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ON THE EXISTENCE OF NONCOOPERATIVE

EQUILIBRIA IN SOCIAL SYSTEMS*

by

Prem Prakash and Murat R. Sertel

In Section | we first formulate the notion of an

abstract feasibility-choice system (1.1). The main idea in

these systems is that, given a point x 1in a space X and
a-feasible region F (C X, a subset Y(x, F)¢cT F must be chosen
and each vy e.y(x, F) determines, in turn, a new feasible region
§(y, F){C X by moving the old F. For these systems we

define equilibrium notions and show (1.3) various sets of
equilibria to be nonempty and compact under rather general
tcpological and geometric assumptions. While this is all
groundwork for our study of social systems in Section 2, we
believe the notion of a feasibility-choice system and the
equilibrium results (1.3) to be of interest in their own

right.

K . . -
This paper is based on parts common to the authors'

Ph.D. dissertations [6, 11]. An earlier version was
presented at the Regional NSF Conference on the Control
Theory of Partial Differential Equations, University of
Maryland at Baltimore, Baltimore, Md. (ARugust 1971).

The present version was written at the Internaticnal
Institute of Management (West Rerlin), wnere the authors
were able to reconvene, thanks to the Institute's kind
invitation to P.P.



In Section 2, we start by defining a social system

(2.1). This amounts to specifying a set of individuals, each

of whom faces a certain feasibility dynamics moving about his

feasible region as a function of his and others' behavior
and of others' feasibilities, and each of whom has a

preference amongst four-tuples with coordinates: own next

behavior (to be chosen out of his present feasible region),
own and others' behavior, and others' feasibilities. From
such a system we derive a feasibility-choice system in which
choice takes place according to individuals' preferences in
a noncooperative way, so that the eguilibria of. this

feasibility-choice system are the noncooperative equilibria

of the underlying social system. In showing (2.4) the non-
emptiness and compactness of the set of noncooperative
equilibria of a social system, results of the previous
section and a lemma (2.3) basic to optimization become our
main tools.

Section 3 interprets Debreu's pioneering work [2] in
terms of our present framework and compares his results with
ours.

The Mathematical Appendix A aims to supply a minimal
amount of information from a relatively new and inaccessible
area of Mathematics, namely, topological semivector spaces
and some of their fixed point theory which applies to certain

hyperspaces of topological vector spaces. (This material,



essential to the main body of the paper, was developed
elsewhere [6, 7, 8, 9, 10, 11] by the authors with the
present sort of application weighing heavily in their
motivation.) This appendix is meant to serve also as a
glossary for térms and notions used in the paper that may

be unfamiliar to the reader.



0.

STANDING NOTATION AND CONVENTIONS:

R denotes the set

of real numbers with

| » > o}.

For any set Y,

denotes the set

[¥]
a topological space,

empty subsets of Y,

nonempty subsets of

semivector space (se

space, KQ[Y]

denote

subsets of Y.

Projection into

diagonal { (x, x)[ X

f: X > Y and Y

g:

composition defined by

For a set-valued map

{ (x

we mean the set
denoting it by G(f)
Let {Yal a e A

We denote

B = (I
[{YG}A] {A 2
BK[{y } ] = {n

[ a AJ A i
Let X be a set, an

{g e x> [¥ ]] o c A

{x € R

the usual topology, and R,

denotes the power set of Y and

Ply]

of nonempty subsets of

c[¥]

and

Y. When Y is

denotes the set of closed non-
K[¥] denotes the set of compact

Y. When Y lies in a topological

e A.2.1), e.g., a real topological vector

s the set of compact and convex nonempty

a set X 1is denoted by and the

XI

€ X} is denoted by D(X). Given maps

- Z, gof: X > Z denotes the
gof(x) = g(f(x)) (x e X).
f: X » {Y], by the graph of f

’ y)I X g X, y € £(x)} € X x Y,
} be a family of topological spaces.
a! P, € [Ya] for each a € A},

| P e K[y ] for each a e A}.
a a a
d let {f X > Y o ¢ A} and

a a

} be families of maps. We define the



->

It

A o

{f (x)}
a A

{{ya}Al a e A = Y, € ga(x)}

Y and I g : X > B[{ya}A] C [R Ya] by
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1. FEASIBILITY-CHOICE SYSTEMS AND THEIR EQUILIBRIA

