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Abstract:

The first section briefly summarizes previous results in the
literature. In the second section the concept of an Evolutionary Stable
Strategy (ESS) is generalized for games with equivalent strategies. Dynamic
stability results equivalent to the ones for the traditional definition of
an ESS are proven. In the third section these results are applied to show
that the assumption that types only use pure strategies can be relaxed to
the case where types use finitely many different mixed strategies. In the
fourth section the results are used to give conditions for dynamic stability

of populations playing asymmetric games.



Introduction:

An Evolutionary Stable Strategy (ESS) is a strategy that meets a static
condition in a symmetric 2 person game. This condition is closely related to
the dynamic stability properties of a selection process in a population. A
major result concerning this (proven by Taylor and Jonker [1978] and Zeeman
[1980]) states roughly that given a specific population structure if the
mean strategy of the population is an ESS then the population is locally

asymptotically stable w.r.t. the dynamic process (see section 1).

This paper deals with games where equivalent strategies are present,
i.e. strategies that cannot be distinguished w.r.t. their expected payoffs
in the game.

The existence of equivalent strategies very much influences both the
static ESS condition and the associated dynamic stability of populations:

- & strategy that is an ESS cannot be equivalent to another strategy

- the mean strategy of a population that is locally asymptotically

stable cannot be equivalent to another strategy.

When do equivalent strategies appear?

Obviously when two different mixtures of pure strategies behave
identically w.r.t. their payoffs in the game. This doesn’'t imply anything
about their relation in the setup for which the game was developed. It is
the nature of the game that makes them indistinguishable w.r.t. their
payoffs. Equivalent strategies (often not pure strategies) that are

associated to the same behavior in the original setup appear quite naturally






in the context of populations with mixed strategy types (section 3) and in
asymmetric games (section 4). Of course equivalent strategies can also

appear independently of some connection in the original setup.

How can equivalent strategies be avoided:

- eliminate purely equivalent strategies before analyzing the game:
This measure is suggested in the literature (Samuelson [1989]). However it
can’t be done when the equivalent strategies are mixed. Besides how should
the strategy left over be interpreted?

- perturb the payoffs slightly: this is quite radical and besides it
doesn’t help in mixed type populations or in asymmetric games.

The payoffs and the set of strategies for the game shouldn’t be changed

after the setup just because the solution concept doesn’'t work.

Why should equivalent strategies be treated as the same, independent of

their relationship in the original setup?

The general procedure when modelling some process is to formalize the
interactions that are believed to be relevant and then to derive some
implications using e.g. game theory.

A first consequence of the model when equivalent strategies appear is
that certain actions cannot be distinguished in the present structure
imposed by the model on the process. So either the model has to be refined

or the equivalent strategies have to be treated as the same.



Therefore in this paper (and often assumed in the literature (see Hines
[1987])) equivalent strategies are treated as if they were the same. As a
consequence the definitions of an ESS and of asymptotic stability should be
consistent with this assumption.

However this isn't the fact for the traditional definitions of an ESS
and of asymptotic stability and therefore these definitions have to be
generalized.

In section 2 the ESS definition and the notion of asymptotically stable
populations are generalized to make them consistent with equivalent
strategies being treated as the same. In what way the new definitions relate
to the traditional ones and to each other is analyzed. In the main theorem
of the paper (theorem 2.1 (2.2)) an equivalent result to the classical one
about the sufficiency of an ESS for the asymptotic stability of a population

is stated and proven.

In addition this new theorem has some nice applications to other topics
of the ESS theory:

The central theorem in ESS theory states the sufficiency of an ESS for
the dynamic stability of a population consisting of types using pure
strategies. In section 3 it is shown that the assumption that the types only
use pure strategies can be weakened to assuming that there are finitely many
types using mixed strategies in the population,

In section 4 it is shown that the results for symmetric games can be

extended to asymmetric games,



I. Summary of results relevant for this paper

Notation: S, . := {el, C. eN) set of pure strategies

AA:= set of all probability distributions

on the finite set A (e.g. ASN)

C(x):= {1 s.t. x(ei) > 0} support of x
B(x):= {i s.t. e; is best reply to x)
conv{x , ... xn):= convex hull of ...

