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Abstract

In this paper I consider an OLG model with production and a single
commodity. I show that in such an environment unbounded growth of income
per capita is not possible if the aggregate technology is of the usual
constant returns to scale type. This is not due to lack of productivity of
the capital stock in the long run but, rather, to inappropriate
distribution of income across generations, which makes it impossible for
the young savers to afford buying the existing stock of capital,

I then introduce an external effect, due to the stock of capital, in
the aggregate production function and derive conditions under which
persistent growth is an equilibrium outcome. I also show that the
introduction of an external effect, while making growth feasible, also
creates "poverty traps" and open sets of initial conditions for which there
exists an infinite multiplicity of equilibria. I also show that, when such
a multiplicity exists, equilibria with the very same initial position, will
display remarkably different asymptotic behaviors. Finally I show that by
introducing appropriate tax schemes such multiplicity can be eliminated but
that the same is not true for poverty traps, which appears to be quite
robust with respect to policy interventions.



1.Introduction.

I consider a standard overlapping generations model with one
sector production, with and without a positive external effect induced by
the aggregate stock of capital. I show that, for different ranges of
parameter values, persistent growth, poverty traps, multiple equilibria
and oscillatory equilibria may result when the externality is present.

This paper belongs to the crowded area of research which has developed
in the footsteps of Romer [1986] and Lucas [1988]. Contrary to others I
have very few novelties to offer the reader; still I find the exercise
worthy of some attention for at least three motives.

The model is very simple and easy to handle analytically . In par-
ticular one can derive from it all the properties that this kind of
externalities are known to induce on competitive equilibria. It is very
difficult, if not impossible, to do the same in the other existing theore-
tical models, which have typically been built with one very specific
feature in mind.

Secondly I find this a useful framework to assess a couple of open
problems in the theory of economic development. They are: (a) modeling the
historically undeniable fact that countries with the same technology and in
very similar economic conditions a century or less ago have now reached
very different levels of economic development; (b) the consistency between
persistent growth and the assumption of decreasing returns within the
standard one sector neoclassical model of aggregate production.

Point (a) has been the object of research since about fifty years ago



and has been recently reconsidered by Azariadis and Drazen [1990] and
Murphy, Shleifer and Vishny [1989]. In one case (Murphy et al.) under-
development results from lack of coordination in the adoption of production
techniques across industries. If two methods of production are available,
one of which exhibits increasing returns and therefore lower unit costs at
high output level, then picking the latter induces a "good equilibrium"
which the authors identify with development whereas the choice of the other
more primitive technology yields the low output equilibrium which they
associate with underdevelopment. The framework adopted is completely
static, which makes it difficult to understand how a country could possibly
move in time from one position to the other. If one takes the model
literally, the jump from rags to riches occurs in just one period, almost
by fiat, i.e. by coordinating the choice of the production processes across
industries. The economy may equally move back to underdevelopment at any
time in the future if such coordination fails.

The Azariadis and Drazen model is a dynamic one, and quite close to
mine as they also adopt the OLG-cum-production setup. Intuitions and
results are nevertheless quite distinct from those I present here. Two
sources of growth are suggested: a pure external effect coming from the
stock of capital and human capital which is produced by means of labor
time and already existent human capital. In the first case in order to get
the desired result the authors appeal to the rather special assumption that
the external effect is described by a step function. Of the second case the
authors provide only a local analysis around the stationary states. While

they can show that a (continuum of) "bad" stationary positions with no



human capital accumulation exist which are also locally stable, the
existence and local stability of a "good" steady state with persistent
growth is left vague. Even under the additional assumption that such a
position exists the model would still be mute with regard to how and when a
country could get there as its global dynamic is not discussed nor it
appears easy to figure out.

In the model I study the external effect is only required to increase
productivity as the capital stock increases. Nevertheless a poverty trap,
in the form of a low-income locally stable stationary state, always arises
whenever persistent growth is possible. Furthermore when the external
effect is very strong there exists an open set of initial conditions giving
rise to an infinity of equilibrium paths, some of which oscillate forever
within a trapping region of low income levels whereas others take off to
sustained growth.

As for (b) it is important because a convincing reconciliation between
growth and constant returns would allow the study of long run phenomena
within the same theoretical frame adopted in the study of business cycles.
Jones and Manuelli [1990a] have suggested that within the standard one
sector model of optimal growth such a reconciliation could take place. 1
think it is relevant to ask if the result is robust with respect to changes
in the demographic assumptions underlying the infinite horizon framework.
In light of the finiteness of our lives the OLG model of capital accumula-
tion appears to be the obvious alternative candidate. The two are notoriou-
sly equivalent if intergenerational altruism is operative and bequests are

passed over from one generation to the next. The empirical question of



whether this occurs in reality 1s not easy to answer, which makes it
important to keep the OLG model on equal theoretical footing with the
infinite horizon one for the study of capital accumulation problems.

The present exercise confirms the critical role played by bequests:
persistent growth in the presence of a convex aggregate technology set is
not feasible in the OLG framework without substantial intergenerational
transfers from the old’'s to the young's. This is because, even if the
expected rate of return on capital remains high enough to motivate young
people to invest out of their labour income, the latter becomes a negligi-
ble fraction of the stock of capital when this grows unbounded. This
problem is easily solved when the external effect from the stock of capital
induces enough asymptotic nonconvexity to allow the wage rate to grow at
least as fast as the capital stock.

Finally the model lends itself very easily to carrying on economic
policy exercises. The present paper is maintained completely within purely
theoretical boundaries, but I do provide a preliminary discussion of the
lines along which fiscal policy may or may not be used to eliminate poverty
traps and the multiplicity of equilibria due to external effects. A full
study of these matters will have to be pursued on another occasion.

In the next section I introduce the notation and derive the equilibria
of the model without external effects. Section 3 introduces the external
effect and characterizes the set of equilibria in this case. In Section 4
some examples illustrate the working of the model. Section 5 discusses the
policy implications just mentioned and concludes the paper. A few proofs

are collected in the Appendix.



