selec-
tion rules indicate a strong potential of this approach. This paper presents
a derivation of the strengthed mixed integer cut, a description of the three
suggested rules for selecting a cut among several alternatives, and a summary
of computational experience. To facilitate the presentation we review the de-
rivation of the Gomory cut [3) and a different cut we call the complementary
Gomory cut. We show that a combination of these two cuts produces the modified
Dantzig cut [1]. We also show that a combination of these three cuts yields

a strengthened mixed integer cut.



II. Deriviation of the Strengthened Mixed Integer Cut

a. The Gomory Cut [3]

Consider the following L.P. problem
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The optimum solution to this problem has the following form:
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where: xi is a basic variable

t, is a nonbasic variable
B is the value of the basic variable X, at the current
optimum solution
k is the set of all negative coefficients of the nonbasic
variables tik

k' is the set of all positive coefficients of the nonbasic

variables t

ik'!
Bik is the coefficient of the nonbasic variable tik
Bik' is the coefficient of the nonbasic variable tik"
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(1) may be redefined as follows:
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where: [Bio], [Bik], [Bik'] are the integer part of Bi’ Bik’ Bik'
respectively, and bi’ bik’ bik' are the fractional part of Bio’ Bik’
Bik' respectively. (bio’ bik’ bik' > 0).



From the integrality requirement on tik and tik' it follows that:

3 [Bio] + E([Bik] + l)tik - E‘ [B ']tik‘ is an integer.

From the integrality requirement on xg it follows that:

(4) b, - Z (1- bik E' bttt 1s an integer.
but 0 < bio <1

0 < bik <1 0 < bik' <1

0 < l—bik <1 0¢«< l—bik, <1

Hence, (4) may be represented as:

(3) by, - E (bt ~ E, LY

which is the Gomory cut for the ail integer program.
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b. The Complementary Cut

A redefinition of (1) yields the following expression of the cur-

rent solution to the L. P. problem.

(6) x, =1[B, 1+b, + E (B, Ity + E botay ~ E'([B ol Dy

+ E' (l—bik')tik'
From (6) it follows that:

(1) by * g Piictik * E, A=b gy ) gy

is an integer.
Hence:
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is a valid cut.
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c. The Modified Dantzig Cut

Addition of the Gomory cut and its complement yields the modified



Dantzig cut.

Gomory: bt E (1—bik)tik + E‘ LIPRLIE 0
Complement : b+t ) biktik + E‘ (l—pik')tik' 21
Modified Dantzig 0 + E to + E' ! 21

d. The Convexity Cut Approach [2]

The Gomory cut, its complement, and the modified Dantzig cut may
be represented as a special case of the general convexity cut:

9) § 1/eHe > 1

where: l/tg is the coefficient of the nonbasic variable tj, and tg
may be interpreted as a measure of the depth of the cut along the

j's dimension.
The convexity form of the Gomory cut is formulated as:

‘ 1-b b

| ik ik’

10 J gt tl g o tge !l
k io k' Tdio

and the convexity form of the Complementary cut is formulated as:
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where :
biO bio
t*, = and t* , = for the Gomory cut
ik 1 bik ik bik'
l—bio : 1-bio
tk = —=2 and t% , = ——— for the complementary cut
ik bik ik 1 bik'

It follows that if a coefficient tg derived from (10) is less than 1,
then its complement derived from (11) is greater than 1 and, therefore
the complementary cut is deeper along that dimension.

It is possible to derive a cut which contains coefficients t; 21

only, by an arbitrary selection of coefficients t*, from either Gomory
i



or its complement, in such a way that all t?’s are greater than or

equal to 1. (This approach implies that if a nonbasic variable ti
becomes positive in the final integer optimum solution, then, it must

be greater than or equal to 1. This requirement is not implied directly

by the Gomory or the complementary cut.)

e. The Strengthened Mixed Integer Cut Of The All Integer Program

Let Q Ck and Rk and let QN R = g. Let Q' < k' and R' < k' and

let Q' N R' = 4 where kK and k' are the sets defined in (1). We can express
(1) as:

12 =B, + + -

(12) = =B, é Biqtiq z Birtir g, Biq'tiq g. Bir'tir"

The assignment of a variable ti € k to either Q or R, or the
assignment of a variable ti € k' to either Q' or R' is arbitrary.