int(K):= relative interior of set K

dK:= K \ int(K)

[ei]: SN - {0,1} s.t. [ei](ei):=1, [ei](ej):=0 vi = 1

N = # of pure strategies in the game

E(x,y) = expected payoff of playing strategy x against y , X,y € AS

N

E(x,x) >0 vx € ASN (need this for the dynamics later on)

DEF.: (Maynard Smith [1982])
P EASN is an Evolutionary Stable Strategy (ESS) iff
Ya = p E(p,p) = E(q,p) and

E(p,p) = E(q,p) => E(p,q) > E(q,q)

(This is also referred to as the ESS condition.)



Calling a strategy "evolutionary stable" becomes totally meaningless
unless it can be related to the stable sets of some reasonable dynamic
process. This process I will now introduce and then quote a theorem that

shows its connection to the ESS condition.

Population dynamics associated when talking about evelutionary stability:

The population size is assumed to be infinite but with finitely many
different types. Each member of the population (belonging to some type) is
randomly matched against an opponent (also from the population) to play a
one shot symmetric game. After the game the types (as a class of
individuals) reproduce according to their relative fitness (= expected
payoffs from game), breeding true (i.e. offspring are of same type) and then
die leaving a new generation behind.

There are two ways of setting up the dynamics, discrete or continuous

time changes:

t
el E(q,m") c
discrete dynamics: dF (q) = Tt dF (q)
E(m™,m")
R t
continuous dynamics: dF (q) = (E(q,mt) - E(mt,mt)) dFt(q)

where type q is a class of individuals using strategy q (qEASN),
otherwise also referred to as pheno- or genotype.
dFt(q) frequency of types using strategy q at time t
There are only finitely many different types present,

so dFt(q) > 0 only for finitely many q



mt - = v dFt(q) *+ g = mean of population at timet
q: dF (q)>0

dF%(q) = a/3t dFt(q)

The analysis of the above dynamic adjustment process (also called the
replicator model) depends on the set of types allowed and on whether local
or global properties are being inferred.

Additionally when talking about a population being stable against

mutation the type and rate of the mutation have to be specified,

Results regarding the connection between the ESS condition and the

dynamic stability of the population:

(1) Monomorphic population:

The simplest setup for analyzing the stability of a population w.r.t.
some mutation is the case of a monomorphic (i.e. only one type) population’s
stability against the one time invasion of one type of mutant. This is a
very specific (therefore I call it "trivial") and hence quite unrealistic
setup. The "good" property is that the ESS condition is both necessary and

sufficient for the dynamic stability.



ASSUMPTION: discrete or continuous dynamics

THECREM 1.0:

p is an ESS iff the monomorphic population consisting of type p is
asymptotically stable w.r.t. the one time entrance of a mutant of arbitrary

type q with sufficiently small frequency

i.e. 3 e*x >0 s.t. ¥Yq € AS (type of mutant)

N

Ve € (0,¢e%) (frequency of mutant)
R 0 0

setting dF (p):=1 - £ , dF (q):= ¢

lim dF (p) = 1, 1lim dF'(q) = 0

o Lt

The proof is straightforward. Note that there is only one path leading
from the population dF(p) = 1 - ¢, dF(q) = ¢ to the population

dF(p) = 1, dF(q) = 0.

(2) Polymorphic population where types only use pure strategies

This setup allows for a more differentiated population. There are
different types in the population, each type uses a pure strategy (the
average strategy in the population will generally be mixed). The population
stability is defined w.r.t. sufficiently small perturbations in the

frequencies of the types.



ASSUMPTIONS :

Population structure: only types using pure strategies are present in the

population

Note: The mean strategy of the population (short: population mean) uniquely
determines the population distribution (i.e. the frequencies of the types),

and vice versa.

Dynamics: continuous
THEOREM 1.1 (Taylor and Jonker [1978], Zeeman [1980}])

p ESS => population with mean p locally asymptotically stable

i.e. 3 U(p) s.t. any population with mean in U{p) asymptotically

converges to the population with mean p

Furthermore: U(p) can be chosen s.t. starting in U(p) the path of the

dynamic process will stay in U(p).

