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ABSTRACT

This paper shows the cxistence of sequential and weak-best-response equilibria for
cheap-talk extensions of signaling games and for a class of signaling games called
communication-impervious. An ¢cxample shows there are well-behaved infinite signaling
games with no sequential equilibria. The assumpticn that talk is cheap scems reasonable in
many economic contexts and yields a very straightforward solution to the existence problem
in infinite signaling games. The cheap-talk assumption opens the possibility of extending
the methods of this paper to prove the existence of equilibrium in more-general extensive-
form games with infinite action and information sets.
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I. Introduction

Most of the theory of extensive-form games requires that the players’ choice variables have only a
finite number of possible values (e.g., Kreps and Wilson 1982). In many economic applications of game
theory. however, choices are more conveniently modeled as continuous variables. As a result, there is a
growing literature extending the theory to infinite choice sets.! Our ultimate goal is 10 define sequential
equilibrium for general extensive-form games with infinite information sets and action spaces and then to
prove existence of equilibrium. As a first step, this paper concemns a special case, signaling games with

infinite type and action spaces.

* We are grateful to Robert Anderson, Debra Aron, Eddie Dekel, Raymond Deneckere, Michael Kirscheneiter, Steven
Matthews. Roger Myerson, Daniel Vincent and Robert Weber for comments on previous drafts of this paper.

! See, for example, Dasgupta and Maskin (1986), Harris (1985), Hellwig and Leininger (1987), Milgrom and Weber
(1985), and Simon and Stinchcombe (1989).



In a signaling game, player 1 first learns some private information, called his type, and then sends a
signal to player 2. Player 2 observes this signal, makes an inference about player 1’s probable type, and then
responds with an action. The game ends with the players receiving payoffs that in general depend on player
1's type and signal and player 2’s action. Signaling games have generated considerable interest of their own.
They have been extensively applied in economics and finance.” Several authors have used these games to
analyze refinements of the sequential equilibrium concept.’ There is also a developing literature on signaling

games with cheap talk (costless signaling).*

In this paper, we first propose a definition of Sequential Equilibrium (SE) for infinite signaling games.
We then prove general theorems concerning convergence and existence of SE for continuous games (in which
the action and types spaces are compact metric spaces and the payoff functions are continuous). We are led
to consider cheap talk by our convergence theorem: 'Define the outcome of a-SE to be the probability distn-
bution on the types and signals of player | and the responses of player 2 resulting from playing the SE stra-
tegies. Given a game, we consider a sequence of games that approximate it. Our convergence theorem says
a limit of SE outcomes for the sequence of approximating games is a SE outcome, not for the limit game, but
for a cheap-talk extension of the limit game. The cheap-talk extension modifies the original game by allow-
ing player 1 to send an additional signal to player 2 that does not atfect their payoffs. As part of the conver-
gence theorem, we show how 1o obtain equilibrium strategies supporting the cheap-talk SE outcome for the

limit game and how to derive player 2’s equilibrium beliefs from her beliefs in the approximating games.

By approximating an infinite game with a sequence of finite games, the convergence theorem leads to a
very general existence theorem: SE exist for cheap-talk extensions of continuous signaling games. An
existence theorem of this generality is not possible for continuous signaling games directly; we give an exam-

ple (due to Eric van Damme) of a simple continuous signaling game that has no subgame perfect equilibna.

The non-existence example and our existence theorem together show that adding cheap talk to a game

can expand the set of equilibrium outcomes. This raises the question of whether adding cheap talk

2 Examples of works using signaling games (or variants) include Bhattacharya (1978), Leland and Pyle (1977), Mil-
grom and Roberts (1982), Myers and Majluff (1984), Riley (1979), and Spence (1974).

3 See Banks and Sobel (1987), Cho and Kreps (1987), and Cho and Sobel (1987).

4 See, for example, Farrell and Gibbons (1986,1989), Marthews, Okuno-Fujiwara and Postlewaite (1990}, Seidmann
(19903, and Stein (1989).
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fundamentally alters the nature of a signaling game. We prove that if the signal space for player 1 contains a
sufficiently rich set of signals, then every cheap-talk SE outcome can be approximated arbitranly closely by a
sequential e-equilibrium outcome for the original game. This result suggests to us that adding cheap talk to a

rich signaling game does not alter the nature of the game in a sigmificant way.

Now cheap talk may have no influence on the outcome of a cheap-talk SE; player 2 may ignore the talk
(because it does not contain any information of value to her}. In this case, we say talk is ineffective and we
show for this case that a cheap-talk SE outcome must be a SE outcome for the original game. Games where
every cheap-talk SE outcome is a standard SE outcome are called Communication-Impervious (CI). Since a
cheap-talk SE exists for any continuous game, it follows immediately from the definition of CI that a SE
exists for any CI game. Using our result on ineffective talk. we wdenuty a class of games, which we call

strongly monotonic games; that are Ck. The non-existence example shows that-not all games are ClL

In many finite games, a plethora of SE exist. To pare down the number of equilibria, a number of
authors have proposed and analyzed refinements of the SE concept. as we mentioned above. We extend our
convergence and existence theorems using one of the strongest ot these refinements, the Weak Best Response

test of Kohlberg and Mertens (1986).

As we said, we prove existence of SE for cheap-talk ¢xviensions of infinite signaling games using a
sequence of finite approximating games and a convergence theorem on outcomes. One can envision at least
three other approaches 1o proving existence of equilibrium  Firsi. one could try using a fixed-point argument
as Milgrom and Weber (1985) do for one-shot. simultancous move games with incomplete information. This
does not seem possible with signaling games because esen though payotfs are continuous, expected payolfs
are not with respect to any common topology on strateyies that makes the space of strategies compact (Torio

and Manelli 1990).

A second alternative is to use a sequence of imte approumating games and a convergence theorem on
strategies (instead of outcomes). We pursued this approach in fono and Manelli {1990). One has to impose
severe restrictions on a game to guarantee that a sequence of strategies will converge. We have abandoned
this approach because it does not seem to be applicable to games of more-general forms, while the cheap-talk

approach seems readily applicable.



A third alternative is to construct SE strategies using the equilibrium conditions of the game. Cho and
Sobel (1987), Crawford and Sobel (1982), and Riley (1979) use this approach. Crawford and Sobel provide
the original discussion of cheap talk. All these papers show the existence of SE for certain classes of signal-
ing games. All impose strong assumptions on the players’ payoff funcuons, e.g., differentiability and restric-
tions on the cross derivatives. Because of their strong assumptions, all can analyze the properties of equili-
bria, such as how much information player ! will reveal. This type of approach will also be difficult to apply
to more-general games.

The rest of this paper is organized as follows. In Section II, we introduce the games we consider, nota-
tion and definitions. In Section III, we informally discuss the non-existence example and our results. Section
IV contains formal statements and proofs of our theorems. Section V concludes the paper. An Appendix

contains statements and proofs of some general lemmas.

II. The Game

We consider signaling games of the following form. We summarize a game by I' =
((T.p).X.Y.U" U] In this game, player | first privately observes his type ¢ from the set T of possible types
and then sends a signal x from the set X. Player 2 observes this signal, infers player 1’s probable types, and
then selects an action v from the set Y. The game ends and each player / receives payoff U'(sr.x,y). To
complete the specification of the game, we assume that player 2 has prior beliefs p about the possible types ¢
of player 1: p is a probability distribution on 7 that is common knowledge berween the two players.

We will consider collections of games in subsequent sections of the paper. For the remainder of this
section, fix a particular game [ = [(T,p).X.Y.U' . U?]. We say that I is continuous if and only it 7. X and
Y are compact metric spaces and U' and U7 are continuous. We shall be concerned in this paper only with

CORntinUOus games.

We allow the players to use random strategies to select their actions in I". One type of random strategy
is a behavioral strategy. For player 1. this is a function & from types T to the space M (X) of probability dis-
tributions on X. Probability distributions on a space are measures defined on the events of the space, i.e., the

Borel-measurable subsets. Given a type ¢ € T and an event B € X, §(¢)(8) is the probability assigned 1o B



by the distribution 5 (¢).
A behavioral strategy represents a local view of the options of player 1. It will be convenient for the
proofs to take a more global view of these options. The behavioral strategy & induces a distribution u on

TxX defined by integrating & with respect to p: for all event rectangles AXB < TxX.

piAxB) = [ £()(B) plar).
A

This definition has two consequences. First, for 4 to be well-defined, the function ¢t — & (¢} B) must be
measurable for each fixed event B < X (Billingsley 1979, p. 394). Second, the marginal distribution py of u
must equal the prior distribution p. Following Milgrom and Weber (1985), we call p a distributional stra-
tegy; it is simply another way of representing a behavioral (or mixed) strategy. We denote the set of possible
strategies for player | in the game I by Z/(I') = { p e M(TXX) | pr = p }. =Y is a compact metri¢ space
using the topology of weak convergence of measures. We use this topology on all spaces of distributions. .
We represent player 2’s options using behavioral strategies. These are functions 7:X — M(Y). Given
this representation of a strategy, it will be convenient for us to work with the space M (Y} instead of with the
space Y directly. We extend the players’ payoff functions U' from Y to M(Y) by taking expected values: for

each (f.x,nye TXXxM(Y), we let

Utteany = [ U'exy) nidy).
Y

U' is a continuous function on TxXxY if and only if the extension of U’ to TXXxM(Y) i continuous
(Lemma A4 in the Appendix proves the non-trivial half of this statement).

We must impose measurability restrictions on player 2's strategies. We require that the function
x — 7(x) is measurable, The important consequence of this requirement is that player 2’s strategies are all
approximable using continuous strategies. We denote the set of possible strategies for player 2 in the game I’
as XTI, the set of all measurable functions n:X — M(Y). As we saw for player 1, an alternate measurabil-
ity requirement for a strategy is that the function x — n(x)(C} is measurable for all events C. These two
requirements are equivalent (Bertsekas and Shreve 1978, Proposition 7.26), so we need not distinguish

between them.



Given that player | plays a strategy u € U, a signal x will typically reveal to player 2 some informa-
uon about the type of player 1. We represent player 2's posterior beliefs as a function 5:X — M(T). We
require that the beliets of player 2 about the type of player 1 given signal x be consistent with the strategy of
player 1 in that B must be a version of a regular conditional probability distribution of ¢ given v derived
from p (see Parthasarathy 1967). Specifically, we require that (/) B is measurable, (ii) for all events AC T

and B C X, J BlxyA) uy(dyy = p{AxB), and {iii) there exists an event X' X with gy(X") = 1 such that
B

veX' and resupp|B(x)) imply (r.x)€supplu]. We define ZX(I') as the set of pairs (B,u) satisfying (7)
through (ii7). Regular conditional distributions always exist for distributions on compact metric spaces.

