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Abstract

Kolmogorov has defined the complexity of a sequence of bits to be the
minimal size of (the description of) a Turing machine which can regenerate
the given seguence.

This paper contains two notes on possible applications of this
complexity notion to philosophy in general and the philosophy of science in
particuiar. The first presents simplicism--a theory prescribing that people
would tend to choose the simplest theory to explain observations. where
"simple” is defined by (a version of) Koimogorov's measure. The second
suggests a reinterpretation of a simple observation, saying that reality is
aimost surely too compiex to understand. terms such as "good" and "evil"

almost surely too complex to define, and so forth.



"The process of induction is the process
of assuming the simplest law that can

be made to harmonize with our experience.”
(Wittgenstein (1922. Proposition 6.363)!

1. Simplicism
1.1 Introduction

The basic question of how people choose theories to explain
observations has justifiably drawn much attention and received numerous and
various possible answers. In particular, it will certainly not be a
shockingly new idea to suggest that people opt for the simplest possibie
theory, i.e.. the simplest theory out of those that are compatible with
accumulated evidence. (As an explicitly descriptive theory this idea dates
back to Wittgenstein (1922) at the latest, while with a slightly more
normative flavor it is often attributed to William of Occam--see, e.g..
Russel (1945, pp. 468-473), and Sober (1975) for additional references.)

The main message of this note is that some variations on Kolmogorov's
definition of complexity may be used to clarify the notion of a "simplest
theory" by defining it in terms of somewhat more primitive notions. {For
the complexity measure, see Kolmogorov (1963, 1965), Martin-Lof (1966). and
Loveland (1969)).

In very bold strokes, simplicism is a descriptive philosophy of science

[

theory, which says that, for the appropriate choice of a "language.’ people
in general {and scientists in particular) tend to prefer a theory which has
the shortest description in this language. Simplicism presupposes a model
in which a "scientific theory" is represented by a Turing machine (or a
computer program) rather than, say. by a set of axioms. Such a model 1is

presented below, and it may be viewed as a(nother) departure from the

Received View (Carnap (1923); see also Suppe (1974) for a survey and



references) .

An example may be useful to clarify the idea and the problems we will
encounter with a formal definition. Suppose the phenomenon one tries to
explain is the rise of the sun. Data is gathered. say, over 10,000 days,
and each day provides one observation--1 if the sun rose and 0 if it did
not. Suppose the 10,000-bit sequence which we observed consists of 10,000
1's. Further assume that the language we work with is the computer language
PASCAL. A scientist is called to develop a theory--i.e.. a computer
program--that. when run, will produce an infinite sequence of bits. the
first 10.000 of which are 1's. Examples of such are:

a. While (0 = 0) do

write (1); {the sun rises every morning}.

b. while (0 = 0) do
begin
for i = 1..10,000 write (1);
for i = 1..10.000 write (0):

end: {the sun rises for 10,000 mornings. then stops for 10,000

mornings, and so forthj}.

c. While (0 = 0) do
begin
for i = 1..20,000 write {1}
for i = 1..30,000 write (0): {the sun rises for 20,000

mornings, then does not rise
for 30,000 mornings. and so
forth}

end:



d. Write (1):

Write (1);

Write (1): {10.000 times}

P: {P is any program that generates an infinite sequence of
bits. "The sun rises on the first day:. the sun rises on the
second day;...:the sun rises on the 10,000th day: P occurs}

end.

Obviously. program (theory) (a) is the shortest and. indeed. seems the
intuitive choice in this example. The definition of program "length" should
probably be sophisticated enough not to count the number of letters in
"while,” "do," "begin,” and so forth, but to be able to distinguish between
programs (b) and (c¢), probably ranking (b) as "shorter" since it involves
smalier constants. with the same constant appearing twice so that it may be
further shortened by storing it in memory just once. At any rate, it seems
guite obvious that the point-by-point theory (d) is intuitively the most
cumbersome and technically the longest.

Notice that should (a) be agreed upon as the "natural" choice in this
example, one may use simplicism to explain the "Goodman paradox"” {Goodman
{1965)). i.e., why people tend to classify emeralds as "green" or "blue"
rather than "grue" ("green until the year 2000 and blue thereafter™) or
"pleen” (the converse)}. That is, assuming a language in which "green"” and
"blue" are primitives, "always green" and "always blue" are describable by

shorter programs than "grue" and "bleen." (See also Sober (1975, pp. 19-23)



for a simplicity-based resolution of Goodman's paradox in the context of
logic systems.) Of course, this conclusion would be reversed were “grue”
and "bleen” primitives in the language, by which "green” and "blue" had to
be defined.

More generally, the assumptions that (in some way) the future is going
to resemble the past and that the phenomenon observed is independent of the

observation process—-are also derivable from simplicism.

1.2 Model

Simplicism relies on the assumption that all that can ever be observed
is faithfully described by a (typically infinite) countable sequence of
bits. Although this may seem restrictive, one should recall that all the
finite questions one can formulate in English are countable, and so are all
the possible finite answers. With the usual encoding techniques. then, all
choices of answers to all questions may be thought of as mapped to the
infinite bit sequences—-alternatively, into the real interval [0,1].

The set of states of the world is

Q= {ww: IN-> {0,1}}.

