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Abstract We study a class of two—player continuous time stochastic games in which
agents can make (costly) discrete or discontinuous changes in the variables that affect
their payoffs. It is shown that in these games there are Markov perfect equilibria of
the two-sided (s,S) rule type. In such equilibria at a critical low state (resp. high
state) player 1 (resp. 2) effects a discrete change in the environment. In some of these
equilibria either or both players may be passive. On account of the presence of fixed
costs (to discrete changes) the payoffs are non—convex and hence standard existence
arguments fail. We prove that the best response map satisfies a surprisingly strong
monotonicity condition and use this to establish the existence of Markov perfect
equilibria. The first—best solution is also a two-sided (s,S) rule but the symmetric
first-best solution has a wider s-S band than the symmetric Markovian equilibria. A
further contribution of this paper is the development of a framework for continuous time
games which allows players to react instantaneously to their opponent’s moves. We
mention various applications of the theory and discuss in detail an application to
product innovations.






1. Introduction

In many economic applications, agents can make discrete or discontinuous changes
in variables that affect their payoffs. Such changes may complement continuous changes:
for example, a firm can decide to introduce an entirely new model of a product that it
has on the market rather than make minor improvements or modifications in it. A
similar problem is encountered in the decision between learning more about a currently
used technology or discovering a new and totally unknown one, (Jovanovic-Rob (1990)).
Similarly it is important to consider discontinuous adjustments through devaluations in
foreign exchange markets as an alternative to open market interventions. Yet another
example of discrete change is the entry and exit decisions of a firm (Dixit (1989b)). A
final example is the choice faced by an agent between making discrete price changes and
letting relative prices change continuously on account of inflation (Caplin—Sheshinski
(1988)). Unfortunately the distinction between continuous and discrete changes is
necessarily absent from discrete time models! while this difference can be seen
immediately and crisply in a continuous time formulation. In the latter framework one
can think of continuous changes as determining the rate of change of the economic
environment whereas discrete changes determine "jumps" in such an environment. In
this paper we study a continruous time stochastic model whose outstanding characteristic
is that agents can make discontinuous changes in the environment.

In many applications in which a consideration of discrete change is important,
such changes are made in a strategic setting. For instance each of the examples cited
above is naturally embedded in models in which there are only a few economic agents
who behave strategically?. This suggests the importance of a game theoretic formulation
for "discontinuous action" models. Since the basic problem involves changes in the game
environment, a purely repeated game model (in which the game environment is
unchanging) obviously cannot be employed. The appropriate framework is that of a
stochastic (or in other usage, dynamic or Markovian) game. We analyze a general
stochastic game (see Partharasarathy (1973) or Fudenberg-Tirole (1989) for a description
of such games) with the further specification that players’ actions have discrete effects
on the state variable of the game.

It is well known that in continuous time games in which players are allowed to
make instantaneous moves, problems of consistency in the description of outcomes arise
(see Stinchcombe (1989) for a number of examples). We analyze here a game in which
discrete changes are costly (in a sense which will be made precise later). We then
introduce a framework for a continuous time game which is flexible enough to allow



players to react instantaneously to their opponents’ moves. This framework may be of
more general interest in the consistent analysis of continuous time games.

1.2 Description of the Game and Results

A real-valued state variable X(t) (the game environment) evolves according to
some exogeneous stochastic process. Either of two players can at any time of their
choosing change the state by a discrete and arbitrary amount. There is a fixed cost to
making any such change. Players get per period returns which have two components:
there is a direct payoff which depends on the state and from this is subtracted the costs
of any discrete action undertaken. The critical assumption made on the direct payoffs is
that they are monotone: player 1’s payoff increases in the state, while that of player 2
decreases. A strategy of a player specifies a set of stopping times and associated jump
sizes. We say that a strategy is Markovian if it conditions only on the payoff relevant
variable X. Note incidentally that on account of the fixed cost the (gross of cost)
return function of a player is necessarily non—concave (and this often has non—existence
implications for Nash equilibria of course).

Our main theorems (Theorem 5.4 and 5.5) say: there is a class of simple Markov
perfect equilibria in the stochastic game which are characterized by two-sided (s,S)
rules. In such an equilibrium the strategies of the two players are completely described
by four parameters: L,L+§ (for player 1) and U,U-ux (for player 2). If the state is ever
at or below L, player 1 jumps it up to L+48, whereas if it ever gets upto U or above,
player 2 jumps it down to U—u. Of course L < L+8 < U and L < U < U.

Figure 1

The parameters are determined by the primitives of the game (the fixed costs and
period payoffs): by way of illustration we explicitly compute these parameters in some
special cases (in which the flow payoffs are linear). We further show that it is not
essential that both players be "active" in equilibrium. There are equilibria in which one
or more players never take any discrete actions, i.e it may be the case for instance that
#=0 and L=E, where E is the minimum value of the state.

There are two results preliminary to the main theorems which are of independent
interest. The first (Theorem 4.0) establishes that the best response to a one-sided (s,S5)
rule is a one-sided (s,S) rule. An equivalent way of stating that result is: the optimal
policy of a single agent, whose payoffs are any monotone increasing function and who is



faced with exogeneous two-sided uncertainty and an impulse barrier, is a (s,S} rule.
This is a result new to the optimal control literature (the previous results were for the
special case of linear flow payoffs (see Harrison et.al. (1983) and Constantanides—Richard
(1978)). The second result is a monotonicity lemma. Recall that a player’s best
response problem is non—convex. Hence in games with discrete actions one cannot
appeal to standard fixed point arguments. We define instead a partial order on the set
of player strategies and the monotonicity lemma establishes that the best response
respects this order. Equilibrium can then be derived by appealing to Tarski’s fixed
point theorem for monotone maps. The construction may be of more general interest.

We further show that the first-best solution is also a two-sided (s,S) rule. We
compare the symmetric first-best solution with the symmetric Markov—perfect
equilibrium. A priori there is no reason to expect a systematic comparison between
these two solutions. The objectives are different in the two cases (the first-best
internalises all returns and costs) and the optimization problems are different too {the
first—best is unconstrained whereas the equilibrium best-response is against an exogeneous
impulse barrier). Consider the symmetric first-best solution (in which a discrete action
is taken whenever the state gets down to L or up to |Lc|’ L. <0, and the action is

to move the state to 0). The corresponding symmetric Markov perfect equilibria is one
in which the state is "jumped" whenever it gets below L or above ILnl and then it is

moved to 0.4 Theorem 6.2 establishes that L, < L, ie that the (s,S) band is wider

in the first—best than in equilibrium. This immediately implies that the environment of
the game is more volatile under non—cooperative play than under first-best.

A final contribution of this paper is the introduction of a general framework for
continuous time games with discrete instantaneous actions. Our formalisation involves
the consideration of the play of an extensive form repeated game "within every instant".
Such a device allows a consistent modelling of instantaneous reactions to other players’
moves. Moreover the fact that moves are costly allows us to assign payoffs in a natural
way to inconsistent outcomes. A detailed discussion of these issues is contained in
Appendix 1.

1.3 An Application to Product Innovation

Our original interest in the general problem was sparked by a desire to understand
the ongoing nature of product innovations. We discuss in some detail how such a
problem can be analyzed within the game form described above.



Economists going back to Schumpeter have emphasized a view that innovations are
once for all breaks with the past.5 Consequently, much of the industrial organization
literature has analyzed innovative activity by way of "the race for a single patent".t
Historical and empirical evidence points, on the other hand, to the great importance of
ongoing change. A large portion of productivity growth or quality improvement has
often come from a cumulation of small changes to original technologies.” In fact the
intensity of competition in product quality is a proof of the fact that the innovation
process is an ongoing one. It is this product quality competition by which an initial
technology is transformed into a spectrum of differentiated products. Such quality
competition is probably the best explanation for the great imperfection of patent
protection in practice.®

We shall now show why the game described above is a good model for this process
of repeated innovations. Specifically consider a model in which each of two competing
firms in a market innovate by introducing quality upgrades. The increase in product
quality can be by an arbitrary amount and is achieved at some cost. The most
important characteristic of this cost is that a fixed minimum amount has to be paid
regardless of the magnitude of the quality improvement (on account of design changes,
advertising etc.). Products earn current returns based on the two quality levels (for
example, profits from either Cournot or Bertrand competition over the differentiated
products). Let us suppose that current returns depend solely on relative qualities, i.e.,
that a firm’s flow profits depend solely on how much better (or worse) its product is
relative to that of the competition. This simplification implies that differences in
quality alone is the payoff relevant variable. Further make the natural assumption that
market demand has some random component. Interpreting differences in quality as the
state and quality improvements as a discrete activity we are in the framework of the
general stochastic game.

In the context of this application, the observable prediction of the two sided (s,5)
rule equilibrium is that the payoff relevant quality difference will be seen to move
continuously under the effect of random shocks until the relative quality of one of the
products deteriorates so much that the laggard initiates a discrete, discontinuous
improvement. Such activity may be interpreted as the emergence of "quality ladders".
The interesting feature of such a ladder is that the gradualness of innovation
dissemination is driven not by technological factors, but purely by strategic factors.
Further there is, in such an equilibrium, no permanent leader or follower: the role of the



market technological leader alternates. Of course it may be the case that one of the
firms is passive. In this case we have a "perpetual leader" which makes all the
innovations in the industry.