For proof of "furthermore" see theorem 2.1 (section 2), set Q(p) = (p):

the U(Q(p)) constructed in the proof satisfies this property.



The following is a slight generalization of a theorem stated by

Weissing [1989] for the case where B(p) = (1,...N):

COROLLARY 1.1:
p ESS => population with mean p globally asymptotically stable w.r.t. any

populaticn with mean q s.t. C(p) € C(q) <€ B(p)

i.e. any population with mean q s.t. C(p) € C(q) < B(p) asymptotically

converges to the population with mean p

PROOF: just define new simplex AS where S:= {ei s.t. i € B(p)} and we get

the case proven in Weissing [1989)

It seems that for the case of discrete dynamics the above results
should also hold provided that the changes in fitness are sufficiently small
i.e. the selection pressure is sufficiently weak. This rather intuitive

result was proven by Weissing [1989]:

DEF. :

N,N N . T
VAOE R s.t. (AO)ii 0, vae &, A(Ao,a).— AO + (a, .. a)
where (a, .. a)T € RN’N
NOTE:

If A:-(E(ei,ej))ij € RN'N is the payoff matrix (i.e. E(x,y) = xTAy)

=> 3 unique A € RN’N, a € RN s.t. A=A + (a, .. a)T

0 0
where (a, .. a)T € RN’N and (AO)ii =0 Vi

10



PROOF: Vi,j: (A)..:= A.. - A, ., Yj: a,:= A

0717 ij JJ3 J jJj

NOTATION: p ESS of A <=> p ESS w.r.t. payoffs E(p,q) = pTAq

LEMMA :

p ESS of A <=> Vae RN p ESS of A(Ao,a)
T
Proof: E(q,p) = qTAOp + a’p

RESULT:

continuous dynamics independent of "a", i.e. independent of selection

pressure

THECREM 1.2 (Weissing [1989]):

A E RN’N

0 s.t. (AO)ii = 0, p ESS of A

0

=> 3 a+ € RN s.t. Ya = a+ (ae RN) theorem 1.1 holds for discrete dynamics

if the payoffs are E(x,y)=xTA(Ao,a)y

PROOF: Weissing [1989) pp. 72-76

11



Again a slight generalization of Weissing [1989]:

COROLLARY 1.2:

A € RN’N s.t. (A

o = 0, p ESS of AO

O)ii
=> 3 a+ € RN s.t. Va = a+ (ae RN) corollary 1.1 holds for discrete dynamics

if the payoffs are E(x,y)=xTA(Ao,a)y

NOTE:

Demanding that "a" is larger than "a+" means that the selection
pressure in the population has to be small enough. Hence theorem and
corollary 1.2. back up the intuition: if the selection pressure is small

enough then the discrete case can be approximated by the continuous case.

Possible scenarios for the entrance of mutants in populations consisting of

pure strategy types:

The above theorems give conditions for the dynamic stability of a
population. What kind of stability of a population w.r.t. mutation is
guaranteed if the population mean is an ESS?

The original scenario (Maynard Smith [1982]) relating to the ESS
condition:

A population using pure strategy types is considered to be stable
against mutation if after a one time entrance of a sufficiently small
subpopulation of mutants using pure strategy types the population

distribution converges back to the original distribution (i.e. the mutants

12



die). Theorem 1.1 (1.2) gives a sufficient condition for stability of a
population against mutants where "sufficiently small” is determined by the
condition that the mean of the population including the mutants is in Uu(p).

Note that in the above scenario the population’s stability is only
tested against one arbitrary mutation. This can be relaxed somewhat by the
following scenario of repeated entry of mutants:

The mutants can enter repeatedly, but each time "sufficiently few" s.t.
the mean population isn’t driven out of U(p) by the entrance. If no more
mutants enter then the population distribution converges back to the
original distribution. And again theorem 1.1 (1.2) gives us a sufficient

condition for the stability of a population against the repeated entry of

mutants.