2. Accumulation without an External Effect.

2.1 The Basic Model.
Each generation lives for two periods and is of a constant size equal
to one. The economic life of one within the continuum of identical agents

born at any time t = 0,1,2,... is all in the programming problem:

Max u(cg,ceq1)

(1) S.t. ¢ + s¢ < Wt

Cr+4l = ST+l

where ¢ is consumption, w is the wage rate, s is saving and n is the net
of depreciation rate of return on capital. Under the usual regularity
conditions on u (i.e. strict quasi-concavity, continuity and monotonicity)
the unique solution to (1) can be expressed by means of the saving fun-

ction:

(2) S(Wt,ﬂt+1) = Arg Max U(Wt'S,S'Wt+1)

It is very well known that, even under the stated regularity condi-
tions, the saving function S, which is monotone increasing in w, may fail
to be so in n. One way out is to assume that consumption levels in the two

periods of life are gross substitutes. In fact, given that I want to rule



out complications coming from the preferences side I will also assume the
utility function to be homothetic. This yields a very simple and well
behaved saving function. I will impose the formal assumptions directly on

S(w,m).

(H.1) The function S: %2 - R, satisfies:
- there exists a function g:R;~[0,1] of class C! and increasing, with
g(n) = 0 for all n<e¢ some 0O<e<w, lim g(m) = 1 as n==, and such that S

can be written as S(w,n) = weg(m).

On the technological side I assume aggregate production is represen-

table as:

(3) Yo = A F(Ke,Ly)

where A. represents the time t level of an aggregate scaling factor. This
will be endogenized in Section 3 through the external effect. In the
present section it is taken as exogenous to the model and normalized to Ag
= 1 for all t. Firms last one period only (they are managed by the old half

of the population) and maximize their profits period by period:

Max Y - welL - meK
(&) s.t. Y < F(K,L)

K=0, 1=0,



where all variables should be understood as of time t. Once again the

usual assumptions of continuity and concavity are placed over F so that

(4) has a funique) solution for all pairs (w,n)eR?, which is characterized
by the first order conditions: dF(K,L)/dK = = and 8F(K,L)/3L = w. F is also
assumed homogeneous of degree one, hence we can define f(x) = F(K/L,1) upon

which we will now impose the following restrictive set of hypotheses:

(H.2) The function f:R, - R, is of class C? and satisfies:

a) f(x) > 0 for x>0, f(0) = 0 and, f'(x) > 0, f"(x) < 0 for all x.

b) lim f'(x) = «© and lim x-f"(x) = 0 as x=0.

c) The wage/capital ratio w(x) = [£(x)/x - £'(x)] is decreasing in x and

satisfies lim w(x) = 1 for x-0.

While a) and b) are standard neoclassical assumptions, ¢) has been
introduced to guarantee that a unique, strictly positive stationary state
exists for the "uncorrupted" model and to assure its dynamic asymptotic
stability.

Equilibrium in the labor market implies L¢ = 1 and we = [f(x¢) -
xe+f'(x¢)] for all t, while the equilibria of the output and capital
markets are summarized by my = f’'(xy) and the following implicit function
which equates tomorrow’s total demand for capital to the level of saving

obtained today:

(5) G(x,y) =y - [E(x) - x£'(x)]eglf'(y)] = O



where y = X¢4] and x = x¢. The following is true about (5):

Proposition 1. Under hypotheses (H.1) and (H.2) there exists a function r:

R, - R; solving (5) and such that for any initial condition xg > 0 the
unique equilibrium path of capital accumulation X¢4] = 7(X¢), converges
asymptotically to the unique stationary position x* = r(x*).

Proof. See Appendix.

2.2 Persistent Growth is not Possible.

I will now address the following question: is persistent growth
possible within the basic model and in the absence of any external effect
if some of the restrictive assumptions imposed by (H.l) and especially
(H.2) are relaxed? The answer is contained in Proposition 2 and it is
negative.

It should be clear that (H.l) does not really impose any limit on
attainable growth rates and it just simplifies the algebra. In any case in
the present subsection I will work under the extreme hypothesis that
individuals care only for their consumption when retired and therefore
save and invest all their incomes in every period of their lives but the
last one. Given that growth coincides with the accumulation of capital
this is the most "growth oriented" among all the preference structures one
may think of. The restrictions imposed on the production function by (H.2)
are more demanding: again I will retain only continuity, concavity and

positive monotonicity. Furthermore I will, following along the lines of
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Jones and Manuelli [1990a], impose a positive lower bound on the rate of
return on capital.

Other special assumptions may also hide in the demographic structure
adopted: the OLG model is meant to capture the finiteness of individual
lifetimes, and there is no reason to believe that a two-period model is the
best way of representing the life cycle. I will therefore assume that each
generation lives for (T+1l) periods, where T is any positive and finite
integer number, and is endowed with one unit of labor for the first T
periods and none in the last. To simplify matters I will also assume that
their saving behavior in all periods but the (T+lst) satisfies the require-
ments discussed in the previous paragraph. Once again this simplifies the
proof and, if anything, creates a bias in favor of sustained growth in the

capital stock. Still the following negative result is true: !

Proposition 2. Assume every individual lives for (T+l) periods and has a

utility functicn defined as u(cgy,Ce4]l,...,Ct+T) = Ct4T. Assume furthermore
that the production function f(x) is of class C?, monotone increasing,
concave and such that lim f'(x) = b > 1 for x-wo,

Then every equilibrium path {x¢}j-, beginning at a given initial condition
xg = 0 is bounded above for all t=0.

Proof. See Appendix.

The economic intuition is, indeed, very simple: capital accumulation
is always carried on by the younger generations and their sources of income

are current wages plus the previously earned wage bills accumulated (for at
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most (T-1) periods) at the equilibrium rates of return. As the capital
stock grows infinitely larger the wage bill becomes negligible (because
f(x) is concave) and therefore the base of accumulation becomes negligible.

No matter how high is the rate at which compounding occurs it occurs only

for a finite number of period and it cannot compensate for the fact that

the ratio between the wage bill and the stock of capital is going to zero.
This is always true, as long as T is finite. When T converges to infinity

T -
i=

the compounding factor NI_1f’'(x¢_.j) may grow faster than the base
(1/T)*w(xg_T) shrinks to zero, thereby permitting unbounded growth. This
argument points to a strong discontinuity "at infinity" in the qualitative
properties of the model, something that should be taken in proper account
in evaluating the predictions of the infinite horizon model.