Section 2 sets up the model, Section 3 contains illustrative examples while
Sections 4 and 5 analyze the best response and equilibrium issues. In Section 6 we
consider the cartel’s problem. Section 7 concludes.

2. The Model

2.1 A Description of the Game

Let E ¢ R. E will be the state space. We shall consider either of two
specifications for E. In the first specification we take E = R and refer to this as the
non—compact domain case. Alternatively we shall take E = [E,E], = < E < E < o,

and refer to this as the compact domain case.? The index i will refer to a generic
player. In all statements pertaining to i, the index j will refer to the other player.
Time is continuous and the horizon is infinite.

Assume until further notice that E=R. A state variable, the environment of the
game, evolves as a joint consequence of the actions of both players and some
underlying Markov process. In particular, players can make discontinuous and
instantaneous changes in the game environment (at some cost). This is modelled in the
following manner; at any instant a player can "jump" the state by an (arbitrary) finite
amount of his choosing. Let the jump by player i at instant s be denoted £(s). Let

At (respectively Bt) denote the (random) set of times before t at which player 1

(respectively 2) jumps. In the absence of any intervention by either player the
environment at any instant changes according to the (infinitesimal) change in some
exogeneous (real valued) process [Z(t): t20]. Let (Q,F) be a measurable space with
(F,);5q» an increasing family of o fields generated by [Z{t): t20], F, C F, for every t.

Call the environment of the game at time t, X(t). The evolution of this process can
then be written ast0

X(t) = 2(t) + [ESEAtEI(S) + ESEBt 52(5)] (1)

We make the following assumption on the exogeneous environment:



(A0) The stochastic process [Z(t): t>0] is a Brownian motion with drift—variance (m,o2).

A convenient restriction to consider, although inessential for us, is that m = 0,
i.e., exogenous factors on average leave the game environment unchanged.

The direct flow payoffs of each player depend on the state variable and will be
denoted r;(x). Purely for notational purposes we make throughout a symmetry

assumption on this payoff function. It should be understood (and the reader can easily
check this) that none of the analysis that follows is contingent on this assumption:

(A1) Symmetry: 1, and I; are symmetric, i.e. ri(x) = rj(—x) for all x € R.

Let us denote the returns of players 1 and 2 as r(x) and r(—x) respectively. The
only critical assumption on returns will be:

(A2) Monotonicity: 1 is strictly increasing in X and absolutely continuous.

When the domain of the state variable is R we shall employ the following
boundary conditions:!!

(A3) i) )l&m (x) = 1<o
(ii) iim x) = —o

A principal characteristic of discrete changes (in the game environment)is the fact
that even small changes require a minimal outlay of resources. The most natural way
to model such phenomenon would be to assume that there is a fixed cost to any
discontinuous act. Let ¢({) denote the cost to a discrete change of amount £ # 0. We
assume for simplicity that the only cost is a fixed cost:!2

(A4) c(é) = c,>0if {40
= 0if£=0

Note that in the pure fixed cost case,(A4),player 1 can make the state arbitrarily
large (which he prefers) at no extra cost (and similarly 2 can make the state arbitrarily
small at no extra cost). Indeed as single decision makers this is exactly what they
would attempt to do.

2.2 Histories and Strategies

The continuous time formulation of the stochastic game, although natural and



simplifying from several viewpoints, however presents substantial technical problems in
specifying admissible strategies and outcomes. In Appendix 1 we present a formal
development of these issues and restrict ourselves in this sub-section to a largely
informal discussion. There are two principal complexities:

2.2.1 No "Next Instant." There is no "next instant after t." This is problematical
when player i moves at instant t and j wishes to react to i’s action "as soon as
possible.” To allow for such instantaneous reactions we will consider an extended
definition of "time," which admits "reactions within an instant." At every instant t,
within the instant firms can act countably often and in essence play an infinitely
repeated game. "Time" then is a two variable index: the first component of it is "real"
time and the second the number of the move in the extensive form game which takes
place in that instant. The notation will be 7 = (Tl,'rz). The "real" time component

will be interchangeably denoted t. So, the change in the state at instant t is defined as

X(t) - X(t-) = 3 tEI(T) + I &) (2)

= =

Of course given that there is a fixed cost to be paid whenever { # 0, in a best
response, only a finite number of potential action opportunities within the
instant are actually used. In Appendix 1, we develop formally the interpretation of time
and define extended o-fields and stochastic processes for this time index. Notice
incidentally, that if the infinite sum in (2) is not convergent we merely say the game
terminates at t (with negative infinite payoffs to the player who made infinitely many
moves).

2.2.2 Consistent Outcomes. A partial history at "time" 7 is a description of activity

for all s < 7,, and moves within an instant 7; up to the current one (72) (see

1!
Appendix 1 for details). An admissible strategy is just a prescription of action at all
such nodes which only use available information (are progressively measurable). Let 7,

i = 1,2 denote a pair of such strategies. An outcome is defined (as in (1)) by

X(r) = Z(r) + fmﬁ“” * 2 ) (3)

The series in (3) may of course not be convergent as., i.e. for some environments
there may not be consistent outcomes. If X(t) is not well-defined for some environment
because a countable number of actions are clustered around some instant T < t, we say
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that this is payoff equivalent to saying that the game terminates at T with lifetime
payoffs, in this environment, of — ». (In Appendix 1 we formalize this.)

The lifetime payoffs for a pair of strategies 73,0 is given by

T

-6t
Wj(ai,aj)(x) = E, { 6J ri(xs)e_&ds ~ ¥ ({n)e 1} (4)
0 T

where T is the termination date (possibly =) and T, are the dates of player i’s discrete

actions; both of these random variables have distributions generated by the strategies.
Further, x is the initial state.

2.3 Markovian Strategies and Markov Perfect Equilibrium

At any "time" 7, the payoff relevant variable is X(7) alone. A player follows a
Markovian strategy if at each moment he looks at the current value of X to determine
whether he acts and by how much. Hence a Markovian strategy can be identified with
a measurable function g2 E = R. We shall understand g(x) = x to mean "no action."

*
A Markov Perfect Equilibrium (MPE) is a pair of Markovian strategies g, such

that
* X

*

Wl.(gj,gj)(x) > Wj(gj’gj)(x)’ for all x, i & Markovian g, (5)
From hereon we restrict attention to Markovian strategies and analyze MPE. Of

course it is easy to show that in our model MPE continue to be subgame perfect

equilibria when all admissible strategies are considered.

2.4 An Application to Product Innovations

In this section we use the product innovation problem that was discussed in the
introduction to motivate the assumptions (A1) — (A4). Quality or technology level or
the attributes of firm i’s product is given by the single dimensional payoff relevant
variable Yi € R. At any time, a firm can change this quality by an arbitrary discrete

amount 13 (after paying some cost). Additionally, the payoff characteristics of i’s

product may change randomly, through shifts in market demand. This exogeneous
variable is denoted Zi' Hence, i’s payoff relevant quality variable is given by
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Y(0) = z(0) + T ¢(7) (6)
rlgt

Relative quality (from i’s viewpoint) will be denoted by Y, — Yj = X, Its

evolution is described by:

X() = (30 -20] + (3 _§) - 3 gfn) (")

15 t 'rlgt
Given qualities or product attributes, Yi’ firms make production or pricing

decisions. To concentrate attention on competition along the quality dimension, it will
be convenient to employ a reduced form flow payoff which depends only on the two
quality levels. One could imagine that the firms are Cournot or Bertrand competitors
in the market and the flow payoffs correspond to the (one—period) Cournot or Bertrand
profits. Consider the following payoff assumption that says the flow payoffs only depend
on differences in quality:

(A5) the flow payoffs are r(Y; - Yj) i=12

Although (A5) clearly precludes applications to certain products or industries where
scale effects are important, there are many examples in the product differentiation
literature where (A5) is satisfied.t4 The monotonicity assumption (A3) is now
immediate since all it says is that firm i’s (Cournot or Bertrand) profits are higher the
better its product relative to j’s. The upper bound on profits follows if we assume that
the market size never gets unbounded. The unboundedness of losses is more difficult to
justify in this example but would hold if the quality laggard produced an unbounded
quantity in a Cournot equilibrium. If we assume that each firm’s exogeneous demand is
driven by a Brownian motion, then from (7) and (A5) it follows that relative quality,
X, is also driven by such a process and serves as the "state variable" for this

problem. 15

3.  Some Examples

Before we proceed to the general analysis of Sections 4 and 5 let us consider three
simple examples. These examples will illustrate the theorems that follow. In each of
these examples we make some special simplifying assumptions that allow us to compute
the equilibria of the game. Throughout E = R.
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Example 3.1  1{x) = x and Z(t) is a deterministic process with 7 =0

Example 3.1 analyzes a trivial deterministic law of motion which could be thought
of as an extremely simple Brownian motion with m=0 and v=0. We claim that the
following strategies constitute the omly Markov-perfect equilibria in the game:

* ¥ * * *
Take any pair (U ,L ) satisfying U - L = <o Player 1 acts iff X < L and

* * *
then jumps the state to U . Player 2 acts iffl X > U and then jumps the state to L .

