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CONVERGENCE TO PRICE-TAKING BEHAVIOR IN A SIMPLE MARKET

by

Aldo Rustichini, Mark A. Satterthwaite, and Steven R, Williams

1. INTRODUCTION

A trader who privately knows his own preferences tends toc demand more
favorable terms than he is in truth willing to accept. Such behavicer, which
is the essence of bargaining, may lead to an impasse that delays or prevents
the realization of gains from trade. Price-taking behavior by contrast
means reacting to prices rather than trying to manipulate them in one's
favor. The two standard assumptions within price theory that justify price-
taking behavior are many traders and complete information, for the existence
of a large number of traders diminishes any single trader's impact on prices
and complete information makes plausible the discovery of market clearing
prices (e.g., by a Walrasian auctioneer). If, however, either of these
assumptions were necessary for price-taking, then price theory would have
little descriptive value because most markets have a limited number of
traders whose preferences are private. Nevertheless price theory does
provide insight into a far wider variety of situations than the strength of
these assumptions would suggest. The problem is to explain how this can be.

Our contribution is to consider a finite market in which the rules

for price formation and trading are explicit, the number of traders is
small, and each trader privately knows his own preferences. We show that
strategic mnoncooperative behavior converges rapidly to price-taking behavior

as the number of traders increases. The inefficiency this behavior causes



vanishes quickly. Numerical evidence suggests that the convergence is so
fast that markets with as few as twelve traders can be almost fully
efficient. Consequently even small markets can be successful in eliciting
enough private information from traders about their preferences to
reallocate the traded good to those who most highly value it,.

Model. The market consists of m buyers, each of whom wants to buy one
unit of the good at a price less than his reservation wvalue v, and n
sellers, each of whom wants to sell one unit of the good at a price greater
than his reservation value c¢. The reservation value of every buyer is
independently drawn from a commonly known distribution G on the unit
interval. Sellers’ reservation values are similarly drawn from a
distribution F. Each trader privately cbserves the draw of his own value.

The class of price formation rules we study is the family of k-double
auctions. A given k ¢ [0,1] specifies a member of this family. Every
trader submits a bid/offer. These bids and offers are aggregated to define
demand and supply functions, both of which are step functions because each
trader’s demand/supply is unitary. These functions determine an interval
{a,b] from which a market clearing price may be selected. The price the k-
double auction picks is kb + (l-k)a. The market then clears at that price
and disperses.

Note that the endpoints of the interval from which the price is chosen
are themselves bids/offers. Price is thus a convex combination of
particular bids and cffers. Given the bids and offers of all other traders,
a trader whose bid/offer receives positive weight in this formula therefore
may perturb the price by altering his bid/offer up or down. Of course, a

trader at the time he submits his bid/offer does not know the bids/offers of



the other traders. Therefore in choosing his bid/offer he weighs the
likelihood that it will affect price.

In submitting bids and offers traders are assumed to maximize their
expected utility. Following Harsanyi’'s (1967-68) notion of Bayesian Nash
equilibrium within a game of incomplete information, an equilibrium is a
pair of functions <S,B>, each defined on the unit interval. For a seller
with reservation value c, the offer S(c) maximizes his expected utility
given that every other seller uses the strategy S to select his offer and
every buyer uses the strategy B to select his bid. Analogously, the bid
B(v) maximizes the expected utility of a buyer with reservation value of v.

Results. In any equilibrium <S,B> each trader misreports his
reservation value in order to influence price in his favor. Specifically,
buyers generally under report and sellers over report, i.e., B(v) < v and
S(c) > c¢. Our first convergence result, stated for the simplest case in
which m = n, is that the maximal amount by which any trader distorts his
reservation value is 0(l/m): given F and G, a k that is independent of m
exists such that

v - B(v) < k/m and S(c) - ¢ < k/m (1.1)
for any equilibrium <S,B> in the market of size m = n. Numerical
calculation in the case of uniform F and ¢ indicates that for m as small as
eight is close to reporting true valuations.

The meaning of price-taking behavior in this model is subtle. Price is
determined endogenously by all bids/offers; no price exists when traders
choose their bids/offers. Nevertheless the likelihood of a particular
trader affecting price is small within any but the smallest markets. If a

trader decides to ignore the small probability event that he might affect



price, then the best bid/offer for him to submit is his reservation value,
for that bid/offer guarantees he will trade whenever the realized
price--which he takes as exogenous tc his own actions--yields him gains from
trade. This is exactly analogous to a trader in a competitive market who
takes the market price as given and chooses his purchase to maximize his
utility without taking into account the very small effect his purchase has
on price. Therefore within the k-double auction price-taking behavior is
honest reporting of one’s reservation value. The result (1.1) thus
describes the speed with which price-taking behavior emerges as the market
increases in size.

Our second result describes the rate at which the market approaches
efficiency as it becomes large. The cause of inefficiency in the k-double
auction is the traders’ strategic misrepresentation. Though the market
always clears in the k-double auction, it clears on the basis of reported
valuations, not true valuations. Thus, a buyer’s true valuation v may
exceed some seller’s true valuation ¢ with neither trading at the realized
price p: v > p > c, S{(c) > p > B(v), and the gain v - c is left unrealized.
A missed opportunity of this kind is ex post classically inefficient in the
sense of Holmstrom and Myerson's (1983) taxonomy. Stated here for the
simple case of m = n, our second convergence result is that the fraction of
the expected potential gains from trade that are unrealized is no more than
E/m2 where £ is a positive number that is independent of m. Numerical
investigation for the case of uniform F and G not only confirms the f/m2
rate of convergence but also shows that the relative loss is inconsequential
even in small markets. For example, the relative loss is much less than 1%

for m = 6.



Antecedent Work. Myerson and Satterthwaite (1983) showed for the
bilateral case (m = n = 1) that the k-double auction, or any other set of
trading rules in which trade is voluntary, can not be ex post classically
efficient. Gresik and Satterthwaite (1989) in the context of optimal
mechanisms and Satterthwaite and Williams (1989b) and Williams (1990) for
the buyer’'s bid double auction (BBDA) explored the rate at which this ex
post inefficiency vanishes as the market grows. As with the latter two
papers mentioned, the present paper improves on Gresik and Satterthwaite
(1989) by (i) obtaining a faster rate of convergence and (iil) considering k-
double auctions, which are more realistic than optimal mechanisms because
they are not defined in terms of the distributions F and G from which
reseyvation values are drawn,

In addition this paper improves on Satterthwaite and Williams (1989b)
and Williams (1990) in four ways. First, the k-double auction is a richer
set of rules in that the BBDA i1s essentially identical to the l-double
auction. This paper’s result on a rate of convergence to truthful
revelation therefore generalizes those c¢f the earlier papers, and its proof
is much shorter. Second, this paper establishes a rate of convergence to ex
post classical efficiency that had been numerically demonstrated but not
previously proven. Third, while the earlier papers assumed risk neutral
traders, here we allow traders to be risk averse.

Fourth, from both thecretical and practical perspectives the k-double

auction (for k strictly in the unit interval) is more interesting than the

Wilson (1987, p. 36) critiques trading rules that are defined in
terms of traders’ beliefs about each other's private information. Such
rules change whenever beliefs change, and hence provide little insight into
the persistence of the specific market institutions we observe in reality.
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BBDA because both buyers and sellers strategically misreport. In the BBDA
sellers have the dominant strategy of honestly reporting their reservation
values; only buyers strategically misreport their reservation values. 1In
our observation strategic misreporting on both sides is the norm in real and
experimental markets. This generalization is also important because it
removes the suspicion that rapid convergence to truthful revelation requires
a delicate selection of rules, e.g., that at least one side of the market
have truthful reporting as their equilibrium strategy.

Several additional papers should be mentioned because they have played
an important role in our thinking about the equilibria and efficiency of k-
double auctions. Chatterjee and Samuelson (1983), Leininger, Linhart, and
Radner (1989), and Satterthwaite and Williams (1989a) characterized
equilibria of the k-double auction in the bilateral case. Wilson (1985)
initiated study of the multilateral case and showed that the k-double
auction is interim incentive efficient when the market is sufficiently
large. McAfee (1989) defined a dominant strategy mechanism and established
a convergence rate that is almost quadratic.

Limitations. Our model is restrictive in its trading environment, its
informational assumptions, and in the role of time. Two aspects of the
trading environment should be noted. First, the unitary supply/demand of
any trader means that he becomes small as the market becomes large. 1If a
trader could trade many units, then he might persist in trying to manipulate
price despite the presence of many traders. Second, cur convergence results
only hold for sequences of markets in which m/n is bounded above and away
from zero. We do not fully understand what happens when one side of the

market becomes increasingly larger than the other side.



With respect to information, we assume (i) each trader privately knows
his reservation value and (ii) these values are statistically independent.
Two examples show the restrictiveness of these assumptions. First, the
value a trader places on a share of stock depends on what he knows about the
company that issued it. Contrary to the first assumption, he might revise
his value if he learned another trader'’s private information. Second, in
the residential real estate market, a buyer may believe that cthers share
his tastes. Therefore, contrary to the second assumption, if he admires a
particular property, then he may infer that others are also likely to admire
it. Milgrom and Weber (1982, p. 1095) have analyzed auctions within a
general model that relaxes both these assumptions; it would be highly
desirable to do the same for double auctions.

The k-double auction is a static procedure. Among static procedures it
is compelling because it is the natural implementation of trading at a price
determined endogenously to equate reported supply with reported demand.

Many real trading preocedures, however, operate through time. Experimental
work suggests that time plays a key role in facilitating trade because the
prices at which trades occur communicate information about preferences that
is useful to traders who intend to trade subsequently. Wilson (1986) and
Wolinsky (1990) represent steps towards embedding trade in a dynamic
context,

Within our model there are several limitations of our analysis. We
only consider equilibria that are symmetric in the sense that all buyers use
one strategy and all sellers use some other strategy. Another limitation is
that we do not prove existence of equilibria. Two lines of research,

however, suggest that they do exist. First, Williams (1990) proved that for



a generic choice of distributions F and G a piecewise smooth equilibrium
exists in the 1- and the 0-double auctions. This proof appears as if it
could be generalized to the case of k ¢ (0,1). It is a difficult proof in
the k = 0 and k = 1 cases, however, and the case of k ¢ (0,1) is much more
complex. To our knowledge, the difficulty of this task is the only
obstacle. Second, Satterthwaite and Williams (198%9a) developed a numerical
approach that has made it relatively easy to compute a range of equilibria
in the k-double auction for k ¢ (0,1). The approach and some equilibria
that were computed using it are discussed in Section 5. Thus, while we
surely recognize the value of a general existence theorem, the proof in
Williams (1990) and our ability to actually compute a multiplicity of
equilibria suggests that the value of our results does not hinge upon the

proof of such a theorem.