Proposition 2 raises an important empirical question: taking for

sranted that growth is generated by capital accumulation what sources of

income are used to finance it and, in particular, how does productive
capital get transferred across generations? It is apparent from the proof
of Proposition 2 that even if we force the members of the oldest generation
to transfer their depreciated stock of capital to the people in the genera-
tion immediately after them and therefore consume only the net return on
their life-time saving, persistent growth would still be impossible. If
increasing returns are not the key to sustained growth and if we accept the
one sector growth model without any government intervention as the ap-

propriate analytical tool, then begquests are relevant and they must go over

and above depreciated capital to include a portion of the net return on the

stock owned by the oldest generation.2
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3. The Model with Positive Externalities.

I now internalize the scale factor Ay in (3) by making it dependent
on the aggregate stock of capital. I posiit Ag = #(x¢) and interpret the
function 3 as the formal description of an economy-wide external effect.
This representation can be associated to a variety of observable phenomena.
Beside the pure external benefits (if any) that an individual firm may
derive from the aggregate capital stock (my phone is gquite more useful if
there are many other phones to which it is connected, my software is much
more valuable if it is widely adopted, etc.), one may also think of a
learning-by-doing mechanism in which the achieved degree of social expe-
rience is measured by the accumulated stock of capital as in Arrow's
original contribution. Alternatively one may consider 3% as a measure of
social knowledge as initially proposed by Romer {1986]; or a reduced form
representation of the type of pecuniary externalities investigated by
Murphy et al. [1989]. Finally, if ncne of the former suggestions is
convincing, there remains the option of interpreting i as an interesting
theoretical device whose consequences should be investigated.

The dynamic equilibrium condition (5) becomes:

(6) G(x,y) =y - v [Ex)-x£" (x)]-g[p(¥)E"(y)] = 0

Inspection of (6) and in particular of the partial derivatives
dG(x,y) /3% and 38G(x,y)/dy will show why the simple properties of (5) may

now be violated. In fact one may conceive of so many different ways in
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which things can go wrong, that additional restrictive hypotheses are
needed to make the ensuing discussion economically relevant. Before doing
this let me illustrate an especially "abnormal” equilibrium that may often
occur. Recall from (H.1) that ¢ > 0 is the largest expected rate of return
at which young people are not willing to save any portion of their wage
income. It will often be ¢ = 0, but ¢ > 0 cannot be cxcluded if the slope
of the utility function is appropriately limited on the boundary of R2 .

Inspection of (6) reveals that the following is true.

Proposition 3. Assume (H.1)-(H.2) are true and assume that ¥ and f satisfy:

$(0)f'(0) < ¢. Then: for all x = 0 the path {x,0,0,...}) is an equilibrium.

The intuition is quite simple: if the external effect is strong
enough to reduce the private rate of return to its minimum when the ag-
gregate stock of capital is zero then, no matter what the capital stock 1is
today, it does not pay private individuals to invest if they expect that
all the other agents will not. The example with a Cobb-Douglas production
function discussed in section 4 illustrates this possibility.

aAbnormal equilibria apart there are two important channels through
which the external factor ¥ may affect the aggregate production function
$(x) = Y(x)f(x). It can make the private rate of return m(x) = PpRYIE'(X)
increasing in x (at least over a certain range) and bounded away from ¢
even when x gets infinitely big. It can turn the ratio between total wages
and the aggregate stock of capital w(x) = ¥(x)[f{x)/x - f'(x)] into a non

decreasing function of the stock of capital itself. While both phenomena
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are somewhat linked to the fact that ¢ may now be convex (at least over
certain subsets of R;), exact equivalence holds only for particular
functional forms like the exponential one I use for the Cobb-Douglas
example. This is easily verified by working out the algebra of other
admissible pairs of production and externality functions. For example: (1)
f(x) = In(a+x) (a>1) and ¥(x) = <P (B<l) give ¢ neither concave nor convex,
r increasing first and then decreasing and w decreasing first, then
increasing, then decreasing again; (2) f(x) = a + bx and yY(x) = xB (B<1)
give ¢ neither concave nor convex, m increasing and w decreasing for all x;
(3) f(x) = xB (B<1l) and ¥(x) = a + bx give ¢ as in example (2) but now both
n and w are decreasing for small values of x and increasing for larger
ones! It is therefore opportune to make explicit assumptions about each one
of the three effects separately.

The exact behavior of n(x) = ¥(x)f'(x) for large values of x is hard
to theorize upon as the anedoctal evidence yields conflicting suggestions.
Learning-by-doing seems to end after a while; network externalities may
transform in (negative) congestion effects when total investment exceeds
certain levels, etc. On the other hand there is no evidence that the
positive benefits from the accumulation and dispersion of knowledge in
society are decreasing with its quantity and that private returns from
investment are being negatively affected by increases in the aggregate
stock of capital. Whichever of the two tendencies actually dominates in
reality is fortunately of no concern in this model as long as n(x) remains

appropriately bounded below. This is all T will assume:
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(H.3) The function ¥: Ry - R, is of class ¢%2, monotone increasing and
such that:
(i) m(x) = p(x)f'(x) > ¢ for all x = 0.

(ii) lim w(x) = () [f(x) - x+£'(x)] = 1 as x~0.

Assumptions (i) rules also out the type of equilibria described in
Proposition 3, while (ii) has only the technical function of removing the
steady state from the origin. The case in which the latter exists is des-
cribed with enough generality by the first example in Section 4.

I find reasonable to argue that external effects tend to make the
private rate of return on investment an increasing function of the ag-
gregate capital stock at low levels of the latter. This fact may have some
striking consequences on the structure of the equilibrium set whenever the
utility function is not very concave, i.e. whenever the function g(x) is

very elastic. Define the new function:

(7) J(y) = {gln(y)]?!

J is decreasing in y if n is increasing in it and 8G/dy is just
(J+yJ'). 8G/dy may therefore vanish somewhere in its domain and have
opposite signs over different subsets of the positive orthant. This occurs
if J's degree of elasticity is not uniformly below or above one. In these
circumstances there will exist some open subset of the real line over which
a function solving (6) is mot defined. Most typically this will destroy

uniqueness of equilibrium for that set of initial conditions. As the
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examples illustrate this is a far from remote possibility. It is formally

stated in my next hypothesis:

(H.4) The social production function ¢(x) and the saving function
S(w,n) are such that:
(i) there exists a pair of values 0 = x < X < «» such that n(x) =
P(x)f’'(x) is increasing in x for all xe[x,X];
(ii)there exists a pair of values x < y! < y? < ¥ such that the
function J(x) defined in (7) is more than unitary elastic for
vl < x < y? and less than unitary elastic for x < y! and
X > yz.
Proposition 2 has already proved that a wage rate with larger than
unitary elasticity to variations in the stock of capital is a necessary
condition for persistent growth. This is now a possible feature of the

aggregate production function ¢:

(H.5) The production function ¢ is such that for all x =z £ > 0 the
function w(x) = ¥(x)[f(x)/x - £'(x)] is increasing with lim w(x) = =

as X 7 «©,

The last part of this hypothesis is stronger than necessary. To
guarantee persistent growth, an asymptotic wage/investment ratio larger
than {lim J(x), x+»o} would suffice. I have chosen the form (H.5) only

because it minimizes notation, even if it may imply an ever increasing
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growth rate of the aggregate capital stock.