Consider player 1's best response problem. He clearly does not want to Jump the
state beyond U If he jumps at all his best option is to move the state to U A
discrete move at cost is worthwhile only if the current state is sufficiently payoff—poor.
The point of indifference is precisely L', The result is a two-sided (s,S) rule
equilibrium. A series of simple arguments should convince the reader that the above
conditions are also necessary for an equilibrium. Note that the band width, U - L is
increasing in the fixed costs. Also note that the first-best (with flow payoffs r(x) +
r(-x)) is never to make discrete changes.

Example 3.2  r(x) = 1 for x>0, r(x) = 0 when x<0 and Z{t) is a deterministic
process with 7 = 1.

This example is also defined for a trivial Brownian motion, with v=0 and m=1.
The flow payoffs are only weakly monotone; this simplifies the analysis but is not
crucial to the example. Indeed, at some analytical cost, one could use here the linear
returns specification of Examples 3.1 and 3.3. The only Markov perfect equilibria of
this game are:

*
Case 1: ¢y ¢ 1. Player 1 acts iff X < L and then jumps the state to X =
* *
1 where L is defined by eéL =1-c, Player 2 never acts.
Case 2: o > 1. Neither player acts.

That the strategies of case 1 form an equilibrium can be checked directly: suppose
player 2 is a passive player. If player 1 ever jumps he obviously wants to jump the
state to some positive number, say X=1. The question is: will he ever act and if yes,
what states will he act at? The maximized returns (or value function) must be
increasing in X and hence the jumping region must be of the form (—w,L). It is clear
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that an immediate jump yields the player 1 — ¢, whereas waiting for the state to

improve yields lifetime returns of eéx if the current state is x < 0. A comparison of
the two options yields the critical value of L*. Let us now check that it is a best
respo*nse for player 2 to be passive. If he acts he would clearly like to move the state
to L . Pick any stati from which player 2 acts. His returns are clearly cyclical, each

*
cycle yielding 1 - eé‘L - ¢, But by the definition of L this is exactly zero. So

player 2 is indifferent between acting and not acting at any state.

That this is the only equilibrium can be seen by noting that if there is an
alternate equilibrium in which player 2 is active so must player 1 be. Else, given the
upward drift of the state process, player 2 would like to jump the state to its minimum
and with a non—compact domain this implies that he would have no best response. For
the same reason an active player 2 in equilibrium must jump the state down to the
minimum point at which 1 is inactive. Let this point be denoted L. As the state
progresses up from L to 0, player 2 makes 1 — eJL over this cycle and this return must

be worthwhile, i.e. it must be that 1 - eé~L 2 5 If the inequality is strict, i.e. 2

makes strictly positive returns over the cycle, then he initiates the cycle as soon as
possible, i.e. at x = 0. But this is not possible since in that case the active player 1

*
makes negative returns in the game. So 1 - eﬁ‘ = Cq ie. L = L . Finally, player 1

*
would initiate a jump at L only if 2 is passive; else 1 makes losses in equilibrium.

It is clear that if the flow payoffs over the infinite horizon do not cover fixed
costs, then neither player acts, i.e. the strategies of case 2 are an equilibrium and the
only ones under those cost specifications. Example 3.2 illustrates two—sided (s,S)
equilibria with one or both players passive. Note that L* is decreasing in the fixed
cost. Further, the first-best policy is again "no jump."

Example 3.3 r(x) = x and Z is a Brownian motion.

The previous two examples had easily computable equilibria but on account of the
deterministic transitions, no interesting state dynamics. In this example we compute the
equilibrium when the underlying state process is in fact a (non-trivial) Brownian motion.
The calculations here are more labored and hence have been consigned to Appendix 2.

Lemma 3.1(Best Response): Suppose that player 2's strategy is: jump iff X > U and
then jump down to U—y, for some U-u < U <w. Then, player 1’s best response is
given by: jump iff X ¢ L and then jump to L+8, where @ is a constant independent of
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U,u and the "band" U — L is determined solely by u

Lemma 3.2(Equilibrium): The symmetnc equilibrium of the game is given by: player 1
(respectlvely 2} jumps iff X ¢ L (respectively X > |L| ) The jump size is 8 where
0 is given implicitly and uniquely by

f -
_(l—e _ 1_e9)+c 0 = 0

1+eg 1+e 0

The band size can be computed from the following

2= ga- 4(e—1)(1—e_0%_ 1/2) 1+ e !

02(1+e01+e) 2(e

*
where § = § . Again the first-best is "no jump."

4. A Best Response to (s,S) is an (s,S) Rule

Suppose player 2's strategy is in fact given by (U,u) where — o < U - p < U <
©. Let V denote the value function for 1’s best response problem:

V(x) = szp W, (8,(Up))(x)

where (with some abuse of notation), W (g,(U,,u))(x) denotes the discounted expected

return to a Markovian strategy g in response to a (U,u) strategy, with 1n1t1al state x.
We now show that there is a unique Markovian best response strategy, say g Further,
it is also of the class (s,S) in that it is characterized by a single jumping point L and a
single destination L + #.

Theorem 4.0 Consider a given Markovian policy of player 2, characterized by a pair
(U,s). Then:

i) There exists a unique optimal policy of player 1, say g in the set of admissible
strategies; this optimal policy is a Markovian policy, characterized by a pair (L,0).

ii) The value function V is differentiable.

For future conmsideration, define M = sup V(x). It is easy to see that V(x) > M -
x€E
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*
c, for all x. Further, V(x) > M - ¢ implies g (x) =

The logic of the proof of Theorem 4.0i) is as follows: a straightforward
modification of the argument in Bensoussan-Lions (1982, chapter 6 Theorem 1.1)
estabhshes that there is an optimal policy which is characterized by a set of jump
points E and associated destinations.!8 Whenever the state is at x € E it is jumped
to a destination d(x). We next prove some properties of the value function which are
then used to characterize optimal policies. We establish first that the value function to
the player’s best response problem has a unique maximum, denoted L+6. This suffices
to show that whenever a discrete action is undertaken, it always involves a jump to
L+, ie. for all x € E*, d(x) = L+0. We then show that the value function to the
left of L+ is strictly increasing. Hence there is a unique state, denoted L, such that if
x < L+4, it is optimal to jump if and only if the state is less than L. Finally we
demonstrate that it is never optimal to jun;p when x > L+8. The implication of these
arguments is that for any optimal policy E = (—w,L] and, consequently, that there is a
unique optimal policy.

The following operator notation is used repeatedly in the sequel. Suppose we take
an initial state x € (a,b). Let us consider the discounted returns to the policy: take no
action as long as the state stays in the interval (a,b). The first time the process
[X:t20], hits either a (denoted T,) or b (denoted T}), the decision problem is

terminated with terminal rewards V(a) and V(b) respectively. This policy defines an
operator I'V(x;a,b) as follows:

T AT,
b5 —46T ~0T},
IV(xab) = E {8 | € P rx)ds +e *V@IT; Ty +e b v (T,>T})

where I(C) is the indicator function on a set C.

We first argue the straightforward point that the value function must be
continuous. Pick any x < U and suppose that it is a point of discontinuity. It cannot
be that there is a sequence [x :1m20] such that lim |, V(x ) < V(x). Else there is an

interval (a,b), a < x < b such that no e-optimal policy from initial state x "jumps" in
(a,b). Clearly V(x ) > I'V(x ;a,b). Further V(x) ¢ I'V(x;a,b) + € and the operator T

is continuous. Combining all this yields lim _V(x ) 2 V(x) — €. This is true for all ¢

> 0 and hence we conclude that if there is a discontinuity it must be the case that



16

lim V(x
~p

0 ) > V(x). In that case none of the states x can be a "jumping" state. In

n
fact there must be an interval (a,b), a < x < b such that no e-optimal policy from
any initial state x "jumps" in this interval. Hence, I'V{x_;a,b) 2 V(x ) — € and V(x)

> I'V(x;a,b). The above arguments repeat to show that the discontinuity is impossible.
Finally from (A3) it follows that this continuous function cannot attain its supremum
for arbitrarily small x. Hence V attains maxima on a finite domain.