Define the mixed best-response correspondence for player 2 as

MBR(x,Y. T, U)y={ (n.BYeM(Y)xM{(T}
| j Ur,x,n) B(de) 2 j U(t,x,n’y Bide) for all n” e M(Y) }.
Given that player 1 signals x, MBR (x,Y,T,U) is the set of pairs of a response n from M(Y) and a belief
on T where n is a best response given the belief 8 and given that player 2’s payoff function1s . This
definition is a little different from the standard one in the literature: we associate to each best response the
belief that supports it, and we allow the set ¥ and the function U to vary.

Kreps and Wilson (1982) defined sequential equilibrium for finite games. We adapt their definition to
infinite signaling games as tollows. A Sequential Equilibrium (SE) for [’ = (T.p).X.Y U U?] is a triple
(ﬁ,[},ﬁ) such that

(S1y aez(), neZXI)

(S2} for all (¢,x)esuppli), U'(t,x,fj(x)) 2 Ule.x' . q{x") forall x" €X;

(83} (A(x).B(x)) € MBR(x.Y. T .U% for all xe X;

(S4) (B.A)eE(D).
Condition S1 requires that the players’ strategies be valid ones. S2 and $3 are requirements for sequential
rationality. S2 says that player 1 only sends signals x that will maximize his expected payoff given that his
type is ¢ and that player 2's strategy is 7. S3 says that player 2 responds with actions A{x) that maximize

her expected payoff given her belief B(x) about player 1. S4 requires that the beliefs of player 2 be



consistent with the strategy of player 1.

We define a sequential e-equilibrium by replacing conditions S2 and S3 in the defimuon of SE with

(S2%) for all (+,x)esuppla], U (4, x,0(x)) 2 Ul x' ) — e forall X eX:

(S3’) for all xeX. j Ue,x . 0(x)) BlxXdr) = j Urxem) B(x)dr)y — € forall neM(Y).
T T

To prove the existence of a SE for I and to discuss refinements of the equiiibrium concept, we will

need a few more assumptions and definitions.

Cho and Sobel (1987) define a signaling game I to be monoronic if for all x in X, for all (n.B) and

(n’.B") in MBR(x.Y T U}, and forall r and ¢"in T,

UWrxom) 2 Ulte,x,n’) implies U'(e x,my 2 UM xm’).
Monotonicity holds in many applications of signaling games. For example, if ¥ is player 2’s choice of pay-

ment to player L, monotonicity requires that player 1 prefers more money to less independently of ¢ and .

Monotonicity holds if ¥ is an interval in R', U is increasing in y, and U~ is strictly concave in y. We

will need a stronger property also implied by these conditions.

We define I to be strongly monotonic if for all x in X, for all (n.8) and (n’.B") in MBR(x,Y,T.U%),

and for all 7 and " in T,
Ulexomy 2 UNe,x,n’y and UNex,n”y 2 U x,n) imply n =1’

Strong monoltonicity implies monotonicity. It also imples there is a linear ordering of the best responses of
player 2 that reflects the preferences of all types of player 1.5 We will show a strongly monotonic signaling
game has a SE.

Many finite signaling games have a large number of sequential equilibria. Various authors have pro-
posed refinements of the SE concept to reduce the number of equilibria by weeding out those that seem intui-
tively unreasonable (see Cho and Kreps 1987 and their references). We want to consider the strongest possi-

ble refinement criterion and show that SE exist that satisfy this criterion. The strongest criterion is Kohlberg

and Mertens’ (1986) strategic stability; it implies most of the weaker criteria that authors have proposed. Itis

5 A linear ordering is complete, transitive and antisymmetric.



not apparent to us how to apply this criterion directly to infinite games. Cho and Sobel (1987) show that for

finite monotonic signaling games, the following criterion is generically equivalent to stability. Given a SE

(f.B.7), detine

VIiy = Ui i af (rox) €supplpl.
These are the equilibrium payoffs to player 1 if his type is . We say that (4.3.7) sausfies the Weak Best

Response (WBR) criterion if for all x € X ~supp[fx], W1 implies W2, where

(W1) there exists €T and (n.8Y€ MBR (x,Y T .(?) such that U'(r.x,m) 2 Vit

(W2) for all ¢ esupp[[i(x)], there exists (n”.3 )€ MBR ¢« ¥ T U?) such that

Ultxon’y= V') and forall ¢ eT. Ulir any € Vi),

W2 restricts player 2's beliefs given x to those ¢ for which v 15 a weak best response in some SE (with belief
B(x) = B’ and response 1(x) = n’) with the same outcome as (i B.1) see Cho and Kreps 1987). W1 says
such a restriction cannot be ruled out a priori. WBR is just a convenment restatement of Kohlberg and Mer-
tens’ Never a Weak Best Response test. It implies various other refinements of SE, e g, the Inwitive Cri-
terion of Cho and Kreps (1987), and the Universal Divinity test of Banks and Sobel (1987).

To show the existence of WBR equilibria. we will need vne more assumption. Let dr be a metric on
the type space T. We say the payoff function of plaver | i Lips huz in 1 if there exists a constant L such

thatforallrand t" in T, xinX,and y in ¥,

U N xy) = U’ xov)l € Ldp(ea’y,
We say a family of functions is uniformly Lipschitz it cach tum nion in the family is Lipschitz using the same
constant L. U is Lipschitz in ¢ if either T 1s finne or {15 conunuously differentable with respect to 7.

/' is Lipschitz in ¢ on TxXxY if and only if the extension ot £ 1o TxXXxXM(Y) ts Lipschitz in ¢.

III. Example and Discussion

The purpose of this section is to provide informal motivation for our results. We provide formal state-
ments and proofs of the theorems in the next section. We begin the section by presenting an example of a

game for which no sequential equilibrium exists. Our method of proving the existence of an equilibrium tor



a game takes a limit of the outcomes of SE for finite approximating games. A limit outcome always exists,
but as the non-existence example shows, it may not be a SE outcome. It turns out, however, that the limit
outcome is a SE outcome for a cheap-talk extension of the original game. This is our first result. Since we
can always construct a limit outcome, we can always construct a cheap-talk SE. We use the example to illus-

trate how we do this.

Now cheap talk may have no influence on the outcome of a cheap-talk SE; player 2 may ignore the talk
because it contains no valuable information. In this case we say talk is ineffective. Our next result is that
when talk is ineffective, a cheap-talk SE outcome must be a SE outcome for the original game. Games where
every cheap-talk SE outcome is a standard SE outcome are called Communication-Impervious. Any strongly
monotonic game is CI. Since a cheap-talk SE exists for any game, it follows immediately from the definition
of CI thart a SE exists for any CI game,

As the non-existence example shows, adding cheap talk can expand the set of equilibrium outcomes of
a non-CI game. Our final result indicates, however, that adding cheap talk does not fundamentally alter the
nature of the game if the space X contains a sufficiently rich set of signals. We show in this case that every

cheap-talk SE outcome can be approximated arbitrarily closely by a sequential g-equilibrium outcome.

We will use the following example to introduce our theorems and illustrate the method of proof. The

basic idea behind the example is due to Eric van Damme.5

Define the game I" by
T =|-1.1}, p(-)=p(l) =4, X =Y = [-1,1],
Ultt,xyy = —x* + 1y, Ux,y) = xv.
To simplify notation, we write p(—1) when we mean p{{-1}) since p is a measure. To further simplify
matters, we will restrict ourselves in this section to pure strategies, and we will denote pure strategies by

real-valued functions.

The game [ is continuous, but it has no sequential equilibrium nor even a subgame perfect equilibrium.

To see this, observe that since player 2’s payoff function is independent of ¢, her best responses do not

6 We thank Subir Chakrabarti for bringing an example of van Damme’s te our attention.
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depend on her beliefs concerning . Letting the function ¥ denote player 2's strategy, in any potential

sequential equilibrium we must have

B -1 ifx<0,
MO =0 x>0

(1)
Now player | will choose x given ¢ to maximize his payoff U'(¢,x,¥(x). This amounts to player 1 choosing
a maximizer for U' from the graph of the function ¥. On this graph, the payoff for either type of player 1 is
strictly increasing as x — 0 from either above or below. But no matter how 7(0) is chosen {even randomly).
the graph of ¥ will not be closed at x = 0, so that a maximizer will not exist for at least one type of player 1.
Hence, a sequential equilibrium cannot exist.

The addition of cheap talk to the game " can solve the problem of non-existence of equilibrium. Our

method for locating an equilibrium with cheap talk 1s as follows. Let <X "> be a sequence of finite subsets of

X that are increasingly fine approximations to X, say

X"={(-D'k/n1 I =12andk=1....n}
Let <Y"> be an analogous sequence tor ¥, say ¥" = X”. The game ['" = (T.p).X"Y"U'U? is finite, so it

has a SE. SE strategies are x"{(—1} = —1l/n, "(1) = V/n, and $%(x) = §(x) given by (I).

Now look at the sequence of outcomes for these SE for I”. This is a sequence of distributions A" on
TxX"xY" given by AN=-1,-1/n,-1) = At Un 1)y = VA (again simplifying the notation for measures).’ This

sequence will converge weakly to the distribution 4 on TxX xY given by

A-1,0-1) = A(1,0,1) = %. (2)
This outcome cannot be a SE outcome because it cannot be realized by a pair of strategies. We can construct
a pure strategy for player 1 out of Acitis #(=1) = ¥(1) = 0. We cannot, however, construct a response for
player 2 because there is no unique conditional value of y given x: according to A player 2 should respond

to x = 0 sometimes with v = —1 and sometimes with y = 1. In each game I'" in this example, there is coor-

dination between player | and player 2—player 2 plays high or low depending on whether player 1's type is

7 In the next section, we use a slightly different definiticn of outcome to accommodate behavioral strategies.



- 11 -

high or low—but this coordination 1s lost in the limit game I'.

We can solve this coordination problem by adding cheap talk to the game I'. Let Y* be a copy of the
action space Y. Suppose player 1 can costlessly suggest a play v* € Y* to player 2 in addition to sending the
costly signal v. The asterisk in y* and ¥* distinguishes a signal that does not affect payoffs from a response
v from Y that does affect payoffs. Adding this signaling capability creates a new game r'* =
[(T,p),XxY*,Y,(/",U3| with a signal space X xY*. A distributional strategy for player 1 1s now a measure
on TxXxY* and a (pure) strategy for player 2 is a function from X xY* to Y. We call the game I'* the
cheap-talk extension of T

It is easy to construct a SE for I'* from the limit of the SE for the games I'". The equilibrium distribu-
tional strategy for player 1 is just the limit distribution A with y* replacing y. For the example, this is given
by (2). The equilibnum strategy for player 2 on the equilibrium path is y(x,y*) = y*. The beliefs of player
2 on the equilibrium path are a version of the conditional distribution of ¢ given (x,y*) derived from A. (We

must show that there exists a version such that ¥{x,v*) is a best response to the belief ﬁ(x,y*) for all (x,y*)

on the equilibrium path; this is the principal difficulty in this construction of an equilibrium.) For the exam-
ple, A implies a unique set of beliefs on the equilibrium path: the signal (x,y*) = (0,—1) comes from type -1
and the signal (0,1) comes from type 1. To define ¥(x.y*) and the beliefs ﬁ(x,y*) off the equilibrium path,
we take a limit of a subsequence <x”,_{:"(x"),;§"(x")> from the SE for <I'™> such that <x"> — x. (We must
select v and [3 so that they are measurable.) For the example, the beliefs of player 2 do not affect her
actions, so we will just have $(x,y*) = ¥(x) given by (1) and we can use any set of beliefs.