1.1 DEFINITION: A feasibility-choice system is an ordered

gquadruplet
1.1.0 Q = (X, Fr Y, 6)I
where

1.1.1 X, called the behavior space, is a nonempty set, whose

elements x € X are called behaviors;

1.1.2 F C [X], called the feasibility space, is a cover of

X, whose elements F e F are called feasibilities;

1.1.3 y: X x F ~» [X], called choice, is a map such that
Y C T (where mp is the projection of X X F into

Fy; and

1.1.4 8: x x F ~» [F] is a map called the (feasibility)

dznamics.

Given a feasibility-choice system &, the set

1.1.5 E(Q) = {(x, F) ¢ X x F| x € y(x, F), F e §(x, F)}

is called the set of equilibria of .




1.2 DISCUSSION: A feasibility-choice system f may be

regarded as formed by two more basic systems

1.2.1 T = (X, F, v), a choice system, and
1.2.2 A = (X, F, 86), a feasibility system,
whose maps vy and ¢ both have domain X x F. Furthermore,

defining the equilibrium sets

1.2.3 E(T) {(x, F) ¢ x x F| x ¢ y(x, F)}, and

1.2.4 E(4)

{(x, F) € x x Fl F € 6(x, F)}, we see that

1.2.5 E(Q) E(y) 1 E(A).

il

Now, defining the maps y™: x x F » [x x F] ana

§%: x x F > [x x F] through

1.2.6 y¥=-y x {‘rrF} (i.e., Y*(x, F) = y(x, F) x {F} for
each x g X and F ¢ F), and
1.2.7 &%= {nx} x § (i.e., &§™(x, F) = {x} x &8(x, F) for

each x ¢ X and F g F),

we see that E(T) and E(4) are simply the sets of all the



fixed point of Y™ ana &%, respectively. Also, the

composed maps s*® o y' and Y. o 6% both have precisely

E () as their sets of fixed points. However, defining the

map w*: X x F » [x x F] through

1.2.8 w* =y x 6§ (i.e., w*(x, F) = y(x, F) x &(x, F) for

each x ¢ X and F ¢ Fy,

E() coincides also with the set of fixed points of w*.
1.3 THEOREM: Consider a feasibility-choice system
Q = (x, F, v, §8), where X is compact and convex i a

locally convex Hausdorff topological vector space and,

giving K[x] the finite (A.1.1) - or, equivalently

(see A.1.2), the uniform (A.1.1) - topology, F C KQ[X]

is closed and convex. If y and § map X x F upper

semi-continuously (see A.1.3) into KQ[X] and KQ[F],

respectively, then all of the following equilibrium

sets are nonempty and compact:

{x ¢ F| x e y(x, F)} for each F ¢ F;

—
w
—
—
-
~
(o]
—_
—
~
Il

U (E_(F) x {F});

(2) E(I)
FeF F

1.3.2 (1) E_(4)

{F ¢ Fl F g 8§(x, F)* for eac x e Xi

(2) E(8)

U ({x} x E (&));
X
X €X



Proof: Assume that y and § are upper semi-continuous

into KQ[X] and KQ[F], respectively.

(ad 1.3.1(1)): Let F e F. Then EF(F) is nothing but the
set of fixed points of the restriction Y defined on F

by y_(x) = y(x, F). Clearly, Y maps F into KQ[F]

F F

upper semi-continuously. Thus, by Fan's Fixed Point Theorem
(p.2.5), EF(F) # ¢. 1In fact, EF(F) is the projection into
F of the intersection G(YF) N D(F). As F 1is compact
Hausdorff, by A.1.5(2), the graph G(YF) C F x F 1is closed,
hence compact, and so is the diagonal D(F) . Thus, EF(F)

is also compact.