From now on I will assume that (H.1)-(H.3) are always true. Thus,
according to the arguments I have discussed so far, the introduction of ¥
can produce either of the following four different scenarios:

CASE 1: neither (H.4), nor (H.5) applies, i.e. w(x) and #(x) are still
decreasing in x.

CASE 2: (H.4) applies but (H.5) does not.

CASE 3: (H.5) applies but (H.4) does not.

CASE 4: both (H.4) and (H.5) apply.

Case 1 is not interesting: equilibrium paths still behave as in
Proposition 1. Case 2 may induce multiple equilibria, but none of them
display persistent growth and it can be easily understood from the study

of Case 4. 1 will therefore examine only the latter and Case 3.

For a given stock of capital x¢ %x > 0 the value X431 =y = 0 is an

equilibrium choice if:

®w(X)

(8) yI(y)

is satisfied. (H.3)(ii) has ruled out steady states at the origin, hence

x>0 is a steady state if:

(9) J(xF) = w(x™)

holds. I indicate the set of solutions to (9) as Fix(r); here 7 denotes
the application solving (8): it can be either a function from R, into

itself or a correspondence from R, into ®(R;), depending on (H.4). Local
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stability of the steady states can be characterized by means of the two
functions w and J. Let X*eFix(T) and assume the implicit function theorem
is satisfied in a neighborhood UxU of (x*,x*). With a small abuse of
notation I denote also with 7 the locally well defined C! function from U

into U solving (8). One has:

(10) 7' (x) = [w(x)+xe’ (x) ] [J(r(x))+r(x)I" (r(x))]!

for all (x,7(x))EUxU. One can check that {w(x)+xw'(x)] > 0 for all x's and
independently from (H.4) and (H.5). Clearly w(x) = J(7(x)} for

(x,7(X))eUxU, This proves:

Proposition 4. Assume {(H.1)-(H.3). Let x*eFix(r) and assume there exists an

open neighborhood U of x* such that [J(y)+yJ'(y)1»0 for yeU. Let r:U-U
solve 7(x)J(r(x)) = %w(x) for all x€U. Then 7 is ¢! and satisfies:
a) r is decreasing on U if [J(r(x))+r(x)-J(r(x))] < 0 and increasing
otherwise;
b) for xeU the slope of r is determined according to:

- 0<r'(x) <1 when 0 < w'(x) < J'(7(x)),

-1 < 7' (x) when -J(7(x))/x < J'(7(x)) < w'(x),

- -l < r(x)y <0 when [2w(x)+xw’'(x)] < -7(x)J'(r(X)),

r'(x) <-1 when J(r(x)) < -7(x)J'(r(x)) < [2w(x)+xw’'(x)].

The next Proposition characterizes the equilibria for Case 3:
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Proposition 5, Assume (H.1)-(H.3) and (H.5) are true. Then there exists a

¢! function 7:Ry~R, solving (8) and such that, for any initial condition

xg, the unique equilibrium is described as X¢4] = 7(x¢). The set Fix(r)

generically contains an even number of elements and it is non-empty

whenever J(x) > w(x) for some x€R,. Denote with x,,, the largest element

of Fix(r), (X,,4= 0 if Fix(r) is empty). Then:

a) all paths xpy1 = 7(x¢) with X0 < x,,, are uniformly bounded by x_ ..

and converge to some element of Fix(r);

b) all paths xp4] = 7(x¢) with xg > X;,, are monotonically increasing and

unbounded. If lim w(x)-g[n(x)] = X > 1 then they grow at the constant

rate X.

Proof. See Appendix.

A typical configuration is described in Figure 1. In Case 4 instead

we have a more complicate picture.

Proposition 6. Assume (H.1)-(H.5) are true. Then r:R~P(R,) is a correspon-

L = r 1(y?) and x2 = 77! (y')), and a function

dence over [x!,x?], (x
everywhere else. The set Fix(r) generically contains an even number of
elements and it is non-empty whenever J(x) > w(x) for some x€R,. Denote
again with x_,, its largest element. Two cases are possible:

a) (x! ,x%)NFix(r) = @ . Then:

for every initial condition xpeR; there exist a finite number of

equilibria {x¢)y-, solving (8), they are bounded and convergent to
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some element in Fix(7r) for xp<x,,, and grow asymptotically unbounded
if xg > Xpaxs

(x!, x2)nFix(7) = @

b.1) If there exists an interval A = [a,x?]c{x!,x?] and a selection
x(x) © 7(x), such that x(A) c A, and for all €A x(x) is not a
singleton, then:

- for every initial condition xg < a there exists a finite number of
equilibrium paths x4 € 7(x¢) all of which converge to an element
x*eFix(r);

- for every initial condition xpeA there exists a countable infinity
of equilibrium paths xp4] € 7(x¢) which remain in A for all t, and a
finite number of equilibrium paths x¢4] € 7(x¢) leaving A after a
finite number of periods: some of them converge to an element
x¥cFix(r) while some other may grow unbounded;

- for every initial condition xg > x? there exists a unique equi-
librium path X¢y4] = 7(Xy) converging to some x*eFix(r) if X0 < Xpax
and growing unbounded otherwise.

b.2) If either the interval A or the selection x as in b.1l) do not
exist then:

- for every xg < %} there exists a unique equilibrium X 41 = 7(Xg)
converging to some x*eFix(r);

- for every xpe[x!,x?] there exist a finite number of equilibria,
some of which converge to x*€Fix(r) while some others grow unbounded;
- for every xg > x® there exists a unique equilibrium converging to

x*eFix(r) if X0 $ X,,¢ and growing unbounded otherwise.
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Proof. See Appendix.