Generalizing this method to handle arbitrary behavioral strategies yields two convergence theorems con-
cerning cheap-talk equilibria that we will state and prove in the next section. Letiing ¥* = M(Y), a corol-
lary of these theorems is

Theorem A: Every continuous cheap-talk extension game I'* = [(T,p),X x¥* Y, U " U* has a SE. If

U is Lipschitz in ¢, then I'* has a SE satisfying the WBR criterion.



When /' is Lipschitz in ¢, the equilibrium payoffs to player I in approximating finite games converge
continuously. and then a limit of WBR outcomes is a cheap-talk WBR outcome.

Theorem A is a general and simple result. It gives one good reason to consider allowing for cheap talk
in applications of signaling games. Using ¥* = M(Y) as the cheap-talk space is not very restrictive since it
is an uncountable compact metric space and thus Borel equivalent 10 any other uncountable compact metric

space (Parthasarathy 1967, Theorem 1.2.12)8

To discuss the existence of SE for a game T without cheap talk, we adopt the framework provided by
Matthews, Okuno-Fujiwara and Postlewaite (1989, 1990). We say a game ' is Communication-Impervious
(CI) if every SE (or WBR) outcome for the cheap-talk extension game I'* is also a SE (or WBR) outcome of
the original game [. It is an immediate consequence of this definition and Theorem A that every CI game

has a SE and every Lipschitz CI game has a SE satisfying WBR.

To identify CI games, we need another definition and result. We say a SE outcome iofa cheap-talk

extension game has ineffecrive talk if and only if®

’

(IT) (r.x,y)esupp[i{] and (t',.r.y')esupp[i] mmply v = y".
This says cheap talk does not influence the outcome A because player 2’s responses depend only on the sig-
nal . Since the outcome is an equilibrium one, it must be that the cheap talk provides no information of

value to player 2. In the next section we prove

Theorem B: Let T* be the cheap-talk extension of a continuous game . If A is a SE outcome for I'*
satistying IT, then i is a SE outcome for . If A is a SE outcome for I'* satisfying WBR and IT, then A is

a SE outcome for I satisfying WBR.

According to Theorem B, if every SE outcome for ['* satisfies IT, then I is CI and thus has a SE. In

the next section we show that SE outcomes for strongly monotonic continuous games satisfy IT.10

® This statement requires some qualification. A SE under our definition may not remain a SE after a transformation
using a Borel isomorphism because condition $2 may not be satsfied everywhere on the support of player 1's distribu-
tional strategy. only almost everywhere. Thus which cheap-talk space we use does matter unless we weaken the
definition of SE.

9 In the next section, we use a slightly different version of IT to accommodate behavioral strategies.

10 Crawford and Sobel {1982) and Seidmann (1990} present conditions for pure cheap-talk games to be
communicalion-impervious.
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Another application of Theorem B 1s

Theorem C: [f a continuous game " = {(T,p),X,¥,U',U?] has a finite X space, then I has a SE. If in
addition /! is Lipschitz in t, then I' has a SE satisfying the WBR criterion.

We prove Theorem C by considering a sequence of equilibrium outcomes for finite games that approxi-
mate . These outcomes will satisfy IT. We select a subsequence of outcomes such that a limit outcome
exists and also satisfies IT. We can do this when X is finite. This iimit outcome will be an equilibrium out-

come for I'*, and by Theorem B, also for T".

Since U' is Lipschitz when T is finite, Theorem C implies in particular that WBR equilibria exist for
all finite signaling games, rather than just for generic finite signaling games as in Cho and Kreps (1987).

As the non-existence example shows, adding cheap talk can expand the set of equilibrium outcomes of
a non-CI game. This raises the question of whether adding cheap talk fundamentally alters the nature of a
signating game. We will argue that it does not if the space X contains a sufficiently rich set of signals. Con-

sider the tollowing definition and theorem.

We say a signal space X is rich if and only 1f for all compact metric spaces Z and for all closed balls
B < X. there exists a closed set A B and a continuous mapping from A onto Z. An example of a nich
space is the interval {0,1] (Parthasarathy 1967, Theorem L4 1)

Theorem D: Let I = [(T.p),X.Y,U',U?] be a vonunuous game with a rich signal space X, and let I'*
be the cheap-talk extension of I'. Then given £ > U and 4 « that 1s a SE outcome for ['*, there exists a A

that is an outcome of a sequential e-equilibrium for T with Proboros distance p(A,4) < e.!!

Thecrem D says that when the signal space X 1v rich. evens cheap-talk SE cutcome can be approxi-
mated arbitrarily closely by a sequential £-equihbrium outcome  This is done using a one-10-one mapping
that replaces each signal (x,y*) in X xY* (in the pure-strategy «ase) with a signal ¥ in X with ¥ close to x.
Thus this mapping replaces cheap talk that uses a copy of the ¥ space with costly signaling that uses the X

space. If player 2 responds to each signal ¥ as she would have responded to the corresponding (x.y*) in a

1! See Billingsley (1968} for a definition of the Prohorov distance on distnibutions.



S 14 -

cheap-talk SE. the result will be an e-equilibrium since X is close to x. Since the players can approximate a
cheap-talk equilibrium outcome arbitrarily closely using costly signaling, this suggests to us that adding cheap

talk to a rich signaling game does not alter the nature of the game in a significant way.

While the players can approximate cheap talk using the costly signal, doing so can be awkward. Con-
sider what happens when we replace player 2's payoff function in the example game with Utx,y) =~y
This new game has the same simple cheap-talk equilibrium outcome the original example game had: player 1
signals what response of player 2 that he would prefer by sending (x,y*) = (0,1) and player 2 follows along
with v¢x,v*}) = y*. Without cheap talk, a possible SE outcome has player 1 signaling re with 0 < ¢ < 1 and
player 2 responding with

-1 ifx<-¢,

Fa)=10 it —e < x <eg,
1 if v2e.

To support this response by player 2 requires that she believe B)-1) = ﬁ(,\')(l) =12 when —g < X < €.
This equilibrium seems contrived: the cheap-talk equilibrium is simpler and more natural.

For finite signaling games. the set of SE outcomes coincides with the set of limits of sequences of
sequential e-equilibrium outcomes as € — 0. The non-existence example and Theorem D combine to show
this is not true for infinite signaling games. Instead, the set of limits of sequential £-equilibrium outcomes

includes the cheap-talk SE outcomes when X is rich.

We conclude with some remarks on the relation of this paper to other work. Farrell and Gibbons
(1986) argue that cheap talk can be credible, is ubiquitous, and economists and game theonsts should give it
more attention. We have found some more reasons for giving cheap talk attention in a non-CI game: it will
simplify the question of existence of equilibrium and the analysis of the game without fundamentally altering

the nature of the game.

Forges (1986) discusses various extensions of extensive-form games, including the use of cheap talk
and the use of exogenous randomizing devices, In a game with simultaneous moves, however, these exten-
sions can alter the nature of the game, as Aumann (1974} shows. He calls an equilibrium produced using an

exogenous device a correlated equilibrium. He gives examples of finite, normal-form games for which the
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set of correlated equilibria is strictly larger than the set of Nash equilibria (and strictly larger than the set of
limits of sequences of £-equilibria as ¢ — 0).

In considering cheap-talk extensions of a game, one has to decide whether the absence of cheap talk 15
essential to the economic analysis. We believe that in many situations this will not be the case. For exam-
ple. one might model a game as a one-shot, simultaneous-move atfair merely to abstract trom time and the

ordering of moves. Then it may be very reasonable and desirable to add cheap talk to the analysis.

IV. Theorems and Proofs

This section follows the basic outline of the previous section (although the statements of the theorems
and their numbering are different). We first prove two convergence theorems that show that the limit of SE
or WBR outcomes for approximating games is a SE or WBR outcome for the cheap-talk extension of the
limit game. We show next that when 1alk is ineffective, a cheap-talk equilibrium may be converted to an
equilibrium for the original game. We then show that talk is always ineffective for strongly monotonic
games. Next we prove existence of equilibria as corollaries of the first three theorems. Lastly we show that
cheap-tatk SE outcomes may be approximated by sequential £-equilibrium outcomes. We relegate to the

Appendix statements and proofs of several general lemmas (they are numbered Al through A6).

We begin with a few definitions and key lemmas. In discussing a game ' = [(T.p3X.Y U U, we
will conserve notation by using ‘¥ in place of M(Y). An n €'Y denotes a generic response by player 2. We
denote the cheap-talk extension of I by I'* = [(T ,p),X x‘P*,Y,U‘,UZ], where the cheap-talk space ¥* is a
copy of . The asterisk signifies that sending a signal n* € '¥'* does not affect the payoff of either player |
or 2 and distinguishes the signal n* from a response n.

Given a SE (,ﬁ,B,ﬁ) tor I", we define the ourcome A of (;I,B,f]) as a distribution on TxX x'¥ (and not
on TxXxY as in the previous section). This outcome is the distribution of the random element on T'xX x'¥
generated by the distributional strategy 4 and the function f (+,x) = (1,x,A(x)). Thus, A =jioft ForaSE
(\?,5/,@) for the cheap-talk extension I'*, we again define the outcome as a distribution on 7 xX x¥, but now
i =vog ! where g(r,x,n*) = (¢,x,& (x,n*)). With these definitions, outcomes for the two types of games

are comparable and depend only on payoff-relevant variables. We denote the set of SE for a game I" by
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SE(I') and the set of SE outcomes by SEQ(I'). We denote the set of SE satisfying WBR by WBR(I') and the

corresponding outcomes by WBRO(I').

Given a SE (f1.3.7) for T, we define the equilibrium payoffs to player I of type ¢ to be

Vieey = Ultex.nixyy if (2,x) € suppla].

