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Equilibrium in Non-Partitioning Strategies

Abstract

Herein we present a single example with three purposes: (1) to show the existence of equilibria in a
game which violates the assumptions of currently-available general existence theorems, (2) to illustrate
the importance of the "affiliation" assumption in economic games of incomplete information, by showing
how even a slight relaxation can lead to the nonexistence of equilibria in monotone strategies, and, most
importantly, (3) to exhibit an equilibrium point in strategies which partially reveal information without
inducing posterior partitionings of the players’ type spaces.

Introduction

Our example is a symmetric two-player, first-price, private-values auction game. Each of two risk-
neutral players privately learns the (nonnegative) value to himself of the object being auctioned. Then,
each submits a (nonnegative) sealed bid. Finally, the player submitting the higher bid receives the object,
and pays the amount of his bid. (Ties, which we will find to occur with probability zero at equilibrium,
are broken by a coin toss.)

Private-value auctions have been the object of substantial prior study. The novelty here is in the joint
distribution of player valuations: With probability «, the valuations are independent draws from a fixed
atomless distribution F; with probability 1-e, the valuations are both equal to a single draw from F.
The extreme cases in which & = 0 or « = 1 have been treated thoroughly in the received literature.
We will see that results for the intermediate cases differ substantially from previous results.

There are numerous equilibrium existence theorems for games with incomplete information (see, for
example, Milgrom and Weber [1981a], which discusses several), ail of which require some form of
assumption concerning the continuity of the payoff structure of the game, together with the assumption
that the joint distribution of player types is absolutely continuous with respect to the product of the
marginal distributions. While many games with discontinuities in the payoff structure (such as auction
games) have been shown to have equilibria, and specific examples of nonexistence are also available, we
are unaware of any previous investigation of games which violate the absolute-continuity-of-information
assumption. Here, we find that equilibria do, in fact, exist. (However, note that existence, while of
interest, is not particularly striking. Every game based on discrete approximations of the players’ type
and action spaces is known to possess equilibria (Milgrom and Weber [1985]), so one might expect a
limit of equilibria of approximating games to be at least "equilibrium-like" (Simon and Zame [1990]).)

There is a well-developed theory of auctions, in which most results are derived from the assumption that
the players’ private signals are "affiliated” (Milgrom and Weber [1981b]). In our two-player setting, this
simply means that the players’ valuations are nonnegatively correlated, given that they lie in any product
set. In auctions where the private signals come from an atomless distribution, the affiliation assumption
typically leads to equilibria in pure strategies which are increasing in the players’ signals. Here, for all
0 < a < 1, the affiliation property does not hold: For example, if the distribution F is uniform
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on [0,1], then, given that one player’s valuation is in {0.25, 0.50} and the other’s is in {0.50, 0.75},
it is overwhelmingly likely that the first valuation is high and the second low. While the valuations are
not affiliated, they still possess a strong monotonic relationship: Each player’s posterior beliefs about
his opponent’s valuation increase stochastically with his own valuation. However, pure-strategy equilibria
will be seen not to exist. This result is not an artifact of the presence of atoms in the posterior
distributions: If the positive probability that the players’ valuations are identical is replaced by a positive
probability that the valuations are distributed on some narrow band around the diagonal, the qualitative
nature of our results remains unchanged.

In many published studies of economic games with incomplete information, the players’ type and action
spaces are real intervals, and strategies at equilibrium (in the studied examples) turn out to be monotone
(i.e., either monotone increasing — for all types t; > t, and actions a, and a, taken by the
respective types, a; 2 a, — or monotone decreasing). In a monotone strategy, each type has associated
with it an interval of actions, and the intervals associated with distinct types intersect only at their
boundaries. Since at most countably many of the intervals can have nonempty interiors, monotone
strategies are pure for all but at most a discrete set of types.

There are classes of games in which all best responses are monotone. Witness, for example, Myerson’s
treatment [1981] of private-value auctions in which the players’ valuations are independent. Once
strategies are fixed for all but one player, the last player is left to choose among actions which yield
different pairs (p, €), where p is the probability that a considered action will obtain the object being
sold, and e is the player’s (unconditional) expected payment resulting from the considered action. With
valuation v, the player will select an action — equivalently, a (p, €)-pair — that maximizes v'p-e.
Larger values of v yield steeper indifference curves (lines) in (p, e)-space, and hence a best response
to the strategies of the other players must have the choice of p (and hence, of a bid) increase
monotonically with v. "Separating” strategies (in which all types take distinct actions) arise when the
convex hull of all available (p, e)-pairs has unique tangents; "pooling" of types (in which several types
take the same action) results from nonunique tangency at some points. Similar arguments can be applied
in a variety of settings.