2. THE MODEL

The rules of the k-double auction. As stated in the Introduction, we

consider a market with n = 2 sellers, each of whom has one item to sell, and
. 2 .

m = 2 buyers, each of whom wants to buy at most one item. Trade is

organized with the following rules. Each seller submits an offer while each

buyer submits a bid. An offer/bid can be any real number. The bids and

3

offers are organized in a list S(l) < 5(2) < ... = S(n+m)'

For k ¢ (0,1],

the k-double auction chooses p = (1l-k)s +

(m) ks(m+1) as the market price.

2 The bilateral case (m = n = 1) is considered in Satterthwaite and
Williams (198%a).
Throughout the paper, s( ) denotes the qth smallest value in a
specified sample of offers/bids.q



Trade occurs between buyers whose bids were at least p and sellers whose
offers were no more than this price.
Table 2.1 is used to explain exactly who trades at this price. Because
there are m buyers,
w + X + 2z =m. (2.1)

Also, if s then

(m) ~ S(m+l)’

t 4+ z = m. (2.2)

The supply t at price p = (1-k)s therefore equals the demand

(m) T S (mi1)

w+x (i.e., p is a market-clearing price) when s When

(m) ~ S(m+l)

s shortages or surpluses may exist at this price. The

(m) = S(m+l)y’

allocation in such a case is then carried out as far as possible by
assigning priority in trade according to the size of offers/bids, with
sellers whose offers were smallest and buyers whose bids were largest
receiving priority. If this does not complete the allocation, then a fair
lottery is used to determine which of the remaining traders on the short
side of the market get to trade. This completes the rules of the k-double
auction.

For future reference, we now show that every seller whose offer was
less than p and every buyer whose bid exceeded p surely trades. This is

proven above for the case of s we therefore assume that

m 7 S(m+l)’

s Note first that

(m) =~ S(mtl)y”

S+t + X+ 2z >m. (2.3)
The inequalities (2.1) and (2.3) together imply that the s+t items available

at the price p = s are sufficient to supply each of the w buyers

(m) ~ S(m+1)

who bid more than S(m+1)' Because they have priority in trading, these

buyers surely trade. A similar argument shows that t < w+x, soc every seller



whose offer is less than p surely sells. When necessary, random allocation
is therefore carried out over a subset of the s+x traders whose offers/bids
exactly equal p.

The complexity of the allocation rule when ties occur should not
obscure the fact that a k-double auction is a rule for selecting a market-
clearing price from revealed supply and demand curves (as expressed by the
offers and bids). We show in the next section that in a Bayesian game model
ties are a probability zero event and the market almost always clears at the
chosen price. The proof of this, however, requires the above, explicit
definition of how ties are resolved.

The Bayesian model. We use Harsanyi's (1967-68) Bayesian model to

predict the outcome of trade. A trader’s preferences are determined by his
reservation value and his utility function. Each seller’s reservation value
is independently drawn from a distribution F and each buyer's reservation
value is independently drawn from a distribution G. We use v (for "value")
to denote a buyer’'s reservation value and ¢ (for "cost") toc denote a
seller’s value. While each trader privately observes his own reservation
value, the distributions F and G are common knowledge. Each of the
distributions F and G is a Cl function on [0,1} whose density function is
positive on [0,1]). Let f denote the density of F and g the density of G.
Each trader on a given side of the market has the same utility
function. The function may exhibit either risk aversion or risk neutrality.
Specifically, a seller’s utility when he trades is a function C(p-c) of the
difference between the price that he receives and his cost. A buyer’'s
utility when he trades is a function V{(v-p) of the difference between his

value and the price. A trader who fails to trade has utility equal to zero.
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The functions C, V are increasing, concave, differentiable, and normalized
so that C(0) = V(0) = 0.

A trader's strategy is a Lebesgue measurable function that specifies an
offer/bid for each of his reservation values. A set of strategies, one for

each trader, defines a Bavesian-Nash equilibrium if, at each reservation

value of each trader, the offer/bid specified by his strategy maximizes his
conditional expected utility given that the other traders are using their
specified strategies.

Restrictions on equilibria. We only consider equilibria that are

symmetric in the sense that all traders on the same side of the market use
the same strategy. Let S be the common strategy of sellers, B the common
strategy of buyers, and let <5,B> denote the use of S by each seller and the
use of B by each buyer. Additionally we insist that equilibrium strategies

S and B satisfy the following:

(i) ({c | S(c) < 1} has positive F-measure and {v | B(v) > 0) has (2.4)

positive G-measure;

(ii) at every c, v ¢ [0,1], S(c) = ¢ and B(v) =< v. (2.9)

Assumption (2.4) states that it is a positive probability event that traders
on one side of the market make offers/bids at which traders on the other

side can profitably trade. This rules out "no-trade" equilibria, e.g.,
B{v) = 0 and S(c) = 1 for all ¢, v ¢ [0,1]. Assumption (2.5) rules out
equilibria in which traders use dominated strategies. Note that these

assumptions do mot restrict the strategies that are available to any trader

as he attempts to maximize his conditional expected utility; rather they

11



restrict the equilibria for which we prove results. In the remainder of the

paper, "equilibrium” means a palr <S5,B> that satisfies (2.4) and (2.5).

3. ELEMENTARY PROPERTIES OF EQUILIBRIUM STRATEGIES
Let X denote an offer/bid of a trader. Given <S,B>, define the

following notation:

Pb(A) = probability that a buyer trades when he bids X, all sellers use S,
and the other m-1 buyers use B;
PS(A) = probability that a seller trades when A 1s his offer, all
buyers use B, and the other n-1 sellers use S;
EV(v,X) = a buyer’'s expected utility when v is his reservation value, X is
his bid, all sellers use S, and the other m-1 buyers use B;
EC(c,A) = a seller’s expected utility when ¢ is his reservation value, A is
his offer, all buyers use B, and the other n-1 sellers use §;
v = inf (v | P, (B(v)) > 0);
c = sup (c ] PS(S(C)) > 0);
b = sup (B(v) | v < 1};
s = inf (S(e) | ¢ > 0).

Note that Pb(A) is nondecreasing and PS(A) is nonincreasing in A.
Assumption (2.4) implies that Pb(B(V)) > 0 near v = 1 and PS(S(C)) > 0 near

¢ = 0. The values v, ¢ are thus well-defined and satisfy v < 1, ¢ > 0.
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As explained below, statement (3.1) of the following theorem implies
that supply almost always equals demand in an equilibrium of a k-double
auction. Statement (3.2) is useful in explaining the significance of the

values v and c¢. The proofs of all theorems are in the Appendix.

Theorem 3.1. The following statements hold for an equilibrium <S,B>

that satisfies (2.4) and (2.5):

(i) 1if Pb(A) > 0, then B_l(A) = {v | B(v) = A) has G-measure zero, (3.1)

and if P (1) > 0, then s'l(x> = {c | S(c) = A} has F-measure zero:

(ii) the function PS-S is nonincreasing and the function Pb-B is (3.2)

nondecreasing on {0,1].

Random allocation is necessary only if (i) s (ii) some

m T Sl T B
offers are no more than p, and (iii) some bids are as large as p. Statement
(3.1) implies that this is a probability zero event. The possibility of
random allocation is therefore ignored in the remainder of the paper.
Statement (3.2) implies that PS-S is positive on [O,E) and zero on (c,1],
while Pb-B is zero on [0,v) and positive on (v,1]. A seller’'s offer cannot
exceed b if he is to have a positive probability of trading; it follows that
S(c) <b =<1 for c <c. A similar argument shows that 0 = s =< B(v) for v >
v. Because a seller whose value c is above ¢ almost never trades, the
definition of an equilibrium does not prevent him from submitting a very
large number as his offer; similarly, a buyer whose value is below v may in

equilibrium bid a negative number. Misrepresentation thus cannot be bounded

over [0,v] and [E,l]. We call {O,E) and (v,1] the intervals over which
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sericus offers/bids are made. It is over these intervals that the

definition of an equilibrium entails properties of the strategies S and B.
Suppose that <S,B> is an equilibrium that satisfies (2.4) and (2.5).
Theorem 3.2 states that: (i) S is increasing and hence differentiable almost
everywhere in the interval [O,E), while B is increasing and differentiable
almost everywhere in (v,1l}; (ii) ¥ = s and c = E.a Figure 3.1 illustrates
this geometric relationship between a pair of equilibrium strategies. The
first result justifies the first order study of equilibria that we develop
in the next section and leads to bounds on misrepresentation over [O,E) and
(v,1]. The second result leads to bounds on the intervals [c,1], (0,v].
Misrepresentation itself can not be bounded over these intervals, but the

bounds upon them implies a bound on the loss in expected profit this

misrepresentation causes.

This is an appropriate point to clarify a slight discrepancy in the
rules of the l-double auction and the BBDA. The BBDA is defined in
Satterthwaite and Williams (1989b) as the procedure in which the price is
set equal to s and trade occurs between buyers who bid at least s
and sellers whé@glgffers were strictly less than this wvalue. This is (m+1)
different from the l-double auction in that a seller whose offer equals
s never trades in the BBDA, while he may trade when s = s in
tﬁg+}2double auction. For the BBDA-Th. 2.1 in Satterthwaiég)and &Ti%gams
(1989b) shows that each seller has S(c) = c as his unique dominant strategy;
for the l-double auction a similar proof is easily constructed. Th., 2.2 in
Satterthwaite-~and Williams (1989b) establishes that a strategy B(v) in any
equilibrium <S,B> of the BBDA is increasing in v; Th. 3.2 here establishes
the same for the l-double auction. In both procedures ties among
bids/offers that require random tie-breaking occur with probability zero.
The difference in the rules is therefore inconsequential and all remaining
results of this paper apply directly to the BBDA.

14



Theorem 3.2. For ¢’ < c¢", v! < v" in [0,1], the following statements

are true for an equilibrium <§,B> that satisfies (2.4) and (2.5):

(i) if ¢’ < c, then S(c') < S(c™); (3.3)

(ii) if v < v", then B(v') < B(v"); (3.4)

(iii) lim B(v) = v = s and lim S(c) = ¢ = b; (3.5)
viv cte

As a consequence of (3.3) and (3.4), S is differentiable almost everywhere

in the interval [O,E) and B is differentiable almost everywhere in (v,1].

Table 3.1 defines the dual market to the market defined thus far in the
paper. Its middle column summarizes our notation. The final theorem of
this section establishes a symmetry between equilibria of a market and its

dual.

Theorem 3.3. 1If <S,B> is an equilibrium satisfying (2.4) and (2.5) in
the given market, then <§*,B*> is an equilibrium in the dual market that

also satisfies (2.4) and (2.5).

This symmetry between buyers and sellers means that results proven for
the case of buyers have direct analogues for sellers. Several of our proofs
therefore require an argument about only one side of the market. The
theorem is particularly strong when k = 0.5, m = n, and both F and G are
uniform. In this case, k¥ = 1-k, F*¥ = G* = F = G and equilibria come in
pairs in the sense that every equilibrium sellers’ strategy defines an

equilibrium buyers’ strategy and vice versa.
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4. THE FIRST ORDER APPROACH

The first order conditions that any equilibrium <S,B> must satisfy
almost everywhere serve two purposes in our exposition. First, they provide
the bound (4.3) derived below that underlies the convergence results.
Second, they enable us to illustrate convergence in Section 5 by calculating
the set of smooth equilibria.