13



2. The notion of evolutionary stable strategies (ESS) in games with

equivalent strategies:

It is assumed from now on that equivalent strategies are the same

strategy, just with different names. An immediate consequence is that the

concept of an ESS and that of asymptotic dynamic stability have to be

checked to whether they are compatible with this assumption. In the

following it will be shown that the traditional definitions contradict this

assumption. The appropriate new definitions for games with equivalent

strategies will be stated and analyzed.

2.1 Equivalent strategies and the concept of an ESS

DEF.: x and y are equivalent iff vz e ASN E(x,z) = E(y,z) and

E(z,x) = E(z,y)

DEF.: e € SN is a pure equivalent strategy if 3 y e ASN

s.t. e and y are equivalent

I define the notion of equivalence w.r.t. both components of E(,) since

only then are the two strategies x and ¥y indistinguishable in the symmetric

setup.

14



EXAMPLE 2.1:

The simplest example for a symmetric game with equivalent strategies is

the following:

T B
T v
Bl 1|1

Notation: aij:= E(ei,ej) payoff to playing e; against ej

Although all strategies are equivalent there is no ESS in the above
game

The characterization of an ESS uses a strict inequality against best
replies. Therefore a strategy that is an ESS cannot be equivalent to another
strategy. Especially if the set of pure strategies is expanded by some
strategies of which a mixture is equivalent to the ESS then this will

destroy the existence of the ESS.
Elimination of equivalent strategies:
If one of the equivalent strategies is a pure strategy then we can just

eliminate it justifying this by saying that we have two different names for

the same strategy. But what happens if neither of the two is a pure

strategy?

15



EXAMPLE 2.2:

T M N B
T |1 o o] 1|
Moo | 1] 1| o]
N | o | 1] 0o | 1 |
Bl 1o | v ] o]

172 [T] + 1/2 [{M] and 1/2 [N] + 1,2 [B] are equivalent strategies

but there are no purely equivalent strategies in the

game above.

ASIDE: this example coincides to a game originally w/o equivalent strategies

but with mixed strategy types (see example 3.1)

To be consistent with the above assumption that

are the same we have to generalize the concept of an

2.1.1 Equivalent Evolutionary Stable Strategies

I will extend the notion of an ESS to allow for

Equivalent ESS) to be a set of equivalent strategies

equivalent). Thereby a candidate for an ESS won't be

there is another strategy in the game that "behaves"

16
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ESS.

the ESS (now called
(not necessarily purely
ruled out just because

identically.



The definition of equivalent strategies allows us to define equivalence
classes on ASN, where Q(p) is the equivalence class containing p:

DEF.: V¥Yp € ASN: Q(p):= {(x € AS, s.t. x and p are equivalent)

N

NOTE: Q(p) is a subset of ASN
Q(p) = Q(x) if x and p are equivalent
Q(p) is the intersection of some hyperplane and ASN

(easy to show)

DEF.: p € ASN is an Equivalent Evolutionary Stable Strategy (eESS) iff

Vg € ASy: E(p,p) = E(q,p) and

vVq s.t. g € Q(p): E(p,p) = E(q,p) => E(p,q) > E(q,q)

NOTE: This definition is also referred to as the eESS condition.
NOTE: If p is an ESS then p is also an eESS so we get a broader definition.
NOTE: The concept of an eESS is really just evolutionary stability defined

w.r.t. sets of equivalent strategies instead of w.r.t. separate strategies.

2.1.2 Stability

Since the definition is really w.r.t. equivalence classes, we get as an
immediate consequence that an eESS is independent of the elimination or

addition of purely equivalent strategies:

17



Original game: F(ASN,E)

Assume that ey is a purely equivalent strategy

Define new game T'(AT,E) where AT:= (x € AS. s.t. x(eN) = 0)

N
RESULT 2.1:
p is an eESS of F(ASN,E) => Vp'e Q(p) n AT : p’' is an eESS of T(AT,E)

Q(p) N AT = &)

i.e. eESS is independent of the elimination of purely equivalent strategies

PROOF: by definition of purely equivalent: Q(p) N AT = & , o/w e, couldn’t

N
have been eliminated; the rest is obvious since the structure of the payoffs

wasn't changed.

The independence of adding a purely equivalent strategy can be shown

just like above.