Generally, if a player employs a monotone strategy, then the ability of an observer to learn about the
player’s type by observing the player’s action is quite restricted: Observed actions simply partition the
player’s type space. The observer can rule out some types on the basis of his observation, but all types
not ruled out (i.e., types which pool together on the observed action) retain their original relative
likelthoods. Never can the observer state, "This type seems somewhat more likely, and that type
somewhat less likely, given my observation.”

It would be truly remarkable if all learning (in a rational world, in contexts where players begin with a
continuum of possible types) took this restrictive, disjointed form. Our example shows that learning
through observation can indeed have a more continuous nature: Observers can, in some settings, make
the statement in the previous paragraph.



Nonexistence of equilibria in monotone strategies

For a € {0, 1}, the auction game studied here is known to have a unique equilibrium point in pure
(monotone increasing) strategies. The equilibria for these two extreme cases are described later in this
paper. But first, we show that no equilibria in monotone strategies exist for intermediate values of «.

Let V be the support of the distribution F. We represent a strategy for a player in behavioral form,
as afamily G = {G(-|v)}, ey of cumulative distributions over the space of bids. Associated with every
such strategy is a marginal distribution H of bids defined by H(b) = § G(b|v) dF(v). Against any
strategy G of the opposing player, a player with valuation v who bids b has expected payoff

(v-b) [aH () + (1-)Gd | V)],

as long as neither H nor G(-|v) has an atom at b. (Ties are a notational nuisance which we will be
able to avoid in most of our analysis.)

It is easy to show that no symmetric equilibria in monotone strategies exist. The argument which follows
covers asymmetric possibilities, as well. Assume 0 < « < 1, and assume, for purposes of eventual
contradiction, that an equilibrium point in monotone strategies G, and G, exists. Let H; and H,
be the associated marginal distributions of bids.

Take any valuation v such that F(v) > «, G,(-|v) is concentrated at by, and Gy(-|v) is
concentrated at by. (Because the strategies are monotone, G, and G, are each concentrated at a single
point for all but countably many values of v. Since F is assumed to be nonatomic, valuations v which
satisfy the conditions are abundant.)

At equilibrium, bidders can never bid more than their valuations. Therefore, since o > 0, a bidder with
any valuation v above the lowest possible valuation v, = min,cyv must have a positive expected
payoff at equilibrium (bidding any amount between v and v, will yield a positive payoff with positive
probability), and hence must bid strictly less than his valuation.

It follows that, at equilibrium, a player’s marginal bid distribution cannot have atoms. (Were there an
atom, either the other player would never bid at or just below the atom, and bids at the atom could be
profitably dropped, or the other player would have valuations above the atom with which he bids at or
just below, and some of those bids could be profitably raised to just above the atom.) Consequently, we
can avoid below the cumbersome notation required for dealing with ties, since we must have
Hi(b)) = Hyb,) = F(v) .

If b, = b, , either player can gain from a small increase in bid, when his valuation is v. So, without
loss of generality, assume b; > b,.

Let e=1-FWv),5=1- H,(by), and vy = H(b;) - H;(b;). For player 1 not to gain (when his
valuation is v) from dropping his bid to just above b,, it must be that

(v-by) [ (1) + (1-a)'1) = (v-by) [a-(I-¢) + (l-a)1] .
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For player 2 not to gain from raising his bid to just above by, it must be that
(v-ba) [e{l--y) + (1-2)-0] = (v-b)) [ (1-€) + (1-)1] .

Solving both inequalities for (v-b;)/(v-b,) and combining the results, we must have

a(l-e-v) N
1-we 1-ad

Since 1-e-y < l-ae and 1-a§ < 1, this in turn implies that & > l-we > l-a(1-q), an impossibility.
Hence our original assumption, that there exists an equilibrium point in monotone strategies, must be
incorrect.

Equilibrium characterization

Here we shall seek a symmetric equilibrium point in behavioral strategies. G will denote the sought-for
symmetric equilibrium strategy, and H will be the marginal distribution of bids induced by G.