* *
Lemma 4.1: Suppose V(x ) = M. Consider x; < x5 < x ,with the property that
V(x;) > M - ¢, Then, V(x;) > V(x).
Proof: Let A = x, — x, and define x5 = sup{x € (-w,x;): V(x) = M - ¢;}. By (A3)
this set is non—empty and by the continuity of the value function, Xg < Xp. Similarly,

*
define x, = inf {x € (x;,x — A): V(x) = M - ¢y} We have two cases to consider:

x
Case 1 If the relevant set is empty, then define Xy =X - A. Let T3 and T,
denote the first hitting time of Xq and x,, respectively, when the initial state is x.
Then,
Vix)) = TV (x; Xq,%)

Given the continuity of sample paths of the stochastic process Zt’ the state
remains within (x3,x4) prior to hitting either boundary. Hence, before ToAT, there is

no action by either player. Further, given the spatial homogeneity of the process, we
know that

Sa = inf {t 2 0: X(t) = x5 + 4 X(0) = x,

has the same distribution as T3. Similarly,

x; + A}

Sy = inf {t 20 X(t)=x4+A;X(0)=x2=x1+A)
has the same distribution as T, Hence,
V(xg) 2 TV (x5 x5+A4, x4+8) > TV (x5 X, xg) = Vix;)  (8)
The first inequality in (8) follows from the fact that the proposed policy for
initial state Xy may of course not be the optimal one. The strict inequality uses the

following facts: the respective stopping times have the same distributions and further,
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V(xg + A) = V(x*) 2 V(xg) and V(x, + A) 2 V(xy) = M Add to this the

- C,

0
fact that the flow payoffs r are strictly increasing in the state and the identity in
distribution of S5 and T, (and S, and T,), i.e.

E J g0 n(x) ds > E J 05 r(x) ds
be s b 5
2.0 L9

Combining all this, (8) is proved.

Case 2.  The set in the definition of Xy is non-empty. Compare now the lifetime
returns to starting at x, and eventually acting at either Xg O X, against starting at x,
and eventually acting at either Xq +A or x, + A. The above argument repeats. The
proof of Lemma 4.1 is complete. -

Remark: (A3), the boundary condition, is really not required for the above proof. The
only modification required, in the absence of this assumption, would come from the fact
that the set defining Xg might be empty. In such a case take x4 = —w. The

arguments then are identical.

It immediately follows that V has a unique global maximum:

* ** * %%
Corollary 4.2. There does not exist x # x , 5t V(x) = V(x ) =

Let g* denote an optimal policy. Since the cost of discrete actions are
independent of the size of the action it follows that if a player is to act at any state he
rr}lkust necessarily move tl}*e state ti) the unique miximum of the value function, i.e. that
g (x) # x implies that g (x) = x . O£ course, x < U. Th.lS follows immediately from
Corollary 4.2. In the sequel we call x , L + 4. Since g (x) $#xif V(x) > M - c0 it

further follows that if player 1 decides to act at some x then he acts at all x < x.
We prove a somewhat weaker version of this claim now. Notice that the policy of not
acting on an entire interval (w,x) is equivalent, from a payoff standpoint, to one in
which the player acts at almost all x < x. In other words the equivalence class for
such a strategy is: player 1 acts at all but some isolated points in (—w,x]. We now
show that the optimal policy must be from this equivalence class:

*
Corollary 4.3. If x < x is an "action state," then so is almost every state smaller
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* - -
tlian %, i.e., if g (X) # x, then there does mot exist an interval (a,b), b < x such that
g (x} = x, for every x € (a,b).

Proof: By lemma 4.1 for all x < x it must be that Vix) =M - Co- The proof of the
lemma immediately implies that there cannot be an interval of states on which there is

inaction and simultaneously a constant value. -

* *
Now, let L = sup {x < x: g (x) # x}. In the next lemma we show that
L > -o

Lemma 4.4 The "jumping point" is finite, iie. L > — m.
*

Proof:* Suppose to the contrary that g (x) = x, for every x. Fix € > 0 > K and pick
%X < x , such that r(x) < K for all x < x. This is possible by A3(ii). Let X < x
further satisfy 1 — BT 51 - ¢ , where T = inf{t > 0: X(t}) = X; X(0) = Xx}. By
hypothesis,

V(x) = IV jux) (9)

< K(1-ED) 4+ e vx) (10)
Note that by hypothesis it is inoptimal to ever jump, i.e.
V() > M-g¢, (11)

Letting K + — o and ¢ | 0, (10) and (11) yield M = —o and this is clearly a
contradiction. The lemma is proved. =

Remark: In the absence of the boundary condition (A3ii) one cannot rule out the case
that "passive" play may be optimal, i.e. that L = — w.

What we have established so far is: in any optimal policy discrete actions are
taken for any state below L > - o, with a "jump" up to L + 8 Further, for any x €
(L,L + 6], player 1 refrains from acting. To complete the proof of our result we now
show that no action is taken for x € (L + 4,U).

*
Lemma 4.5 g (x) = x, for every x € (L + 6,U).

*
Proof: Let x; = inf { x € (L+6,U): g (x) # x}. If the set is empty the lemma is

proved. Else let T, = inf {t > 0: X(t) = x;; X(0) = L + 6} and T; = inf{t > O:



19

X(t) = L; X(0) = L + 6}. Then define X € (L+6, U) in a way that x; + x - (L+9)
< U. Denote A = x — (L+6). Then,
V(L+ 6 =M=TV(L + 6 Lx,)

V(X) > TV(x ; L+4, x+A) > TV(L+6; L x)) = M 2 V(x)
The reasoning which results in the above inequalities is identical to that of the
proof of Lemma 4.1. The strict inequality clearly contradicts the definition of M.g

We have proved that any optimal policy must be of the (s,S) type. Since L and
L+0 are uniquely defined we have additionally established the uniqueness of best
response. We complete the proof of the theorem by establishing the differentiability of
the value function.

Let o, denote the strategy of player 2, characterized by the pair (U,x), and

consider for any x the supremum of the payoff to player 1 over the set of admissible
strategies. Straightforward modifications of the arguments in Bensoussan-Lions (1982),
Chapter 6, give that this is equal to the supremum over the set of Markovian strategies,
i.e., it is given by V(x) as defined at the beginning of section 4.1.

From Ito’s Lemma it follows immediately that the payoff, for any initial point x €
[L,U], of following the Markovian policy characterized by the pair (L,L+0) is given by
the solution of the following differential equation together with two boundary conditions.
For notational simplicity we report the case m=0. The modifications to the expressions
when m # 0 are well-known.

2
- V/(x) -6 V(x) + &(X) = 0 for x € (LU) (12)
V(U) = V(U - ),
VL + 60 -c, = V(L)
We recall that a solution to (12) is a function of the form
X (12)(

V(x) = a(Lfe’ + alf)e’ + R(x)

where a; = — a, = (V26)/o and R(x) is a special solution. For example, R can be

taken to be:
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X
a(x-y)  ay(x-y)
1
R = (af2) [ e —e? T]sly) dy
0
From the boundary conditions that follow the differential equation (12} one can

straightforwardly calculate a,(L,0) and a,(L,6). It is easy to see that these depend on
the special solution and <o Clearly the special solution is a continuously differentiable
function and hence so are a,(L,f) and a,(L,d). The value function corresponds to the
optimal choice of L and # and in particular an optimal choice of al(L,B) and a.2(L,0).

The argument in Dixit (1989a) now can be applied directly to show (that the first order
conditions for such a choice imply) that V is a differentiable function. This completes
the proof of Theorem 4.0. -

Remark: Bensoussan-Lions [1982], Constantanides—Richard (1978) and Harrison et al.
[1983] have also analyzed this problem. The Bensoussan-Lions formulation, although
very general, does not directly cover the case of a boundary with impulse reflection (as
at U). Consequently their arguments on the sufficiency of Markovian policies and the
existence of an optimal policy has to be appropriately modified. More importantly, in
the general formulation of their problem it is not possible to establish the sharp (s,S)
rule characterization for optimal policies . Harrison et al. (1983) and
Constantanides—Richard (1978) do establish the optimality of (s,S) policies but restrict
attention to the case of linear payoffs. (Further, they consider a somewhat different
behavior at the boundary of the state space and their analyses admit fixed as well as
proportional costs). Caplin—Sheshinski [1989] analyze a discrete time version of this
problem, use a weaker restriction in which r need only be quasi—concave, but restrict
attention to decreasing processes. Hence, it would appear that the optimality of (s,S)
policies that we establish in Theorem 4.0 is a more general result, in some dimensions,
than those hitherto available.

5. Monotonicity of Best Response and Existence of Equilibrium

In this section we show firstly that the best response map is "monotone" in a
sense made precise shortly. Then, we use the Tarski fixed point theorem to establish
that an equilibrium in two—sided (s,S) rules exists in the stochastic game. A few
remarks on the two steps is in order.

The objective function in a player’s optimization problem is fundamentally
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nonconcave. This is so since any action, howsoever small, involves a positive fixed cost
whereas there is no cost for inaction. Non—concavities create well-known problems for
equilibrium existence. For our game these problems may be summarized as follows:
when the domain of X is compact (a case we detail in Section 5.3), i.e. when E =
[E,E], then the best response is a non—convex valued correspondence. For some values

of (U,u) it can Ee shown that player 1 is indifferent between L = E, 6 = 0 and L = E
and L + 8 = x . Of course, given the nonconcavity in the objective function no
convex combination of these two policies is as good. Further, for (U,z) in one
neighborhood, L = E, # = 0 is the unique best response and in a second neighborhood,
L > E, § > 0 is the unique optimal choice. In other words, the best response
correspondence is neither convex valued, nor does it admit a continuous selection. If the
domain of X is the real line, then Theorem 4.0 establishes that, despite the
nonconcavity, the best response is unique and indeed further arguments show that the
best response function is continuous. In this case, standard fixed point arguments do
not work because the domain is not compact. We now show that the best response
map is however monotone once the right order is specified. This result, interesting in
its own right, enables us to apply a fixed point theorem for monotone maps to
guarantee existence of equilibrium.