Condition S2 for a SE guarantees that this definition does not depend on which pairs (z.x)€ supp(g] that we
choose. The lemma below shows that we can also derive player 1's equilibrium payoffs from the outcome i
We will use the following fact in the lemma and repeatedly in the sequel: if a distribution such as
fi € M(TxX) has compact support, then supplfix] = Projy supp(fi], where Projy denotes the projection onto

the X space.
Lemma 1: Let [ = [(T.p).X.Y,U'. U7} be continuous. Let (f1,8,7) be a SE for I" with outcome i and
equilibrium payotf function V"' for player 1. Then
(L (r,.\-,n)esupp[i] implies V'(r) = Ul(r.x.n)
(2) (¢'.x'.n")esupplA] implies V'(r) = U'tra'n’) forall reT.
Proof: Applying Lemma A2 with f(r.x) = {1,x,7(x)). (r,x,n)empp[i] is in the closure of the set
£ (suppia]). Therefore there exists a sequence <t”.x". n(x")> — (r.x,1) with (¢" . x")yesupplg] for all n. S2
implies
UM " ") = Ut x,aixao).
In a similar manner. since Projr, x supp[i] = supplil, (t.x.n) €supp[4] implies (r,x)€supp[fi]. S2 now
implies
Ul e 2 Ul ax™)
Taking hmits, we have
Ulte,x,m) 2 U nx) 2 Ul(xn).

Since (r,x) € supp[g], we have
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Vi = Ul = Ultna ),
which proves part (1).
To prove part (2). consider U',x’,n')esupp[i]. Just as before, there exists a sequence
<" X A> o f.x'n’) with (¢7x" e suppia] for all n. S2 implies
Vi 2 UNexma™n.
and part (2) follows taking the hmit. i
The following lemma and its application is an important technique employed in this paper. Given
potential SE strategies g and 7, the lemma gives conditions enabling us to construct player 2’s beliefs on the
equilibrium path so that they satisty S3 and S4.
Lemma 2: Let ' = [(T,p},X,Y,U'.UZ} be continuous. Let g e X} and 7 € £2(I"). Let i be continu-
ous on supplsiy] and let BY:X — M(T) be a measurable function satsfying (ﬁ(x),Bn(x'))eMBR(.r,Y.T,Uz)

for all x € X ~supplfix]. Suppose for all continuous functions nxX — ¥,

(1) | Ux ) fildrxde) 2 | U0’ (0) Addixdx).
<X Tx<X

Then there exists 8 such that (8.4) € ZX(T'} and (7(x),B(x)) e MBR (x,Y T, U?) for all xe X,

Proof: For k = 0, 1, 2, we define measurable sets X * that together partition X and measurable func-

tions BX:X* — M(T). We then set

Bilx) =3 BExI(0),
k=0
where 1. is the indicator function for the set X*.
We take B° as given in the statement of the theorem and define X° = X ~supp[fix]. Let B’ be any ver-

sion of a regular conditional distribution of ¢ given x derived from o, Let

X' = { vesupplx] | (77(x),B'(x)) € MBR (x,Y T ,U?) |,
and X7 = supp[fix]~X'. Assume that X is measurable and that fiy(X?) = 0. We will show this below.

Then X! is dense in X'y X2, and given this we can use B' on X' to define a measurable function 8° on X*
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so that {A(x 1B (x) € MBR(x.Y.T . U?) for all veX?.

To define B2 let € = | (x,7(x).Bx)) | xeX'}. Applying Lemma A6 to the closure C . there exists
a measurable function (1,32 such that (x,n(x).8*(x))eC for all x€ X = Projx C. Since X' is dense in
X'\ X% X = X" X’ By hypothesis. 7 is continuous on X' X? so we have n* = 7. Since
(7.3 () e MBR(x.Y.T U for xe X', we have (7(x).f°(x )y e MBR (x,Y.T,U?) for x€X? by Lemma
AS.

Under our assumptions that X is measurable and (X ") = 0, we can thus now define a measurable

function ,B(.r) = z ﬁ’(vr)lxk(.r) such that (ﬁ(.r),[i(.r))e MBR(v.Y. T.U7) for xeX. [3 1s a regular condi-
k

tional distribution denived from j because ﬁ equals the regular conditional distribution B’ on X' and

fx(X'y = 1. Hence. (8.4)€Z*(I") and B satisfies the conclusions of the lemma.

To complete the proof, we now have to show that X 15 measurable and fy(X?) = 0. We sketch the

proof of this. To show X? is measurable, define a function

() = [ LU A00) = UPem)] BlLoedin,
T

and let ¥ be a countable, dense subset of *¥. The function A, is 1 conditional expectation and thus is
measurable (Chow and Teicher 1988, Theorem 7.2.1). The tunction A, 1s also continuous in 7 for fixed x by

Lemma A4, Then

2

X-=fxl hy(x) <0}

ned

and this is a countable union of measurable sets and is theretore measurable.

To show fig(X?) = 0, define a correspondence on X by Moo= | eV | h,(x) < 0}. The graph of
H is

U L xem | hyx)<Candn =7}

ne¥

which is measurable. By the Measurable Selection Theorem (Hildenbrand 1974, p. 54), there exists a

measurable function n® with n’(x)€ H(x) almost everywhere [y} on X°. Set n® = fi on X~X?2 Now if
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fx(X?) > 0, we can use Lusin’s Theorem (Parthasarathy i967, Lemma 11.4.1) to find a continuous function
n’ that approximates n* closely enough so that n” violates condition (1) of the lemma. This contradiction
implies we must have ﬁx(ij = (), and the proof is complete. 1

Our first two theorems concemn convergence of a sequence of SE outcomes for a sequence of games.
We have 1o define the types of convergence we use. We consider a sequence of games, say "=
(T p" X" Y™ U U forn=1,2, ..., and a limit game [" = (T.p).X.Y .U U?). We assume that ail
the type and action spaces are compact subspaces of ambient compact metric spaces T.X and Y. Conver-
gence of any sequence is always relative to the relevant ambient space. For example, convergence for prob-
ability distributions on the type spaces means weak convergence in the space M(T). We write <p™> => p

when a sequence of distributions with p" € M (T ") converges weakly to p e M(T).

Convergence for the payoff functions U*" means continuous convergence. We say that <U'™> — U’
continuously for (r,x.y)e TxX XY when for all (t,x,y) € TxXXY, <t”.x"y"> — (£,x,y) implies
<UM(t"x" 3> o Utrx,y).

Convergence for the type and action spaces means closed convergence or equivalently convergence
using the Hausdortf metric on sets (see Hildenbrand 1974, p. 15). Given a sequence of sets <T">, define
Li<T"> as the set of limits of sequences <r"> with :” € T" for all n; define Ls <T"> as the set of limits of
subsequences. We say <T"> — T if and only if Li<T"> =T =Ls <T">, and we say T 1§ the closed limit
of the sequence <7 ">. One can show <T"> — T if and only if <M(T")> = M(T).

We will need the following definitions to derive the strategies and beliefs for player 2 in SE for limit

games. Given a SE (ﬁ,ﬁ,r‘;) for ', we say that ﬁ is regular at x if and only if

x € supplfiy] and t € supp[B(x)] imply (¢.x)esuppll.
When (ﬁ,ﬁ)e =}, then by definition ,B is regular at almost all x [fiy] and therefore is regular on a dense

subset of X. Define

A(X.,.I,,é,ﬁ) = | (x,ﬁ(x),,é(.r)) I xeX and[:i is regular at x }.

Given a sequence <i" B",A"> of SE for <I'">, let B = Ls <A(X"4i".B".A")>. B is non-empty and compact.
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B 1s equal to the set of all (e,n.BreX xM (Y )xM(T) such that there exists a subsequence
<™ A" ™ B M x™> = (x.n.B) with B™ regular at x™. We will use this characterization of B repeatedly.
Theorem 1: Consider a sequence of continuous games ['" = UT"pM X" Y UM U™, n=12 .. a
continuous limit game I = [(T,p),X,Y,Ul,Ul], and the cheap-talk extension game I'* =
(T.p)rXx¥*Y U \U*]. Suppose
(H1) there exists <A™ => A with 1" € SEO(I™");
(H2) <X™ = X, <¥"™> = ¥, <T™> > T,<p"> = p!

(H3) <U'"> — U'* continuously for (f,x,y)eTxXXXY, i = 1, 2.
Then '

(Cl) A €SEO(*).

Let <[1",[3",ﬁ"> be SE supporting <A ">, and let B = Ls<A (X"4"B"7">. If each X" is finite, then,
pp g

(C) (t,x,n)esupp[i] implies (x,n.8)€B for some B.

Remark: The outcome AeSEO (I"'*) is supported by (O,?,f;’) where v = A. B,A’(x,n*) = n* on
Supp[ vy e, and on X x¥*~supp[ vy cp+], (é’,if) = (n",8°, which is any measurable selection from the set
B. We have built B only from regular beliefs. This is not necessary for this theorem, but it will be neces-
sary for Theorem 2.

Proof: We will construct the promised SE for I'* from 4 and from the sequence of SE <,&",[§",ﬁ”>

supporting the outcomes <A"> for <I"">. We begin with two lemmas.

Lemma 3: Let ('r,x‘n)esupp[i] and let H1 and H3 hold. If either (¢*,x",n"} € supp[A] or

(x'.n".BYeB, then U'(rx,n) 2 Ul(t.x’"n').

Proof: Let both (£,x,n) and (¢+".x",n") come from supp[i]l Apply Lemma A3 with
f7,x) = (¢,x,n"(x)). Then HI implies there exists a sequence <t x" 0" x"> = (,x,n) with

(¢".x") € supp[£"] for each n and a similar sequence <t"".x"" 7" (x"")> — (¢",x",n"). Since £" and 7"

represent a SE, condition S2 implies



UMt xRN M) 2 Uln(ln,x'n,ﬁn(x'n))'
Taking limits using H3 and Lemma A4, we have
Ultt,en)y 2 UM x’n’).
This proves the lemma when (¢’ ,x",n") € supp[A].
A similar argument establishes the case (x’,n".8")€ B. Here we use a (sub)sequence

<,x-”‘,ﬁ"(,r’”),;§"(x"’)> — (x’,n’.B"): such a sequence exists by definition of B. The rest of the argument

proceeds as in the previous case. 1]

The next lemma shows how to construct player 2’s strategy and beliefs off the equilibrium path.

Lemma 4: If H1-H3 hold, then there exists a measurable function (n°,B%:X — ¥xM(T) such that
(e.n’(x).B"x) eB for all xeX. Furthermore, (x,n.8)€ B implies (n.8)¢€ MBR(x.Y . T.U%.

Proof: B as a closed limit is compact. By Lemma A6, there exists a measurable function
(n".BY):X — IxM (T ) such that (x,n%x),8%)) €8 forall xeX = Projg B.