(12) may be expanded to the following form:

(13) %y = [By ] + by + ) Byl q + % 1Q%1q Z (Bjpl + Dtyp
LAt - g. Biqltigr = 4, Pigrtag:
B g. (UBjped + Dtypo # g, (1-byp)tip

From the integrality requirements on all xi's and ti's it follows

that:

(18) b+ g b

iQt1q ~ g (I-bypltip - g. biqrfiqr ¥ g, (1-byp)tyy

is an integer which must be either > 1 or < 0.
If (14) is > 1 then:

(14a) b, + 2 b ot 2 (1-b et g 2 1 is true

If (14) is < 0 then:

(14b) b, -~ E (1-b )t

0 is trus
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The equivalent convexity cut form of (l4a) is:

b 1-b,
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The equivalent.conveXity cut form of (14b) 1is:

1-b, b, ..
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At least one of (l4c) or (l4d) must be true for (14) to be true, and

since by definition (l4c) and (14d) are > 0 we have:
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which is the strengthened mixed integer cut of the all integer program.
We may now summarize the derivation of the strengthened cut.
1. Solve the L.P. by ignoring the integrality.requirements.
2. 1If the current optimum is all integer, stop, otherwise go to 3.
3. Derive a Gomory cut in the convexity cut form: y (1/t§)tj > 1
3
here: t*¥ =b /b, for all j € k'
where b o’ P; j €
tk = - i€
% bo/(l bj) for all j k
4. If there is any t? < 1 replace it by its complement. For example:

if bo/bj < 1 replace it by (1~b0)/(1—bj) > 1

if b - i 3 - >
i O/(1 bj) < 1 replace it by (1 bo)/bj 1

5. The new cut is 2 (1/t§)tj > 1 where tg > 1.
3 .

-The strengthened cut for the all integer program is a special
case of the strengthened cut for the mixed integer program. Since the
optimum value of the objective function is an integer, and the lexico-
graphic dual simplex is applied to retain primal feasibility; a method
employing the strengthened cut for the all infeger program must converge
in a finite number of steps. (The mathematical proof is the same as the

one for the Gomory mixed integer cutting plane method [4].)



ITI. Experimental Rules for Selecting Cuts Among Several Alternatives

Suppose there are two possible source rows from which we derive

two constraints

jZ(l/:gjltij >1

JZ(l/t{gj)tkj >1

respectively. Comparing these two constraints, if we find that for every
i, tgj :-tﬁj’ then we select row (i) as the source row because the cut
derived from row i is deeper than the cut derived from row k. Row k

is dominated by row i, therefore, we may exclude it from our considera-

tions. Suppose there is one row (e) for which there are several
t*. > t%  but, at the same time, there are several t*, < t* , The
ij — “ie: ij — de

decision regarding the better possible source row in this case is much
more complicated and, in fact,we have to make decisions which affect the
short run only, namely, our decision is based on the expected outcome
of the following pivot step. This decision procedure is outlined in

the following algorithm which is referred to as Version 1.

Version 1

Step f1. From every possible source row derive a constraint of the

y

TTTUtypel e

Lasenye, » 1

3 b R B

These constraints are represented in a matrix form T = lltfi‘J
Step #2. Search across the rows to find max tij for every column in

i
matrix T.



Step #3. Derive a dummy

Z max (1/t* 1

ke, >
j i 1] J—-

Step #4. Search for min
3

Step #5. Select the one

We may modify version #1
procedure is outlined in

as version two.

Version 2

constraint

[(m?x cgj)-(zj~cj)]

source row which has the property of step 4.

to include some long run considerations. This

the following algorithm which is referred to

Apply the first 5 steps of version #1.

Step #6. For every possible candidate (row) in matrix T count the

number of zero coefficients.

Note: a zero coefficient implies 1/t§ =0 or t; =®

Step #7. Select the one

coefficients.

row which has the largest number of zero

Step #8. 1If the row sclected in step 7 has more zero coefficients than

the row selected in

step 5, replace the ncw row with the old rTow,

otherwise select the row chosen in step 5.

Version 3

Version #3 uses a heuristic rule which has a relatively high probability

of selecting deep cuts among several alternatives ard, nevertheless,

employs less computer space and less searching time.

Define:

f

= (b,) or (1-b.)

b

then: t; = (l-bo)/fi or bO/fi



If the numerator l—bio or bio is a relatively large fractional number then,

on the average, t? will be large.