For the next two subsections we continue to discuss the case where the domain of
XisR Tet T = {(UU—) € R -o < U-s< U <o} II can be identified with the
space of (s,5) policies for player 2. Denote a generic element by x. Similarly, define ¥
as the set of (s,S) policies and o as a generic policy for player 1. We define a partial
order on I1 and ¥ as follows:

-

U -

'F >

Definition 5.1 (i) =
(i) o

The partial order can be given the following interpretation. = » x may be thought

1

¥ iff U < U and U-p

[PaN

& iff L > L and L+6 > L+ 8.

g

of as implying more "aggressive" behavior by player 2 under « rather than =, in that
player 2 acts sooner (U ¢ U) and lowers the state further (U — u < U — ) under the
former regime. We now prove the rather surprising result that although the order on
the strategy space is partial, the best response map is completely ordered. Let B;m

denote a best response (of player 1) to .

Proposition 5.1 Consider 7 # x. Then, either (a) B,(7) * Bl(;r), or (b) Bl(;r) > B(n)
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or both.

Proof: For notational convenience, suppress temporarily the subscript on Bj. So

suppose B(r) and B(x) are not ordered. Without loss of generality, suppose that L < L
< L+8 < L+8, with either the first or third inequality strict. (This situation is
pictured in Figure 2).
Figure 2
We use V (respectively V) to refer to the value function in response to (U,u)

(respectively (U,u)). Then for any €>0, let x € (L,L+6-¢). Define T; =inf {t 2 O:

X(t) = L ;X(0)=x}, and Ty = inf {t > 0: X(t) = L +8-¢ ;X(0)=x}. Then,

V(x) = TI'V(x; L,L+6-¢) (13)
Similarly, let T, = inf{t20: X(t) = L+e ; X(0) = x+¢} and T, = inf{t20: X(t)

= L+6 ; X(0) = x}. By the spatial homogeneity of Brownian motion, the distribution
of T, (respectively T,) is identical to that of T, (respectively T,). Note that

V(x+¢) = T'V(x+e¢ L+eL+0) (14)

Combining (13) and (14) and writing

T, AT
_ 12 —8s
ofx) = Ex.sj &% rx) ds
0
T3AT4 &
ofx+e) = E_ . JJ e " rx]) ds

from the identity in distribution of the stopping times we have

—§T
Vixte) - V(x) = [a{x+e) - a(x)] + [V(L+0) - V(L+6-} E_e (T, ¢ T,)

6T

F[V(L+e) - L] E_e 2 I(T, > T,) (15)

From Theorem 4.0, we know that V is differentiable. Hence, from (15) it follows
that,
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—5T1 -6T
Vi(x) = a/(x) + V'(L+0) Ee I(T, < T,) + V(L) Eje
- @)
. -8T, . ~oT,,
< a'(x) + V(L+0)E e I(T; < T+ V/(L)E e “IT;> T,)(16)

= V/(x) (17)

Note that (16) follows since, either V’(L+6) > V’(L+6) = 0 (if L+8 > L+6) or
V(L) > V(L) = 0 (if L < L), or both (and all of this from Lemma 4.1). (17)
follows from a derivation identical to (13)—(15). But if V’(x) < V’(x), for all x €
(L,L+0), then ¢, = V(L+6) — V(L) < V(L+6) - V(L) = ¢, a contradiction. Hence,

the proposition is proved. u

Proposition 5.2 Suppose v » x. Then, Bl(ar) r Bl(r).

Proof: By Proposition 5.1, a contradiction to this claim implies that B(x) » B(m) but
not B(x) » B(r). Hence, we have L<LandL+ 8<L+ 60< UCU, with at least
one of the two weak inequalities strict. Now let

T = inf{t>0:X(t) = L 4+ 6, X(0) = L}, and

VL) = —c, + V(L + 6)2HL) + BT VL + 0 (18)
ML) = AD) + BT WL+ 0) > <, + VL +0) (19)
where,
T
BD) = B (¢ ¢ %x) ds - ¢ B 7], for the policy (L + 7)
0 7<T

Combining (18) and (19), and noting that atleast one inequality is strict, we get

[V(L + 6) - V(L + 0] > petT [V(L + 6) — V(L + 6)] (20)

It is straightforward to show (and we do this in Lemma 5.3) that whenever = » =, V(x)
< V(x). (20) then yields a contraction. -
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Lemma 5.3 Suppose 7 } x Then, V(x) > V(x).

Proof: Suppose, to begin with, that x € (L,U). A candidate policy that could be
employed by player 1 in response to (ff,ﬁ) is precisely B(x). Since, U> U and U - j
< U — p, with at least one strict inequality , the strict monotonicity of r and spatial
homogeneity imply the lemma. But this in turn implies that the lemma holds for all x
in (—o,L] or [Ux). -

A similar set of arguments establishes monotonicity in the best response of player
2: o > o implies BQ(&) > Bz(a). Define the composite map B = B, o B, Clearly, »

¥ « implies B(7) * B(r). We shall use this very useful property within the context of
Tarski’s fixed point theorem for complete lattices.

The principal obstacle to a direct application of the theorem to the stochastic
game is that the space of strategies Il, (recall Definition 5.1) is a lattice but not
complete in the order induced by » (see a statement of Tarski’s theorem in Appendix
3). To complete the lattice we need to allow for the extended real variables U = + o,
U~y = =% o (respectively L = + o, L + § = + o). Directly incorporating these into

the space (and interpreting U = o, as "player 2 never acts," e.g.) does not work, since
there is no best response to such a policy. Since player 1's payoffs are increasing in the
state it is immediate that if he acts against a passive player he would like to increase
the state arbitrarily. To get around this "problem at infinity," we artificially define a
best response (to passive play) as the limit of best responses, as U 1 . By Proposition
5.2, this limit is well-defined, and the "best response" map remains monotone. Hence
Tarski’s fixed point theorem can be applied. An additional argument is then required to
show that the fixed point has not been created by the artificial extension of the map.
We conclude by showing that the fixed point must be interior, i.e. that it is in fact an
equilibrium in the stochastic game. The boundary arguments outlined above are stated
precisely and proved in Appendix 3.

Theorem 5 4 The stochastic game ha.s an ethbnum given by the two pa.lrs .
(L 0)(U,p)suchthat —m<L <L +0 <U < w, an d—m<L < v -
< v < . The equilibrium behavior is therefore described by a two—sxded (s,S) rule:
whenever x < L* player 1 acts and pushes the state upto L + 0 Conversely,
whenever x > U , player 2 lowers the state down to U - u

Proof: Define T = T U {(U,U-p): U =%, U-p =2} Iisclearlya
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complete lattice under ». Further, the best response is monotone on II, by Proposition
5.2 and the extension of the map at the boundaries (see Appendix 3, equations
(A.3.1){A.3.4) for details). Take fJ = (o0), U, = (- o, ) as the largest and

smallest elements of the space in order to satisfy the boundary requirements of Tarskl 8
Theorem (see Appendix 3 £or a statement) So, there is a, ﬁxed gomt such that = =
B(7r ). We shall denote 7 = (U U — ) and Bl(w ) -1 ,L +6 with the further

* *
convention that B,,(r ) = L" and B12(r ) =1L -{-8 (similarly, B, (B(x )) and
* *
Byo(Bi(7 )). Let us show that the fixed point is interior. It cannot be that U =o.
* *
Else, B,,(x ) < L <oo by Proposition A.3.1(i){ii) and hence B 91(B1(7)) ¢ T(I) < o,

*
by the szime proposition. Slmllarly, 1t cannot be that U — ,u = - o Elss, it v >-
Biy(m) 2 L and B (7 )e(LU)and hence Byo(B, (7 ))>—m HU = - o

* *
then B;(7) = (- w,~ @), but then By(B;(7)) 2 U > - w. So, the fixed point is
* *
interior. In turn, then =, Bl(vr ) are best responses to each other, and hence form an

equilibrium of the stochastic game. -

5.3 The Case of a Compact Domain

The assumption that the state space of the stochastic process is the entire real line
may be unsatisfactory for many readers. In many interesting economic examples there
are natural restrictions on the range of values that the stochastic process can assume.!7
Here we prove that the above analysis extends (in fact, it becomes simpler) to the case
in which E = [E,E], with - o < E < E < + ». In this formulation we have, of

course, to specify the behavior of the process at the two boundary points. We shall
consider both of the standard conditions:

(R) (X;);5p is reflected at E and E.
(A) (Xt)tzo is absorbed at E ard E.