We must show that (n°.") is a function from X to WxM(T). An element (x,n,B) of B is the limit of
a (subj)sequence <x" A"(x"),B"(x")> with 3" regular at x". This is true if and only if x€X since B" is regu-
lar on a dense subset of X" and <X"> — X by H2. Therefore X = X. Since
(A"(x™).B"(x")) € MBR(x"Y",T",U*") on the sequence, the limit (n.BYe MBR(x,Y,T,U*) by Lemma A5.
This implies in particular that (7°(x).8°%x)) € ¥xM(T) for all x€ X and also proves the last statement of the
lemma. 7]

We continue with the proof of Theorem 1. We first show conclusion C2. Let (r,x,n)esupp[i].
Apply Lemma A3 with f"(r.x) = (1.x,7"(x}). Then <A™> => A implies there exists a sequence
<" X" A" (x")> = (1.x,n) with (1", x") esupp(a”} for each n. Let 8 = li:n B"(x") on a subsequence. Then
<" R"LBM (x> = (x,n,B), and since each X" is finite, B” is regular at x" for all n. Therefore

(x,n.B)€ B by definition. This proves C2.



We now show C1, that A € SEO(T'*). We will construct a SE (O,Sf,é’) supporting the outcome A in
three steps. First, we define the strategy v of player | and show it satisfies S1. Second, we define a strategy
L’;’ for player 2 satstying S1 and show that v and ¢ satisfy $2 and result in outcome A. Finally, we show
that there exist beliefs ¥ such that (\7,?,5’) satisfies S3 and S4.

Define v = A. To show ¢ satisfies S1, we have to show that i e M(T xX x'¥) and fLT = p. Define
W = M(Y"). Now <T"xX"xY"> — TxXxY only if <M(T"xX"xX¥")> - M(TxXx'¥). Therefore, H2
and <i"> => A imply A € M(TxXx'¥). Similarly, since <A™ => A implies <A#> => A7, we have
<;§,}'n> => Ay, Since A,r" = p"and <p™> => p, ir = p. Thus v satisfies S1.

We define player 2’s sirategy f:Xx‘P* — W using the function n%X — ¥ derived in Lemma 4.

Define

n* if (x,n*)€supp[vy.pel,

[ ¥y =
st n%ux) otherwise.

The strategy & is a measurable since n° is measurable, so ¢ satisfies S1. By definition of C on supp[vy. el

A is the outcome of playing the strategies v and C as we require.
We show v and 5 satisfy S2. Let (¢.x,n*) e supp[Vv] and choose (x",n*)e X x¥* arbitrarily. First
suppose that (X", n*") € supp[vx.g¢]. Then (¢",x",n*") e supplA ] for some 1. Applying Lemma 3 yields
Ulteoe,n®)y 2 Ul n*).
Using the definition of ;’ ON Vy,ops, W have
Ul L) 2 UNx S+ ),
which is 2 tor this case. Now suppose that (x",n*")& supp[Vx .¢+]. Then ﬁ(x',n*’) = n°’) and according

to Lemma 4, (x',n%x").8%x")yeB. Applying Lemma 3 in this case yields

U'rx.m*) 2 Ulx' . n®),

which again implies



Ul Z(en®)y 2 UNex’ .C(e'n*").
S2 follows.

The final step in the proof of Cl is to show that there exist beliefs ¥ for player 2 such that (v 7.5)
satisfies S3 and S4. According to Lemma 2. this will be true 1if several requirements hold. First, v and C
must satisfy S1. We have shown this. Second, Q: must be continuous on supp[vy.g+]. This holds by
definition. Third, there must exist a measurable function ¥ X x'¥* — M(T) such that
((;:(.r.n*),}})(,\'.n*))EMBR(x.Y,T‘Uz) for all (x,n*)e X x¥*~supp(vy.y-]. This holds by Lemma 4 and the
definition of £ if we take Y’(x.n*) = B%x).

The final requirement of Lemma 2 1s that for any continuous function §: X x'¥* — ¥, we must have

UXNex,Eeen®) Vdixdexdn*) 2 | U700 S n*)) Vdexdxxdn¥).
T X <\¥* HER. R 44

To demonstrate this, choose a continuous function J arbitranly  Detine ¥" = M(Y™). One can show that
hypothesis H2 and the continuity of { imply there exists a sequence < "> of measurable functions
C7X xP" — " such that <> — § continuously for tv.n* o2 X x'¥*. Since <fi".B".R"> is a SE for I,

53 implies

j U,x ANy BReidr) 2 j U3(ex S7oen oo groodin)

T T
for all xe X. Since [3" is a conditional distribution denved trom u*. both sides of this inequality are condi-
tional expectations derived from 4" (Chow and Tewcher 19%% Theorem 7.2.1). Therefore, we may integrate

both sides using fiz. to get
[ U@ oy Breownag o - [0 e ion BTOwdnA(dx),
pS i

and thus by definition of conditional expectation,

_[ U (t.x 7%x)) £"(drxdx) 2 J Uea s oot 27 (dexdx).
T"xX" Tx"

Since A" is the outcome of playing the strategies 4" and 7", u fotlows that
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U(,x,n) A"(drxdxxdn) 2 j U(1,2.5"(x,n)) A"(dexdxxdn).
TxX "<\ Thx X "x\¢"

Taking limits using Lemma A4, hypotheses H1-H3, and the assumption that <{"> — [ continuously,

I Urxm) Aldixdxxdn) 2z | U2(1,x,0(x,n)) A(dtxdxxdn).
TaX ¥ T<Xx¥

Finally, since v = A and since ;:T(,r,n*) = n* when (¢,x,n*)€suppiv], we have

Ur,x,C(x,n*)) videxdexdn*) 2 f Ut,x, Zlaen®)) v(deXdxxdn*)
T<X-¥P~ TxX <\

as required. Lemma 2 then asserts there exist beliefs ¥ such that (v,7,C) satisfies S3 and S4. We have thus
shown that (O,?‘i’)e SE(T*) and the proot of the theorem is complete. 101

The next theorem concemns convergence of WBR equilibria.

Theorem 2: Consider a sequence of continuous games ['" = (T p"X Y UM U",n=12,.. .2
continuous limit game [ = [(T.p).X.Y.U',U?], and the cheap-talk extension game T'* =
[(T.p)Xx¥=*Y U' U] Suppose

(H1) there exists <A™ => A with A" € WBRO(T'™);
(H2) <X™> 5 X, <¥"™> = Y, <T"> 5 T with T"c T <p"> = p;

(H3) <U'"™ — U' continuously for (f,.x,v)eTxXXxY,i =1, 2;

(H4) <U'"> is uniformly Lipschitz in 1.
Then A € WBRO (T'*).
Remark: The strategies and beliefs supporting A as an equilibrium outcome are the same as in
Theorem 1 on the equilibrium path.
Proof: Let <a".".A"> be a sequence of SE supporting the outcomes <A™ of <I">. We show first
that under H4 we may choose a subsequence of <;1”,,(§",r‘p"> so that the payoff functions V1" converge con-
tinuously to a limit function V'. Then we show that V' is an equilibrium payoff function for outcome A

First note that by condition S2 in the definition of SE,

Vs 2 U " (x)

holds for any (¢,x)€T"xX" and it holds with equality if (¢.x) esupp{i”]. Let both (¢,x) and (¢t',x") come



'
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'

from supp(g”]. Then

VItgy — VIfy < UVLx Ry - U xR (x))

In

Ldr(t,t"

for some L since <U'"> is unitormly Lipschitz in 7. Similarly,

VIirgy — vty = UM ATy - U Rt

A"

—Ldp(t,t').
Therefore the sequence of functions vI"T" 5 R is equicontinuous. H2, H3 and the compactness of
TxX x¥ imply <V "> is bounded. By a minor extension of the Ascoli Theorem, a subsequence of <v!">

converges continuously to a continuous function V':T — R\

We now assume <A "> has been chosen so that the payoffs <V'"> — V' conunuously. We must show
that (z,x,n)esupp[i] implies V'(z) = U'(z,x,n), so that V! is an equilibrium payoff function for i. Let -
(r,x,n)esupp[i]. By Lemma Al, there exists <t"x".n"> — (t,x,n) with (:”,.r",n")esupp[i"] for all n.
Then VV'"(+") = U'"(¢*.x".n") by Lemma 1. We know that V'"(:") = V'(t) and U'"(+".x".n") —
U'te,x.n). Hence, V(1) = U'(1.x,n) as required.

We now show that A is a WBR outcome for I'*. We know from Theorem 1 that X is a SE outcome.
To support this outcome as a WBR outcome, we can use the Theorem | strategies for player | and the
Theorem 1 strategies and beliefs for player 2 on the equilibrium path. We may need, however, to refine
somewhat the strategies and beliefs of player 2 off the equilibrium path.

For Theorem 1, player 2’s strategy/belief pair given signal (x,n*) off the equilibrium path was

(n°x).8°%x)). Here we will define a new strategy/belief pair (7.B) to replace (n°B°%. We will verify that

this new pair will satisfy the WBR criterion and conditions S1, $3, and S4. It also will not upset the equili-

brium strategy for player 1. Then 4 will remain the equilibrium outcome, so the equilibrium payoff function

12 We need 1o extend the Ascoli theorem because the V" functions are not defined on all of T. Using elements of the
proof in Royden (1968.pp.177-9), one first shows that a subsequence of <V'"> converges uniformly to a continuous func-
tion V' defined on {_) T", which is dense in T. That <T"> in an increasing sequence is needed here. Then one shows
that V* is uniformly continuous, so it has a unique continuous extension to T by Royden’s Proposition 7.11. Finally, uni-
form convergence of <V'"> and continuity of V! imply continuous convergence of <V,



for player 1 will equal the limit payoff function V',

We now define a pair (ﬁ'(,\',n*),ﬁ {x,1*) for each x € X with the understanding that
(fi(x.n*).B (x,n*) will only be used to replace (n%x).3°%x)) off the equilibrium path. For each xeX, we
consider a subsequence <.r",f;"(.r”'),B”(.r”)> — (x,1°%x).B%x)). This sequence exists by definition ot
(n°.3%). There are four cases to consider. These cases are not all mutually exclusive, but they do not need

to be.

Case 1: There is an infinite subsequence of <x™> — x such that x" € supplfiy-]. Restrict attenuion to
this subsequence. We set (F{x.n*).B (x.n*) = (n°(x).8°%x)) and show that we can use (n’.B") set equal to
the same (n"(x),B"(x)) to satisfy W2 for any tesupp[ﬁ(.r,n*)} First, (1°.8°) € MBR (x,Y T, U?%) by Lemma
AS since it is the limit of (A"(x").8"(x")) € MBR (x"Y"T",U>™). Second, since B"(x") => B’, there exists
<t"> o t with 1”7 esupp[B "(x™)] by Lemma Al. Since by construction B’ = B°%x) is a limit of regular
beliefs and since x" € supp[fiy.], it follows that (t",x")esuppliy-]. In this event, Ut x"atxty =
v1%(;"). Taking limits yields U'(z,x.n") = V'(t) since <V''"> converges continuously. Finally, for any
¢' €T, 1ake a sequence <> — 1’. By 82 for ", we have Ut xR (x") < VIT(e’'™), so that in the

limit U'(¢".x.n") € V'(2'). Hence W2 holds for B (x.n*).