(ad 1.3.1(2)): That E(T) # ¢ follows from 1.3.1(1). As

Y is usc, so is Y“ (see A.1.4). Now, from A.2.8, F is

compact Hausdorff. Thus, X *x F is compact, and so is

D(X x F). By A.1.5(2), G(Y*) is also compact, whereby E(I'Y,

being the projection of G(y*) N pD(x x F) into X x F, is

compact.
(ad 1.3.2(1)): Now let x € X and define the transformation
Gx on F by dx(F) = §(x, F) (F ¢ F), so that EX(A) is

nothing but the set of fixed points of éx. As 8 is upper
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semi-continuous into KQ[F], so is dx. Furthermore, by
A.2.6, the (nonempty convex) set F lies in a pointwise
convex Hausdorff topological semivector space with singleton
origin (A.2.1) and, by A.2.8, F is also compact. Moreover,
F is - 3° locally convex (see A.2.9). Thus, A.2.3 applies
and E_(4A) # &.

X

(ad 1.3.2(2)): Imitate the proof of 1.3.1(2).

(ad 1.3.3): That E(Q) is compact follows from 1.3.1(2)

and 1.3.2(2). To see that E(Q) # @, first we note that, by
A.l1.4, w”™ = vy x 6 is upper semi-continuous, and that

w*(x, F) = y(x, F) x &(x, F) is nonempty, compact and convex
for each (x, F) € X x F. Now, from A.2.7 and A.2.10,

X x F is nonempty, compact, convex and 3° locally convex

in a pointwise convex topological semivector space with
singleton origin. Thus, A.2.3 applies and the set E(Q)

of fixed points of w® is nonempty. o
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2, SOCIAL SYSTEMS AND THEIR NONCOOPERATIVE EQUILIBRIA

2.1 DEFINITION: A social system is a family

2.1.0 S = {(xa, Fa, Sa, éa)}A

of ordered quadruplets indexed by a set A £ ¢ of

"individuals," where, for each a e A,

2.1.1 Xa # ¢ 1is a set called the behavior space of a,

X ;

and we denote X =1
A ¢

2.1.2 F_C [x ], called the feasibility space of o, is a

cover of X , and we denote F = {F =1 F ] F ¢ F 1},
a A« a a
F* = (¢, = 1 F_| F, e F_};
AN{a} B 8 B

2.1.3 £ C (X x F* x X ) x (X x F¢ X ), called the

preference of o, is a complete preorder on

X*FGXX;
a

2.1.4 6 : x x F o> [Fa] is a map called the feasibility

§ .

dynamics of «a, and we denote § = g o

Given a social system S, for each o ¢ A we regard the

noncooperative choice Ya: x x F » P(Xa) of o, where
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- a < @

2.1.5 y_(x, F) {ya € Fal {(x, F7)} x F, S, X0 Fry ya)}

(x ex, F=°r"xFr, F*eF* F € F ) and, defining
a a a

2.1.6 «y = Y,

when Yy is into [X] we refer to

2.1.7 Q(8) = (x, F, v, §)

as the noncooperative feasibility- choice system determined

by S. In that case, by the set of noncooperative equilibria
of S we mean the set E(Q(S)). (see 1.1.5).
2.2 PREMARK: Given a social system S, two facts are clear:

(1) When Xa is a topological space and Sa is upper semi-

closed on Xa (see A.3.1) with Fa compact, then Ya(x' F)

is nonempty and compact (see A.3.3) for eac x € X and

F e F. (2) When Xa lies in a real vector space and Sa is
upper semi-convex on Xa (see A.3.2) with Fa convex, ya(x, F)
is convex for each x € X and F € F (see A.3.3).

2.3 LEMMA: Let Y be a Hausdorff space.

(1) The graph A = {(K, x)| K ¢ K[Y], X € K}

c K[Y] x Y 1is closed when K[Y] carries the
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the upper semi-~finite topology (A.1.3).

(2) Let =< C Y x Y be a closed preorder on Y.

Then P = {(K, x)| K € K(Y], x € Y, K £ x}

- K[Y] x Y is closed when K(Y] carries the

finite topology.

(3) If =< 1is also complete, Y 1is compact and K[Y]

carries the finite topology, then the map

"optimization" K +> K = {x € K| K £ x} is upper

semi-continuous on K[Y] with K nonempty and

compact for each K & K[y].