The phrasing of Proposition 6 is certainly not very attractive. 1
hope that Figures 2.a and 2.b, portraying cases b.l) and b.2) will help
the reader. Notice that, in order to get an infinity of equilibria, the
downward sloping portion of 7 has to cut the diagonal with a relatively
flat slope in order to make it possible for the interval A to contain its
own image x(A) under the selection. Multiplicity arises because, at each t
- 1,2,3,... there is more than one xt;] to be selected from x(x¢), and
randomization should occur in each period thereby creating a countable
infinity of different paths.

The economic content of Propositions 5 and 6 is very simple: a strong

enough external effect makes persistent growth possible if initial condi-

tions are appropriate. It also makes a poverty trap an unavoidable outcome

at others initial conditions. What I find striking is that, in Proposition
6, the set of initial conditions for which growth is an equilibrium is not
disjoint from the set of initial conditions for which permanent stagnation
is also an equilibrium. Contrary to many known cases, here the multiplicity
of equilibria implies completely different asymptotic behaviors for accu-
mulation paths beginning at the very same initial condition.

There is a large debate concerning the causes of cross countries dif-
ferences in growth and development performances and the remarkable dispa-
rities of current incomes per capita between countries that were very simi-
lar fifty or a hundred years ago. In Boldrin and Scheinkman [1988] we ad-

vanced an interpretation of this phenomenon, attributing it to the interp-
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lay between a learning by doing external effect and international compara-
tive advantages. The present model may be used to suggest a different
explanation. The (formally random) selection of one of the possible equi-
libria can be interpreted as if it is carried on by unspecified institu-
tions. The theory says that it is the interaction between the external ef-
fect and the different institutional mechanisms chosen to handle the multi-
plicity of equilibria that induces different development histories. This is
clearly a very weak argument as "institutional mechanisms" is just an empty
expression, (or an exogenous factor if you like). In the last section 1 try
to show that it may be given some meaning by looking at governments' fiscal

policies.
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4. Examples.

1 have chosen very familiar functional forms not because I find them
more interesting or empirically relevant but only to show that the assump-

tions of Propositions 5 and 6 are not particularly extravagant.

4.1 GCobb-Douglas Technology.

Preferences are given by: u(c,c’) = [(c)l'g + (c’)l'a]/(l-a) : the
technology is Y = A-(K)a(L)l'a, with A = (K/L)ﬁ. We have: g(m) = [1 +
)7, (k) = a+x*"F7! and w(x) = (1-a)+x**#~1  For ac(0,1l), o€(0,1) and B
= 0 assumptions (H.1)-(H.2) are satisfied and Propositions 1 and 2 apply.
When B(0,1-a) we obtain Case 1, to which Propositions 1 and 2 still apply.
Case 2 cannot arise in this example as long as ¢ is less than one.

When 8 > 1l-a, the social production function ¢(x) = x**# exhibits
increasing returns in capital alone and hypothesis (H.3)(1i) is satisfied;

(H.3)(ii) has been violated on purpose as I want a stationary state at the

origin. The implicit function G(x,y) = O deseribing the equilibrium paths

is:
(11) y - (L-a)x®*F«[1 + by?]"! = 0
where 1 have set: v = -(1-0)/0 < 0, b = o¥e(l,2), p = (atB-1)y < 0. As

Y(0)f' (0) = 0, the example satisfies Proposition 3 with &£ = 0: for every x
>0 {x,0,0,0,...) is always an equilibrium in this economy. To illustrate
Propositions 5 and 6 we have to distinguish between two cases.

When (l-a) < 8 < (1<gl‘1 Proposition 5 applies. The origin is always a
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stationary state. The only other point in Fix(r) is strictly positive and
satisfies:

(12) (1-a)+x¥*F=1 = 1 + bex?

It is easy to prove that it is unstable because when x satisfies (12) the
following inequalities are true:

(13) (l-a) (a+B)*x2"F~1 > (l-a)+x®*F71 =1 + bex? > 1 + b+ (1l+p)x”?

and the slope of the function r solving (11) is:

(14) (1-a) (atB)+x* F 1o [14b(1l+p)x? ]t

at x€Fix(r). Formula (14) also shows that 7’(x)-0 for x»0%. The function
r(x) is therefore as in Figure 3, where we have used the parameter values
a=.4, o=.5 and f=.7,.9 and 1.1 respectively. Notice that the interior
stationary state converges to zero as the magnitude of the external effect
increases, thereby reducing the size of the set of initial conditions that
would trap the economy into permanent underdevelopment.

Finally when a+8 > (l-g 1, one has (l4p) < 0 and r is now a cor-
respondence from x into y as in Case 4. In order to graph it we can study
the function x = #(y) which solves G(x,y) and is still well defined as
8G/8x = 0 for all x and y. This is:

(15) x = [y + bey?™2]el/(L-a))t/ (2t A)

With some algebra it can be verified that #(y) has a unique critical point
at y = [-b(l+p)]%/|#| and a unique interior fixed point v¥. 1t is decreas-
ing for y < ¥ and increasing for y > . The situation described in Proposi-
tion 6,b.1) arises here whenever y* is less than y¥. This is represented in
Figure 4. While it is impossible to compute analytically the set of

parameters at which multiplicity occurs, it is easy to do so numerically.
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For example all the following triples have open neighborhood in which (15)

is as in Figure 4: {a=.5, B=2, o=.1}, {a=.4, B=2, 0=.2), (a=.35, p=2.15,

o=.3).

4.2 Other Examples.

The choice of the Cobb-Douglas production function makes analytical
derivation simple and feasible but, obviously, introduces special features
that one may not find desirable. In particular: the aggregate production
function is a convex function of the stock of capital, the degenerate
equilibrium {x,0,0,...} is present and the "underdeveloped" stationary
state is at the origin. I will now show that all the relevant predictions
of the theory are retained also in a model economy where the special
characteristics of the Cobb Douglas production function are not present.

I select the production function to be CES, i.e. Y = AlKP + LP)1/7,
with pe(0,1), and the externality function to be A = (x* + 1)# with BeRr,.
One has: w(x) = %" 1+.(x* + 1) with e = (8 + (L-p)/p) > 0 and w(x) = (x* +
1) /x. The utility function is as in the previous example.

Once again for 8 = 0 (H.1) and (H.2) apply and the equilibria are as
in Propositions 1 and 2. Also, no matter how big 8 is, the limit of m(x)
for x going to zero is always infinity which implies that Proposition 3
cannot be applied to this example. In fact it is easy to verify, by inspec-
tion of G(x,y) as defined below in (16), that {x,0,0,...) is never an
equilibrium.