Since we have set (ﬁ(,r,n*)ﬁ (x,n*) = (n°(x),B°%x)) and this is the SE strategy for player 2 off the

equilibrium path, (ﬁ(.\',n*),ﬁ (x,n*)) will automatically be an equilibrium strategy in the this case.

Case 2: There is an infinite subsequence of <x"> — x such that x"¢ supplyig~] and W1 holds for
(4".8".7") at x". Restrict attention to this subsequence. By HI, (1" 8" A" satisfies WBR, so W2 holds.
We set (7 (x,n*).B (x.n*)) = (n%x),8%x)) and show that W2 holds for B (x,n*). Let ¢ €supp[f (x.n*)].
Since <B"(x")> => B (x,n*), there exists <t"> — ¢ with :”esupp[ﬁ"(x")]. Let
(".B" e MBR (x".¥".T"U*") satisfy W2 for " in the SE for I'" and let <n™,B"> => (n’',8’) on a subse-
quence. Then (r)',ﬁ')EMBR(x.Y,T,UZ) by Lemma AS. As in Case 1, the equation in W2 holds for n’ and

v!(t) since it holds for n” and V'"(¢"). The inequality in W2 holds for any t" €T by a similar logic. Hence
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W2 holds for B (x.n*).

As in Case 1, we have set (fi(x.r]*),ﬁ(.l‘.n*)) = (n°x).B"(x)), so (7 (x,n*).3 (x.n*)) will automati-
cally be an equilibrium strategy in the this case.

Case 3: There is an infinite subsequence of <x"> — x such that W1 fails to hold both for I'" at x" and
for T* at x. Then WBR holds vacuously using (7(x.n*).B (x.n*)) = (n°(x).p"%x)) and (F(x,n*),B (x,n*)
will automatically be an equilibrium strategy.

Case 4: There is an infinite subsequence of <x"> — x such that W1 fails to hold with a smct inequal-
ity for I" at " but W1 holds for I'* at x. Notice we require only that W1 fails to hold with a strict inequal-
ity at x". i.e., there does not exist r €T" and (1,8)€ MBR (x",¥",T", U such that

[Jvln(t‘xn‘r” > Vln(l)_

This requirement is satisfied if W1 fails to hold with a weak inequality. The requirement guarantees that the

set of x satisfying Case 4 is closed (and extends the case somewhat so it overlaps with Case 3).
Restrict attention to the given subsequence. We will show that there exists a t €T such that if
[3 (x.n*) puts unit mass on 7, then [}(x,n*) will satisfy W2,
Since W1 holds for I, there exists ¢* and (7,8°)€ MBR (x.Y,T,U?) satisfying
Ul em’y 2 V), (3)
Let <B"> be any sequence converging to 3’ with B"€ M(T") for all n. Take any convergent subsequence
<n”"> such that (n".BYEMBR(x"Y"T" U™ and let n°" = li:n n". Since by hypothesis W1 fails to hold
with strict inequality on the subsequences we are considering,
Uln(t‘xn’nn) < vln(t)
holds for every € T". Taking limits,

Uliteon™) < Vi 4)

holds for every reT.
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For se[0.1], let n* = sn’ + (1-s)n’’. By Lemma A3, (n”.3") 15 in MBR(x,Y T, U%, as is (n".B"),
and this implies so is (n°.8°). Define a function m:(0,1] — R' by
mis) = max (Uicx.n®y = via).
re
The function m is well defined since V' and U! are continuous and T is compact. By the Theorem of the
Maximum, m is continuous. Now by (3), m(1) 2 0 and by (+), m0) < 0, so there must be an s € [0,1] with

m(s) = 0 by the Intermediate-Value Theorem. By definition of m. for this s there must exist a ¢ €T such

that

UM = VI (5)
and forall r €T,

Ultr.x.n® £ v, (6)
Let B (x,n*) put unit mass on 7. This belief satisfies W2 because of (5) and (6) and because
(n*.B'ye MBR(x.Y T .U%.

Let f(x,n*) be a best response by player 2 to v given the beliet B (x,n*), so that (ﬁ(.r.n*),ﬁ(x,n*))

will satisfy S3. The logic used to establish (4) implies we may assume that

Ul x Ao, n < Vi (7)
holds for all . That is, some best responses given belicts B 1 n* may violate (7), but at least one will

satisfy it. Given (7). playing f(x.n*) instead of n"(+ . will not upset the equilibrium strategy of player I.

We have defined (ﬁ(.\',n*),ﬁ (x,n*)) so that 1t ~satishes the WBR criterion and conditions S2 and S3.
We must now refine (7,8 ) to make it a measurable tunction »o that conditions S1 and 54 will be satisfied.
Since (ﬁﬁ) equals the measurable function (n" B cxcept 1 Case 3. we only need to show that the set C of
x where Case 4 holds is measurable and that we can renine o1 .13 i vo that it is measurable on C.

We defined Case 4 so that the set C is closed and thus measurable. Now define D ¢ Cx'¥'xM(T) to

be the set of triples (x,7,B8) such that (n.BYe MBRix.Y.T.U"). x and n satisfy (7), and x and B satisfy W2.

We showed in Case 4 that there exists such a pair (n.3 ) for cach x€ C. The triples in D will satisty WBR,
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S2 and $3. D is compact, so by Lemma A6 it has a measurable selection. If we replace (F(x.n*).B (x,n*))
on C with this selection, then (7.3 } will be measurable everywhere as required. This completes our proof.
24

The next theorem shows when a SE for the cheap-talk extension game IT'* may be converted to a SE for

. We say a SE outcome A of [* has ineffective talk if and only if

{IT} U,.r,n}ewpp[i] and (r’,x,n’)esupp[i] imply n = n’.

Theorem 3: Let I = [(T,p),X,Y,Ul,UZ] be a continuous game with cheap-talk extension I'* =
KT.p).Xx¥*.¥ .U .U, If A e SEO(T*) and 4 satisfies IT, then i eSEO(D). If 4 e WBRO(T'*) and A
satisfies IT, then ie WBRO (I').

Remark: Let the outcome A for I'* be supported by the SE (\‘/,?,c’;’). Then A as an equilibrium out-
come tor [ is supported by (/,I.fi,ﬁ) where i = i“x, i on supp{fix] has graph supp[ixw], and (ﬁ,[}) on
X ~supplfix] is any measurable selection from (i:’,?).

Proof: We begin with a lemma that shows how to construct player 2’s strategy on the equilibrium path.

Lemma 5: Let ie M(TxX x¥) and let A satisty IT. Then there exists a function n‘:X — ¥ such that

(1} (t,,r,n)esupp[){] if and only if n = n'(xy and (t,x)esupp[i”x];
(2) A = Ap.co £ where f(1.x) = (t.x.0' (0
(3) n'is continuous on suppliy].
Proof: Since supp[ihx] = Projr.x supp[i], (z,.r)esupp[irxx] if and only if there exists 1 such that

{t.x, M€ supp[i]. By IT there is only one such n for each x with (t,x}esupp[inx]. We set n'(x) equal to

this . This proves part (1) of the lemma.
Turn to part (2). We must show that for any event £ ¢ TxXx'¥, i(E) = A:Txx(f‘l(E)) Let R =
supp[)l] and § = supp[ihx]. We can write part (1) as

(r,x,m)eR if and only if f(£,x) = (1,x,1) and (t,x)€S.

This in turn implies
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as we were to show.
For part (3), observe that part (1) implies that x esupp[ix] if and only if (x,n'(x)) € supp[;{xw]. Thus
the graph of n'on supp[ix] is the closed set supp[ixw], so n' is a continuous function on supp[ix]. This

proves part (3). Define n' on X~supp[ix] arbitrarily. This completes the proof of the lemma.

Proceeding with the proof of the theorem, let (0,5/,&) be a SE supporting i €SEO(T'*). We construct a
SE (4i,B.7) supporting A € SEO (D) in three steps. First, we define a strategy 4 for player 1 that satisfies S1.
Second. we define a strategy 77 for player 2 satisfying S1 and show that i and 7 satisty S2 and result in out-
come A. Finally, we show that there exist beliefs 3 such that (ﬁ,[},ﬁ) satisfies S3 and S4.

We define i = Ar.y, so g €Z'(I). To define 7, first let n°:X — ‘¥ be the function derived in Lemma
S: n' is continuous on supplfiy]. Now choose an arbitrary §* € ¥'* and define n%X — ¥ by setting n°(x) =
C(x.&*). Then n” is measurable. Let the strategy 1 equal n' on supp(fix] and n° on X ~supplfix]. We
have 1 € Z4T} since it is measurable by construction. By Lemma 5. playing the strategies s and 7} results in
outcome A as required.

To show £ and A satisty S2, let (¢,x)€suppli] and let x"€ X. By Lemma 5, (r,x,ﬁ(x))esupp[i], $0
by Lemma L, U'(+,x,n(x)) = V'(1), the equilibrium payoff for type ¢ in ['*. Hence, the equilibrium payotts
in the two games coincide. Suppose x” € supp(fiy]. Then (o Ay esupplA] and Vi) = U'(rx’ Ay

by Lemma 1. Thus S2 holds in this case. Suppose now v'ésupp(fix]. Then by S2 for I'*,

Vi) = Ulex, S .E%) = U u,x Al )

and S2 holds for [ in this case also.
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The final step in the proof is to show that there exist beliefs ]3 such that (z2.3,1) satisfies S3 and S4.
According to Lemma 2. this will be true if several requirements hold. First, 4 and f must sausfy S1. We
have shown this. Second. A must be continuous on fiy. This holds by Lemma 5. Third, there must exist a
measurable function 8%:X — M(T) such that (7(x),B°(x)) € MBR (x,Y,T.U? for all ve X ~supplgix|.
Define B by setting B%(x) = ¥tx,£*) using the same §* €'¥'* defining n® above. Then B is measurable.
We also have {n°8% e MBR (x,Y,T,U?) for all x € X ~supp[/ix] because (%), Box 1) = (& (x,E%) 7 (x.E%))
and (; and ¥ are part of a SE.

The final requirement of Lemma 2 is that for any continuous function n’:X — ¥, we must have

j Urx.fx)) fdexdx) 2 j U2(r,x.n'(x) fldexdy).