(See Karatzas and Shreve [1987] for a definition of reflected and absorbed processes.)
We also have to specify what actions are feasible to ensure that players’ jumps do not
take the game environment outside the state space. We do this in the most obvious
manner: we say that X(r=) + £ (7) + &,(7) < E (respectively X(r-)+§;(m)+ &5(7) >
E) implies X(7) = E (respectively X(r) = E).

Lemma 4.1-4.4 and Corollaries 4.2-4.3 hold with no modifications so Theorem 4.0



26

holds. The best response is therefore well defined, and the best response to an (s,S)
rule is an (s,S) rule. Similarly, the analysis of the monotonicity property of the best
response is unchanged. In Proposition 5.1 if L > E the argument remains completely

unchanged. On the other hand, when L = E = L the conclusion is automatic.

Finally, Proposition 5.2 holds without any modifications. We may conclude therefore:

Theorem 5.5 Let the state space be [E,E], and assume either (R) or (A). Then the
¥ ¥ * *
stochastic game has an (s,S) equilibrium given by the two pairs (L ,6 ), (U ,z ), with E
* * ¥ * * *
SL <L +0 <E,E<U <U - ¢<E

Proof: Obviously II is a complete lattice. Now Tarski’s fixed point applies
immediately. . n

Remark The equilibrium of Theorems 5.4 and 5.5 need not of course be unique.
We have investigated the following question: what is the range of possible behavior that
can be found within the class of MPE. Suppose we restricted ourselves to Markovian
policies which are dessribed by a (closed) set of jumping points C and and a unique
jumping destination x (in the strategies considered so far C=(-w,L] etc.). It is our
partially proven conjecture that any MPE then has the following property: Ci is a

countable union of closed intervals which do not intersect and which alternate (i.e. an
interval of player i follows every interval of j, except the terminal ones). The
behavioral implication of such an equilibria is similar to that of the two—sided (s,S)
equilibria with the modification that there are two relevant (L,U) intervals: one
containing i’s destination and the other j’s. Eventually the state gets into either of
these intervals, oscillates between them but never escapes from them.

54 An Application to Product Innovation

Recall from Section 2.4 the structure of the product innovation application. When
firms use Markovian strategies the difference in qualities is the only relevant decision
variable. Theorems 5.4 and 5.5 have the following observational implications: whenever
the rilative*qualita is too high or too low, one should observe an immediate innovation
(toL + @ or U - p), and thereafter a process of alteration in technological
leadership. The outcome contrasts sharply with the e—preemption finding in some of of
the patent race literature (see, for example, Fudenberg et al. [1983] or Harris—Vickers
[1985]), in that no one firm can use an initial advantage to force the other out of the
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market. This difference reflects the fact that in our model there is no last period or
final prize which the duopolists race towards. In a rough sense, one could think of our
formulation as one with a succession of patent races each won by the firm which incurs
the higher (fixed) costs. In particular, in this interpretation, technological laggards work
harder in any given race.

As Theorem 5.5 makes clear, in some specifications it may be the case that only
one of the players is active. So an initial technological leadership is maintained and
improved over time. In this situation the only stimulus for innovations is
disadvantageous changes in market demand for the single active firm.

6. The Cartel Solution

In this section we investigate the first-best or cartel problem for our stochastic
game. The problem may be defined as follows: pick a set of (measurable) stopping
times T and an associated set of jumps to solve

" ~0s —br
Max E_{ 6/ [a1(x) + (1-a) r(x)]e "ds - c, Ze } (14)
0 T
i
where a € (0,1). To simplify the exposition we shall concentrate attention on the

symmetric case, i.e. to the case a = 1/2. Without loss of generality consider the flow

payoff to be r(x) + r(—x) and denote this p(x). So far all we have assumed about the
flow payoffs r is that it is a monotone function. This does not of course have any
implications for the sum p. We now make the further assumption:

(A6) 1 is a concave function.

Remark: It is immediate from (A6) that p is symmetric about x=0, concave and
attains a unique maximum at x=0.

A natural conjecture for the optimal policy is that it will also be a two-sided (s,S)
rule. Note that existing results that establish the optimality of (5,S) rules in single
agent decision problems cannot be directly applied here. For instance, Caplin—Sheshinski
(1988) only allows for decreasing stochastic processes whereas Harrison et.al (1983)
impose an exogeneous one-sided barrier in the problem.

Even though the optimality of a two-sided (s,S) rule seems likely in the first—best
problem, what is far from clear is the relationship that this rule will have to the similar
rule that was obtained for the Markov Perfect equilibrium. For instance note that the
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cartel internalises all of the changes in returns due to a discrete change in the state.
Part of any such change is the "cannibalization" effect, that the returns of one player
increase if and only if the returns of the other player decrease. This might suggest that
the cartel is less likely to use discrete actions. On the other hand, the cartel can better
control all subsequent jumps and hence it may be profitable for it to use a discrete
action when it is not for a single player who fears quick retaliation. We prove the
following two results:

Theorem 6.0 The first-best solution is given by a two-sided (s,5) rule ( L, L +0, U,
U ) where w ¢ L, < L +0 =0 = U 4 ¢ w and is of the form: act iff x <L, or
x > U, and then move the state to 0. Further, ILcI = U,

Note that since the game is symmetric there is always a symmetric equilibrium in
the non—cooperative framework. It is clear that this symmetric equilibrium, denoted as
( L, ,Ln+0 U, U —w ) is the relevant point of comparison with the first-best solution.

In such an equilibrium [L_| = U and so one point of comparison will involve the
respective band sizes 2UC versus 2Un. Unfortunately it is not true that symmetry of
the equilibrium implies that the jump destinations are zero, i.e. that Ln+0 =0 k= 0.

But suppose there is in fact such a strongly symmetric equilibrivm, i.e. an equilibrium
in which such destinations are zero. Then we have:

Theorem 6.1 Suppose that L defines a strongly symmetric MPE and L c 18 the
first—best solution. Then, L, < L_ (and s0 U, > U ).

Proof of Theorem 6.0: The proof will follow by establishing that the value function for
the first—best problem, denoted W, has the following property: W is continuous,
symmetric and attains a unique maximum at x = 0. That W is continuous can be
established by arguments identical to those employed in the proof of Theorem 4.0.
Symmetry follows straightforwardly from the symmetry of r. Finally in order to show
that W is in fact strictly increasing on R and strictly decreasing on R 4o e appeal to

an argument identical to that in Lemma 4.1. n

Proof of Theorem 6.1: Exactly as in Section 4, let us define the operator T pW as:
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8T —6Ty

TaATb ~{s " Ta
I‘pW (x;a,b) = Ex{ﬁj e p(xs)ds + e W(a)I(TagTb) + e W(b)I(Ta>Tb)

Suppose per absurdum that in fact L, > L. Then, for x € ( LC,O),
W(x) = I‘pW (x;L+ee) and W(x-¢) = I‘pW (x-€L,0)-
But from the spatial homogenity of Brownian motion it follows that the
distribution of T,, with starting state x is identical to the distribution of T0 with

starting state x—¢ (respectively the distribution of T Le
c

with starting state x is the

same as that of T; with initial state x~¢.) So,
c

6T
W(x) - W(x-€) = ofx) - o{x—€) + E_e € [W(e) - W(0)] +
Lt _
E e [W(L,+e) - W(L)]

TeATL+f —bs TOATL
where ap(x) = E, § e p(xs)ds and ap(x—e) = E_§] e p(xg)ds.

Dividing by € and taking limits it then follows from the differentiability of W and
W'(Lc) = W-’(0) = 0 that
v — ’ = —08 ’
W (x) = @, (x) =E 8 [ e ™ pr(x,)ds
Similarly,

L _
Vi(x) = a’ (x}) + Ee V'(Lc) >a (x)=E 6]e 1’ (x,)ds
Since p’(x) = r’(x) - r’(~x) it then follows that a’ (x) > a'p(x). The above
arguments have hence established that for all x € (L,0), V'(x) > W’ (x). But then,

¢y 2 V(0) - V(L) > W(0) - W(L,) = ¢,

a contradiction. Hence the theorem is proved. B

7. Conclusions and Extensions

In this paper we analyzed a class of continuous time stochastic games in which
players can make discontinuous changes in the variables that affect their payoffs. We
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placed three principal restrictions on the games studied. The first restriction was that
only single-dimensional state formulations were studied. Although many economic
applications do in fact analyze this case it is an important restriction for our study in
that it appears difficult to dispense with. With a many dimensional state space even
the decision theoretic problem is not fully understood. The challenge is two-fold: to
find a sharp generalization of the concept of an (s,5) rule which generates a similar
response and then to show that the monotonicity arguments employed in this paper can
be appropriately extended.

A second restriction that was critical for the general analysis was the pure fixed
costs assumption. In some special cases, as with linear payoffs, we can admit fixed plus
proportional costs. Again the decision theoretic problem itself is not known to have a
(5,S) characterization in this specification of costs.