Let b(v) represent the lowest bid in the support of G(-|v), and b(v) the highest. For G to be a best
response to itself, a player with valuation v must have the same expected payoff K(v) for all bids b
in the support of G(-|v). Hence, we must have

(v-b)-[aH(b) + (1I-)G([V)] = K(v) = (v-b(v))-aH(®(V)) ,

and therefore

- v-b

M GO - [-li] - [V'h(")-H@M) - H)|
forall b(v) < b < b(v).
For any b < b(v), the expected payoff is simply (v-b)-oH(b), which can be at most K(v); for any

b > b(v), this expression must be less than K(v) (since G(b|v) > 0). Therefore, the expression is
maximal at b(v) and, assuming that H is differentiable, (v-b(v))-H'(b(v)) = H(b(v)) , or equivalently,

@) b!b) = b + HEYH'(D) .
Finally,
3) H®b) = [ Gb|v) dF(v) .

(Note that this is the only point in our analysis where the distribution F appears.)
Now, H determines b through (2), together they determine G through (1), and G redetermines H

through (3). This suggests an iterative calculation to numerically solve for the symmetric equilibrium
strategy. Results of the calculation are given in the next section,
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Numerical results

For purposes of illustration, we take the distribution F to be uniform on [0, 1], i.e., F(v}) = v. The
graphs in Figures 1 through 3 cover the cases o = 0.95, 0.50, and 0.05. The graphs serve the dual
roles of illustrating the nature of the equilibrium strategies in the three cases, and confirming the results
of the calculations at the two extremes, where equilibrium behavior is close to that known to hold at the
limits when « = 1 and « = 0.

(For those interested in computational details: H was initially taken to be uniform on [0,1]. In each
subsequent iteration, H was computed at 1000 equally-spaced points, and interpolated using cubic
splines; all intermediate functions were numerically computed from the splined function. For smaller
values of «, the values of H converged to four decimal places within six iterations. For « = 0.95, the
result of each even-numbered iteration was averaged with the previous iterate to increase numerical
stability.)

When « = 1 (i.e., when the players’ valuations are independent, and both distributed the same as the
random variable V), the unique equilibrium point arises when both players follow the strategy of bidding
b(v) = E[V|V < v]. When V is uniformly distributed, this simplifies to b(v) = v/2. In Figure 1,
where a = 0.95 and the players’ valuations are nearly independent, the symmetric equilibrium strategy
is quite similar to this; as « approaches 1, both b(v) and b(v) converge to b(v). Note that the
expected-payoff graph is rotated 90 degrees to more clearly show that, for any valuation v,
randomization over bids between b(v) and b(v) is indeed a best response to G.

Figure 2 shows an intermediate case.

When o = 0 (i.e., when the players’ valuations are identical), the unique equilibrium point arises when
both bidders bid their valuations, i.e., when b(v) = v. Figure 3 illustrates the case in which o = 0.05,
i.e., the valuations are very likely to be equal. The striking feature of equilibrium behavior in this case
is that, as o« approaches 0, the support of the joint distribution of bids and types is nor converging to
the diagonal, although the strategy G, reinterpreted in distributional form (Milgrom and Weber {1985])
is weakly converging to b(v). The support of G converges (in the Hausdorff metric) to the triangle
spanned by the lines b = v and b = v/2.

Prospects

Under what circumstances might we expect equilibria in non-partitioning strategies to arise? In our
example here, a player’s need is to keep a competitor who might know his type from being able to predict
perfectly his action. An alternative motivation would be to keep a competitor who can observe his action
from being able to infer perfectly his type. Such an inference can only be costly in a multi-stage game,
wherein the competitor has a subsequent move.

A number of multi-stage games have been found to have equilibria employing monotone strategies at each

stage. In most cases, those games have had the property that player types at one extreme wish to
accurately signal their existence in early stages. (For example, in bargaining games, types in an
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extremely "strong” position want that position to be known. In repeated Cournot duopoly games where
players have private knowledge of their production costs, types with extremely low costs wish to signal.)
In a companion paper, we will provide an example of a two-stage game in which, at equilibrium, a player
must employ a non-partitioning strategy in the first stage. The distinguishing feature of that example is
that, in the second stage, every one of the player’s types gains from the maintenance of residual
uncertainty in the competitor’s posterior beliefs, i.e., no type has a pure incentive to signal.
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