We begin by focusing on the first order conditions in the case of risk
neutral traders at some v ¢ (v,1) and c ¢ (O,g) at which B’'(v) and §'(c)
both exist and B(v) = S(c) = A. Let v = dB'l(A)/dA = 1/B'(v) and ¢ =
dS-l(A)/dA = 1/8'(c). Buyer and seller first order conditions at such a

(c,Xx,v) triple are

dEV (v, )
0= o
(4.1)
= (V-A)[nKn’m(A)f(c)c + (m-l)Ln’m(A)g(v)v] - an’m(A)
and
_ JEC(c, M)
0" T
(4.2)
= _(A-c){(n-l)Jn,m(A)f(c)c + mKn’m(A)g(v)v] + (1-k)Nn’m(A)
respectively, where:
Kn,m(A) = the probability that offer/bid X lies between S(m-l) and S(m) in a

sample of m-1 buyers using strategy B and n-1 sellers using §;
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>

~
[l

nom the probability that bid A lies between S(m-l) and S(m) in a

sample of m-2 buyers using strategy B and n sellers using S;

Mn’m(A) = the probability that bid A lies between s(m) and S(m+l) in a
sample of m-1 buyers using strategy B and n sellers using §;

Jn’m(l) = the probability that offer A lies between S(m-l) and s(m) in a
sample of m buyers using strategy B and n-2 sellers using S;

Nn,m(A) = the probability that offer A lies between S(m—l) and s(m) in a

sample of m buyers using strategy B and n-1 sellers using S.

Formulas (A.20-A.24) for these probabilities are in the Appendix.

Without going into teo much detail it is useful to develop some
intuition concerning a risk neutral buyer’s first order condition (4.1).
The symmetry of a buyer’s and a seller’s situations extends this intuition
to a seller’'s first order condition (4.2). The first order condition (4.1)
can be interpreted as equating a buyer’s marginal expected gain from
changing his bid with the marginal expected cost. An incremental increase
AX in the buyer's bid can have two effects. First, if the bid X is
insufficient to include him among the buyers who trade, then by increasing
his bid to X+AX he may surpass other bids and offers and move into the set
of buyers who trade. Second, if the bid X is sufficient to include him
among those who trade, then increasing his bid by AX may simply increase the
price he pays by kAl through the price-setting rule (l-k)s(m) + ks(m+l)'

The sum in brackets times AX is the probability that the buyer enters

the set of buyers who trade as he incrementally raises his bid by AX. The

first term in the sum is the marginal probability of acquiring an item by

17



passing a seller’s offer and the second term is the marginal probability of
acquiring an item by passing another buyer’s bid. The profit from such a

trade is between (v-X)} and (v-X-A)). Therefore the marginal expected profit
for a buyer who raises his bid is (v-1) times the term in brackets. On the
other side of the ledger, Mn m is the probability that a buyer who increases

H

his bid by AX simply increases the price he pays by kal. Therefore an,m is
the buyer’'s marginal expected loss from increasing his bid above A.

Formal derivation and lengthy discussion of this first order ccndition
can be found in Satterthwaite and Williams (1989b), which concerns the k = 1
double auction (or BBDA).5 There are two changes in that paper’s formula
(3.2) for the buyer’s marginal expected payoff as one moves to the k-double
auction from the BBDA. First, since a seller no longer has the dominant
strategy of truthfully revealing his cost, the f(c) term in eq. (3.2} of
Satterthwaite and Williams (1989b) is replaced here by f(c)é to account for

the manner in which S distorts the density of costs into the density of

offers, Second, the M
n,m

]

term in (3.2) becomes an,m to account for the
diminished effect that a change in the buyer’'s bid can have on price.

It is interesting that a seller’'s first order condition (4.2) continues
to hold when k = 1. Inspection shows that the truthful strategy X = ¢
solves this equation when k assumes this value. Moreover, it can be shown
that if the probability of trade PS(A) is positive, then so is the
expression in brackets in (4.2) and X = ¢ is the unique solution. This

captures the intuition of a proof that S(c) = ¢ is a seller’s unique

A minor flaw of that derivation is its assumption that the joint
distribution P(+) of x = s and y = s has a density e(+). This is
easily corrected by simply(ggplacing e(&??}&xdy with dP(x,y). The argument
is then correct for a value of b = B(v) at which B’'(v) exists.
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dominant strategy in the l-double auction. Similar remarks concerning a
buyer's strategy hold for the 0-double auction.

For v ¢ [v,1] the first order condition (4.1) of a buyer may not hold
when either (i) B(v) is outside of the range of S or (ii) S’ (c) does not
exist for the value of ¢ that solves S(c¢) = B(v). Nevertheless as long as
B’ (v) exists the inequality

(v-X) (m-1)L_ m(A)g(v)\.l KM (4 =0 (4.3)

holds because in equilibrium the marginal expected gain from passing a buyer
(disregarding the possibility of passing a seller) as a result of raising
one’'s bid surely can not exceed the marginal expected cost from raising the
price.

We now argue that (4.3) continues to hold when a buyer’s utility is
V(v-2) rather than simply v-A, i.e., when buyers are risk averse rather than
risk neutral. The marginal expected gain to such a buyer from raising his
bid is at least V(v-A)(m~1)Ln,m(A)g(v)G. For 0 <= p = A, assume now that the
price would be p if the selected buyer bid A. The buyer’s marginal loss
from raising his bid above A in this case is kV'(v-p), which is no more than
kV' (v-A) because V is concave. The buyer’'s marginal expected loss from
raising his bid is therefore no more than an,m(A)V'(v-A). At B(v) = X, 1t

follows that

V(V-A)(m-l)Ln,m(A)g(v)\.r S KM OOV (v-) < 0. (4.4)
Because V is concave and V(0) = 0,
V(v-2) < (v-X) V' (v-X). (4.5)
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The inequalities (4.4) and (4.5) imply (4.3).6

Theorem 3.2's result that B’ exists almost everywhere in the interval
[v,1] therefore implies that the inequality (4.3) holds almost everywhere in
that interval. This inequality forms the basis for our convergence result

below.

5. CONVERGENCE TO TRUTHFUL REVELATION

Define q(n,m) as the value

1 m 1 n
q(n,m) = max o [ 1+ - ], - [1 + o ]

The main results of this section are: (i) a trader’s equilibrium
misrepresentation is at most 0(q(n,m)) on the interval over which he makes
serious offers/bids; (ii) the complement of this interval has length

0(q(n,m)).

Theorem 5.1. Suppose F and G are Cl distributions on [0,1] with
positive densities over this interval and k ¢ [0,1]. Consider any
equilibrium <S,B> satisfying (2.4) and (2.5) of a k-double auction in a
market with m buyers and n sellers. There exists a constant «(F,G) > 0,
which is independent of <S5,B>, m, and n, such that

v - B(v) < xq{n,m) (5.1)
for all v ¢ (v,1],

S(c) - ¢ = kq(n,m) (5.2)

6 This is the only argument in the paper that uses the

differentiability of V. Its use here could be avoided by interpreting
V'(v-)A) in (4.4) and (4.5) as the supremum of the supergradient of V at v-Xi.
See Ekeland and Turnbull (1983, p.110-111) for a discussion of this property
of concave functions.
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for all ¢ ¢ [0,c], and

v, 1 - ¢ < kq(n,m). (5.3)

To develop some intuition concerning the theorem and the function
g(n,m), consider a sequence of markets in which n/m is bounded both above
and away from zero. When n/m is bounded in this way, the equality 0(q(n,m))
= 0(l/n) = 0(1l/m) holds and describes the rate at which (i)
misrepresentation vanishes on the intervals over which serious offers/bids
are made and (ii) these intervals grow to include the entire range [0,1] of
possible reservation values. As a point of comparison, Williams (1990)
showed that misrepresentation by a buyer in the BBDA is O(l/min(m,n)), which
equals both 0(1/m) and 0(l/n) when n/m is bounded. Theorem 5.1 thus extends
this earlier result to k-double auctions for sequences in which n/m is
bounded both above and away from zero. Note, however, that q(n,m) becomes
infinite and Theorem 5.1's bound becomes ineffective as n/m approaches
either zero or infinity. Williams' result (1990) holds for all n and m, and
in this sense it is a stronger result.

Computation of the set of smooth equilibria. We illustrate this

convergence result by computing the set of smooth equilibria for each of
several different sizes of markets. We use the method Satterthwaite and
Williams (1989a) devised for computing smooth equilibria of bilateral
k-double auctions. The method is only outlined here; see this earlier paper
for a complete discussion. The first order conditions (4.1-4.2) form a
linear system in ¢ and v whose coefficients are functions of triples (c,XA,v)
satisfying 0 = ¢ = A < v £ 1. These inequalities define the tetrahedron

ABCD in Figure 5.1. This linear system is nondegenerate at all points in
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the tetrahedron except at its vertices and on its edges. 1t determines a
unique value for (é,%) at each point (c,X,v) of the tetrahedron at which it
is nondegenerate. Adding the tautology A= di/dx = 1 defines a vector
(é,i,é) at every such point in the tetrahedron. A solution curve to this
vector field is a curve within the tetrahedron whose tangent at any point is
the vector (é,i,é). Such a curve is easily computed by starting at any
point within the tetrahedron and then iteratively stepping both forwards and
backwards with the vector field directing each step.

Every smooth equilibrium is represented by a solution curve to the
vector field within the tetrahedron. Specifically, consider an equilibrium
<S§,B> such that S is differentiable on [O,E] and B is differentiable on
[¥,1]. This equilibrium necessarily satisfies the two first order
conditions (4.1-4.2) and the tautology A= 1. Consequently for A ¢
[S(0), B(1l)] the parametric equations A = XA, v = B-l(A), and ¢ = S‘l(A)
define a solution curve. Figure 5.2 illustrates such a curve with m = n =
2, F and G both uniform, and risk neutral traders.7 The sclution curve
starts at point E = (c=0, X=S5(0)=B(v)=v, v=v) and proceeds through the
tetrahedron to point F = (c=€, A=€=S(E)=B(l), v=1). The graph of a buyer's
strategy B can be recovered by projecting the curve leftward onto the face
ABC of the tetrahedron. Similarly, the graph of a seller's strategy is the
projection of the curve onto the top face BCD. The two strategies
determined by the solution curve in Figure 5.2 are shown in Figure 3.1. The

tetrahedron’s edge AD, given by the equalities v = X = ¢, corresponds to

/ All examples in the remainder of this section are for F,G uniform,

risk neutral traders, and m = n.
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truthful revelation by each trader. The gap between a solution curve and
this edge therefore represents equilibrium misrepresentation.