T <X T-X

-~

We will demonstrate this for an arbitrary measurable function n’. Since (v,%,¢) is a SE for I'*, 53 implies

J xS o) van*dn 2 [ UPon’(0) fen*idn
T T

for all {x,n*)e X x'¥*. Since ¥ is a conditional distribution derived from v, both sides of this inequality are
conditional expectations derived from v (Chow and Teicher 1988, Theorem 7.2.1). Therefore. we may

integrate both sides using vy.g» 10 get

[ [ Uex S Hen*idn S (dexdn®) 2 [ [ URE00(0) P& (dn) Vg ope(drxdn),

X ~¥eT Xx\WeT

and thus by definition of conditional expectation,

U, 8 n*)) Vdexdxxdn®) 2 [ UREx 0’ (x0)) V(dexdxxdn*).
T>X «¥P* T <X x¥*

Since A is the outcome of playing the strategies v and 6 and since g = ihx = Vr.x, it follows that

j U(t,x.m) Aldrxdxxdn) 2 [ UNrxon'(x) Aldexdx).
T <X <¥ TxXx¥

Finally, since A is the outcome of playing strategies 4 and 77, we have

j U3(r,x, (X)) fldexdx) 2 I U(r.x,n'(x)) pdexdx)
TxX x¥ TxXx¥

as required. Lemma 2 then asserts there exist beliefs [3 such that (;l,ﬁ,ﬁ) satisfies S3 and S4. Thus
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(ﬁ.B,ﬁ)eSEtF).

To complete the proot of the theorem, we claim that the preceding proof applies unchanged to WBR
equilibria as well. To see this, note first that the equilibrium payoffs are the same in both games I and ['*.
Second, the sigaals x off the equilibrium path are the same in both games. Third, the beliefs off the equili-
brium path in I are just selections from the beliets in I'*. Inspection of the WBR c¢niterion shows that under
these conditions, beliefs satisfying WBR in T'* will also satisfty WBR in I. Hence, we may use the preceding
proof to convert a WBR equilibrium satstying IT from r*tw . 1

We constructed player 2's beliefs [3 for [ indirectly using Lemma 2. It does not seem possible 10
define these beliefs directly using the beliefs ¥ for I'*.

Our nexl two existence results are corollaries of the preceding three theorems.

Proposition 1: If [ = [(T,p),X.Y,U',Uz] is continuous and X is finite, then I" has a SE. If in addition

U' is Lipschitz in ¢, then I" has a SE satisfying the WBR criterion.

Proof: We show first that I has a SE. For n =1, 2, ..., define finite games I =
[(T".p").X,Y",U],UE] as follows. Let T" be a finite subset of 7 with 7" T"* and <T"> — T. Let
p"e M(T")y and let <p™> => p. Define finite Y” C ¥ analogously to T

Let (a",8".7") be a SE for the finite game I'". Let <A "> be the sequence of outcomes of these equili-
bria. Choosing a subsequence if necessary for convergence, let <A"> => i. Since X is finite, we may also
require that the sequences <f"(x)> and <B"(x)> converge for each xe X. This implies that for the set B

derived from <;l",[3 " f}">, there is only one element (x,n,B) in B corresponding to each xeX.

Hypotheses H1-H3 of Theorem 1 apply to the sequence <A">. Theorem 1 thus implies A € SEO (™).
We show that conclusion C2 of Theorem | implies A satisfies IT. It will then follow from Theorem 3 that
A € SEO(T). Let (¢,x,n) and (¢’,x,n’) both come from supp[i]. By conclusion C2, both (x,n,8} and
(x",n’.B") come from B for some 8 and B°. But by construction, B has only one element corresponding to

each x, so we must have n = n’. Hence, IT holds and thus i e SEO(T).
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We now show that T has a SE sansfying the WBR criterion if U' is Lipschitz in r. Forn = 1,2, ...
define finite games " = T p™)X,Y".U'".U*"] as follows. Let T" p" and Y" be defined as before. For

cach 7 = 1. 2. let T "xXxY" — R' be functions such that <¢'™> — 0 continuously and <£'"> is uniformly

Lipschitz in . Define U*:T"xXxY" — R' by setting

U(rxy)=Ulttx,y) + €70.x,y).
Choose each £ so that the game I'" has a SE (1".B".7") satisfying WBR. Such €' exist because WBR
equilibria exist generically for finite games.

Let <A™> be the sequence of outcomes for <ﬁ",[3".r}">. and let <A™> => 4 on a subsequence. Asin
the previous case, we also require that the sequences <n"(x 1> and <B"(x)> converge for each xeX.
Hypotheses H1-H4 of Theorem 2 apply to this sequence. [n parucutar, the way we chose £” implies
<U'™s — U’ continuously and <&/ '"> is uniformly Lipschitz. Hence, 4 € WBRO(T'*). As we showed for
the first part of the theorem. C2 of Theorem 1 implies IT holds as well. Thus A € WBRO(I) by Theorem 3.
|

Proposition 2: Every continuous cheap-talk extension game I'* = (T.p),Xx¥V*Y,U', U] has a SE. If
' is Lipschitz in 7, then I'* has a SE satisfying the WBR criterion

Remark: This proposition follows directly from Theorems | and 2. however, we apply Proposition |
for convenience.

Proof: Define foreach n = 1,2, ..., a game [ - 1] pu VYU U] with X7 finite and <X "> — X
By Proposition 1, each game I'" has a SE (5" 3.7 and when { 1s Lipschitz in ¢, we may assume each
SE satisfies the WBR criterion. Let <A "> be the sequence of outcomes of these equilibria with <Ah"> = A
Hypotheses H1-H3 of Theorems 1 and 2 apply to this sequeme. and when U' is Lipschitz, hypothesis H4 of
Theorem 2 applies as well. By these theorems. the desired paur of SE for I'* exist. O

By definition, a cheap-talk equilibrium for a communication-impervious game is an equilibrium for the

original game. Thus the previous proposition has an immediate
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Corollary: Every communication-impervious, continuous game T = [(T,p),X,Y,U],Ul] has a SE. If in
addition U' is Lipschitz in 7, then " has a SE satistying the WBR cnterion.

Our next result identifies a ¢lass of games that are CI and thus possess SE.

Proposition 3: A strongly monotonic, continuous game = [(T,p).X,Y,L”,Uzl is communication-
impervious.

Proof: Let ['* be the cheap-talk extension of I. Let A € SEO(T*) (or WBRO(I'*)). We show that i
satisfies IT and thus by Theorem 3, i € SEO(T) {or WBRO(T')).

Let (¢,x.n) € supp[+] and (t'.x,n"yesupp[A]. By Lemma 1, U'(t.x,n) 2 U'(r,x,n") and
Ult'.x,n’) 2 U'',x.n). By strong monotonicity, 7 = n” and thus A satisfies IT as required.

Our last theorem shows that with a rich signal space, all cheap-talk SE outcomes can be approximated
arbitrarily closely by sequential £-equilibrium outcomes. Recall that a signal space X is rich if and only if
for all compact metric spaces Z and for all closed balls B8 C X, there exists a closed set A < B and a continu-
ous mapping from A onto Z.

Theorem 4: Let " = [(T.p),X,Y.U‘,Uz] be a continuous game with a rich signal space X. Let I'* =
[(T,p),X x‘P*,Y,Ul.UZ] be the cheap-talk extension of I Then given i € SEQ(I'*) and £ > 0, there exists a
% that is an outcome of a sequential £-equilibrium for " with Prohorov distance p(i,i) < E£.

Proof: We begin with a lemma giving us a function we will use to convert signals in X x'V'* for the
game ['* to signals in X for the game I". Let 4 be the metric on TxX x'¥ used to define the Prohorov dis-

tance p.
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Lemma 6: If X is rich, then there exists a measurable set X < X with closure X and a continuous func-
tion f:f( — X xW that is a bijection on X . Fixing € > 0 and writing f{x) = (¥ (x},7(x)), we may choose f
and X so that for all (r,x,n)e Txf(x‘!‘,
(1) diiz.x.m).%(x)n)) <&, and
) LUy - U X)L <el2 fori =1, 2.

Proof: Choose 8 with 0 < & < £ so that for all x and inX,+inT.nin¥,andi = 1or2,

d((r.x.mu(t,x' . n)) < & implies 1U(+,x,m) = U'(e,x’,mt < e/2.
Such a & exists because the functions U* are uniformly continuous on the compact set T'xX x¥. Define a

metric dy on X by setting

dyix,x") = max d((t,x,n),(,x"n)).

rel.ne¥

Using the dy metric on X, let {A; }5‘;1 be a covering of X by N closed balls of positive diameter less

than 6. Let B, = A, and for j =2, ..., N, let

Then X =\ B, and each B, is a measurable set disjoint from the others. Let M be the number of non-
empty B; and reindex these sets so that B, is non-empty if j < M. Foreach j=1,.... M, letC, bea
closed ball of positive diameter less than 8/2 with C, C B,. Such C, exist because each B, is the intersection
of a closed ball and an open set. Since X is nich, there exists a closed set D, C, and a continuous surjec-
tion f,:D, — EIX‘*’. By Theorem 1.4.2 of Parthasarathy (1967), there exists a measurable set £, < D, such
that f, restricted to £, 1s a bijection from E, onto 8 x'¥.

We can now define the sets X and X and the function f given in the statement of the lemma. We let
X = J E, and define f:)i’ — X x¥ by setting f = f, on E/- The function f is continuous since each f, 1s
continuous on the set £, and the collection of these sets is disjoint by construction. Let X = E,. Bya

similar argument, f is a bijection on X .
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Write f(x) = (¥(x),f(x)). To complete the proof of the lemma, observe that x ex implies
dy(x.%(x)) < £ because by construction both x and ¥ (x) are contained in some ball A -with diameter less
than &. which is less than £. Then by definition of dy, the function X satisfies part ¢1) of the lemma. Part
(1) and the definition of & imply part (2). 1

Proceeding with the proof of the theorem, let (9,9,C) be a SE for I'* that supports A. We first derive
another, simpler SE for ['* with the same outcome A. The new SE will be denoted by (i,?,f }. As this
notation indicates. the strategy for player 1 in this new SE is just i. To define the strategy ¢ for player 2,

first choose an arbitrary £* €'¥* and then set

B n* if (x,n*) € suppliy.¢l.

Sxn*) =1 »

s ten®) §tx,5*)  otherwise.

The pair (fxf; will satisty S1 and S2 (by Lemma 1) and the outcome of playing (if) will be 4. To define
the beliefs 7 of player 2, apply Lemma 2 as in Thecrem 1. Letting Px) = (x,E%), (/:L.yo,f) will satisfy the

requirements of Lemma 2. Hence, there will exist beliets ¥ such that (i,?,f) will satisfy S3 and 54 and

thus will be a SE for I'*.
To define an e-equilibrium using (/“:,’}7,5), we will use the function f defined in Lemma 6. In the &-
equilibrium, player 1 is going to signal £7'(x,n*) in place of signaling (x,n*) in I'* and Projy £~ (x,n*) will

be close to x. Define g:Txﬁ — TxXx¥ by setting

gle.x) = (,f (o) = (LI (x LA (x).
Then g is a continuous function and a bijection on TxX . By the Kuratowski Theorem (Parthasarathy 1967,

Corollary 1.3.3), g has a measurable inverse on TxX.