3
Based on this assumption we derive the following procedure:
Step ##1. Select those restricted basic variables for which bo # 0 and
calculate
max |b, -~ 0.5

. io

i
Step #2. The one row which fulfills the property of step 1 is selected as

the source row.

Computational results from these three versions are presented in the next
section.

Ncte: It 1s possible to use combinations of the above versions and to
come up with more than just three ways of selecting source rows. This

topic may be treated as a research project by itself.
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IV. Computational Experience

The strengthened mixed integer cut for solving the all integer program
was tested employing three codes: version 1 (V1), version 2 (V2), version 3
(v3).

The problems used for testing purposes are those developed and reported
by J. Haldi [5] to test the LIPl computer code. Further comparisons were
made with respect to Trauth and Woolsey's L8] results with the LIP1, IPM3,
and LIP2-2 codes.

The results are presented in tables no. 1 and 2 and are generally
self-explanatory. All times were computed from the first executed in-
struction of the program to the end of the minimum output needed to inter-
pret the results. All times are given in seconds. The word "iteration"
refers to a single matrix pivot operation. All programs were run on the
CDC6400 computer.

The first nineproblems in the computational summary table are Haldi's
fixed charge problems. They are followed by the IBM integer programming
test problems [5]. Versions 1, 2, and 3 are denoted as V1, V2, and V3

respectively.
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Table 1

Fixed Charge Problems

Code V1 V2 V3 IPM3 LIP1 ILP2-2
Problem | Time Iter. Time Iter, Time Iter. Time Iter. Time Iter. Time Iter.
1 1.789 20 1,902 20 1.652 19 3.117 54 1.833 24 0.852] 36
2 1.330 13 1.401{ 13 3.103 39 3.767 81 1.350 15 0.935 47
3 1.512 14 1.430] 11 1.783 21 3.033 37 1.883 26 1.384 104
4 0.901 6 0.966 6 0.887 6 4,100 91 1.483 18 0.674 18
5 2.576 18 2,414 16 6.780 60 h7000 9.012 | 158 47000
6 2,006 13 2.819| 24 6.911 .77 H-7000 7.567 | 123 3.273] 311
7 2.548 18 2.4971 16 3.007 37 H7000 7.833 | 159 7000
8 2.241 14 2.310f 14 2.475 21 -+7000 6.417 | 126 3.033 306
9 1.278 9 1.282 9 1.206 9 5.183] 118 3.233 42 3.598] 293

Table 2
Haldi's "IBM" Problems
Code V1 V2 V3 IPM3 LIP1 1LP2-2
Problem| Time | Iter. Time | Iter. Time Iter, Time Iter, Time Iter. Time Iter.
1 1.503 8 1.512 8 1.488 8 2.300 8 1.866 11 1.087 11
2 2,711 23 2.785} 23 2.6698 | 23 2,833 17 3.016 32 1.149f 15
3 2.579 38 2.617| 41 2.497 36 2.633 22 2,866 53 0.621 14
4 13.761 | 106 8.882) 40 | 24.562 | 258 5.933 24 } 11.666 73 3.0790 18
5 45,517 | 212 31.566| 149 | 71.536 | 361 | 51.600| 1144 | 66.483 | 351 26.184 842
9 281.174 1 409 |351.002} 841 {508.066 | 982 1633.313} 6758 [473.100 | 953 75.12# 1105
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V. Conclusions

Dual functional cutting plane methods are, in general, very sensitive to
truncation and rounding errors. The final simplex tableau from which cuts

are generated, consists of the following matrices and vectors:

xp + 3 lar = 371p

-1 _ -1
cpXp + § (cgB Aj - cj) = cgB b

Whenever the basis matrix B is inverted there 1s a roundoff error

associated with its product B™L, Cuts of the form y (l/tﬁ)t
3

> 1 are

N]

derived from the current L.P. tableau where:

tg =bo/bj or (l—bo)/bj or bo/(l—bj) or (l-bo)/(l—bj)