Conversely, if F/f and (1-G)/g are increasing functions on [0,1}, then
a solution curve {(c(A),Xx,v())) defines an equilibrium in the k-double
auction provided the funections c(+) and v(-) are increasing.8 These
sufficient conditions are satisfied in the case of uniform F and G.
Inspection of the formulas for the vector field on the faces and edges of
the tetrahedron implies that any equilibrium solution curve must enter from
a point (c,Xx,v) = (0,v,v) on the edge AC and exit through a point (c,x,v) =
(c,c,1) on the edge BD. The curve thus defines B over the interval [v,1]
and S over [0,c]. We complete their definitions by setting B(v) = v for v «

¢ for ¢ ¢ [c¢,1].

[0,v] and S{c)
Theorem 3.2 establishes that smooth strategies S and B define an

equilibrium only if S’ (c) = l/é > 0 for all ¢ «¢ {O,E] and B'(v) = v > 0 for
all v ¢ [v,1]. Examination of the formulas for ¢ and v shows that there are
regions within the tetrahedron in which one or the other of these
derivatives is negative.9 Solution curves that enter these regions thus do
not define equilibria. Figure 5.3 shows the projecticns of such a solution
curve. Let Qm denote the set of smcoth equilibria for a given m. A graphic
representation of this set is easily computed by (i) choosing a grid of

points in the tetrahedron that lie on a plane separating edges AC and BD,

8 The proof of sufficiency is straightforward. The method of proof is

illustrated for the bilateral k-double auction in Satterthwaite and Williams
(198%a, p.129-130) and for the buyer’s bid double auction in Williams (1990,
Thm. 5.1).

? This is true for m, n =2 2. Such regions do not exist for the
bilateral case. See Leininger, Linhart, and Radner (1989) and Satterthwaite
and Williams (1989%9a) for characterizations of the equilibrium set in the
bilateral case.
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(1ii) computing the solution curve through each point in the grid, and (iii)
graphing only those curves along which both ¢ and v remain nonnegative.

Shape of the equilibrium set. Figures 5.4-5.8 depict the results of

this procedure when m takes the values 2, 4 and 8. Five aspects of these
figures merit discussion. First, the movement of Qm towards the edge AD as
m increases illustrates Theorem 5.1's convergence statement. Inspection of
Figures 5.4, 5.6 and 5.8 with the aid of a ruler confirms that the maximal
distance of ﬂm from edge AD is O(l/m).

Second, the set Qm also shrinks as it converges towards AD. Figures
5.5 and 5.7 dramatically show this shrinkage by depicting the cross-section
of Qm. Figure 5.7, which shows the cross-section of Qm for m=4, suggests
that all symmetric, smooth equilibria are essentially identical in a CO
sense for relatively small m. This contrasts starkly with the bilateral
case in which equilibria fill the tetrahedron and the traders’ problem of
coordinating their choices of strategies is severe. The coordination
problem thus rapidly becomes inconsequential as m increases.

Third, Figures 5.4, 5.6 and 5.8 show that equilibria wind around a line
through the center of Qm that is not itself a solution curve.10 Figure 5.9,
which shows the same solution curve as Figure 5.2, reveals that the curve
winds counterclockwise as it proceeds from E to F. As noted before, Figure
3.1 shows the equilibrium strategies <S,B> that are determined by this
solution curve. Note that S’(c) and B'(v) can be either large or small,
depending on the values of ¢ and v. This oscillation in the values of §'

and B’ occurs as the solution curve winds around the line through the

10 It can be shown when F and G are uniform that ne linear equilibrium

exists in the 0.5-double auction for m =2 2. Thus the linear equilibrium
that Chatterjee and Samuelson (1983) derived in the m = 1 case is exceptional.
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tetrahedron. Figures 5.6 and 5.8 show that this oscillation persists as m
increases. Equilibrium strategies therefore converge to truthful revelation
in a CO sense, but not in a C1 sense, as m increases.

Fourth, if traders truthfully revealed their reservation values, then
the expected price would be 0.5. It can be shown that for m sufficiently
large the distribution of prices in the market of size m is nearly normal
with mean 0.5, regardless of the choice of equilibrium. The variance of
this distribution goes to zero as m approaches infinity, which means that in
a large market a trader is only likely to affect price if his reservation
value is near 0.5. Our pictures reflect this, for as m increases the
"action" in the strategies persists only near v = ¢ = 0.5.

Fifth, in Figures 5.4, 5.6 and 5.8 all the curves in Qm appear to enter
from a very small interval--almost a point to the eye--on edge AC and exit
from a similar interval on edge BD. This suggests that v = s and ¢ = b are
essentially constants in a given size of market regardless of which smooth
equilibrium is considered. This regularity is surprising because (i) a
large number of equilibria exist in a market of given size, (ii) these
equilibria exhibit a wide variety of behavior around X = .5, and (iii) v, s,
¢, and b are defined in Section 3 as functions of the equilibrium
strategies. Curves enter and exit from other points on the edges AC and BD,
but each of these fails to define an equilibrium because at some point along

. L]
it ¢ or v turns negative.

11 . L - .
The set 1 is constructed by eliminating those solution curves

along which ¢ or v'turns negative. Thus some of the curves left are cnes
for which ¢ or v is close to zero at some point. At such a point S’ or B’
is therefore very large. Consequently as m increases and Qm shrinks the
derivatives of_ equilibrium strategies need not approach one as would be
required for C~ convergence.
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6. CONVERGENCE TO EFFICIENCY
Theorem 5.1's rate of convergence to truthtelling suggests that the
loss in efficiency caused by misrepresentation vanishes rapidly as the
market becomes large. The next theorem makes this precise. For any draw of

the traders’ reservation values, the potential gain from trade is the

maximum total profit that can be achieved through trading. This is the
amount that would be achieved in a k-double auction if each trader honestly

revealed his reservation value. The expected potential gain from trade is

the expected value of this random variable. Given an equilibrium <S,B>, the

expected loss due to misrepresentation is the expected potential gain from

trade minus the expected total profit given this equilibrium. The relative

inefficiency is the expected loss due to misrepresentation as a fraction of

the expected potential gain from trade. Theorem 6.1 states that as the
relative Inefficiency of the k-double auction is O(l/mz) for sequences of

markets in which n/m is bounded above and away from zero.

Theorem 6.1. Suppose F and G are C1 distributions on [0,1] with
positive densities over this interval and let K be some fixed positive
number. For m and n such that 1/K < n/m < K, consider equilibria <S,B> of
the k-double auction with m buyers and n sellers that satisfy (2.4-2.5).
There exists a number £(K,F,G), independent of m and n, such that the

relative inefficiency of any such equilibrium is no more than §/m2

Let n A m = min(n,m). At most nAm trades of value one can be made, so

the expected potential gain from trade is no more than nam. A lower bound
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on the expected potential gain from trade when there are m buyers and n
sellers can be computed by pairing off each of nAm buyers with a seller and
noting: (i) the expected potential gain from trade within each pair is some
positive number n; (ii) the expected potential gain from trade among all n+m
traders is at least as large as the amount that can be achieved through
pairwise trading. The expected potential gain from trade is therefore at
least np{nam). It follows that the expected potential gain from trade is
exactly O(nam), which by the bounds on n/m is the same as O(m). The proof
of Theorem 6.1 is thus reduced to showing that the expected loss due to
misrepresentation is O0(l/m). In the Appendix, Theorem 5.1's bounds are used
to show that the wvalue of any trade that ought to be made but is not is
O0(1/m). The difficult part of the proof is then to show that the expected
number of trades that Inefficiently fail to occur is bounded.

Intuition for this rate of convergence. This square relationship

between the amount of misrepresentation and the inefficiency it causes is
suggested by the simple supply and demand curve diagram of Figure 6.1.
Abstracting from both the uncertainty and the indivisibilities of our double
auction model, let SS' and DD’ be "true" supply and demand curves. If
misrepresentation did not occcur, then the market-clearing price would be Po
the quantity 9. would be traded, and the entire potential gain from trade
would be achieved. This gain is equal to the area of the triangle DAS,
which remains constant in this example. Now suppose that, as in equilibria
of a k-double auction, buyers and sellers do misrepresent, though by no more
than x/m. Let dd’ and ss’ be the "strategic" demand and supply curves; each
is offset in the appropriate direction from the true curve by the vertical

distance «k/m. Given these strategic curves, the actual market-clearing
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quantity 1is dg - The gain from trade actually realized is the area of the
trapezoid DBCS and the unrealized potential gain from trade is the area of
the shaded triangle BAC. This area BAC is O(l/mz) because the length of its
base BC is 2x/m and its height is thus alsc 0(1l/m).

A numerical jllustration. Returning to the example of uniform F and C,

risk neutral traders, and m = n, Table 6.1 tabulates the relative
inefficiencies of the 0.5-double auction for wvalues of m ranging from 1 to
§. Also included for comparison are the relative inefficiencies of the

optimal mechanism and the BBDA. For a given m, let:

T, = the expected potential gain from trade;

T* = the expected gain from trade in the optimal mechanism, i.e., the

mechanism that maximizes the expected gain from trade subject to

. - . - s e i . . 12
the incentive constraints and interim individual rationality;

Q(S,B) = the expected total gain from trade given the equilibrium <§,6B>
of the 0.5-double auction;
Qmax = Sup<S,B>eQm Q(S,B);
Qmin = lnf<S,B>eﬂm Q(S,B);
QBBDA = the expected total profit from trade generated by the equilibrium
S(c) = ¢, B(v) = mv/(m+l) of the BBDA.13
12

This mechanism is derived using the revelation principle in Gresik
and Satterthwaite (1989).
13 This equilibrium is discussed in Satterthwaite and Williams (1989b)
and in Williams (1990). For uniform F and G, it is the only smooth,
symmetric equilibrium of the BBDA that satisfies (2.4) and (2.5).
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In this notation Theorem 6.1 states that 1-(Qmin/TO), the relative
inefficiency of 0.5-double auction’s least efficient smooth equilibrium, is
O(l/mz).

Four features of Table 6.1 are noteworthy. First, convergence to
efficiency (i.e., a relative inefficiency of zero) as m increases is very
fast in the 0.5-double auction, even for the sequence of the least efficient
equilibria. Specifically, consistent with Theorem 6.1, l-(Qmin/TO) follows
the O(l/mz) law, and for m as small as six is inconsequential. Second, for
all values of m, the best equilibrium’s relative inefficiency, 1-(QmaX/TO),
is so close to achleving the relative inefficiency of the optimal mechanism
that to the degree of accuracy of the table they are the same. Third,
except for the m = 1 case, smooth equilibria of the 0.5-double auction are
uniformly more efficient than the smooth equilibrium of the BBDA. Strategic
misrepresentation by both sides of the market in the 0.5-double auction is
thus less costly in terms of ex ante efficiency than strategic
misrepresentation only by buyers in the BBDA. Fourth, as m increases, the
gap between the relative inefficiency of the best and the worst equilibrium
of the 0.5-double auction rapidly decreases from large to small as m
increases, reflecting the shrinkage of Qm as m increases that is so obvious
in Figures 5.3-5.8. Measured either in terms of efficiency or by a trader’'s
choice of his offer/bid, equilibrium selection becomes inconsequential as m

increases.,
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7. PRICE-TAKING AS AN AIMOST OPTIMAL STRATEGY

The strength of this paper is its focus upon equilibrium behavier in
which each trader strategically seeks to affect price. This contrasts with
the classical model of a competitive market in which each trader takes price
as given and maximizes In response to it. 1In this section we measure in
terms of a trader's payoff the difference between equilibrium behavior and
price-taking behavior. Specifically, we calculate (i) the cost to a trader
of deviating from an equilibrium by acting as a price-taker when all others
play their equilibrium strategies and (ii) the benefit to a trader cof
optimizing when all others act as price-takers. Our consideration of
nonequilibrium behavior is motivated by the intuition that optimizing is
complex and hence costly to a trader while price-taking is straightforward
and costless. Our goal is to demonstrate that the cost of price-taking in a
market of equilibrium players and the benefit of optimizing against price-
takers are both inconsequential in all but the smallest of markets. A
trader for whom optimizing is cestly and price-taking is free thus might
rationally adopt price-taking as his strategy even in a finite market.