Proof: (ad (1)): Suppose (K, x) ¢ (K[Y] x Y)\A. Then x ¢ K
and, since Y 1s Hausdorff and KCY compact, there are
disjoint open nbds U, VZ Y of K and x, respectively.
pefining U =K[u], UC K[¥] is then an open nbd of K when
K[Y] carries the upper semi-finite topology, in which case
 x v is an open nbd of (K, x) that is disjoint from A,

showing that A 1is closed.

(ad (2)): Suppose (K, x) ¢ (K[Y] x Y)\P. Then there
is a y & K such that (y, x) € (Y x ¥Y)\£ and, since
<C vy x Y is closed, there are open nbds u, vcy of x, vy,
respectively, with (Vv x Uy) N £ = ¢. Let W Y be any

open‘set with K C W. Give K[Y] the finite topology.

Defining W = [w, v]< K

y|, W x u ©K|7|] x Y is then an open



nbd of (K, x) with (W x uy M P = ¢, showing that

pC K[Y] x Y is closed.

(ad (3)): Note that the graph G of the map
"optimization" is nothing but AN P, Give K[Y] the

finite topology (which contains the upper semi-finite

topology) . By (1) and (2), A and P are then closed, and
so is G. Assume £ complete. Now, by A.3.3., for each
K € K[Y], K is nonempty and compact. If Y is compact

Hausdorff, then so is K[Y] (A.1.2), and A.1.5(1) applies,

so that "optimization" is upper semi-continuous. v

2.4 THEOREM: Let S be a social system where, for each

a e A, X, is a topological space. For each a € A,
give K[Xa] the finite topology and assume that
(1) X is compact and convex in a locally convex

a —

Hausdorff topological vector space;

(2) F KQ{X ] is closed and convex, and covers X ;
a a o a

(3) SO is closed and on Xa it is upper semi-convex;

(4) Ga is upper semi-continuous into KQ[FG].

Then Q(S) is a (noncooperative) feasibilitv-choice

14

system and the set E(Q(S)) of noncooperative eguilibria

"of 8§ i1s nonempty and compact.




Proof:

satisfies all other requirements of 1.1,

is a feasibility~choice system, we

Yy{x, F) # & for each (x, F) € X

that, in view of 2.2 and A.3.1,

conjunction of (2) and (3) implies

each (x, F) € X x F, so that, in

C [X]. Now to show that E(Q(S))

we simply check that Theorem 1.3 a

First, by (1), X 1s compact

As it is clear from our hypothesis that

for each

15

Q(S)
to see that (8)
need only check that
x F., This we do by noting
a € A, the
Y (% F) € KQ[Xa] for
fact, y(x x F) € KQ[x]
is nonempty and compact,

pplies.

and convex in a locally

convex Hausdorff topological vector space.

Second, from (2), FC KQ[x]

K[x]

is also closed.

Give the finite topology.

By A.1.2 and A.2.

each a e A, KQ[XQ] is compact

is also compact Hausdorff. Since
(see (2)), it is compact, so that
by A.1.6, F 1is homeomorphic to g
compact, whereby F & KQ[X] is ¢l
Third, by taking Y = X x FZ
X Fa in 2.3(3) for each a € A, w
semi-continuous. Thus, by A.1.4,

to be into KQ[X]) is also upper

Finally, again by A.1.4, (4)

is convex and covers X.
We show that F Ko[x]
8, (1) implies that, for

Hausdorff. Similarly, KO[x]

F, © KQ[XG]

is closed

nF is compact. Now,
A a
Fa' so that F is
osed.
a
x X and K = {(x, F )}
e see that Ya is ﬁpper

the map vy (already seen

semi~-continuous.

implies that § is upper



semi~-continuous; clearly, (4) also implies

C KQ[F].

§(X x

Thus, Theorem 1.3 applies, so that E(Q(S))

empty and compact. ©

F)

is non-

16
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3. COMPARISON WITH DEBREU'S SOCIAL EQUILIBRIUM EXISTENCE

THEOREM

The last three decades have seen a flurry of activity
in the existence theory of equilibria in games, economies and,
in general, social systems, This being no survey article,
for bibliographical purposes we refer to the most recent book
of Hildenbrand [4] and focus our attention in this literature
on Debreu's Social Equilibrium Existence Theorem [2], which
despite its rather early date, not only preserves its land-
mark nature, but also continues to stand apart in its
simplicity. Debreu's mentioned work actually forms a base
for the celebrated Arrow and Debreu Existence Theorem [1] for
competitive equilibria in economies - the type of result.which
we expect to be derivable along similar lines as in [1] from
our existence theorem 2.4. His notion of a social system is,
moreover, a forerunner of our own. For all these reascns we
find it useful to interpret Debreu's mentioned study in terms
of our present framework.