When 8 > 0 the external effect plays a role. Let me notice first

that, no matter how large B is the aggregate production function never
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exhibits global increasing returns: it is always concave for 0 =x=s
((1-p)/Bp]l'!? and convex otherwise. Instead, for any B > 0, both parts of
hypothesis (H.3) are satisfied. The implicit function G(x,y) is given by:
(16) y - (xf 4+ D[l 4+ yr et (yr+)fT )

which is, unfortunately, impossible to solve explicitly in the form y =
7(x). The "backward" equilibrium map x = #(y) can be computed but turns
out to be quite more complicated than in the first example. In particular
1 cannot obtain closed form solutions for its fixed points and critical
points. It is possible to see, nevertheless, that for g€(0,1) the function
w(x) is downward sloping with lim w(x) = =« for x » 0 and lim w(x) = 0 for
x - o persistent growth is therefore not possible in this case.

When B8 > 1 the wage rate becomes more than unitary elastic at high
levels of the stock of capital. In fact the function w(x) is now shaped
like a parabola, decreasing first and then increasing with lim w(X) = «
for both x~0 and x - «. Hypothesis (H.5) is therefore verified and either
Proposition 5 or Proposition 6 apply. It is remarkably difficult, though,
to characterize analytically the sets of parameter values at which the two
different propositions apply. This is because, while it is easy to see that
n(x) satisfies assumption (H.4)(i) for all g > 0, with x > 0 and X = =, it
is very difficult to compute the parameter values at which J(y) satisfies
the portion (H.4)(ii). Graphical inspection and numerical simulations show,
nevertheless, that J(0) = 1 and that lim J(y) = 1 for y + =. J(y) is there-
fore increasing for O<y<x and decreasing thereafter. Even if x can be com-
puted analytically the two points y! and y? cannot; I have only been able

to show that they exists at certain sets of parameter values. In such cases
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Proposition 6 applies exactly to this model and equilibrium correspondences

as depicted in Figure 2 emerge.
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5. Policy Implications and Conclusions.

The purpose of this section is very modest: I try to see if there are
fiscal policies that may eliminate the two undesirable features that the
external effect induces on the equilibria of this economy, i.e. the exis-
tence of a poverty trap and the multiplicity of alternative paths from a
common initial condition. I will not attempt to investigate the implica-
tions of any particular welfare function nor will T address the existence
of Pareto improving reallocations. I simply assume that growth is good and
stagnation and indeterminacy of equilibria are bad.

This is only apparently similar to the exercise carried on in Jones
and Manuelli (1990b): in that instance they start from a situation in
which, (for technological reasons), growth is not feasible no matter what
the initial conditions are and ask if there are distributive policies that
may induce it. In this contest growth is feasible, the externality being
its engine as opposed to a redistributive fiscal policy: T simply want to

see if the externality can be controlled and persistent growth retained.

5.1 Can Fiscal Policy Eliminate Poverty Traps?

I will consider first the situation described by Proposition 5. In
this case the poverty trap is composed of two pieces: (1) a purely tech-
nological one, say [0,«x}, where x is such that ¢(x) < x for all x < x and
$(x) > x for all x > k; and (2) a "market driven" piece [x,x,,,] where

growth would be feasible (i.e. ¢(x) > x for x€[x,x,,,]) but the distribu-

tion of income between labor and capital is not the appropriate one.
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Clearly x = 0 would often occur (e.g. in the CES case of section 4.2 for
values of p close enough to 1) but one cannot exclude « > 0, as the Cobb-
Douglas case confirms. In the latter technological environment the best
that a government may hope to achieve is to move x,,, as close as possible
to k. I will assume the central authority can use income taxes and lump-sum
transfers and is forced to balance payments and receipts period by peried.
What should be taxed and what should be subsidized? and is the objective
achievable? Well it depends, and it depends.

Given the nature of the externality it may seem obvious to expect
that investments should be subsidized. When growth, (as opposed to alloca-
tional efficiency) is the target, this is not necessarily true because: 1)
in order to subsidize investments the government will have to tax labor
income, thereby reducing the base of accumulation, ii) the receipts from
current labor income {[¢(x)[f(x)-xf'(x)]) may not be enough to make up for
the required amount {¢'(x)f(x)x} of investment subsidies if the social
production function is convex. Let me try to put things a bit more formal-
ly.

I will assume the government has the following instruments: it can tax
or subsidize either type of incomes at the constant rates 4, and 6, and can
lump-sum transfer income to the youngs, for an amount V. The balanced
budget implies V = #y¥(x)f’'(x)x, where ¢ is the rate of capital income taxa-
tion and the taxes on wages have been incorporated in V. This is because
labor supply is assumed exogenous in the model. Also, I am not considering
the case in which the government can lump-sum transfer income to capital

owners because it is easy to see that it will never helps to increase
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growth rates. The new dynamic equilibrium condition is:

(17) vy o= [W)f(x) -(1-O)xp(x)E ()] gld(y) " (y)(1-8)]

Inspection of (17) reveals that it is most difficult that (except for
trivial cases like the logarithmic utility function) some real value of §
exists such that s and %, ,, coincide: a high positive value of ¢ pushes up
the w(x) function but, contrary to what would be needed, increases also the
function J(y). Which one of the two effects is dominant depends on the
relative elasticities. As I will show in a moment by using the Cobb-Douglas
example, it is unlikely that for standard functional forms a negative value
of 6 would be recommended. On the other hand the numerical example also
seems to suggest that to adopt an active fiscal policy does not really make
a big difference in this situation, as the reduction in the size of the
poverty trap that can be achieved is quite small. For the Cobb-Douglas

case the equilibrium condition (l7) reads:

(18) y = (1 -a(l-6)]+x*"F+[1 + b(l-4)cy”] !

The behavior of (18) at the chosen set of parameter values is typical
of most others, less easy to compute cases. I have set a=.5, p=1.5, 0=.5.
An interior steady state solves: [1-.5(1-§)]+x* - x -2/(1-§) = 0. Here
x = 1 and for #=0 one has x,,, = 3.23. For negative values of § the value
of x,,, increases, thereby worsening the poverty trap. For positive values

of § instead x,,, decreases up to § = .3, where %,,, = 3.00. At larger

X
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values of # the negative impact on m of additional taxation more than com-
pensates the positive impact on wages and income redistribution is not
beneficial for growth. All in all a taxation of about 30% on capital income
with relative transfer of the receipts to wage earners reduces the size of
the poverty trap of only 10%. Not a startling results. Indeed when the

size of the external effect is brought within more empirically reasonable
bounds the positive impact of taxation is even smaller.