Consider first a buyer who acts as a price-taker when all other traders
play some equilibrium <§,B>. Deviating from B(v) to v can affect this
buyer’s expected payoff in two ways: (i) he may gain a profitable trade that
he would miss by bidding B(v); (ii) he may lose by raising the price that he
pays. Because B(v) is a best response to the behavior of the other traders,
the expected loss from increasing the price outweighs the expected addition
of profitable trades. The net loss is clearly no more than O(q{(n,m)})

because he increases the price by no more than v - B(v), which Theorem 5.1
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states is O(q(n,m)). A trader in a reasonably large market thus loses
little by price-taking instead of optimizing.

Table 7.1 shows for varying values of m = n in the case of uniform F
and G the expected gain from trade a buyer forgoes by price-taking when all
other traders play equilibrium strategies.la The table indicates that the
relative expected loss is O(l/mz); for m = 6 the buyer’'s relative loss is in
fact inconsequential. This O(I/mz) rate is faster than the 0(1/m) rate
derived above because it takes into account the diminishing likelihood that
a buyer raises the price as he raises his bid. Thus in all but the smallest
markets a trader does essentially as well employing the simple rule of
price-taking as by optimizing.

Conversely a trader can profit by optimizing in response to price-
taking behavior by other traders.lS The expected gain of deviating from
price-taking to a best response vanish at the same rate as the gain of
deviating from equilibrium behavior to price-taking. Specifically, for the

example of m = n and uniform F and G, Table 7.2 indicates that the relative

14 3 ; .
Because a buyer knows his reservation value when he chooses his

bid, one can argue that Tables 7.1 and 7.2 should list a buyer’s interim
expected gain from trade (i.e., expected gain conditional on the buyer's
realized reservation value) rather than his ex ante gain from trade. For a
given value of m = n, the ex ante gain from trade reported in a table is the
average of the interim gains taken with respect to a buyer's possible

reservation values. Numerical investigation shows that the ex ante gains
that are listed meaningfully summarize the underlying interim gains.
15

For F = G Satterthwaite and Williams (1989b, p. 493) showed that a
buyer’'s misrepresentation in the BBDA is 0(l/m) when he optimally responds
to price-taking behavior by the other traders. Earlier Roberts and
Postlewaite (1976) asked the same kind of question within a complete
information general equilibrium model. They proved for a generic economy
that if all agents except one are price-takers, then that particular agent’'s
incentive to misrepresent strategically vanishes as the market becomes large.
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expected gain from optimizing against price-takers is O(l/mz) and fer m = 6
is essentially zero.

In the general model of this paper the gain from this optimizing
behavior is no more than 0{(q(n,m)). Consider a buyer who chooses a bid A
below his reservation value v to maximize his expected utility given that
all other traders act as price-takers. This buyer gains as he lowers his
bid below v by decreasing the price that he pays when he trades. As in the
argument made above, the 0(q(n,m)) rate we seek follows from proving that
the difference between v and the optimal X is no more than O0(q(n,m)), for v
- X bounds the effect upon price of changing from bid v to bid A. Return to
formula (4.1) and substitute f£(X) for f(c)c = £(c)/S’ and g(X) for g(v)v —
g(v)/B’ so that its right-hand side represents the buyer’'s marginal expected
payoff when all other traders honestly report their reservation values as
their offers/bids. As in the proof of Theorem 5.1, the first order
condition for the optimal A implies the bound v - X =< an’m(A)/(m-
l)Ln, ()). The proof that this ratio of probabilities is 0(q(n,m)) is a key
part of the proof of Theorem 5.1. The bound on this ratio provides the

desired bound on v - X,

8. CONCLUDING REMARKS
The origins of price-taking behavior is the main theme of our paper.
Two other themes that are implicit can be brought out by relating our
results to two problems, one posed by Wilson and the other by Hayek. In
reviewing game-theoretic analyses of trading Wilson emphasized that a basic
problem for theory is

explaining the prevalence of a few simple trading rules in most of
the commerce conducted via organized exchanges. A short list--
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including auctions, double auctions, bid-ask markets, and
specialist trading--accounts for most organized exchange. Indeed,
bid-ask markets (such as those conducted in the commodities pits)
have long been economists' paradigms for the nearly perfect
markets addressed by the Walrasian theory of general equilibrium.
The rules of these markets are not changed daily as the
environment changes; rather they persist as stable, viable
institutions. As a believer that practice advances before theory,
and that the task of theory is to explain how it is that
practitioners are (usually) right, I see a plausible conjecture:
These institutions survive because they employ trading rules that
are efficient for a wide class of environments (1986, p. 36-37).

Our results support his conjecture: for a wide class of underlying beliefs
F and G the simple, invariant rules of the k-double auction lead to almost
efficient trade in all but the smallest markets.

Hayek emphasized the dual task for a market of simultaneously eliciting
information and allocating goods. The resource allocation problem

is thus in no way solved if we can show that all the facts, if

they were known to a single mind (as we hypothetically assume them

to be given to the observing economist), would uniquely determine

the solution; instead we must show how a solution is produced by

the interactions of people each of whom possesses only partial

knowledge (1945, p. 530).
Because the Bayesian game model explicitly models private information, our
results show how an allocation problem can be solved despite the dispersion

of information among traders and each one’s attempts tc use his own

information strategically.

APPENDIX

Proof of Theorem 3.1. Only the parts of the theorem concerning Pb and
B are proven here; similar arguments prove the statements concerning PS and
S. We begin by showing that there is no bid A* such that Pb(A*) > 0 and

B'l(A*) = (v | B(V) = A¥%)
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is a set of positive G-measure.

Select a buyer. Let x = and y = in the sample of

S (m) S (m+1)

offers/bids from the other m+n-1 traders and let P(x,y) denote the joint
distribution of x and y. Let p(x,y,X) denote the price at which he trades

when X is his bid;

(I-k)x + kA if x <A =<y

]

P(X,¥,X)
(l1-k)x + ky if A >y

Define 6(x,y,A) as the probability that the selected buyer trades given x, ¥y
and his bid A. As explained in section 2, f§(x,y,Ax) =1 if X > x, 6(x,y,)) =
0 if XM < x, and 8(x,y,X) may be between zero and one if x = A. The selected

buyer’s expected utility when he bids X is

EV(v,A) = f </\)\i’('\f—p(x,y,)\)) (x,y,2) dP(x,y). (A1)

{x<

As explained after the statement of Theorem 3.1, the function # can be
omitted from (A.1l) once (3.1) is established.

Choose v' such that B(v') = A* and B_l(A*) N (0,v') = @g. Because B(v)
= A% < v for some v < v' and Pb(A*) > 0, it is clear that 0 < Ax* < v’ < 1.
As in Satterthwaite and Williams (1989b, Thm. 2.2), we now argue that Pb(A)
has a jump discontinuity at XA = i*, from which a contradiction easily
follows.

Because Pb(A*) > 0, the set {c¢ | S(c) = A*} has positive F-measure.
Because S(c) = ¢ and A* < 1, the set {c | S(c) > X*} also has positive F-
measure. It is therefore a positive probability event that (i) all other

buyers bid A%, (ii) one offer is no more than A* and the remaining n-1
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offers are strictly more.16 In this event, x = A%, and if the selected
buyer alsc bids X%, then the market price is A* and the available supply of
one item must be randomly allocated among the m buyers. By raising his bid
above M* the selected buyer obtains an item with probability one in this
event rather than with probability less than one due to rationing, which is
shown below to increase his expected utility. Formally, this discussion

implies that x = A% is a positive probability event, i.e.,

I(X:A*)dP(x,y) > 0,

and the selected buyer’s conditional probability of trading given x = A% and

his bid A* is less than one,

f e X,y %) dP(x,y)
(=A%) < 1. (A.2)
I{X=A*}dP(x,y)
For X > X* we have
EV(v',X) - EV(v', %) =

I{X=A*}V(v‘-p(x,y,A)) - V(V"P(X,y,k*))B(X,Y,A*) dP(X,y) (A.3)

* I{x<x*<yyv(v"P(X’y’*)) - V(v'-p(x,y,A¥%)) dP(x,y) (A.4)

+ I{A*{)(SA)V(V’-p(x’y:’\))ﬁ(xyyyfx) dP(X,y) (AS)

The integral in (A.5) is nonnegative. As A decreases to A%, the integrand
in (A.4) converges uniformly to zero, so in the limit this integral is zero.

The integrand in (A.3) converges uniformly to

V(v -p(A%, vy, A%) ) (1-0 (2%, y,A%)) = V(v'-A*)(1-8(x*%,y,A%)).

16 The assumption that n, m = 2 is needed here.
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The integral in (A.3) therefore converges to

V(V’ _A*) I(x=A*)l‘9(A*:Y:A*) dP(st):

which by (A.2) is positive. Therefore, for X near i*,
EV{(v' ,X) - EV(v', a¥) > 0,

which contradicts the optimality of A* = B(v') for the buyer with
reservation value v’.

An argument of Satterthwaite and Williams (1989b, Thm. 2.2) for the
BBEDA (which was inspired by Theorem 1 of Chatterjee and Samuelson (1983))
generalizes to prove (3.2). Several functions are needed for our proof that
Pb-B is nondecreasing. Consider any v' < v". For 0 < p =< v' define

aV(p) = V(v"-p) - V(v'-p).

Because V is increasing and concave, AV is nondecreasing and bounded below

by V(¥v")-V(v'), which is positive. Define

H(X)

I(Xsk)AV(p(x,y,A)> dP(x,y) .

The function H is nondecreasing.