B
B—lAj - cj; therefore both b0 and b

where b0 is the fractional part of Bi‘lb nr B_lb and bj is the fractional

part of B_lAj or cg j contain rounding

errors. Every cutting plane, once derived, stays in the L.P. tableau as
an additional constraint at least until its associated slack variable
becomes positive. When new cuts are derived, some of them may be
generated from an older cut which already contains rounding errors. Con-
sequently, the rounding error is building up very quickly, and hence, the
optimum integer solution may not be reached. One way of ovércoming

this computational problem is by introducing an artificial parameter ¢

(a very small number) which serves for truncation purposes. For example:
whenever [ijl or ll—bjll < € we set bj = 0 and whenever [lbol or ll—bOI]
< & we set bo = 0. The magnitude of ¢ is extremely important and its
optimal value may vary from one numcrical problem to anothcr. For example:

suppose we derive ¢ Z.lbjl > 0 and therefore set b, = 0, the corresponcing

-

tg = ® or 1/t§ = 0.  1f the correct value for [bj! shculd have been - 0

and its corresponding tg should have been finite, using the truncation
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procedure we might have cut off a lattice point which might have proved
to be the optimum integer solution to the problem. - If on the other hand
the arbitrarily selected value for € is too small and the derivgd value
for bj > ¢ where in fact it should have been = 0 then the derived cut is
not optimal and the solution procedure may take more iterations than
actually needed, but more iterations and more cuts increase the probability
of severe rounding errors in the future. A slightly different asﬁect of
the same problem is the case of bo. When bo = 0 we do not derive a cut
from its corresponding row. If the arbitrarily selected € is too small
and the derived bo > £ where in fact it should be equal to 0, then we may
derive a cut from a row which already has an integer solution. This cut
will cut off a valid lattice point and may lead to a wrong solution to the
problem. If;on the other hand,the arbitrarily selected e is relatively
large and the derived € z_bo > 0 and therefore bO is set equal to O where
in fact it should be > 0, we miss a good opportunity to generate a deep
cut from this source row and more steps may be needed to obtain the optimum
solution to the problem.

We have now reached a stage where we can summarize our conclusi&ns.

Dangers associated with the fact that:

€ is relatively small € is relatively large

1. tg is finite where in fact it 1. A valid lattice point may be cut
should be infinite and more off by assuming t§=m where in
iterations are needed. fact tg is finite.

2, A valid lattice point may be 2. More iterations may be needed
cut off by using a source row because the best source row may

at which bo>0 where in fact bo=0. be missed by assuming bo=0 where
in fact bo>0.
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A cheap solution procedure to the problem may be one which will
avoid cutting off a-valid lattice point at the expense of introducing
more iterations than needed. This may be done by introducing two different

values for two different truncation parameters e, and €, where ¢ <€2-

1 1

el"should serve as the truncating parameter of lbjl and €2 should serve
as the truncating parameter of ho, as a result when el-is relatively
small, danger # 2 may be eliminated and when €y is relatively lafge
danger # 1 may be eliminated..

Introduction of more than one truncating parameter may eliminate
part of the rounding problem but not all of it. A solution which is
reached by one code may not be the true optimum solution of the problem.
Different versions of the same algorithm with different selection rules
of the source row may lead to different solutions. Different versions of
the same algorithm which vary only with respect to the truncating para-
meter may lead to different solutions or to different number of iterations
needed for solving the problem. It is, therefore, important to remember
that the solution to the problem while using the cutting plane approach is
not always reliable and more than one code should be employed to solve
the same problem until the solution value is consistently the same.

The results obtained in this research indicate that the approach em-
ployed in this paper may be preferred to Gomory's algorithm for integer
solutions to linear programs [3]. This approach is better in the sense
that the total number of iterations and the total computer time needed for
solving a given problem is, in most cases, significantly lower. Also, the
total number of cuts required to solve a given problem is, in most cases,
smaller; a fact which decreases the possibility of severe rounding and

truncating errors. Different selection rules affect the overall method
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significantly. This fact has been shown by Martin £7] and by the results
of this research. Version 2 is the most time consuming per iteration but,
nevertheless, it produced most of the best results among all codes compared
earlier.

These experiments indicate that a good rule for selecting a cut
among several alternatives may not be based on the expected outcome of
the following pivot step. A good rule selects a cut which cuts off
larger portions of the original convex set. Version 2 selects a cut
which maximizes the number of t?'s = o and therefore, it may be con-
sidered as a relatively good rule which takes into account long run
considerations rather than the immediate outcome of the following pivot
step. The rounding error problem associated with cutting plane methods
limits their practical value. Large scale ILP problems which are usually
solved by the branch and bound [6] procedure tend to produce better re-
sults if cuts are incorporated into the branch and bound algorithm in
the form of penalties [9]. The algorithm discussed in this paper may
be used as a subroutine in a branch and bound program, the objective
of which is to establish improved penalties on the active branches and
thereby, reduce the total number of steps required for reaching the optimum

integer solution.
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