NOTE: In the case of equivalent strategies (in contrast to redundant
strategies) there is no difference between sequential and simultaneous

elimination of purely equivalent strategiles.

18



2.1.3 Equivalent definitions of an eESS:

The following equivalent definitions of an eESS are the generalized

versions of the ones known for an ESS.

DEF (equivalent to the original one):
p is an eESS iff vq e ASN\Q(p) 3 e* >0 s.t. Ve € (0,¢%)

E(p,(l-e)p + eq) > E(q,(l-e)p + £q)

This follows easily from the fact that E(,) is linear in both

arguments.

DEF (equivalent to the original one):
P is an eESS iff 3 e* > 0 s.t. Ve € (0,ex), Vq € ASN\Q(p): E(

i.e. ¢* can be chosen independently of q

PROOF: (compare to Van Damme [1987] p. 216)
"if" follows directly from last statement
"only if"
case #1: 3 p'€ Q(p) s.t. p'€ int(ASN)

=> B(p) = (1,...N), set g*:= 1
case #2: int(ASN) N Q(p) = 4:
Ar= 388\ (q € 3ASy s.t. for some p'€ Q(p): C(p’') C C(q))
A ¥ O

Q(p) is a convex set and int(ASN) N Q(p) = @

=>d e, s.t. Vp'eQ(p): 1 € C(p') =>A~g

19



¥q €A 3 a uniform c*:
A 1s closed and therefore compact
Vqge A, Vp'e Q(p):
e(q,p'):= sup (& € (0,1] s.t. E(p’',(l-£)p'+ €q) > E(q,(l-£)p'+ £q)}
£(q,p’) = £(q) independent of p’ since p’e Q(p)
e*¥:= inf {e(q) s.t. q € A)
Vq € A: £(q) > 0, £(.) continuous on compact A => g% > 0
This ¢* works Vg € ASN\Q(p):
Yq € ASN\Q(p) 3 p'e Q(p), q,€ A, £0€ (0,1] s.t. q = (l-co)p'+ £

09a

* - ' - - [ *
Ve < ¢*: (l-g)p' + eq (1 aeo)p + £eqq,, €€ < g

FkKkk ko

DEF (equivalent to the original one):

p is an eESS iff 3 V open neighborhood of Q(p) w.r.t. ASN s.t.

E(p,x) > E(x,x) Vx € V\Q(p)

This follows directly from
E(p",(1-2)p’'+ eq) > E((L-£)p'+ eq,(l-£)p'+ £q)} so define

Vi=((l-e)p'+ ¢q s.t. p'€ Q(p), q € ASN, e < %)

NOTE: (x s.t. C(x) € B(p)) gV

20



2.1.4 Static results (w/o proofs)

The familiar static results (see van Damme [1987]) can easily be

extended and proven for the more general eESS condition:

RESULT 2.2: p eESS => Vp'e Q(p) (p’',p') is a symmetric proper equilibrium

RESULT 2.3: Vq € ASN\Q(p): E(p,p) > E(gq,p) => p eESS

This generalizes the result that if (p,p) is a strict Nash equilibrium

then p is an ESS.

21



2.2 Asymptotic Stability and equivalent strategies

To be consistent with the assumption that equivalent strategies are the
same, the definition of asymptotic stability has to formulated w.r.t. the

set of strategies that are equivalent to p: Q(p).

DEF.:
Q(p) is locally asymptotically stable if there exists an open neighborhood

of Q(p) U(Q(p)) s.t. any population with mean in U(Q(p)) converges to a

population with mean in Q(p).

Global asymptotic stability defined in the same way

Does this stability w.r.t. the set Q(p) interfere with the stability of

p? No!

THEOREM (Bomze {1986]):
If p is an asymptotically stable dynamic equilibrium then (p,p) is an

isolated equilibrium, especially p isn't equivalent to another strategy

(i.e. Q(p) = (p)}

So the mean strategy of a population that is asymptotically stable
cannot be equivalent to another strategy. That means if p is asymptotically
stable then so is Q(p). So the asymptotically stable strategies aren’t lost

if you only look for the asymptotically stable sets Q(p).