Each w € Q should be interpreted as providing answers to all questions.
Obviously. when all questions and all possible answers are actually encoded
into @, not every w € 1 will have a meaningful and consistent
interpretation. Hence one may wish to start out the formal model with some
subset of Q rather than Q itself: but this point is not crucial to the

ensuing discussion.
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It will prove convenient to identify wi Wwith w(i) for w e € and i € IN.

Truth is a particular state of the world. which will henceforth be
denoted x = (xl,xz,...) (where X, € {0.1} for i € ). The set of
observations at a given point of time is represented by a finite 0 € IN. to
be interpreted as the set of indices i € IN such that X, was observed.

In order to define a language. one may use a universal Turing machine.
TU‘ and add to it a Turing machine TL to implement statements in the desired

language., L. Thus, PASCAL may be modeled as (TU,T ) where TU is a universal

P

Turing machine and T_ is a PASCAL compiler. translating PASCAL programs to

P

the appropriate input for T In general, we will assume that for every

U
Language L, TL halts for every input.

For simplicity of notation. we shall not distinguish between a finite
sequence of bits and the corresponding nonnegative integer, i.e.. the
integer whose binary expansion is the given sequence.

A Turing machine T which halts for every input with a non-empty output
sequence thus induces a function T. IN - IN. When no confusion is likely to
arise {i.e.. always), "T" will also stand for the function T.

Given a language L, a sequence of bits P in L is said to be a theory in

the language L if for every i € IN, TU{TL(P),i) € {0,1}. That is, P should

be a program in L such that for every input i the universal Turing machine
TU halts for the input TL(P)——a description of a Turing machine--and the
given i, and computes a 1-bit output.

If we 2 is such that TU(TL(P).i) = W, for all i € IN, P will be said

to compute ® in L, and w is computable by P in L. A state w € Q is

computable in L if it is computable by P for some P. Two programs, P and P’

in L. are said to be L-equivalent if they compute the same w € Q in L.
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The length of the theorv P in L is thus well-defined as the number of
bits in P.

Thus. simplicism is defined for a given language L. a truth x. and a
set of observations Q: it prescribes that one of the shortest P's. which
satisfy TU(TL(P).i) = X for i € 0. will be chosen as a theory to explain
the observations O.

More formally, one may represent the choice of a scientific theory by a

choice function c, whose arguments are the language (TU.TL) and a non-empty
set of possible theories in L. ? € IN. Thus, c(TU,TL,@) c P is the set of
preferred theories in ?. For a truth x and a set of observations 0 & IN,

let @(

x.0.L) be the set of theories P in L such that TU(TL(P),l) = x. for

i
i € 0. A choice function ¢ is simplicistic if for every (x.O.(TU.TL)).

T . R . L
c U'TL'@(X.O.L)) is exactly the set of shortest programs in L explaining O.

Obviously, c(TU.TL.@( is finite for all (x.O.(TU.TL)) and non-empty

x.O,L))
if (TU.TL) is not tooc restrictive.

Worthy of note is the fact that the identification of a "theory"” with a
program does not prevent the former from redefining the language. Indeed. a
procedure in a computer program may be viewed as extending the language:
the procedure name is a new term. while its "body" is this term's
definition. Thus, if the introduction of a new term (such as "gravitation.”
"subconscience." and so forth) makes the rest of the theory extremely
simple, there would be a correspondingly short program which includes this
term as a procedure, and invokes this procedure in several different
statements (while recursion is not preciuded).

It is important, however. that the length of the new definitions is

part of the program's length, and that the "base" language is a given one,
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[,. That is. a theory will not be considered "simple” in (with respect to) L

if it is simple in L', but L' cannot be easily translated to L.

1.3 The Role of Language

The previous discussion points out the crucial roie that the
("programming language”) L plays in the choice of the "simplest” theorv.
Indeed, it may be the case that in one language, say, PASCAL, the orbits of
celestial objects turn out to be simpler should the sun. rather than earth.
he assumed to define the origin of the solar system, while in another
language the converse is true. Moreover, any theory P one may develop can.
according to this model. be incorporated into any other language as a
"primitive” statement. Hence, any theory is (one of) the simplest in an
appropriately chosen language. (Viewed thus, simplicism solves the
arbitrariness of the notion of "simpliicity” by shifting it one level up (or
down), defining simplicity via language, which is. in turn, arbitrarily

}T . to be

chosen.) Furthermore, given a finite sequence of theories {Pt't—l

thought of as the theories chosen for a correspeonding sequence of sets of

observations {Ot}z_

'

(where 0t c Ot+ }), there is a language L in which the

1

equivalents of {P

1
Z= are exactly the shortest T programs (in ascending

t 1

order).

Since there seems to be no theoretically compelling reason to prefer
one language to another, simplicism seems a vacuous theory: whatever the
choice people make, it may be justified as choosing the simplest theory in
the "right" language. However, it is the author's belief that people tend
to agree cn the primitives of a "natural” language to a high enough degree

in order to make simplicism nontrivial. It may well be the case that the
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apparently (relatively) common notion of language (and of simplicity itself)
heavily depends on a specific culture. Yet, inasmuch as people in a certain
culture share the basic language, simplicism predicts they will share their
intuition regarding the theory they prefer. (For some qualifications, see
subsections 1.4 and 1.5 below.)