Obviously the result is purely suggestive as 1 am not imposing empiri-
cally relevant restrictions on parameter values nor I am taking into
account the distortions that taxation would induce when labor supply is
endogenous and the consequential effects on the utility index].

In the next subsection I show that, at least in the Cobb-Douglas case

there is a relatively simple nonlinear tax scheme that eliminates the

multiplicity of equilibria. It is a matter of algebra to apply it to the
present case to verify that also that tax scheme does not do any better
than the simple one I have just examined. Notice that in the nonlinear tax
scheme labour income is taxed at low level of x to subsidize the return on
capital.

Naturally I cannot exclude that other, more sophisticated fiscal
policies may be able to do wonder in this model. I have only pointed out
that simple ones do not seem to.

5.2 Can Fiscal Policy Eliminate Indeterminacy?

I will now ask if a fiscal policy with the same characteristics of

the one just studied may be useful to eliminate the indeterminacy of
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equilibria described in Proposition 6. Assume therefore that case b.1) of

that proposition is true, the tax scheme will be effective if the elas-

ticity of the function J(y) is reduced (in absolute value) by the introduc-

tion of the tax. Let g, denote the function glyp(y)f' (y)(1-8)] for 4 = 0.

Then by manipulating the first derivative of J(y) one can see that the

elasticity will be reduced whenever the following inequality holds over the

appropriate interval:

(19)

(gg/8')+(1-8) < (gg/8)°

Again this condition is not easily satisfied, in general, for real

values of # as can be seen by considering the often occurring case in which

g(n) is a concave function. In the Cobb-Douglas case, one can use (19) to

check when 8G/dy would be uniformly positive. The condition 1is y‘p! >

[b(|1+p])]+(1-8)¢. In this case

A more careful examination
that what really matters is the
"wrong" equilibrium. Assume the

to charge a nonlinear tax rate,

a negative value of § would help.

of the behavior of J(y), though, shows
"threat" associated to the choice of the
government has the informational ability

dependent on the level of the stock of

capital in existence when the tax is actually levied, say § = §(x). Then

if: ' (y)/[1-6(y)] > m' (y)/n(y)

is satisfied for all the relevant y’'s the

sign of 38J/3dy will always be positive. While finding a #(x) that satisfies

the former requisite is a very difficult problem the general case, it has a

simple solution for the Cobb-Douglas economy. The following tax rule would

do: 6(y) = 1 - yex ¥ with the two parameters 7y and v appropriately chosen
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in order to satisfy the following two restrictions:
1) set v such that (aw)l/“ < XQp;
2) set v such that a + 8 - 1 < v < (a + B - /(1-0).

I have imposed condition 1) to avoid an infinitely large and negative
tax for small values of x. Nevertheless 1) will work only when the accumu-
lation path is monotone increasing. If xg is so small that the equilibrium
is in any case going to zero, than be it! The left hand side of condition
2) guarantees that 8J/8y is positive, i.e. it realizes the threat, while
the right hand side makes sure that the threat is not too strong, i.e. it
guarantees that permanent growth is possible (w(x) asymptotically dominates
J(x)). Obviously there is no reasons to expect that the suggested scheme
would eliminate the poverty trap together with multiplicity. Even worse it
may add other fixed points to (6). Nevertheless my numerical exercises
suggest that it does not and, indeed, it may somewhat reduce the size of
the poverty trap when y is chosen according to rule 1) and v is set close

to its lower bound4>

5.3. Conclusions.

I have shown that, in models where agents live for a finite number of
periods and leave no bequests, persistent growth is not possible with non-
increasing returns in production. I have also shown that instead the intro-
duction of an external effect of the type suggested in Romer [1986] makes
persistent growth possible. Strictly speaking this does not require the
aggregate production function to display increasing returns in the stock of

capital: a non decreasing wage/investment ratio and a sufficiently bounded
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rate of return on investment are the necessary and sufficient requisites.

I have also considered other implications of the external effect for
the set of dynamic equilibria. Under reasonably general assumptions on
technology and preferences I am able to fully characterize the set of
equilibria for this model economy. T have shown accordingly that, together
with the growth equilibria, it contains stagnation equilibria converging to
some low level stationary state and oscillatory equilibria moving more or
less randomly in some bounded region. In the latter case I have in fact
proved that, for a given initial condition, there exists an infinity of
such equilibria. Finally I have shown that there exist non trivial sets of
initial conditions to which one can associate an infinity of equilibrium
paths. The equilibria belonging to this infinite set may have remarkably
distinct asymptotic behaviors; in particular, for a given initial condi-
tion, there may be some equilibria converging to a low income stationary
state and some others displaying persistent growth. I have suggested that
this phenomenon may be associated to the existence of countries that
starting from very similar initial conditions have subsequently followed
very distinct development paths.

Finally I have briefly studied the possibility of using a redistribu-
tive fiscal policy to alleviate the negative effects of the externality. I
have shown that, apparently, little can be done to eliminate poverty traps
and that external financing or aids might therefore be appropriate, whereas
fiscal policy has some power to eliminate multiplicity of equilibria. In
particular I show that, for a parametric class of economies, there exists a

nonlinear tax scheme that eliminates the multiplicity of equilibria.
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Appendix.

Proof of Proposition 1.

To show the existence of 7 apply the implicit function theorem to G(x,y) as
defined in (5). Both 8G/3dx and 8G/dy are continuous and never vanish for
all x and y > 0. They are of opposite signs which also implies that 7 is
monotone increasing. Given xg the equilibrium path is then unique and
described by the iterates of 7.
If £(0) = O the origin is a stationary point, otherwise it is not. From (5)
it is easy to see that any strictly positive stationary state has to
satisfy J(x) = w(x). The l.h.s of the latter has been defined in (7) and is
monotone increasing (as mn(x) is decreasing when f is concave) and has a
value of at most one at the origin. Part c) of (H.2) together with the fact
that lim w(x) = 0 as x-»= (again, because f is concave) imply that w(x)
intersects J{(x) at one and only one value x>0,
As 7 is differentiable we can compute its derivative at the point x=x*,
this is:
T'(x) = -x-f"-g/[Ll-x-f"+g"/g]

where all functions on the r.h.s. are evaluated at x* and use has been made
of the fact that x* is the interior steady state. As g’>0 and f"<0 the
formula gives:

7'({x) < -x+f"sg = xefrejwx)]"! <1

where the last inequality follows from the hypothesis that w(x) is decreas-
ing. This proves that the interior stationary state is locally asymptoti-
cally stable. Given that it is unique and r is increasing we have 7(X)>x
for all x<x* and 7(x)<x for all x>x*, which proves that X" is globally
stable, Q.E.D.