A

We now prove that Pb(B(v’)) < Pb(B(v")). The definition of an

equilibrium implies that

EV{(v",B(v")) - EV(v",B(v'))

A%
(=)

and (A.6)

EV(v' ,B(v')) - EV(v' ,B(v"))

k%
o

(A7)

Adding (A.6) and (A.7) and then rearranging terms produces

H(B(v")) - H(B(v')) = 0. (A.8)
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If B(v") = B(v'), then it is obvious that Pb(B(v")) > Pb(B(V’)). We
therefore assume that B(v") < B(v’'). Because H is nondecreasing, (A.8)
implies that

H(B(v')) = H(B(v")).
The definition of H then implies

0 = H(B(v')) - H(B(v")) =

I{B(V..)<X55(V,)}AV(P(X,Y.B(V')) dP(x,y)} (A.9)

+ I{XsB(v"))AV(p(x,y,B(v’)) - AV(p(x,y,B(v")) dP(x,y). (A.10)

The integral in (A.10) is nonnegative because (i) p(x,y,X) is nondecreasing
in X and (ii) AV(p) is nondecreasing in p. The integral in (A.9) is
therefore nonpositive. Because AV is bounded below by a positive number,

this implies

‘[[B(v")<st(v’)}dP(X’y) -0

This last integral equals Pb(B(v’)) - Pb(B(v")), which gives the desired

result, Q.E.D.

Proof of Theorem 3.2. Differentiability follows from monotonicity by a

well-known theorem in analysis (e.g., see Royden (1968, p.96)). Because the
proofs of parts (3.3) and (3.4) are so similar, only (3.4) is proven here.
We first suppose that B(v') > B(v") and derive a contradiction. The
strategy B is therefore nondecreasing over [v,l]. Statement (2.1) of
Theorem 3.1 then implies that B is increasing over this interval.

Because Pb and Pb-B are both nondecreasing, it must be true that

Pb(B(v")) = Pb(B(v')), i.e., a lower type buyer (v') bids more than the

higher type buyer (v") even though it doesn’t increase the probability that
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he trades. We show that this contradicts the assumption that B(v') is an
optimal bid for a selected buyer with reservation value v'. The argument

rests upon the following facts:
(i) the set {c I S(c) < B(v")) has positive measure; (a.11)

(ii) for X € (B(v"),B(v')), the set {(c | S(c) > X} has (A.12)

positive measure;
(iii) the set (v | B(v) < B(v")) has positive measure. (A.13)

Statement (A.l1l) is true because Pb(B(v")) > 0, statement (A.12) is true
because S(c) = ¢ (by (2.5)) and X < B(v') < 1, and statement (A.13) is true
because B(v") > 0 and B(v) <= v (by (2.5)). Statements (A.11-A.13) imply
that for a bid X ¢ (B(v"),B(v')) by the selected buyer, it is a positive
probability event that x < A < y, where (as in the proof of Theorem 3.1)

X = s and vy in the sample of offers and bids from the other

(m)

m+n-1 traders. In this event, the selected buyer affects the price at which

= S(m+l)

he trades, which we now show implies that his expected utility decreases as

he raises his bid over the interval (B(v"),B(v')). We have

EV(v',B(v")) - EV(v',B(v')) = (A.14)

I(XsB(v")]V(v‘-p(x,y,B(V")) - V(v'-p(x,y,B(v')) dP(x,y) (A.15)

- J{B(V")<X58(v.)}v(v'-p(X,y,B(v')) dp(x,y). (A.16)

Because Pb(B(v“)) = Pb(B(v')), the integral (A.16) is computed over a set of
measure zero and is therefore zero. The integrand in (A.13) is

nonnegative. For a fixed X ¢ (B(v"),B(v')}, it is positive over the set
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{x £ B(v") < A =y), which (as argued above) is a set of positive P-measure.
The difference (A.l4) is therefore strictly positive, which contradicts the
optimality of B(v') for the buyer with reservation value v'. We conclude
that B(v') < B(v").

We now prove that limvlzB(v) = v = s; the proof that lichES(c) - c =
b is omitted because it is so similar to this argument. The equality v = s
is established by proving that both of the inequalities v < 5, s < v lead to
contradictions. If v < s, then B(v) <= v < s for values of v that are
greater than but sufficiently near v. As a consequence, Pb(B(V)) = 0 at
such values of v, which contradicts the definition of v. If s < v, then ¢ =
S(c) < v < v for c near zero and v less than but sufficiently near v.
Trading opportunities therefore exist for a buyer with such a reservation
value v, which implies that Pb(B(v)) must be positive. This also
contradicts the definition of wv.

The equality limvin(v) = v is established by recalling that

v =2 B(v) =2 s for v > v, which implies v = limV VB(v) > s. The desired

i

equality now follows from v = s. Q.E.D.

Proof of Theorem 3.3. It is clear that S* and B* satisfy (2.4) and

{(2.5). Because the dual of the dual market is the given market, it is
sufficient to show that the expected utility of a buyer with reservation
value v who bids A < v in the given market is the same as the expected
utility of a seller with value c¢* = 1-v whose offer is A* = 1-X in the dual
market, This follows directly from a change of variable in an integral

representation of expected utility. The buyer’'s expected utility is

fxsl<yv(v -(1-l)x-kA)dP(x,y) + fy<AV<v-<1-k>x-ky>dP<x,y>. (A.17)
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where %, y and P(x,y) are defined in the proof of Theorem 3.1. Because the
transformation to the dual market reverses the crder of offers/bids without
any shuffling, we have l-y* » x and 1-x* » y, where, in a sample of the
offers/bids of n*-1 sellers using S* and m* buyers using B¥*, 6 x¥* = S(m*—l)

and y* = Note also that the joint distribution P* of x* and y*

S(m*)'
satisfies the equality P(l-y*, 1-x%) = 1-P¥*(x%,y*). After the change of
variable and some simplification, (A.l17) reduces to

*
IX*<A*SY*C*((1-k*)A*+k*y*-c*)dP (%%, y%)

*
+ IA*SX*C*((l-k*)x*+k*y*—c*)dP (x*,y%),

which is the expected utility of a seller in the dual market whose offer is

A%, Q.E.D.

Probabilities in the First Order Conditions (4.1) and (4.2). For

X e (v,1}, define the function S_l(A) by the formula
st(A) = inf (c | s(e) = 2y, (A.18)
and for ) ¢ [0,c) define the function B-I(A) by
Bl = sup {v | B(v) < A). (A.19)
. -1 -1 e
Using § "(X) = ¢ and B "(X) = v, the probabilities Kn'm(A), Ln’m(A),

M Ay, J ()), and N (\) can be written as functions of ¢ and v:
n,m n,m n,m

k() = = [mil][“jl] ce)tre)yd -een™ Vi ren™ Y, (20
i+ti=m-1
O0<i<m-1
0<j=n-1
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m-2)[n i j m-2-1i n-j
Ln,m(A) = = [ { ][j] G(v) F{c) " (1-G(v)) (1-F(ec)) , (A.21)
i+j=m-1
O<i<m-2
0<j=n

m-1][n i ] m-1-1 n-j
Mn,m(A) = ) [ i ][j] G(v) F(c)” (1-G(v)) (1-F(c)) , (A.22)
i+j=m
O<i=m-1
0<j=n

m

CINCVIES [_][“52] cv) TFed (1-cevn™ T a-Fey™ 2 (A.23)

i+j=m-1
O=i<m
O<j=<n-2

1

N o =2 [?j[njl] ey ) (1-c(v)™ T (1-Freyy™ 1T (A.24)

i+j=m-1
0<i<m
0=j=n-1

A detailed explanation of these formulas can be found in Satterthwaite and

Williams (1989b, p.485).

Proof of Theorem 5.1. We prove below that v-B(v) =< xkq(n,m) for v e

(v,1]. With this in hand, the rest of the theorem follows easily. The
symmetry result established in Theorem 3.3 implies that S(c)-c¢ < kq(n,m) for
all ¢ ¢ [O,Z) because if an equilibrium S existed that violated the bound,
then it could be used to construct an equilibrium B* for the dual market
that vioclates the bound upon it.l7 To bound v, we apply Theorem 3.2 and the

bound just established to deduce that v = s = limclOS(C) = limclO(S(c)-c) <

17 Different values of k may result here and later in the proof. This

problem is rectified by choosing the largest of the values.

41



kq(n,m). Finally, using the symmetry result again, the bound l-c < kq(n,m)

follows from the bound on v.

For v ¢ (v,1], let X B(v) and ¢ = § "(A). Solving (4.3) for v-B(v)

gives

kM (x)

n,m

v-B(v) < -,
(m-l)Ln’m(A)g(v)v

(A.25)

which holds for almost all v ¢ (v,1]. The following bound on the right-hand
side of (A.25) is proven below using a straightforward combinatorial
analysis:

() k1
< [ G(v) + 2 F(v)(1-G(v)) ]. (A.26)

(m-l)Ln,m(A)g(v)G g(v)v m-1 (1-F(v))

n,m

Because the density g is continuous and positive on [0,1], L'Hopital’s rule
implies that G(v)/g(v) and (1-G(v))F(v)/g(v)(l-F(v)) are continuous

functions on this interval. A k > 0 therefore exists such that

(v-B(v)) < =& [ 1 + q(n,m)

.
m v

813
U
IA
<&

for all v ¢ (v,1] at which v exists. This is our bound when v = 1. The
remainder of our proof is a demonstration that the bound continues to apply
for values of v ¢ (v,1] at which either (i) v <1 or (ii) v fails to exist.

We first note the following. Censider an increasing sequence {vi) that
has as its limit v ¢ (v,1]. Suppose vi—B(vi) < kq(n,m) for each element of
the sequence. Then v-B(v) =< kq(n,m) because limi__oov_l = v and, since B is
increasing, B(v) = limiawB(vi).

Consider now a v' ¢ (v,1] at which v < 1. At some value v in the

interval [v,v’) the derivative v = 1/B' (v) exists and is at least one. To
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see this, recall from Theorem 3.2 that limV vB(v) =1v. If at almost all v ¢

1l
(v,v') the derivative v were less than one, then at all v in this interval

B(v) would exceed v, which violates the constraint (2.5) that B{(v) = v. The

sup{v ¢ (v,v'") I v = 1/B'(v) = 1} therefore exists. Our result

value v*

IA

from immediately above implies that v*-B(v¥) kq(n,m). Almost everywhere
on the interval (v¥*,v') the derivative B’ (v) = 1/6 exists and exceeds one.

Since B is increasing, it follows that

vl
v!i-vd < Jv* B'(v)dv < B(v') - B(v¥),

which upon rearrangement gives the desired result: v'-B(v') < v*-B(v¥) <
kgq{n,m).

Next consider values of v ¢ (v,1] at which v does not exist. Because B
is differentiable almost everywhere, any such value is a limit point of an
increasing sequence of values at which v exists. The desired bound holds
wherever v exists and hence at every value in the sequence. As argued above

it therefore holds at v. Q.E.D.

Proof of (A.26). We now show that the ratioc Mn m(/\)/Ln m(A) satisfies

» 3

the bound
M (A)
n,m 2 n (1-G(v))F(c)
oy S 26(v) + — IO (A.27)
n,m
< 26(v) + 20 (ACVIF) (A.28)

‘m 1-F(v) ’
where (A.28) implies (A.26). Inequality (A.28) follows from (A.27) because
¢ < X <vand F(c)/(1-F(c)) is increasing in c. We therefore focus upon
(A.27).