In the terminoclogy of 2.1, Debreu's social system is
characterized by a finite set A of individuals (his "agents")
o, whose behavior spaces Xa are contractible polyhedra in
a Euclidean space, whose feasibility spaces Fa may be taken

as the spaces KT[XG] of contractible compacta in Xa’ whese
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feasibility dynamics are maps § : x% = i X F with
a A\{a} 8 o

closed graph G, © X, and whose preferences SaCZ G, * Ga
are determined by continuous "payoff" functions fa: Ga -+ [O, 1]
for which f_: x* = [o, 1], defined by f_(x%) = , Sup o £,

a o {x }Xéa(x ) ¢
is also continuous. (Thus, Ya depends on x% anad Fa')
Debreu's theorem then says that the social system has>a non-
cooperative equilibrium if the points Y, in 6a(xa) with
fa(xa, ya) = Ea(xa) form a contractible set for each
x% ¢ x* and a ¢ A.

To compare Debreu's result with ours, first note that,
—

since Debreu has already taken X compact Hausdorff and G
o

e

closed, by Tietze's characterization of normality, the function

fa can be extended to a continuous f: on the whole of X,
extending Sa to a closed complete preorder S: C X X X on

X - without, however, affecting the map Yo (e € A), and

hence leaving the equilibrium set unchanged. Now, Debreu does

not require the behavior spaces and feasibilities to be convex,

and neither does he require the preferences Su to be upper

semi-convex on Xa (equivalent, in his case, to fa being

. o a a
quasi-concave on {x7} x Xa for each x € X). Therefore,

our theorem (2.4) 1is not a strict generalization of Debreu's.

In a number of ways, however, 2.4 extends Debreu's result

substantially.

First, we do not restrict the number of individuals to

X
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be finite, and this should be important for any application
of 2.4 to showing the existence of competitive equilibria
in economies, since one really needs large economies (see
[4]) to speak of competitive equilibria properly.

éecond, we work in locally convex Hausdorff topological
vector spaces - the natural habitat of probability functions -
which should allow one economic applications incorporating
stochastic behavior or infinite dimensional commodity space.

Third, we do not assume individuals' preferences to be
representable by continuous real-valued functions. Apart
from this, however, a significant aspect of the type of
preferences we allow an individual is that it yields the
individual's choice sensitive, in general, to many variables
which Debreu's agents ignore in their choice.

Namely, as a fourth point, while in Debreu's model the

generic individual «a's choice Yy depends only on "others

last behavior" x° and a's "own feasibility"” Fa’ our
model allows it to depend on (i) a's "own last behavior"
and (ii) "others' feasibility” F® as well. The

significance of allowing the additional variable (i) is

own

quite clear: it permits sequential dependence on
behavior," such as one associates with "learning," "addiction" -
or, what is the opposite, "withdrawal" - or simply choosing

to eat dessert rather than appetizers after the main course.
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Our inclusion of variable (ii) may appear somewhat unusual
upon first sight, but there are many common scenarios in
which its role will be immediately recognized: (a) An

individual possesses an exceptional talent the exercisa

of which - by reason of its rareness! - gets promoted in his
ranking of alternative occupations; (b) "What are the enemy's

various strike capabilities? For on that depends what guns

(versus "butter") we want;" (c) "He's a bully: he'll pick
on you if you can't hit back;" (a) "He's a noble man: he
would spare a helpless soul.” (Common ?)