Notice that another cruciai role of language (which is hidden in the
model presented above) is the description of the actual and possible
observations. For instance, the very order in which answers to questions
are encoded into a sequence of bits may affect the complexity of various
theories. It seems. though, that the same argument, namely, the fortuitous
universality of language. saves simplicism from being tautologically true.
Some comments are still needed. however, to make it at least occasionally
true. {(See subsection 1.8 below for further discussion of representation

and language.)

1.4 Simplicity and Generality

It has been so far assumed that any candidate theory should be defined
for the whole domain IN. A nice assumption though this is, it is hardly
realistic. Indeed. it seems that a much more sensible model would allow
each theory P to have a domain DP C IN such that, for i € DP. P computes a
“0" or "1" output and, for i € DP' P's computation halts with a "no answer”
output. (Note that it is required that the theory P will "know" where it is
applicable.) DP will hopefully have a nonempty intersection with the set of
observations 0 and with its complement, 0C = IN\O. {(When DP N O # @ there
are at least some predictions of P which may be compared with evidence,

i.e., P is falsifiable with respect to 0. When DP n 0C # @ there are at
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least some unresolved questions P has some answer to offer.)

The generality of a theory (program) P may be simply defined as the
domain DP‘ and the relation "more general” can correspondingly be identified
with set inclusion.

With this framework it seems quite obvious that generality and
simplicity are two criteria by which theories may be ranked. and that the
two may sometimes agree and sometimes not. For instance, the theory "if A
then C" is both simpler and more general than "if A and B. then C": hence,
both maximization of generality and simplicism may be evoked to explain why
we tend to prefer as few axioms as possible for the explanation of given
observations.

Yet for this reason precisely, both criteria prod us to choose one of
them rather than let them coexist. Fortunately. the two theories are not
observationally equivalent, and it is not difficult to think of examples in
which the more general theory is more complex.

Thus. simplicism predicts that "if A then C" will be preferred to "if A
or B, then C." assuming the two fit the evidence just as well (see also
subsection 1.6 below}.

This view seems to be in complete disagreement with Popper (1934, Ch.
VII). who equates simplicity with degree of falsifiability. In our model,
the "degree of falsifiability" is just a theory's generality, i.e., the
domain DP' As the example above shows, the "simpler” theory ("If A then C")
is less general, hence less falsifiable, than the more complex one ("If A or
B then C"). Furthermore. this example attempts to convince the reader that,
at least in some cases., when the two criteria are not in agreement, it is

simplicity which tends to be intuitively preferred.
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While Popper strives for "logical or epistemological advantages” of
simplicity, such as provided by a higher degree of falsifiability, this
paper does not attempt to provide any normative arguments for simplicity or
simplicism. Nor does it try to explain why simplicity-seeking behavior is
efficient or evolutionary optimal. Its only goal is to present simplicism
as a descriptive theory, assuming length-of-program minimization as an
axiom.

It should be noted, however, that even if generality is preferred to
simplicity, its maximization can hardly replace complexity minimization in
our model: whenever two theories, P and P', have the same domain

(DP = D..), they are equally general, hence equally falsifiable. Yet not

p'
all such theories, which fit the observations equally well, seem to be
preferred to the same extent. Considering the examples of subsection 1.1
again, all theories (a)-(d) are equally falsifiable. Admitting that they
are not equally intuitive, nor equally "simple"” (according to our definition
or any other), would mean that simplicity cannot be equated with

falsifiability and, moreover, that the former may help classify theories

where the latter fails to do so.

1.5 Simplicity Versus Explanation

Another highly idealized assumption made in the model presented above
is that the contestant theories have to perfectly fit the gathered evidence.
However. if the smallest discrepancy sufficed to rule out a theory, very few
simple theories would remain.

Thus, a more accurate description would include a trade-off between a

theory's simplicity and explanatory power. A nice (and very simple) example
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is linear regression, in which one variable is assumed to be explained by a
]inear combination of other variables. The quality of explanation is
traditionally measured by "R2“ (the ratio of explained to total "variance”};
the complexity of the theory may simply be measured by the number of
explanatory variables, which will also correspend to the length of the
theory in any reasonable language. what is sometimes called “"the adjusted
Rz” may be viewed as an attempt to summarize this trade-off in a single
number.

In general, there would be many different ways to measure "explanatory
power"; the important thing to note is that for simplicism to make sense one
has to admit that the trade-off exists, and that simplicity may well be
sacrificed for higher quality of explanation.