Define
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Yn,m(A) = the probability that the bid A lies between s(m) and S(m+l) in

a sample of m-2 buyers using the strategy B and n sellers using

S.

We first show that

M = (1 - G(v))Yn m

n,m + G(V)Ln o’ (A.29)

’ ]

or equivalently

M Y

n,m _ i n,m
T = (- G

n,m n,m

+ G(v). (A.30)

The bound (A.27) will be obtained by bounding Yn m/Ln o and then

¥ H

substituting into (A.30). The probability Mn n is defined for a sample of

offers/bids from m-1 buyers using the strategy B and n sellers using the

strategy 8. Select a buyer. The event that defines Mn 0 is the disjoint

1

union of the following two events:

(i) the selected buyer bids at least A and A lies between s and s

(m) (m+1)

in the sample of offers/bids from the remaining m-2 buyers and n

sellers;

(i1) the selected buyer bids less than A and X lies between s and s

(m-1) (m)

in the sample of offers/bids from the remaining m-2 buyers and n

sellers.

The selected buyer bids at least XA with probability 1-G(v) and less than A
with probability G(v). Eguation (A.29) then follows from the definitions of

Y and L
n n

, I s
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To bound Yn m/Ln o Ve partition the events that define these

probabilities according to the number i of buyers' bids that are no more

than A. For 0 < i < m-2, define

Yn,m(A) = the probability that the bid A lies between S(m) and S(m+l) in a
sample of m-2 buyers using the strategy B and n sellers using §,
and exactly i of the offers/bids at or below A are buyers’ bids;

i s . . .

Ln,m(A) = the probability that the bid A lies between S (m-1) and S (m) in a

sample of m-2 buyers using strategy B and n sellers using 5, and

exactly 1 of the offers/bids at or below A are buyers’ bids.

It is clear that

m-2 i
Yn,m - 2i=0 Yn,m’ (4.31)
i m-2 n i m-i m-2-1 n-m+i
Yom ™~ [ i] [m-i] G(v) F(c) "(1-G(v)) (1-F(c)) , (A.32)
L= ™2 1 d (8.33)
nm  ~i=0 ‘n,m’ 2" :
i m-2 n i m-1-1i m-2-1i n-m+i+1
Ln,m = [ i ] [m-l-i] G(v) F(c) (1-G(v)) (1-F(c)) . (A.34)
The identity
m-2] _ . m-2
[57) = o [37])
and formulas (A.32) and (A.34) imply that
Y; m G(v)
Li'l < ITETGT for (m-1)/2 =i < m-2. (A.35)
n,m

The identity
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(m-1) [mr_‘i] [(n+1) - (m-i)] [m_rl‘_i]

and the bound

{(n+l) - f{m-1i) < 2 n

TEY < for 0 =1ix (m2)/2

together with formulas (A.32) and (A.34) imply that

i
Y
n,m 2 n F(c) .
Li < - ITFTEY for 0 =i < (m-2)/2. (A.36)
n,m
It follows that
Yom  ico Ynm
L T o m-2 i (A.37)
n,m z. L
i=0 n,m
i i
Zo<i<(m-2)/2 ‘n,m Zi>(m-1)/2 ‘n,m
- m-2 i + m-2 _ i (a.38)
=, L I L
i=0 n,m i=0 n,m
i i
=, . Y z. Y
< O<i<(m-2)/2 n,m i=(m-1)/2 n,m (A.39)
z Lt b R
O<i=(m-2)/2 n,m i=(m-1)/2 "n,m
< 2 n F(c) G(v)

m 1-F) T1 -Gy (4.40)
where the left and right terms in (A.39) are bounded by firs rewriting
(A.36) and (A.35) as upper bounds on Y; o and then substituting into the

numerators. Q.E.D.

Proof of Theorem 6.1. As explained after the statement of the theorem,

we must show here that the expected loss due to misrepresentation is at most
0(1/m). Let p denote the distribution of the market price p when traders

use the equilibrium <S,B>. We bound the expected loss due to
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misrepresentation by integrating the expected value of trades that

inefficiently fail to be made at the price p with respect to du(p):

p==x
expected loss = Ipz_m(expected loss when price = p) du(p).

The bound is derived in two steps. For a properly chesen value of ¢ > 0, we
first show that the probability that p lies below ¢ or above l-¢ is
O(Z-mAn). Because the total value of missed trades is no more than mAn, it
follows immediately that the integral over these intervals is no more than
0(1l/m). The second step iIs then to show that the integral over [e,1l-¢] is
also O(1l/m).
A preliminary step is to show two inequalities:
max(m,n) < min(Km,Kn) (A.41)

where K is the number in the bound 1/K < n/m < K, and

[m+n] < amax(m,n)

n (A.42)

The inequality (A.41) follows from the bound on n/m. Inequality (A.42) is

established in the case of m = n by

m m
T2 . N0 L (2i-1)
[2 “‘] - i-1 =1 <4 ™ (A.43)
m ™ oi . 0ot li
i=1 i-1

Note the symmetry of (A.42) in m and n. Consequently we need only establish
it for the case n > m. We do this by inducticn on n: assuming (A.42) is

true for a particular n and m with n =2 m, then

[n+1+m] _ n+1+m [n+m] <9 . amax(m,n)
m n+1 m

since (n+l4m)/(n+l) < 2 whenever n = m.

47



The value ¢ > 0 is chosen so that F(e), G(2¢), 1-F(1-2¢), and 1-G(1l-¢)
are all less than 1/22K+l. Given the bound on n/m, Theorem 5.1 states the
existence of a constant k such that

v - B(v) < k/m for v ¢ (¥,1],

S(c) - ¢ < k/m for c € [O,E), and

v, l-¢c < k/m
for any equilibrium <S,B> in the market with n sellers and m buyers that
satisfies (2.4) and (2.5). We restrict our attention to values of m such
that k/m < £/2, which implies that v ¢ [0,£/2) and c € (l-£/2,1].

The bound on the probability that p is below ¢ is derived as follows.
If p is the price, then at least m offers/bids must be no greater than p.
Consequently, the probability that p is below ¢ is bounded above by the
probability that at least m offers/bids are less than . Because S5(c) = c,
the probability that a seller’s offer is below & is no more than F(e). A
buyer’s bid may be less than his reservation value v, but by no more than
k/m when v > v; consequently, the probability that a buyer’s bid is in [0,¢)
is no more than G(e + k/m), which is less than G(2¢). The probability that

the market price is below ¢ is therefore no more than

m+n m max(m,n) 1
[ - ] [max (G(2e), F(e))] < &4 , (2K+1)m
max{m,n)
= AT 2-m S 2_m
4

where the first inequality follows from (A.42) and the choice of ¢ and the
last inequality follows from {(A.41). A similar argument shows that the

probability that p lies above l-¢ is 0(2-n).
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We mnext bound the expected loss given a particular value of p in
[£,1-¢]. Note first that S-l(p) and B—l(p) are well-defined by (A.18) and

(A.19) at such a p and satisfy the bounds

P - S-l(p) < 1lim 1 [S{c) - c] < k/m, and
ciS “(p)
B_l(p) - p < lim 1 {v - B(v)] £ k/m
vtB’ (p)
It follows that for p ¢ [£,1-¢],
B'l(p) - s'l(p) < 2x/m. (A.44)

It is also true that for p in this interval

IA
IA

P lim 1 B(wv) lim v =B "(p), and

viB T (p) le'l(p)

v

o
v

1im 1 S(c) lim -1 c =95 (p),
cts T (p) ctS “(p)

from which it follows that B—l(p) > ¢ and Shl(p) < 1l-¢ for p e (e,1-¢].
Consider now the loss at any draw of reservation values for which
p ¢ [£,1-¢] is the market price and i profitable trades fail to be made.

This is possible only if there are i buyers and i sellers such that:
(1) each of the i sellers asks for at least p; (A.45)
(ii) each of the i buyers bids no more than p; (A.46)

(iii) the i buyers can be paired with the i sellers so that in each (A.47)
pair the reservation value of the buyer exceeds the reservation

value of the seller.

Condition (A.45) implies that the reservation value of each of the i sellers
is at least S-l(p) and (A.46) implies that the wvalue of each of the i buyers

is no more than B-l(p). Condition (A.47) then implies that each of these 21
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values lies in the interwval {S-l(p),B_l(p)]. The loss when p is the market
price and i profitable trades falil to take place is therefore no more than
coo-1 -1

i(B "(p) - S ().

We are now ready to bound the integral
l-¢
IC {(expected loss when price = p) du(p). (A.48)

We rewrite the expected loss when p is the price by considering separately
for 0 = j <= nam and 1 < 1 < (nAam)-j the case of j successful trades and i
profitable trades that weren't made when p is the price. This approach and
the bound obtained above on the loss when i profitable trades fail to be

made at the price p show that (A.48) is no more than

fl'g nAm (nAm) - j | -1
. Ej=0 qj(p) [ M) pij(p> i [B "(p) -8 "(p)] ] du(p), (A.49)

where qj(p) is the conditional probability that j trades are made given that
p is the price and pij(p) is the conditional probability that i profitable
trade aren’t made given that p is the price and j trades are made. The

conditional probability pij(p) satisfies the bound

iq2 i-1 42
Pyj(p) = max [7—'] ’ [ﬁ} ' (4.50)

for some constant . This bound, which is established below, does not

depend upon either j, n or m. Assuming (A.50), we now complete the proof.
Let ¢(i) denote the number on the right-hand side of the inequality

(A.50). For each p, the probabilities (qj(p))lsjs(nAm) sum to one. This

fact and the bounds (A.44), (A.50) imply that (A.49) is no greater than
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2 & Il—s nAm . _,.
- J. Zio1 it (i) du(p).

It is sufficient to show that the integrand converges as nAm goes to

7(i-l) 2

infinity. For large i, ¢(i) = | /(1i-1)']7. It is therefore sufficient
to show that the series

- 71-1 2

Zia1 1[ i-1)1 }
converges, which follows from the ratio test. Q.E.D.

Proof of (A.50). The proof of (A.50) requires some thought about how

knowing p and the number j of successful trades affects what one knows about
the distribution of the offers/bids of the (m+n-2j) traders who don’t trade.
In particular, we are interested in how it affects the likelihood that the
reservation values of i sellers and i buyers of the remaining traders lie in
the interval [S-l(p),B-l(p)], which is a necessary condition for i
profitable trades to have been missed. Our discussion centers upon which
traders’ reservation values are "linked" by wvirtue of the fact that their
offers/bids determine the price p.