Last, but not least, we must contrast Debreu's individual
feasibility dynamics Ga with ours. First compare the
domains of the maps. In Debreu's case, the individual's
feasibility Fa = Ga(xa) is completely determined by others'
last behavior xZ. In contrast, we view the feasibility
dynamics as a "deformation" process: surely, the productive
capability F& an economy & has today depends on the
productive capability Fa it had yesterday, and the dependence
is through domestic and foreign economic behavior (investment),
i.e., X and xa, feasible and chosen yesterday. This is
why we have felt it necessary to include X and Fa‘ among
the arguments of Ga in our model. Why have we included

a .
also others' last feasibility F among its arguments?

Directing our imagination to a rather different realm of social



life, consider the idea of precedence in jurisprudence.

Roughly, this says that, if individual B was allowed the

option of, say, conscientious objection yesterday, then this

21

option is henceforth available to all - and this is regardless
of whether B exercised his option. Now even all these

a . . . .
variables, x , xa, Fa, Fa' may in reality fail to determine

a unigque next feasibility F&, simply because some
determining factors may have been left out. For this reason

we specify the range of Ga to lie not in Fa’ but in [Fa]'
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A. MATHEMATICAL APPENDIX

For the convenience of the reader, this appendix collects

mathematical facts and notions used in the main body of the

paper.

Al HYPERSPACES AND SET-VALUED MAPS:

aA.1.1 Let Y Dbe a topological space. The finite topology

for [Y] is the topology generated by declaring as a basis
for open collections in [Y] collections of the form
[UilieM]={Pe[Y][Pcbu[ui and PN U, # 8 for each

i € M} with M a finite set and UiCZ Y open for each

i e M [5, 1.7]. When Y is a uniform space with fundamental
system of symmetric entourages E, defining E = {(p, Q)

e [v] x [¥]| P2 E(9) and ¢ c E(P)}, the entourages E

form a fundamental system for a uniform structure on [Y],

and the topology so determined for [Y] is called its

uniform topology [é, 1.6]. By the finite [resp., uniform]

topology of a hyperspace H C [Y] of a topological [resp.,
uniform] space Y is meant the relative topology of H as
a subspace of [Y] when [Y] is given the finite [resp.,

the uniform] topology.
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A,1.2 When Y is a uniform T1 space, the finite topology
and the uniform topology agree on K[Y] [i, 3.3]. For Y
a T1 space, K[Y] with the finite topology is (compact)

Hausdorff iff Y 1is (compact) Hausdorff [2, 4.9.8 and

4.9.12].

A.1.3 Given topological spaces X and Y and a mapping

f: X » [Y], f 1is said to be upper semi-continuous iff, for

each x € X and each open set VC Y with f(x) < V, there
is a nbd U of x such that f(x7)cC Vv for every

X" € U. This is equivalent to f being continuous when

[Y] is given the so-called upper semi-finite topology [g,

PP. 179], i.e., the topology generated by declaring
collections [V] open for all open V C Y. Thus, the
composition of upper semi-continuous maps 1s upper semi-
continuous. Also, given a family {f_ : X - [Ya]! a e A}
of maps, the map {fa}A is upper semi-continuous iff each

fa is upper semi-continuous.

A.1.4 PROPOSITION: Let X be a topological space, {YQ}A

a family of topological spaces with Y = K Ya' and

{fa: X > K[Ya]] a ¢ A} a family of maps. The map

f =1 fa: X - K[Y] is upper semi-continuous iff f

is upper semi-continuous for each a e A,




Proof: (ad "if"): Assﬁme fa upper semi-continuous for
each a € A, take any x ¢ X, and let V C Y be any open
set with f(x) Cc V. ©Now V <contains an open tube

(T vy x (0 Yy ) D f(x) with M T A finite and V C v
M@ A\M ¢ & a
open for each o € M, since f(x) = K fa(X) is a compact

box [9, 2].

Using the upper semi-continuity of

f , for
o

each a € M, there is a nbd U, of x with fa(x‘)c: Va

for each x7 ¢ U, Writing U = ﬂ Ua' U is thus a nbd of
x and f(x7) ¢ vV for every x° € U, showing that £ is

dpper semi—coptinuous.

(ad "only if"): 1If f is upper semi-continuous,
then, for each o € A, the projection Ty © f is also
upper semi-continuous, and evidently Ty t £f = fa' o]

a
A,.1.5 PROPOSITION: Let X and Y Dbe topological spaces
and f: X - [Y] a map.
(1) Assume that the graph G(f) C X X Y is closed.
Then f is into C[Y]. If, furthermore, X is
Hausdorff, then f is upper semi-continuous
whenever Y or G(f) is compact.