Yet, probability and statistics provide an insightful example in which
the quality of explanation is sacrificed for the sake of simplicity:
suppose it rained every Monday, but on no other day of the week. A simple
deterministic theory could fit this evidence perfectly well. Unfortunately,
this is not the case. Moreover, no obvious deterministic pattern exists in
the rainy days. Hence, we resort to probabilistic theories, such as “"on a
summer day it rains with probability 35 percent." Notice that such a theory
is much simpler than deterministic ones which could fit the data perfectly,
i.e., theories that would look very much like example (d) in subsection 1.1
above. However, it does not provide nearly as good an explanation as these
deterministic theories--it actually does not purport to predict the weather

on a single day, 1t only tries to "fit the data" in a new, weaker, sense of

asymptotic frequencies.
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1.6 Relative Complexity

In view of this discussion and of examples such as (d) in subsection
1.1, one is tempted to suggest an alternative complexity criterion. Rather
than using an absolute measure, a relative one suggests itself: the
complexity of a theory P is measured in relation to the complexity (i.e.,
"length”) of the observations it purports to predict (that 1is, DP no .
namely. the size of the intersection of P's domain with the set of available
observations., without reference to the accuracy of the prediction}. Such a
measure would exclude point-by-point theories (such as (d) abovel and would
admit that a certain trade-off between simplicity and generality may be
intuitively appealing.

Obviously, in the idealized model of subsection 1.2, where al}l theories
are as general as could be, minimization of relative complexity and of
absolute complexity boil down to the same thing.

Notice that relative complexity, like the absolute one, may be traded

off for explanatory power as in subsection 1.5.

1.7 1Is Simplicism a Scientific Theory?

The model of subsection 1.2 provided a framework to analyze scientific
activities, but also suggested a theory regarding the development of
theories. 1[It is only natural to ask whether simplicism itself may be
described by this model, and if so, does simplicism prescribe that we choose
simplicism (as the simplest theory)?

Since simplicism does not purport to expiain the choice of language.
one must assume the latter given. Thus, an instance of the problem

simplicism attempts to solve is characterized by a language, (TU'TL)' and a
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set of observations, {xi} The fact that for such L and {xi} a

1€0’ i€0
certain theory P was chosen by scientists is a single observation simplicism
should try to explain.

Therefore, the questions are: (i} Is simplicism a scientific theory.
i e.. can it be formulated by a program?; (ii) If so, does it fit given
observations reasonably well?: (iii) If this is the case. is it the simplest
theory (i.e. the shortest program) doing so? (The choice of language here
is, again, arbitrary.)

Unfortunately, the answer to the first question is negative:
simplicism is not a scientific theory according to our definition. For it
to be one, there should be a Turing machine T such that, given a set of
observations and a language. computes a minimal program (in the given
language) which fits the observations. The difficulty with actual
enumeration and trial of all programs in the given language (in ascending

complexity order) is, of course., that they may not halt.

More precisely, let us define the minimal complexity problem: Given a

description of a language (TU,TL), a set of observations {xi}ieo and a

program P in L, satisfying TU(TL(P),i) = Xy for i € 0, is there a shorter

program P' {in L) such that TU(TL(P‘),i) = Xy for i € 0?

Proposition 1: The minimal complexity problem is undecidable.1 (See Pager

(1969) for related results.)

Thus. the other two questions (namely., "Does simplicism explain the

observed data?" and "Is simplicism the simplest theory for the philosophy of

1All proofs are relegated to the Appendix.
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science?") remain what. in view of subsection 1.3, they are doomed to be--a

matter of taste.

1.8 Representation and Language

it was pointed out in subsection 1.3 above that language pliays an
important role not only in the computer language in which theories are given
(which is explicit in the model). but also in the language of the questions
and possible answers (which is implicit in the discussion so far). More
specifically. one may. for example., interchange bits 21 and (2i -~ 1) for all
i > 1 in every state of the world., resulting in a different representation
with respect to which different theories may be the "simplest."”

Yet it is obvious that in this example no loss of generality is
involved in assuming a given representation: the freedom in the choice of
the langauge L may compensate for the specificity of the representation. In
particular, for every language L there is a language L', such that for every
theory P in L, P's computation in the transformed representation is
equivalent to its computation as a program in L' in the originai

representation: L' has to translate P (for T,) in such a way that, given

U
the question 2i (alternatively, (2i - 1)), it simulates P on (2i - 1)
(respectively, 2i).

To be both more general and more precise one should model the process

of representation of questions and answers. Starting with some abstract set

QO of states of the world. a representation is a 1-1 function R: QO - Q.

For simplicity, let us consider representations which are also onto. Given

two such representations, R, and R2' (R, © R;l) is a bijection on Q.

1 2

Let us call a bijection B: @ —» Q computable if there is a 2-input-tape
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Turing matching. Ty, such that for every w € Qand i € IN. if T accepts the

{infinite} string (wl.w .w.....) on one tape and i on the other--it computes

273

B{w)(i) in finite time. That is, for every w € Q. T (w,i} = Blw){(i) for all

B
i e IN

Proposition 2: If B: Q@ - Q is a computable bijection, so is B_l.

Proposition 3: If Bl,BZ: Q- O are computable bijections, so is B1 0 82.

Notice that computable bijections thus form a group (with respect to

function composition}. Furthermore. defining two representations. Rl and

R2' to be computationally equivalent if (R2 o] Rll) is computable, one

concludes that computational equivalence is indeed an equivalence relation.
To verify that the freedom in the choice of language L may compensate
for the arbitrariness of the representation within an equivalence class of

this relation, we note that:

Proposition 4: For every language (TU.TL) and every computable bijection
B: 2 - Q there is a language (TU.TL,) such that for every theory P, if P
computes w in L, P also computes B(w) in L'.