We now define an e-equilibrium (ﬂ.ﬁ,ﬁ) for [ in four steps. First, we define a strategy /i satistying
S1. Second, we define a strategy 7 also satisfying S1 and show that ji and A result in an outcome A within
¢ of A. Third, we show that £ and # satisfy S2’. Fourth, we define player 2's beliefs B and show that

(i,B.7) satisfies $3” and S4.
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Define player 1's strategy j by setting

G(E) = A(g(E ~\TxX))
for each event £ ¢ T xX. Since g has a measurable inverse and TxX is measurable, g(E M TxX)is
measurable for all events £, so fi is well-defined as a measure. Since [(TxX) = A(TxXx¥) =1 and gy =
ir = p. we have i € ZN(I), sausfying S1.

To define player 2's strategy 7. first choose an arbitrary S* €'¥'* and then set

nw) = {

Since ¢ is measurable and f is continucus on the closed set X, 1 is measurable and thus satisfies S1.

(fx)y ifxeX,

LU YRRV AR 3

(x,£*) otherwise.

We show that playing g and 7 results in an outcome X with Prohorov distance p(z,i) < ¢, Let

h(t.x) = (r.x.R(x)). so that A = 1o h~'. Given an event F < TxXx'¥, define the set

GF)y=gh " (FYATxX ) M supp[A ]

{ glr,xy | xeX, AL, x)EF, gl x)yesuppla] }.

Then by definition

KFy=ph™(F)) = MG(F)).
Let £, be the set of elements of TxX x'¥ within distance ¢ of F. To show p(f,i) < g, it suffices to show
that A (F) < A(F.)and A(F) < X (F,). And for this it suffices to show that G(F)c F, and
F ~ suppli]c G (Fy).
To show G(F)cC F,, let g(t,.x}e G(F). We show that g(r.x)€F. Now by definition of G (F),
£(1.x) esupp[ii and thus f(x) = (X (x),f(x)) esupp[ixw], Then by definition of A and C. Alx) = fx).

Therefore

d(h(r.x)g(r.x) = d({,x, FOIxLTxN) < €

by Lemma 6. Since h(r.x)€F by definition of G (F), we have g(r,x)€ F, as we were 1o show.
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To show F Supp[i] < G(F,), let g(¢,x) be an arbitrary element of F (~ Supp[i] (since g is surjec-
tive, we can represent any element in F this way). Then as above 4(h(r,x),g(t,x)) <€, 50 h{t,x)eF,, and
thus g(t.x)e G(f,) as required. This shows that p(Z,i) < E.

We now show that 4 and 7 satisfy S2°. We must first show that supplalc g"(supp[i]). To see thas,

note that because g 18 surjective on TxX,

g(g"(supp[i]) ) TxX)= supp[i] M g(TxX) = supp[/i.]

(Dugundji 1966, p. 12). Therefore by definition of T8

(g~ (supp[A]) = Alg(g  (suppla]) (N TxX 1 = Atsupp(a]) = 1,
Thus g"(supp[}{ 1) is a set of full measure {£] and 15 a closed set by the continuity of g. It follows that

suppla) < ¢~ (supp[A 1) since supp[f] is the smallest closed set of full measure [f].

To show S2°. let (r.vyesupp[i] and choose 1" € X arbiranly Since suppli] < g~ '(supp[A]), we have

xeX and

glix) = (. flx))= (r,.?(.r).ﬁ(,r))esupp[il
Suppose x” €X. By S2 for ['*.

UM oe ) 2 U’(:,f(,\"),;;u"(,x"m
Using part (2) of Lemma 6 and the definition of 1,

Ulerx,qe)y 2 Ulex” A(x)) — &,

which establishes $2° for this case. Now suppose «'¢ 4 By SItor 7%,

UNFOZ (F o 2 U'ex’, S x’.20n

Again using Lemma 6 and the definition of 7,

Ule,x,p(x)) 2 UNe,x' A’ — €2,

which establishes $2° for this case also.
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The final step in the proof is to show that there exist beliefs ﬁ for player 2 such that (fi.B.7) satisfies

$3’ and S4. We define j in parallel with the definition of 7 by setting

U xy  if xeX,

Pl = Fix.E*) otherwise.

Similarly to §2°, that n and ﬁ will satisfy $3’ follows from S3 for I'* and from Lemma 6 and the definitions
of  and ﬁ
We now show ,B is a regular conditional distribution derived from j. First, ,8 is measurable. Second,

we must show that for all events Ac T and B C X,

[ BLona) fiyde) = fAXB).

B
This will follow from the change-of-variable formula if we define f as the restriction of f to X and show
that iy o f 7' = Ax.w.

By definition of ji and g, for any event B € X we have

fx(B) = iTxB) = Ag(TxB TxX)) 8)

A(TxB X)) = MIxfB X))

;{x&(f(B ') X)).

Let D < Xx'¥ be an event and let B = f '(D). Then since 2= X and f is surjective, we have

fix(FUD) = Ay FF DY X = dxce FF DY = Ags(D)
and thus gy ° f ' = Ay
Let A =T and B c X be events. Since f is also injective, we have B = f‘l(f(B)) and thus by the

change-of-variable formula that

[ 77 o) fixtan) = | FrniA) Axgldrxan)
8 i)

= A(AXF (B)) = A(g(AXB)) = A(AXB)

by definition of ¥ and 4. Now let B8 < X be an arbitrary event andlet 8 = B M X. Since fix(B) = ix(B)

by (8).
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J BeonA) ixtdo) = [ FFONA) fix(dr) = f(AXE) = AAXB),
B B

and thus [3 is a conditional distribution derived from fi.

Lastly, we must show that ,fi is regular on a set of full measure [fy]. Since ¥ is a regular conditional
distribution derived from A. there exists an event D < X x'¥ such that ¥ is regular on D and XXKW(D) = 1.
Since B(,r) = y(f{(x))on f'l(D)cf and f(f“(D)) =D, ﬁ is regular on f"'(D)‘ Since fy of"' = /ixw»
we have

fx(F D) = Ax (D) = L,
Hence B is regular on a set of full measure [fyx] as required. "Thus B and f satisfy S4, which completes the

proof that (/.l.,é,ﬁ) is a sequential g-equilibrium. _JJ

V. Conclusion

This paper has shown the existence of sequential and weak-best-response equilibria for cheap-talk
extensions of continuous signaling games and for communication-impervious continuous signaling games.
The assumption that talk is cheap seems reasonable in many economic contexts and vields a very straightfor-
ward solution to the existence problem in infinite signaling games. The cheap-talk assumption opens the pos-
sibility of extending the methods of this paper to prove the existence of equilibrium in more-general

extensive-form games with infinite action and information sets.

Appendix: Lemmas

Lemma Al: If <¢"> => p and x € supp[u], then there exists a sequence <x"™> — x with x" esupp[u”]

for each n.

Proof: Let B, be an open ball containing x and let B be its complement. Then u(BE) < 1 since

supplp] is the smallest closed set of full measure (u]. By Theorem 2.1 in Billingsley (1968),

tim sup u"(BS) < p(BS) < 1,
so supp{p"] M Be # @ for all n sufficiently large. Therefore we can construct a sequence <x"> — x by tak-

ing a sequence of B, containing x with ¢ — 0. 0J
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Lemma A2: Let g e M(X), let /:X — Y be measurable, let A = p of“, and let A = f (supplu]).

Then supp[i]< 4.
Proof: supp{u] < 7 '(f (supplpel) = F7YAY, so

AA Y = pf A ) 2 p(f A 2 p(suppip)) = L
Hence, suppi{A]c A since A is closed and supp[A] is the smallest closed set of full measure [A]. 1]

Lemma A3: Foreachn = 1,2, ..., letu"e M(X) and f:X — Y be measurable. Suppose
A% =pu"e(f" " and <A"> => A. Then yesupp{A] implies there exists a sequence <x"> such that
x"esupp(u”] for all n and <f"(x")> — ».

Proof: By Lemma Al, there exists <y™> - y with y"esupp[A"]. By Lemma A2, for each n there
exists an x" € supp[t"] such that dy(f"(x™).y") < dy(¥",y). Then for each n dy(f"(x™),y) < 2dy{(¥". ¥}, s0
<fHaxM> — vy, 1]

Lemma Ad: Let U/:XxY — R! be a measurable function. Forn = 1,2, ..., let n"e M(Y), let x*€X
and let U™-XxY — R' be measurable. Assume <n"> => 1, <x"> = x and <U"> — U continuously for

(r.)eXxY. Then <[ U"x"y) n(dv)> = [ Ulx,y) n(dy).
Y Y

Proof: Let V"(v) = U"(x",y) and V{y) = U(x,y). The continuous convergence of <U"> 10 U implies

the continuous convergence of <V "> to V. This and <n”> => n mmplies
<f v ndvy> — RCIRIED)
Y ¥

by Theorem 5.5 of Billingsley (1968). U]

Lemma AS: The MBR correspondence is upper hemi-continuous in the following sense. For
n=12 . .let(n".BYEMBR(x"Y"T"U". Let<x"> = x,<¥"™> = ¥, <T"> 5 T,and <U"> - U
continuously for (r,x,vye TxXxY. Then <n”.3"> = (ﬁ,ﬁ) implies that (ﬁ,,é)eMBR (x,Y,T,U)

Proof: First <¥Y"> — Y and <T"> — T imply <M (Y")xM(T")> = M(Y)xM(T). This with

(MBHeM(Y")xM(T") and <n".p"> => (ﬁ,B) imply (ﬁ.ﬁ)eM(Y)xM(T) by the definition of closed con-
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vergence.
The proof of upper hemi-continuity is the standard one of the Theorem of the Maximum (Hildenbrand
1974, Theorem B.IIL3). [t uses the continuity established in Lemma A4 of the integral JU”(:,x",n) B (dr)

as a function of n and n. 2

Lemma A6: Let B < XxY and let X = Projx B. If B is compact, then there exists a measurable func-

tion [3:}‘( — Y such that (x,B(x))e B for all xeX.

Proof: The set B is the graph of a correspondence B:X — Y defined by B(x)={ yeY | (x,y)eB }.
Since B is compact. B is a closed correspondence with a compact range and thus is upper-hemicontinuous.
Therefore by Proposition B.III.1 in Hildenbrand (1974), for each closed set F < Y the set
{ x| B(x) M F = D | is closed, hence measurable: It then follows from Hildenbrand's Lemma D.I1.2.1

that B has a measurable selection, i.e., a measurable function j8 :X — Y such that for every x, B(x)e B(x)

and thus (x.Bi{x))e B. This proves the lemma. O]
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