The final restriction that facilitated the analysis is that we allowed players to only
make discontinuous changes. A natural generalization of the framework of this paper
would be to allow players to make complementary discrete and continuous changes. We
have some preliminary results on this formulation in the linear payoffs case and hope to
develop a more general theory.

Although we analyzed a model in which the exogeneous stochastic process is a
Brownian motion, we feel that this specification is largely inessential. The examples
reported in Section 3 seem to suggest that two-—sided (s,S) rule equilibria are true more
generally than in this specific case. We have not however explored this in any detail.

Given the above restrictions we showed the stochastic game has a Markov perfect
equilibrium in two-sided (s,S) rules. We established this result by way of proving the
optimality of (s,S) rules in a general and unsolved stochastic control problem and a
monotonicity lemma on the best response map. We compared the equilibrium with the
first—best solution which was shown to be also of a two—sided (5,S) rule type but with
narrower bands. Finally, we introduced a framework for continuous time games which is
flexible enough to accomodate instantaneous reactions by a player to his opponent’s
moves. Since standard formulations are often unable to do this, and hence result in
inconsistencies, our framework may be of more general interest.
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Footnotes

10ne could attempt to make this distinction in discrete time by introducing
ﬁestation lags to the realization of some actions and calling such actions
discontinuous". The shortcomings of this approach are that i) the gestation lags are
necessarily exogeneous and arbitrary, ii) the sharp distinction between the two types of
actions are lost and iii) the analysis is necessarily considerably more inelegant than it
is in a continuous time formulation of the problem.

2Notice that all the references in the previous paragraph study single-agent or
decision theoretic problems only.

3See also Milgrom-Roberts (1989), for applications of fixed point theorems for
monotone maps in supermodular games.

4 Symmetry does not imply that the jump destination in equilibrium is 0. If
that is the case we call the equilibrium strongly symmetric and the statement in the
text refers to such an equilibrium.

$"The historic and irreversible change in the way of doing things we call
‘innovation’ and we define: innovations are changes in production functions which
cannot be decomposed into infinitesimal steps. Add as many mail coaches as you
please, you will never get a railroad by so doing" (Schumpeter [1935], p.7).

8A few representative contributions are Dasgupta-Stiglitz (1989), Lee-Wilde
(1980), Fudenberg et al. (1983), Harris—Vickers (1985); see Reinganum (1989) for a
survey of this area.

"By way of example, consider Schumpeter’s railroads. Fishlow [1966] found in his
study of the American railroads that at a time of significant cost reductions, the years
between 1870 and 1910, the largest cost saving, by far, was due to a succession of
improvements in the design of locomotives and freight trains. The process included no
single major break with the past and yet "(its) lack of a single impressive innovation
should not obscure its rapidity" (ibid, p. 35). Rosenberg (1982) makes a compelling
case for the historical importance of continuous, ongoing change and also contains
numerous other examples..

8Mansfield et al. [1981], found from their survey of 48 product innovations, of
which 70% were patented, that about 60% were competed against within four years of
the patent.

9Most of the discussion will in fact be for the non-compact domain case which is
analytically the somewhat cleaner case. In many applications it may be more
appropriate to have a compact domain. For this reason we develop the compact
domain case fully as well.

10There are some subtle issues associated with the question: when is the sum in
equation (1) well-defined? We discuss them in detail in Section 2.2.

11A3(i) is crucial solely in the proof of Proposition A.3. It is our belief that this
assumption could be weakened to lim r’(x) = 0. Of course, here and in A3(ii) we

X]im
make use of the fact that the paon{ function being monotonic and absolutely
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continuous is differentiable a.e.. r’(x) should be understood to refer to this a.e.
derivative.

2In some examples, for instance the linear returns case (Example 3.3) we can
allow the more general specification of fixed and proportional costs:
(A9 o) = oy + olel, ¢ >0

3For technical simplicity in the arguments that follow, we allow a firm to both
improve as well as worsen its product quality, i.e., Ei € R. However, from hereon, we

shall carry on the discussion as if £ > 0.

4Dutta~Lach~Rustichini (1990) contains two examples, drawn from Kreps (1990))
and Shaked-Sutton (1983), in which the Cournot and Bertrand equilibrium profits of
duopolists with differentiated products are solely a function of relative quality.

15The literature on repeat innovations and ongoing technological change in a
strategic setting is very small. Ericson-Pakes [1989] contain some of the ideas that we
discuss here, but in a perfectly competitive setting. To the extent that much
innovative activity contains explicit incorporation of rivals’ behavior, this generalization
seems both economically important and of course technically much more complex.

16The proof of Bensoussan-Lions consists of two main steps. In the first, they
formulate a Quasi—Variational Inequality (QVI) which is a general version of the
system of equations A.2.1 — A.2.6 that we formulate in Appendix 2 for the special case
of linear payoffs. This QVI is defined in (1.7) of chapter 4, p. 344. The connection
of this QVI with the optimal control problem is explained in Section 1, Chapter 6, p.
615. The QVI has a regular unique solution as proved in the existence result of
Theorem 1.1,chapter 4, p. 345.

The second step proves that the value function is equal to the solution of the
QVI and that an optimal Markovian policy exists. This 18 done in Theorem 1.1
chapter 6, p. 619. The main difference between the problem they analyze and ours is
in the boundary conditions. They assume a zero boundary condition on the value
whereas in our case this is replaced with the condition V(U) = V(U-g). Therefore in
the first step one needs to replace the space of functions satisfing the zero boundary
condition with the space of functions satisfying V(U) = V(U—). The arguments for
the second step remain unchanged.

17For example, in the innovations context there is an alternative interpretation of
the relative variable X. In this interpretation one could think of X as market share
&and hence of course x € [0,1]). By innovating, firms directly alter market share and
erive profits from market share alone. The market share of firm 1 evolves through
exogeneous changes in the market environment, the changes in Z, and through the
innovation—induced changes ¢;.
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Appendix 1

In this section we provide a complete and detailed description of the extensive
form of the game analyzed in the paper. We begin with a definition of time
appropriate for our framework.

Our time indez set T will have a special form. A time 7 will be a pair ('rl,'rz) €
R 4 X N. We give the index set the lexicographic order: for every pair 7 and 7° in T,
we say 7 < 7’ if Tp<Tyor T =T and Ty < T We shall always assume that T
has such an order. T_ will be the order interval [0,7] = {# € T: 0< 8< 7}

A history at time 7 is a map h:[0,7] ~ IR3, where for any 0 € [0,7], h(f) =
(x(0,,05), §(0;,05), £5(0;,0,)). Here x(6,,0,) is the value of the state variable at
(6,,0,) and &(0,,0,) is the displacement of the state variable at the f,—stage of the
instant game at 01, by the action of player i. The set of histories in [0,7] is denoted
by H ; and by H_ for the interval [0,4«]. Given the structure of the stochastic process
we consider it natural to impose the following conditions on the set of histories:

1. 6, - X(#;) is a cadlag function (continuous from the right and with limit from the
left).

2. X(r) - X(r) = ? §(9) 6= 7 for every 7, € R

(It is part of the definition of history (the assumption) that the series in 2 is
convergent).

At any time 7 the action set for every player is the real line; an action is the
instantaneous displacement of the state variable by the specified amount. A sirategy is
a set of maps, indexed by time, from the set of histories to the action set; that is: o
T » H_ - R where ¢(,h) is the action at time 7 for the history h; o(r,h) = 0 is to be

interpreted as "no action is taken". The null strategy (denoted by o%(7,h)) is o%(r,h)= 0
for every 7 and h. Of course, where facing a null strategy of the opponent, a player is
in fact considering a simple control problem.

We now proceed to describe the restrictions on the set of strategies imposed by
the information available to the players and by the stochastic process itself. Each
player knows at every time 7 the exact value of the state variable and the moves of the
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other player in the instant game, upto the stage being currently played.
To each set of histories Hr , T < +m, we give a measurable space structure as

follows. For any integer m, an m- cylinder C = C(A,('rl, ey 'rm)), where A is a Borel
subset of [Rsm, 7 € [0,7] is defined by:

C = fneH: (a(r), .., h(*™) € A}
Br is defined as the smallest o-field containing all the cylinders, of all finite
dimensions. Notice that the family {B,r}_r20 is increasing (that is, 7; < 7, implies BT1

¢B_ ). The index set T is given the topology induced by the lexicographic order. (A
2

subbase for such topology is the set of intervals [0,7] and (7,+=)). B(T) and B(T )
denote now the Borel o-algebra on T and on Tr respectively. (They are the same as
the Borel o-algebra generated by the product topology on R L N). We can at this

point define a notion of measurability for the strategies.

Definition: A map o: T » H - R is said to be progressively measurable relative to
{B_, 7 € T} if and only if the mapping (7,h) + o (7,h) is B(T )} x B(H ) measurable

T)
for each 7 > 0.

This measurability condition on strategies requires the action taken at time 7 to
depend only on the history up to that time. It is therefore natural to assume the

strategies to be progressively measurable. We need however, an additional notion before
we can give a formal definition of admissible strategies.