This prpposition shows that the model of subsection 1.2 above is not as
arbitrary as it may first seem: as long as two representations are
computationally equivalent--that is, as long as there is an algorithmic way
to translate one into the other (hence. also vice versa)--the same programs
(theories) will have the same predictions (up to this translation) provided

they are interpreted in the appropriate language.
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1.9 Learning as a Normative Argument

Although simplicism is presented in this paper as a purely descriptive
theory. it is natural to ask whether 1t can alsc be justified on normative
grounds. One possible such argument for simplicism (to which this sub-
section is devoted) is that following simplicism may lead to knowledge of
the true state of the world.

Consider a dynamic process of evidence gathering. Formaily, let

{Ot}t>1 be an increasing sequence of sets of observations converging to IN

{denoted Ot T IN), i.e.. Ot c Ot-l and UtZI 0t = IN {where 'Ot < w for all

t > 1). For a given language (TU,TL) and a truth x € €. recall that

P denotes the set of theories in L which predict x, for i € O_.
(x.Ot_L) i t

Obviously. there is no hope to "learn” the truth x unless it is
computable in L. However, it is easy to see that if this happens to be the
case, every simplicistic choice function ¢ will "learn” x. A closer
inspection, though, will easily convince the reader that a much wider class
of choice functions share the same property.

Let a choice fupction c: | TL.W) - P be exhaustive if for every

FU'
language L. state of the world w € © and sequence of sets of observations

Ot 1 IN. every program P in L satisfies at least one of the two:

(i} some P' which is L-equivalent to P is chosen at some point,.

i.e., P' € C(TU,TL.W ) for some t > 1:

(w.Ot.L)

{(ii) P is contradicted by evidence, that is, TU(TL(P),i) * wi for

some i € Ot and socme ¢ 2 1.

Obviously, a choice function is exhaustive if and only if



ry c{T,..T. %P Y] noin P

< i
t>1 v P, 21 (w,Ot.L)] * 0

for every computable w € @ and every {Ot}t>1 with Ot tOIN.

Vext define a choice function ¢ to be independent of irrelevant

alternatives (IIA) if for every w €  and language L, O, € O

1 o implies

~{T I — 8 'o' ] > yver > ’ .",
elT,. T, P(w.Oz,L)) C(IU.TL P(w,OI.L)) n P(w.OZ.L) whenever the latter is
nonempty.

Proposition 5: A simplicistic choice function. Cq- is exhaustive and [TA.

Proposition 6: Let c be some exhaustive and I[IA choice function. and let x

by computable in a language L. Let Ot + IN. Then there exists T < o such

that for t 2 T. ¢ (TU.TL.@ ) is constant and consists only of

(X,Ot,L)

programs P which compute x in L.

Hence simplicistic choice functions are bound to learn the truth
whenever the latter is learnable. but they are by no means the unique ones
doing so. and these results can hardly be considered a normative
justification of simplicism.

However. one may wonder whether the arbitrariness of language can be

invoked to show that simplicism is, indeed. the unique exhaustive and IIA

=

choice function. That is: Given such a cheoice function c and a language
is there a language L' with respect to which ¢ is the simplicistic one?
Namely, does c happen to choose programs in L which are, in fact, the
shortest ones when considered as programs in L'?

More formally, let a choice function c be pseudo-simplicistic if for

every L there exists L' such that c(TU,TL,@ P

o= e (T T (x,0.L'))

(x,0,L) L'’



18

tfor everv x € Q and 0 € IN. where ¢, denotes some simplicistic choice

function. (Note that all simplicistic choice functions coincide on
arguments of the form given here.) With this notation we note that:
Proposition 7: There are exhaustive and [TA choice functions which are not

pseudo-simplicistic.

We therefore conclude that "learning” the computable truth x cannot
single out simplicism as a desirable rule. In Section 2 below we will
contend that truth is very unlikely to be computable to begin with (based on
cardinality arguments), an argument that will further undermine the learning

property as a normative argument for simplicism.

1.10 Final Remarks

a. The extent to which simplicism makes sense in specific examples
may depend on the scope of observations considered. Considering the weather
of last week, for instance, could hardly make a probabilistic model
"simple." as it requires a non-trivial apparatus. However, people may still
resort to this model because. when a longer period of time is taken into
account, it is the "simplest” one with some sort of explanatory power.

One may try to solve the domain-specification problem by assuming that
all "meaningful" (finite) questions in English are enumerated and encoded,
where theories of the various fields of science are all embedded in one
model with appropriate domains. DP' Despite some obvious problems (such as

the meaning of "meaningful"). this solution may be theoretically valid.

From a practical viewpoint., however, it is of little help: since scientific
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theories are not given as programs with a specific domain, DP foutside which
a4 "no answer  outpuft is produced). their formulation as such entails the
specification of their domain.
Thus. we are left with the observation that simplicism. verbaliy
described. should be qualified by "for the appropriate domain and

representation of observations” as well as by "for the appropriate choice of

ianguage.
b. The model presented above required that a scientific theory have a
gspecific answer {"0", "1". or "no answer”) for every question (i € IN).