Proof of Proposition 2.

Let {xt)f~o be an equilibrium sequence along which x¢-= with t-ow. We need
to prove that its feasibility leads to a contradiction. Feasibility implies
that, for large enough t, Xr412xy must hold and therefore one can always
extract from {Xt}g=0 a monotone increasing subsequence. If we define
At=Xp4+1/¥¢ the bounds 1<i <b will always held. The dynamic equilibrium
condition at time t=T-1 is:

X4l = Wg + ((T-l)/T)owt_lnf' (Xt) + o .+(1/T)‘Wt,T+1'(Hg;%f' (Xt_h))

Dividing both sides by x¢ and rearranging one gets:

Xepl/Xe = o(xg) + Zf;%((T-i)/T)'(Hi~=1)\t-j)'l'(ﬁé;éf'(Xt-h)-w(xt-i)-

Before taking the limit of the r.h.s. for x¢_.i-=, for i = 0,1,...,T-1,
notice that as x gets large the following bounds hold:
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(Hﬁ:lAt_j)—l < 1 for all i;
(MLZ3E' (xe.p)) < bP < @ for all i.

Therefore the limit of the r.h.s. for xy_{»= is bounded above by:
w(xg) + 2121 ((T-1)/T) b ew(xe.g)
Finally, using the fact that w(x)~0 as x-= and the assumption that Ag > 1

we have:

1< A < lim o(xg) + §T21((T-1)/T) +b¥+lim w(xp_j) = O

i=1

Xy 7@ Xy -7

Q.E.D.

Proof of Proposition 5.

Our assumptions imply that 4G/dx and 38G/dy are as in Proposition 1, 7
therefore exists, is differentiable and monotone increasing. Also 7(0) > O
because of (H.3)(ii). Any x€Fix(r) has to satisfy J(x) = w(x). We have
assumed ((H.3)(ii)) that xw(x) » 1 for x-0, hence lim w(x) = « for x-0, and
w(x) has to be decreasing in a neighborhood of the origin. (H.5) says it
is increasing for x > ¥, thus it must have at least one critical point
between zero and ¥. As for J(x) it is bounded below by one and above by
some finite number because of (H.3)(i): hence either it always lies below
w(x) or it crosses it at least twice if, for some x>0 J(x) > w({x). To see
that the number of elements in Fix(r) is even one can use standard results
from index theory. More plainly consider the following three facts: 1) at
X,in T has to have a slope less than one because 7(0) > 0, 2) at X .x T
must have a slope larger than one because w(x) is larger than J(x) for all
X > X,,, (use Propesition 4), 3) r is continuous (in fact differentiable).
Q.E.D.

X

Proof of Proposition 6,

Again it is trivial to apply the implicit function theorem and verify that
r is not a function between x! and x? and a function everywhere else. The
same arguments used in the proof to Proposition 5 can be used to show that
either Fix(r) is empty or it contains an even number of elements. In fact
part (i) of assumption (H.4) does not introduce any modification in the
asymptotic behavior of J(x) and w(x), which is all that matter for Fix(r).
The simplest way to prove that for xe[x!,x?] r(x) has to contain at least
three elements, is to consider the function 6(y) = x which solves (6) and
is well defined and continuously differentiable over the whole real line.
Then 6'(y') = 8'(y?) = 0 and §(y) is increasing for values of y outside
[yl,yz] and decreasing inside it. Given that r"1(y) = 8(y) the statement is
proved.

The details of the statements in a) and b) are trivial and tedious to
prove. I will only sketch the essentials.

That xQ > X,.x 15 required in a) to get persistent growth is due to the
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fact that, otherwise, 7(x) < x will hold for some XE[x(,Xp.x]-
To see that in b.1l) the requirements imposed on the interval A and the
selection x are sufficient to produce an infinity of equilibria consider
the procedure with which the equilibria are constructed. For x(€A x(x¢)
contains at least two elements belonging to A, to each one of them as-
sociate a new equilibrium (say x'g41 for i =1,2). Then X(x%+1) has the
same properties as x(x¢) and the same procedure can be repeated for all t =
t+1, t+2, ... . The number of equilibria at each t is therefore bounded
below by 2% which goes to infinity with t.
This procedure cannot be replicated whenever one of the two conditions is
violated, either because the equilibrium would leave the interval [x!,x?]
after a finite number of period or because x(x) would contain only one
element from a certain period onward. This yields the implications given in
b.2) as 7(x) is monotone increasing outside the interval [x',x?]. Finally
one can see that, exactly because the selection x(x) may be a strict
subset of 7(x), for xe[x!,x?] there may be yer(x) which does not belong to
4. The equilibria departing from such values would also leave the interval
[x!,x?] after a finite number of period. In that case they either converge
to some element in Fix(r) or grow unbounded. That the latter is a pos-
sibility follows from the fact that x,,,€[x!,x*] may obtain, in which case
the highest among the upward sloping branches of 7(x) must satisfy r(x) > x
for all xe[x!,x?]. This is exactly the case I have portrayed in Figure 2.
Q.E.D.



39

1. Exception made for the extension to the general T-period model, Proposi-
tion 2 is identical to a result reported in a recent paper by Jones and
Manuelli [1990b] of which I was unaware until July 1990, when a version of
the present paper was presented at the Northwestern summer conference.

2. The ifs are needed in force of the arguments discussed in Jones and
Manuelli [1990b]. Beside bequests they study other two ways out of the no-
growth result for convex OLG models: income transfers from the young to the
old by means of income taxation and a two sector model where the relative
price of capital decreases asymptotically enough to compensate for the slow
growth rate of the wage bill.

3. A more detailed analysis is being carried on in Boldrin [1991].
4. 1 have omitted this part together with a more extended discussion of

taxation issues to reduce an already lengthy paper. Boldrin [1991] will
contain these and other results.
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