(2) If f

is upper

cly].

semi-continuous into

then the graph

Y is regular.

G(f) C X x Y is closed whenever

24
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Proof: (ad (1)): Take any x € X. For each y e ¥Y\f(x),
(x, y) € (X x YI\NG(f) and, since GI(f) is closed, there

is a nbd U C X of X and a nbd VvV C Y of y with

(U x V) N G(f) = ¢, so that v N f(x) = @, showing £ (x)

to be closed. Now let W C Y be an open set with f(x) C W
so that WS = Y\W is closed. Then G(£)N (x x w%) is
compact whenever Y is compact or G(f) is compact, in
which case its projection P into X is compact. Thus,
when X is Hausdorff P C X is closed and PC = X\P is a

nbd of x with f(x°)C W for each x7 ¢ P? whereby £f is

upper semi-continuous.

(ad (2)): Assume Y regular and f upper semi-
continuous into C[Y], and take any (x, y) € (X x Y)\G(f?.
Then there are disjoint open sets V, WC Y with vy e V
and f(x)C Ww. As f is upper semi-continuous, there is
also an open nbd U Z X of x with f(x7)C W for each
x” € U. Now U x V C (X x Y)\G(f) is an open nbd of (x, v),

showing that G(f) is closed. 0

A.1.6 THEOREM [9, 3]: Let {¥ } be a family of topological

spaces and, for each a € A, give K[Ya] its

respective finite topology. Also, give K[g Ya]

its finite topology. Now the Cartesian product map

I, defined by



H({KQ}A) = g K, (XK, € K[Ya], a e A),

is a homeomorphism gg‘ K K[Ya] onto the space (of

compact boxes) BK[{YG}A] C K[K Ya]'

26
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A.2 TOPOLOGICAL SEMIVECTOR SPACES AND SOME FIXED POINT THEORY:

A.2.1 A topological semivector space is a nonempty Hausdorff

space S equipped with two continuous maps ®: S X S5 =+ §
("semivector addition") and VY: R+ X § =+ 8 ("scalar
multiplication") such that, denoting ®(s, t) = s & t and

Y(r, s) = s,

(1) r ® (s ® t) = (r ® s) ® t ({associativity)

(2) s ® t = t @& s (commutativity)

(3) Ais @ £) = As 8 At {homomorphism)

(4) 1s = s (unitariness)

(5) Alus) = (A.u)s (action)

(r, s, t ¢ S: X, w e R+) [g, 1.1]. Given a topological
semivector space S, the set 0§ = {Osl s € s} is called the
origin of S. A set X S 1is called convex iff Ax & A7x”~
€ X whenever x, x € X and X = (1-X7) € [O, 1] (see 2.1
of 8); and S 1is called pointwise convex iff each singleton

{s}C s is convex [g, 2.3].

A.2.2 A convex subset X C S is called 3° locally convex 1iff

its relative topology admits a uniformity with a fundamental
system E = {EQCI X X XI a e A} of convex entourages [g,
3.0.3]. A weaker [g, 3.1] property for a subset X {C S 1is

29 local convexity, i.e., that the relative topology of X




admits a quasi-uniformity E = {Ea C X x X] a e A} such

that,

for each o & A, there is a B8 € A with EB(: E,

closed and E_ (XK) convex whenever X T X 1is compact and

8

convex [g, 3.0.2].
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FIXED POINT THEOREM [8, 4.6]: Let S be a topological

semivector space, and let X C S§ be a non-empty,

compact and convex subset with ©OX singleton. If

is pointwise convex and gﬁ l.c., then X has the fixed

point property for upper semi-continuous transfor-

mations f: x + CQ[x].

coronLArY [8, 4.7]: Let {x c s | « ¢ A} be a

nonempty family, where, for each « & A, S and X

satisfy the hypothesis of A.2.3; and let

{fa: X > CQ[XG]‘ o ¢ A} be a family of upper semi-

continuous transformations, where X = 1
A

X . Define
a 2e.1ine

£: x » CQ[x] by £(x) = I £ (x). Then there exists
A

a (fixed) point x € X such that x¥ ¢ £(x").