Thus. a rule such as "the atoms of every element have a fixed number of
protons in their nucleus” will not qualify as a theory without the
specification of the periodical table: nor will "y is a function of x" (for
some observable variables x and y) without the specification of this
function. This definition seems to avoid an artificial distinction between
the "theory” and its "parameters,” and does not allow for the complexity to

be hidden in the latter.

c. [t is worthy of note that simplicism may apply to less traditional
fields of the philosophy of science. For instance, an every-day term such
as "to understand a movie” may be modeled as saying "to come up with a
simple theory that would explain the observation ‘movie'.” That is. 120
minutes of pictures and sounds may be considered as the data to be
explained, and the shorter the explanation provided, the better one's
understanding. Of course, the simplicity-explanation trade-off and relative

simplicity would apply here as well.



d. issume that a black and white movie turns into color in its 39th
minute and then switches back to black and white. A short program that
explains (i.e.. regenerates) every other aspect reasonably weli couid be

added a one-line command:

If minute = 39 then color

else black_and_white:

and thus explain all there is to explain with low complexity. Yet. this

condition seems inferior to. say:

[f hero_understands_meaning_of_life = true
then color

else black_and_white;

That is to say, we may prefer gualitative descriptions to quantitative
ones. This may be captured by simplicism since the binary code of "39" is
longer than that of "true." Furthermore. the use of many arbitrary
constants will make a program longer while few constants (such as 0. 1, m,
and e) can be computed by procedures which appear once in the program,
though are possibly repeatedly invoked in the code.

Finally, note that an appropriate choice of language may provide an
intuitive balance between qualitative but long explanations and quantitative
but "short" ones. For instance, it may be more appropriate to use unary

(rather than binary) numerical representation to make a large (arbitrary)
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constant such as 39 longer than "understanding the meaning of life.”

2. Kolmogorov's Impossibility Theorem

We first present a simple observation. which is trivial given the
framework and will be nicknamed "Kolmogorov's Impossibilty theorem.” In an
explicit (and stronger) form it appears in Martin-Lof {(1968). Next we
suggest some interpretations, and conclude with a brief discussion of the

extent to which they make sense.

2.1 Observation

Let A € [0.,1] be the Cantor set, i.e.. A = {E? ; 2;(_34i x; € {0,1}}.
= i

Let (A,B.u) be some probability space where B is a g-algebra containing {Xx}
for all x € A. and ¢ is a nonatomic o-additive measure. (In particular,

this implies u({x}) = 0 for all x € A.) Let AO C A denote the set of finite

complexity points in A, i.e., X = Z?:l 2){13-l € AO it and only if there is a
Turing machine TK such that for every i € IN, when Tx gets i as an input it
halts and outputs Xy {Note that {xi}i is uniquely defined by x € A& and

vice versa.) Then #(AO) = 0. (In this formulation, a proof is not called

for since AO is countable.)

2.2 Suggested Interpretation

In the framework of subsection 1.2 above, & may be identified with the
set of all states of the world Q. where AO corresponds to the set of
computable & in a certain language L. Not knowing what truth really is. we
(as modelers, scientists, and so forth) may have beliefs given by u. Should

4 be nonatomic. with probability I truth will never be discovered. Hence.
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the process suggested by simplicism--i.e.. finding the simplest theory which
matches opservations, and recomputing it once contradictory evidence was
detected  -is doomed to continue forever.

Let us consider a slightly different interpretation. Finding a set of
moral iaws a person (or a society) would like to abide by may be viewed as
an attempt to formalize one's intuition. For various reasons, one may have
a strong Intuition that murder is bad. $So one may decide to have "do noc
kill” in one's codex. Yet this is only an approximation to intuition, and
it is not unlikely that one may find oneself in a situation of conflict
between the intuition and its formal approximation and, say, decide to
qualify this rule by allowing self-defense killing. But, then again. this
gualified rule may still be too crude and contradict the moral intuition in
another instance. Will the process stop? Are we likely to formalize our
intuition precisely?

Obviously, the problem may be viewed as a scientific one: all moral
decision situations that may be described in finitely long English
statements are countable, and so are the describable actions. Thus, one's
intuition may be modeled as "truth," i.e., a point x € A. The set of
decision problems that have occurred to a person by a given point of time is
equivalent to the set of observations. Indeed. a decision problem one has
thought about is one cbservation on one's moral intuition. The set of rules
we want to formulate is an algorithm that, given a specific moral decision
problem, should halt and compute a "moral” cheoice. The question of
existence of such an algorithm that will always fit the intuition., i.e.. of
existence of a true scientific theory. reduces to the complexity of "truth”

--that is. of one's moral intuition.
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At this point the reader is asked to suppose that a nonatomlic measure
on (A,E) is a reasonable assumption. Kolmogorov's impossibility theorem may
then be invoked to say that “truth.” i.e.. one’'s true moral intuition. 1is
infinitely complex with probability 1. Hence. we are probably doomed to
keep facing moral diiemmas in which our formal laws seem to fail. thereforve,
psven it our codex were algorithmic. there wouid be room for human judgment
in its implementation.