Given j trades at the price p, we partiticn the event in which i
profitable trades fail to occur according to whose offers/bids determine the

price by equaling either s(m) or s(m+l):

(i) a seller and a buyer who trade; (A.51)
(ii) a seller and a buyer who don’t trade; (A.52)
(iii) a buyer who trades and a buyer who doesn’t; (A.53)
(iv) a seller who trades and a seller who doesn't; (A.54)
(v) a buyer who trades and a seller wheo doesn't; (A.55)
(vi) a seller who trades and a buyer who doesn’t. (A.56)
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Event (A.55) occurs with probability zero, for a buyer who trades and a
seller who doesn't can each affect the price only when the offer/bid of each

of these traders equals s A similar argument rules out (A.56). Given

(m+1) "

the price p, j successful trades, and one of the remaining four events, we
show that the conditional probability that i profitable trades are missed is
bounded above by the right-hand side of (A.50). Because the conditional
probability pij(p) is a convex combination of these four probabilities, this
establishes (A.50). Events (A.53) and (A.54) are symmetric, so we shall
only consider (A.51-A.53) here.

Let X = in the sample of offers/bids of the m+n traders. We bound

S
(m)
each cof these three conditional probabilities with an integral computed with

< X X . ; . 18
respect to the conditional distribution ¢(+) of x in the given event.

For each x ¢ [0,p], define t(x) as the value of S(m+1) that solves the

equation p = (l-k)x + ks The reservation value of a buyer who doesn’t

(m+1)°

trade must lie in [O,B_l(x)] and the reservation value of a seller who

doesn't trade lies in {s'l(t(x)),l]. Note that S-l(p) < s'l(t(x)) and

B'l(x) < B'l(p). Recall the discussion of (A.45-47). If s'l(t(x)) >

B'l(x), then all profitable trades are made. If s'l(c(x)) < B'l(x), then
the reservation value of any trader who is inefficiently excluded from trade
must lie in [S-l(t(x)),B-l(x)]. Rather than considering all values of x ¢
{0,p)], we are thus instead interested in the subset
-1 -1
Ly=ix e [0p] | 8 7(eG)) =B 700, (A.57)

which is just those wvalues of x for which the interval [S—l(t(x)),B_l(x)] is

nondegenerate.

18 For convenience, the dependence of ¢(+*) upon the price p, the

number j of trades, and which of the events (A.48-A.50) holds is suppressed.
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The events (A.51-A.53) are distinguished by whether or not the traders
whose offers/bids determine price are among the 2i traders who inefficiently
fail to trade. Consider first event (A.51). Given that p ¢ FP, the
probability that i profitable trades are missed is bounded above by the
probability that the reservation values of at least i of the m-j buyers who
do not trade and at least i of the n-j sellers who do not trade also lie in
[S_l(t(x)),B-l(x)]. Recall that, given x, the reservation value of a buyer
who does not trade lies in {O,B-l(x)] and the reservation value of a seller
who doesn’t trade lies in [Svl(t(x)),l]. This then implies the following

upper bound on the conditional probability in question:

i [0 c8t ) - s e |F
ro~ b (8t (x))
(A.58)
-1 -1 i
| FET00) - FGsTee) b0y
L - F(S "(e(x)))
In event (A.52) a buyer bids x and a seller offers t(x). If any trades are

inefficiently excluded, then this particular buyer-seller pair is
inefficiently excluded. Therefore an upper bound on the conditicnal
probability given j, p, and the event (A.52) that at least i profitable

trades are missed is

T ety - esThey MY
r i-1 i-1 G(B-l(x))
P
(A.59)
PN G0) - RS [T

1 - BTl ey

Finally, in event (A.53) a buyer bids x and does not trade. If any buyer is

inefficiently excluded from trade, then the buyer who bids x is
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inefficiently excluded. The conditional probability given j, p, and event
(A.53) that at least i trades are inefficiently excluded is therefore
bounded above by

[ e x)) - esheee)) r'l
Fp i-1 i G(B-l(x))

(A.60)

, [F(B'l(xn - R8T (e) }i ches) .
1 - F(sTHEGO))

To obtain (A.50) from the bounds (A.58-A.60), we first substitute S_l(p) for

Shl(t(x)) and B-l(p) for B-l(x), which only loosens these bounds. Because F

and G are C1 functions on [0,1], a number 7 exists such that for p ¢
[5:1":],
-1 -1
BT () - FST (B)) o I 4y
1 - F( (p)) m
-1 -1
G(B "(p)) - G(S "(p)) T
1 = y
G(B “(p)) m

These inequalities are used to bound the fractions in brackets within these

three integrals. Finally, note the inequalities

e (2] () 2] e o o)

L1 | m i m it (m-i)! ot it

) (2] Y [2]7 i e s S e

L 1-1 ] m i-1 m (i-D)!'(m-i)! ml-l (i-1)!

’nij] Fi]is ["] [1]i= S is—(TK)i, and (A.63)

L1 | m i m it (n-i)! ml it

[n-j'l] {1T'1S [n-l] [1]1-1= (1)t Tf'l . (TK)i_l e
i-1 m i-1 m (i-1) ' (n-i)! ml-l (i-1)
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Setting <y = 7K and applying (A.61-A.64) then produces the desired bound.

Q.E.D.
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Table 2.1

The array of offers and bids in a k-double auction.

offers bids
No. S(m+l) Y w
No. = S(m+l) s X
No. < s(m+1) t z
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Table 3.1

The dual market to a given market.

given market dual market

number of sellers n n* =m

number of buyers m m* = n
seller’s reservation value c c* = 1-v
buyer’s reservation value v vk = 1-¢
seller’s utility function C Cx =V
buyer’s utility function v Vrx = C
seller’'s distribution F F*(c*x) = 1-G(l-c*)
buyer’s distribution G Gx(vx) = 1-F(l-v*)
seller’s strategy S S*(c*) = 1-B(l-c¥%)
buyer’'s strategy B Bx(v*x) = 1-S(1-v¥*)
double auction k kx = 1-k

58



Table 6.1.
Relative inefficiencies of the optimal mechanism, the 0.5-double auction,
and the buyer’s bid double auction for different market sizes in the case of

risk neutral traders and uniform F and G.

men o L(TR/T)  1-(Q, /T)  1-(Qu;/T) - (Qgpp./To)
1 0.16 0.16 1.00 0.25
2 0.056 0.056 0.063 0.074
4 0.015 0.015 0.016 0.017
6 0.0069 0.0069 0.0070 0.0075
8 0.0039 0.0039 0.0042

Notes. For m = 1, Myerson and Satterthwaite (1983) calculated T* and
established the equality T* = Qmax’ Williams (1987) computed the smooth

equilibrium for the BBDA from which Q is calculated, and Satterthwaite

BBDA
and Williams (1989a) showed that arbitrarily inefficient smooth equilibria
exist. For m = 2, the wvalues for T* and T0 are from Gresik and

Satterthwaite (1989, Table 1) and the values for QBBDA are from
Satterthwaite and Williams (1989b).

The wvalues for Q and Q . are estimated using the following

max min
procedure. A grid of initial points in the tetrahedron determined a sample
of solution curves. Solution curves within Qm determine equilibria while
those outside Qm were discarded. The relative inefficiency of each of these
equilibria was computed; Qmax and Qmin are approximated by the max and min
of these computed inefficiencies. Note that these values provide
ti 1 b d b d -

respectively a lower bound on Qmax and an upper bound on len

Calculation of these values posed numerical difficulties. Consequently
results are reported to only two significant digits and for m = 8 no value

was obtained for l-(QmaX/TO), though we expect it is essentially equal
0.0039.
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Table 7.1
Relative loss to a buyer in a 0.5-double auction from deviating from an
equilibrium strategy to price-taking behavior in the case of uniform F and G

and risk neutral traders.

Equilibrium Loss from Relative
m expected profit price-taking loss
2 0.094 0.0055 0.059
4 0.109 0.0017 0.016
6 0.115 0.00080 0.0070
8 0.117 0.00046 0.0039
Notes. For each m the values in the table were computed as follows.

For a sample of equilibria <S,B> ¢ ﬂm we computed (1) the ex ante gain from
trade a buyer receives in the equilibrium <S,B>, (ii) the loss he would
suffer from unilaterally switching from B to price-taking behavior. We then
averaged across the sample to obtain estimates of expected ex ante gain and
expected ex ante loss from truthtelling. The relative loss was then

computed by dividing the expected ex ante loss by the expected ex ante gain.
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Table 7.2
Relative gain to a buyer in the 0.5-double auction from deviating from
price-taking behavior to a best response in the case of uniform F and G and

risk neutral traders.

Expected profit Gain from Relative
m from price-taking best response gain
2 0.100 0.0088 0.088
4 0.111 0.0022 0.020
6 0.115 0.00093 0.0081
8 0.118 0.00052 0.0044

Notes. For each m the values in the table were computed as follows.
The second column'’'s value is the ex ante profit a buyer realizes if he and
all other traders honestly report. The third column’'s value is the increase
in ex ante profit the buyer obtains by choosing a best response against the
price-taking behavior of the other traders. The fourth column’s value is

column three’s value divided by column two's value.
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Figure 3.1. A pair of equilibrium strategies in the case of m = n = 2, risk
neutral traders, and uniform F and G. These strategies were computed using
the method described in Section 5. The figure illustrates the equalities v

= ¢ and c = b that are established in Thm. 3.2.

1

O Y g 1
Figure 5.1. The first order conditions (4.1-4.2) for an equilibrium define
a vector field on the tetrahedron ABCD. This figure describes the

orientation of the tetrahedrons in the figures that follow.

C=(0.1,1) D=(1.1.1)

B=(0.0.1) |

A=(C.0.0)
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Figure 5.2. The solution curve to the vector field through the point
(c,x,v) = (.395,.5,.565) for the case of m = n = 2, k=.5, and uniform F and
G. Appropriate projections of this curve give the equilibrium strategies

that are graphed in Figure 3.1.

Figure 5.3. 1In the case of m = n = 2, k=.5, and uniform F and G, the values
v and ¢ turn negative along the solution curve through (c,A,v) =

(.325,.5, .665). The bottom curve B is the (A,v) projection of this curve
and the top curve S is the (c,)) projection. This solution curve does not
represent an equilibrium in the k=.5-double auction because the curves S and

B do not define X as increasing functions of ¢ and v respectively.
L
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Figure 5.4. The set of smooth equilibria for the case cf m = n = 2, k=.3,

and uniform F and G.

C

Figure 5.5. The cross-section of the set of smooth equilibria shown in

Figure 5.4.

C
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Figure 5.6. The set of smooth equilibria for the case of m = n = 4, k=5,

and uniform F and G.

Figure 5.7. The cross-section of the set of smooth equilibria shown in

Figure 5.6.

C
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Figure 5.8. The set of smooth equilibria for the case of m = n = 8, k=.5

and uniform F and G.

Figure 5.9. The solution curve from Figure 5.2, as it proceeds from E to F,

winds counterclockwise around the line EF.

C
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Figure 6.1. In a standard supply-demand diagram, there is a square
relationship between the amount x/m by which demand is underreported and
supply is overreported and the corresponding loss in gains from trade (given
by the area of the triangle ABC). This is consistent with our bounds in

Thms. 5.1 and 6.1.
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