For a pair of strategies (01,02) we denote A (resp. BT) as the set of jumps of

player 1 (resp. 2) at periods prior to 7 = (t,0). Define

X(t,0,09) = Z(t) + i §(r) + 123 §5(7) (A.1.1)
T T
whenever the summations on the right are well defined.

A second natural condition will be imposed on strategies, in order to avoid trivial
equilibria. We require (in intuitive terms) that each player uses strategies from a set
which if he were alone would yield, almost surely, a well defined stochastic process.
Formally we say
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(S) An admissible strategy is a progressively measurable function ¢: T x H - R such
that for every t > 0, the stochastic process X(t,a,ao) is well defined.

(A.1.1) above describes the outcome of the stochastic process. We now turn to
payoffs: we let the payoff for player i, for strategy pair (01,02), be:

o ~6t ~6r)
W, (x,05,0,) = -Ex{ JJ §(d) e dt -3 og(n) e }
0

whenever the stochastic process t is well defined.

In order to complete the description of the game, we need to specify an outcome
in the case in which the interaction of the two strategies does not yield a solution of
the stochastic process. If the pair of (admissible) strategies does not give, with
probability one, a well defined stochastic process, then

X(x,00,05) = 0 and

Wi(x,00,09) = - fori =12
Remark It should be noticed that a pair of strategies satisfying the above condition
(S) will not necessarily produce a well defined stochastic process, as is the case in the
following example.
al(r,h) = 0if 52(1'1,1'2) = 0,
= 1 for every rational t > TP if {2(r1,'r2) # 0 for some 7,
go(ph) = 1 at 7 = (1,0), and 0 otherwise.

On the other hand, the admissibility restriction rules out trivial equilibria, in
which each player forces the other to a payoff of — » because the strategy adopted by a
player gives a non—well defined stochastic process. Indeed in the compact domain case,
any equilibrium must result in a well-defined stochastic process with finite payoffs for
both players.
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Appendix 2

Proof of Lemma 3.1: Fix a strategy for player 2 given by a pair (U,u). We
construct a function V and a pair L and § which satisfy:
2

- Vi(x) 6 V(x) + §x =0 x € (L) (A.2.1)
V(L) = 0 (A.2.2)
V/(L+6) =0 (A.2.3)
V(U) = VWW-wif L ¢ U-y (A.2.4)
V(U) = V(1) if L 3 U-yp (A.2.5)
V(x) = V(L + 8)-c, for every x < L (A.2.6)

Pick a candidate strategy of player I, say (L,f). (A.2.1) is the differential
equation which must be satisfied by the lifetime returns to any such strategy in the
region in which no player moves (see e.g. Bensoussan-Lions (1982)). The boundary
conditions (A.2.4) - (A.2.5) are similarly satisfied by such returns. Now (A.2.3) is the
first order necessary condition which determines the optimal # by determining the
landing position L + 6. Since the jumping position L is also chosen optimally we have
the additional condition (A.2.2). Equation (A.2.6) gives the general form of the value

function in the region where player 1 moves. Let A  be the two roots of g_x2 -6=0
For simplicity of exposition assume that 26 = 02 so that A 4+ = 1. Further suppose &

= 1. The solutions of equation (A.2.1) have the form:
gx) = ale"x + a.zex + x (A.2.8)
where 3y and a, are parameters to be determined. The four unknown parameters
(a;,89,L,0) will now be determined by the equations (A.2.2) to (A.2.5). So the value
function will in fact described by:
gL + 6) - ¢, if x < L
V(x) = {g(x) if L
g(U) if  x

A
<
A

s

v
=
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Equations (A.2.2) and (A.2.3) are solved for a; and a, to give

L L
e €
. - A = - (A.2.9)
Lo et 2 1+ e’

In equation (A.2.6) set x = L and substitute (A.2.9) above to get

1 — e0 1 —e

—0 - “-“'"—-9)+C 9 = { (A210)
(A.2.10) determines a unique optimal 6, denoted &, which depends only on ¢, and not
on (U,z). Now we proceed to determine L.

We consider first the case L ¢ U — u. Equations (A.2.4) and (A.2.9) now give

1 —e* (L-U) e -1 LU
( e + e )
1+e 1+e

L-U

p = 0

which is a simple quadratic equation in e = y, with two roots y,_(u):

e (l—e‘“)(e 1) /2, 1-e”?
y() = {1+t -4 (s 2 (A.2.11)

Since L < U, the root y +(,u) is ruled out, and we find
L = U+lny(u,forL<U - (A.2.12)

Notice In y (4) < 0 for g4 > 0.

We now consider the case L > U - u. Equation (A.2.5) gives, setting x = L - U,
the equation

X —X
N (A.2.13)

1+ e 1+ e’

which determines a unique negative x as a function of #, with x = 0 if § = 0.
One can now check directly that as L -+ U+, @ in equation (A.2.13) tends to 0;
and as # » +w, ¥ (&) in equation (A.2.11) tends to +o. With & fixed from (A.2.9),

this determines a best L. So the optimal jump is determined from (A.2.9) and the
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jumping point from either (A.2.12) or (A.2.13). So Lemma 3.1 is proved. -

Proof of Lemma 3.2: The best response map,constructed above, (f;,f?) is monotonic
(componentwise); that is, if U ¢ U’, p’ < u then L(U,u) ¢ L(U’,u’) and U,p) <
KU’,u’). The statement is trivial for 9, and for L as a function of U, for both the
case L > U — u and the case L ¢ U - p. Also, L is a non constant function of p only
where L < U - u. We therefore need to prove our statement only in this case;
equivalently, we need to prove that the function x(g) is decreasing in x. This follows

immediately from the fact that the root y_ is decreasing in u (because £ s
-1

(f-1)(1<eH
2
I
Remark It may be interesting to point out that the optimal # is increasing in ¢

decreasing, and is increasing in u) -

(the fixed cost of every jump). The intuition is, of course, that once it becomes
optimal to jump, then a higher fixed cost makes a larger size of the jump more
convenient (because it makes jumps less frequent).

From Theorem 5.4 it follows that there is an equilibrium in this case. The band
for the symmetric equilibrium can then be computed from (A.2.11).



41

Appendix 3

Recall that Bl(U,U—,u) is the best response of player 1 to a strategy pair (U,u) for

U and p finite. We now extend this function to infinite values of U and y. So we
define:

Bl(m, U-yu) = lim BI(UC!’UC! - ﬂ.a) < U4 <o (A.3.1)
ol ®
Bl(m, w) = lim Bl(m,Ua - ﬂa) (A.3.2)
Ua-,uaTm

BI(U —x) = U l_iml Bl(U’Ua - pa) o< U<o (A.3.3)
atat™

Bl(— o,— m) = Ulifm B].(Ua’ - cn) . (A.3.4)
(4

Given the monotornicity result of Proposition 5.2, all of the above limits are
well-defined. Let us now establish a couple of useful properties of these limits. The
proposition that follows establishes that the constructed best response of a boundary
point, is interior. For Bl(U,,u) = (L,L+6), we write By =L, By = L + 6.

Proposition A.3.1 (i) Suppose U — g < w. Then, there is I < o, independent of U
— #, such that B, (0, U=-p) <L,
(i) B11 (o,0) < L;
(iii) Fix U > - o.. Then, there is L (U) > — o such that
B11 (U,- m) > L (U).

Proof: (i} Let U lw, with U - u fixed and finite. Let L .0, denote the best
response, and suppose, per absurdum that L (and hence L, + 6 a)Tm. Fix ¢ > ¢, and
% < 1 such that yc, + € < c. Pick X < o such that (X) > T — ¢, where r =

i%x: r(x) which by A4 (i) is finite. Further, let L ,0  be such that x < L+ 6 and

6T

E.e " < 9, where T = inf {t:X(t) = %X(0) = % € (%L, + 6,)}, under the policy:
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"no jump till the first time X is hit, then jump to L, + ﬂa and follow the optimal

policy thereafter. We have

-

T .
V(z) 2 Ei{ 5 J e rx) ds + T (VL +0) - ¢) }
0

> 1-ENE-g+ BT v, +6)-vc

: (A.3.5)

> V(L,+8)-e-vc
> V(L, + Ba)—co

But (A.3.5) implies that not jumping is optimal at X, i.e., that L,¢ x. In turn,

the argument was completely independent of U — p. So, from (A.3.1){A.3.2), (i) and
(ii) follow.

Lemma 4.4 established that for fixed (U, U-g), L > — o. In fact, the same
argument establishes that this jumping point lower bound could be chosen, independently
of U — u. That establishes (iii). u

Finally, we report here a statement of Tarski’s fixed point theorem (Tarski (1955)).
We say X is a lattice if it is an ordered set with the property that inf {x,y} and sup
{x,y} exist for every x,y in X. We say that X is complete if sup (Y) and inf (Y) exist
for every non—empty subset Y of X. A mapping £:X -+ X is said to be monotone
increasing if x » y implies that f(x) » f(y). Then,

Tarski’s Fixed Point Theorem : Every monotone increasing mapping on a complete
lattice has a smallest and largest fixed point.
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