The morai codex problem may be considered as a problem of definition-

"

in this case. defining "moral” or. alternatively. “immoral . However. thne
same arguments would apply (to a larger or smaller extent) to other cases of
definitions. I[n general. the process of a definition of a concept (the
pragmatic motivation for which will not be discussed here) can be modeled as
a formaiization of given intuition. For instance. the definition of a "work
of art” or (worse still) "good art” starts with intuition, which again may
be modeled as truth. some X € A. which specifies for each (finitely
describable) object whether it is art work and /or whether it is "good art.”
Finding the definition means speliling out an algorithm that can compute this
intuition. and this is done based on finitely many "observations.” i.e..

cases which were already encountered and studied. Hence. if u is nonatomic,

a perfect definition exists with probability zero.

2.3 Discussion

How realistic are the assumptions made in the interpretations suggested
above? To what extent do they fit our intuition?

Some readers may certainly not like the focus on those things one may

describe in finitely many words. [t should be mentioned. however, that the
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crucial point is that the algorithm--the codex. the definition of "art.” and
so forth -is "initely describable. That is, if the set of possible dilemmas
is uncountabie. the likelihood of a finitely complex intuition certainiv
does not increase.

Followers of de Finetti will probably object to the assumption that u
is g-additive (see de Finetti {1949, 1930). Savage (1954) and Dubins and
Savage (1965)). Without deiving into this discussion we will only note that
g-additivity of a probability measure is by far more commonly assumed than
not.

The weakest point in the last two interpretations suggested above seems
to be the nonatomicity of x. While this assumption makes sense in the
context of an objective "truth” {chosen by God or Nature), it is certainly
arguable when applied to one's intuition (regarding "good” and "evi{l."” "art”
and "junk.” and so forth). One may follow Turinpg (1956) and contend that
the human mind is precisely the machine that implements the required
(finite) algorithm. Hence, u is a priori concentrated on finite complexity
intuitions.

The writer of these lines finds this argument quite convincing from a
theoretical viewpoint. Yet, for slightly more practical situations it seems
more precise to model human intuition as if it could be of infinite
complexity. Should one try to draw conclusions from this analysis regarding
the actual likelihood of finding a definition that captures intuition
perfectly well, it would be misleading to use the Turing argument. For

practical purposes it seems that the gap between human intuition and

feasible definitions makes a model, in which intuition may be infinitely

complex, a better qualitative description of reality.



This discussion seems to be a perfect point to conclude this paper.

The two notes presented here give a somewhat naive. certainiy
oversimpiified. mathematical models of human thinking activities.

As with any model in any field, they should not be absolutely faithnfut
descripltions of reality. nor should they be taken too seriously in general.
Their main gnal is to provide an additional point of view on and hopefully
some insignt into the phenomenon under consideration. and it is the author's
hope that even if this goal was not achieved, this paper may be of help in

clarifying some concepts and opinions.
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Appendix: Proofs of Propositions

Proposition 1: By reduction of the halting problem: let there be given a

{description of a) Turing machine M and input j for M. Define the set of
observations © to be {1} and let the truth observed be Xl = 1. Next define
a language L as follows: 1if the input string P is (M.j)., L writes for TU
the commands: “Simulate the run of M on j and then (regardless of M's
putput and P's input) write 1.” Otherwise, if the input string is (the
concatenation of) (M,j,M,j.s) for some string s. L writes the string s f(as a
command for TU)' Finally, if the input string is none of the above. L
outputs (for TU) the command "write 0." Obviously, P = (M,j) is the
shortest program in L[ (which computes Xy = 1) if and only if M halts

on j. /7

Proposition 2: Let B: Q —» Q be computable, and let TB be a Turing machine

which computes it., i.e.. TB(w,i) = B{w)(i) for all w €  and all i € IN. We

first note the following:

iemma: For every i € IN there is an n, € IN such that for every w € Q, TB
does not consult w(j) for j > ny in the computation TB(w,i). Furthermore,
given (the description of}) T

B and 1 € IN., such an integer n, can be computed

by a Turing machine in finite time.

Proof: The existence of such an integer n, is an application of Konig's
lemma and has appeared in an almost identical framework in Gilboa and

Schmeidler (1989, Proposition 3.1). For completeness' sake, we provide a
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sketch of the proof: Jlet i € IN be given. Consider the (infinite) binary
tree in which every edge determines the value of w(j) for some j € IN, and
every node corresponds to a finite sequence of bits w(l),. ... w(j) for some

j € IN. Obviously. a state of the world w corresponds to an (infinite) path
in this tree.

Next consider the computation of TB given i and all possible states w.
For everv . TB is known to halt. Hence, along every path in the tree, TB's
computation may reach only finitely many nodes. Assume. contrary to the
claim, that a uniform bound n, does not exist, and consider the root of the
tree. 1t must be the case that at least one of its two subtrees does not
have a uniform bound on the length paths entering it. Continuing with the
root of this subtree. one generates an infinite path. But then TB will not
halt for the state w, defined by the path, and the input i, which is a
contradiction. Hence. such integers n, do exist.