COROLLARY [g, 4.8] (Fan's Fixed Point Theorem [QJ):

Let X be nonempty, compact and convex in a locally

convex Hausdorff topological vector space, and let

f: X+CQ[X] be a

upper semi-continuous transfor-

mation. Then there exists a (fixed) point x* ¢ X




such that x™ ¢ f(x').

The rest of this section provides examples of spaces for

which the fixed point theory of A.2.3-4 applies.

THEOREM [10, 2.1]: Let L be a real Hausdorff

topological vector space, give KQ[L] the finite

topology, and equip it with the operations & and ¢

s follows:

ARo®B=2{a+b|l ach, be B} -~ a, B e KQ[1]

A e R
+

AR {ral a e n}

KQ[L] is then a pointwise convex Hausdorff

topological semivector space with singleton origin.

COROLLARY: With all as in A.2.6, eguipping L x KQ[L]

29

i

with coordinatewise addition and scalar multiplication,

one obtains again a pointwise convex Hausdorff

topological semivector space with singleton origin.

THEOREM [10, 2.3]: Given L as in A.2.6, and taking

any compact and convex X C L, the set KQ[X] c KQ[L]

is compact and convex.

PROPOSITION [7, 4.4]: In A.2.8, assume that L is




locally convex. Then KQ[L] is 3° locally convex

(and so is its every convex subset, e.g., KQ[X]).

Proof: Let {wa Z L| a« € A} be a fundamental system of
convex'  nbds of the identity element e € L, so that,
defining Ea = {(x, y) e L Xx L} x € y + wa' Yy € x + wa}'
{Eal a € A} is a fundamental system of convex entourages
for (the uniform space) L. Thus, writing Ea = {(p, Q)

e KQ[r] x kQ[r]l P c E_(0), o ,c E (P}, {E | « e A} is
a fundamental system of entourages imparting the uniform
(equivalently - see A.1.2 - the finite) topology to KQ[L].
Let a € A. To see that Ea is convex, let (A&, B),

(a°, B”) € E and, taking any XA = (1-1x7) ¢ [O, 1], define

A=A ® AA° and B = AB & A°B”°. Now,

A A T A EG(B) = A (B + W) = X B + A Wa
® AT AE (B7) = X7(B” + wa) = A"B7 + X‘wa
a C B+ W = Ea(ﬁ).
Similarly, B C Ea(g). Thus, (A, B) € Eu and Ea is convex,

showing that KQ[L] is 3° locally convex. 0

A.2.10 COROLLARY: With all as

30

A.2.92, and given any closed

and convex collection FC KQ{X], X x F is 13

ofL].

~

locallv convex, compact and convex in L X
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A.3 PREORDERS :

A.3.1 Let Y be a topological space and < C Y x Y a
preorder (i.e., a transitive, reflexive binary relation) on

Y. We.say that <£ is upper [resp., lower] semi-closed iff

u(x) = {y e ¥] x < y} J[resp., £(x) = {y ¢ Y| y € x}] is

closed for each x € Y. We say that < 1is semi-closed iff

it is both upper and lower semi-closed. Clearly, if
<SC Y x Y 1is closed, then it is also semi-closed. When ¥
is a product space Y = Y1 x ¥,, we say that < 1is (upper,

lower) semi-closed on Y2 iff the restriction < [l ({yl} x Y2)
x ({y;} x ¥,) of < to each "slice" ({y } x v, with

Y, € Y1 is (upper, lower) semi-closed.

A.3.2 When Y 1lies in a topological semivector space S,

we refer to <£ as upper semi-convex iff wu(x) is convex for

each x e Y.

A

A.3.3 For each A C Y, denote A = (1 U(a)) ! A. Thus, A
A
is closed [resp., convex] whenever A 1is closed [resp.,

convex] and £ 1is upper semi-closed [resp., upper semi-

convex]. When A is compact Hausdorff and < wupper semi-
closed and complete on A (i.e., for each pair a, b g A,

a<b or b<a obtains), then the family {u(a) N a| a e A}

of closed sets has the finite intersection property, so that

A £ 8.