Next we have to show that such an integer. say, the minimal one. can be
computed by a Turing machine. Yet this is straightforward: for every n 2 1
one may enumerate all the 2l possible prefixes of w, and simulate the run of
TB on (w.i) for each prefix. Should one of these computations try lo read
w{j) for j > n. n should be increased to {n + 1) and the process starts
again. The first n for which all 2" prefixes do not induce reading w(j) for
j » n is the minimal n.. By the existence proof, this algorithm is bound to

halt. S

We now turn to the proof of Proposition 2. We will describe a

Turing machine, T _1 such that, given w' € Q and j € IN. T _l{w'.j) = w(j)

B B
for w = B " (w').
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T ~, wiil perform the following algorithm:
B
1. set k to L.
2. Compute the minimal n. provided by the lemma. Compute ﬂk = 0y for
= and n. = e n .
k 1 and n max{nk.nk_l} for k » 1.
. i
3. Compute all 2 sequences of length nk. For each one of them.
simulate TB on this sequence (as a prefix of some w) and k. Let
Ak be the set of prefixes for which the computation ended with
w' (k.
4. A = -
Let Ak Ak for Kk 1 and
n,_-n
- - k k-1
Ak = Ak n (Ak_1 o {0.1} )
where o stands for concatenation. (That is, Ak is the set of
all ﬁk—long prefixes in Ak which are also continuations of
ixes in A ).
prefixes in k—l)
3. If ﬁk > j and all prefixes in Ak have the same j-th bit value.

output this value and halt. Otherwise. set k to (k + 1) and go to

(2}.

in words. the algorithm tries to compute the (known) value @' (k) based
on (the unknown) w. Since for every k oniy finitely many (nk) bits of w are
used to compute B{w)(k), all possible prefixes can be tried. where Ak
contains only those which fit w'(r) 1 £ r £ k.

It is obvious (for cardinality reasons) that ﬁk - o as k - . It is

also clear that should the algorithm halt. its computation is correct, i.e..

T (w'.j)y = w(j) = B-l(w')(j). All that we have to prove, therefore, is
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that for large enough k. all prefixes in Ak will have an identical j-th bit
value.

Assume this is not the case. Then for every k (such that n, 2 jt oA

k — - K
contains at least one prefix (xl ..... X ) with x. = 1 and at least one
n J
preflix (yl.,.,,y y with vy, = 0. Since every prefix in Ak is the
i - J

n

continuation of some prefix in Ak all these prefixes may be identified

‘1‘
o)

with paths in the binary tree used in the lemma. Considering the
subtrees beginning at a node specifying wj = 1 {i.e., a node in depth j
corresponding to the value of 1), at least one of them has to have
unboundedly long paths, and applying Konig's lemma again, at least one of

them has Lo contain an infinite path. Let @ be the state of the world

defined by this path. Then TB(w.k) = @' (k) for all k. which means that

1

Biw) = w
However. the same argument for the subtrees with wj = 0 yields another
state @ such that B(w) = w' as well, a contradiction. Hence, at some poeint

Sk will contain prefixes with identical j-th bit. and the algorithm

halts. i/
Proposition 3: Let B1 and B2 be computable by TB and TB , respectively.
1 2
The machine TB oB that would compute 31082 will operate as follows: given
1772
(w,1). TBloB2 computes BI(BZ(U))(l) by simulating TB1 on the input
(Bsz).i). Whenever TB tries to read a bit from its first input string,
1
say. Bg(w)(j), it invokes TB to compute it with the input (w.j).
2
Obviously, T halts since both T and T always halt. //
BloB2 B1 82

Proposition 4: Given a language (TU.TL) and a bijection B: Q = Q computable
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by TB . define a language L' by (TU’TL') where TL‘ operates as follows:
1

given a program P, write (as input for TU) the description of a machine M

which, given input i, tries to simulate TB on the input (w.1). Whenever TB
tries to read some bit vaiue w(]j), M simulates TU(TL(P),j), Since P
computes w in L, TU(TL(P).j) = w(j) and P thus computes B{w) in L'
Proposition 5: Obviously cS is 1IA. To show exhaustiveness. note that only

computabie w € Q need be considered. Let w be such. and consider the
shortest P computing w in L. Every P' which is shorter than P has

T.(T. (P'),i) # w, for some i: hence, P' € P for some t > 1. Since
C" L 1 (w,Ot,L)

there are finitely many such (P')'s. P will eventually be chosen.

Proposition 6: lLet x be computable in L and let @x L {P'P computes x in
. . > v G G
L}. By exhaustiveness. there is a t 2 1 such that C(FU'TL'y(x.Ot.L)) N yx,L
# 0. Let to be the minimal such t. Since c¢ is IIA, for soeme T 2 1,
(T = Y 3 >T.
c U'TL'@(X.Ot.L)) C(TU'TL'ﬁ(x‘Ot .L)) n yx,L for t > T /
0

Proposition 7: Fix a language LO and consider a family of choice functions

which are equal on L # LO‘ e.g., all choice functions c¢ such that C(TU‘TL'@)

=c (T

S U.TL.@) for all TU. all P and all L # L. for some simplicistic Cy-

0

The set of pseudo-simplicistic choice functions in this family is countable.

However, for every bijection IN - IN one can define a choice function Cy

which chooses the B-minimal program in ® for (T P?y. For every B, c, is

T
U .
LO B
exhaustive and IIA. Since there are uncountahly many bijections. there are
functions g which are not pseudo-simplicistic.

{(This result would hold even if one restricts the domain of choice
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functions to incilude only sets # of the form P(K 0L Not ail pairs of

bijections will necessarily result in different choice functions in this

case, yvet there will be uncountably many different ones.) /.