22



2.3 Dynamic results

In the last two sections we saw that equivalent strategies can destroy
an ESS and the asymptotic stability of a population mean. How do the new
concepts of Equivalent ESS and of asymptotic stability w.r.t. Q(p) relate to
one another?

In the following I will analyze how these new definitions affect the

known theorems (see section 1) on ESS and dynamic stability.

Theorem 1.0 (trivial process) can easily be generalized for the case of
an eESS. More interestingly though we can also generalize the "Taylor and
Jonker [1978], Zeeman [1980]" results concerning populations with pure

strategy types:

ASSUMPTIOCNS:

Population structure: only types using pure strategies are present in the
population
Dynamies: continuous

THEOREM 2.1:

p eESS => population with mean in Q(p) locally asymptotically stable

i.e. 3 U(Q(p)) s.t. any population with mean in U(Q(p)) asymptotically

converges to a population with mean in Q(p)

Furthermore: U(Q(p)) can be chosen s.t. starting in U(Q(p)) the path of the

dynamic process will stay in U(Q(p)).

23



NOTE: If Q(p) = (p) then theorem 2.1 is identical to theorem 1.1.

PROOF: ©1» ... &y pure strategies
L
xti = frequency of pure strategy e in population at time t

continuous dynamics:
¥ - - *
xi (E(ei,x) E(x,x)) Xi (*)

p eESS => define V ¢ ASN as in equivalent definition of eESS above
Vp’'€ Q(p) consider the following construction:

Uo(p’):= Vn {x e ASN s.t. C(p’') € C(x))

Note that Uo(p') open neighborhood of p’

Z(x,p"):= 1 xi P i (defined on U)
i

X = p' 1s unique max of Z on AS (see van Damme [1987] p. 225)

N
Vx € Uo(p'): Z(x,p’') > 0 since "x e UO and p’i >0 = "Xi > 0"
Z(x,p')= Z(x,p") (E(p',x) - E(x,x)) (see van Damme [1987])

vx € Up(p')N\Q(P): Z(x,p') >0

Z(x,p') =0 => x is a fixed point of (*)

Starting in Uo(p') we cannot be sure that we stay in Uo(p’).

{(x @ Z(x,p’) > .}

Uy(p")

24



So take K ¢ Uo(p') s.t. K compact, p’ € int(K)
Z continuous on ASN - 3 x" s.t. Z(xm) - max (Z(x) : x € 3K}
Up(e")i= (x € Ug(p'): Z(x) > Z2(x™)

. . ; m
p’' €U since it's the unique max of Z and p’'= x

1
Ul 1s open
=> U, (") » &

Now starting in Ul(p’) we will stay in Ul(p').

///A\‘- {x @ Z(x,p’') > xm)

Up(p")

Q(p)

2 will increase as long as x ¢ Q(p) so the dynamics once started in Ul(p')
will converge to an x in Ul(p') s.t. x € Q(p).

Note that it isn’t necessarily true that the dynamics converge to p’. The
proof only shows that starting in 'G:= f] Ul(p’) for some

P € Q(p) the path will stay in G zniPeventually converge to an x € P.

So far for every p’ in Q(p) we constructed a Ul(p’). Now define

U(Q(p)):= L4 U (p*)

p'E Ul(p’)p—> Q(p) € UQ(p)), U;(p’) open => U(Q(p)) open

and any population starting with mean in U(Q(p)) will asymptotically
converge to population with mean in Q(p) and the path will never leave
U(Q(p)).

**r4%This ends the proof.
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With the same assumptions as in theorem 2.1 we also get the generalized

global result:

COROLLARY 2.1:
p eESS =~> population with mean in Q(p) globally asymptotically stable

w.r.t. any population with mean q s.t. C(q) € B(p) and 3 p'e Q(p) s.t.

C(p') € C(q)

NOTE: If Q(p) = (p} then corollary 2.1 is identical to corcllary 1.1.

NOTE: the assumption "3 p'e Q(p) s.t. C(p') € C(q)" is a necessary
assumption for a population of mean q to converge to some population with

mean p'€ Q(p).

SKETCH of the proof: The proof follows closely the one above, there

are just a few changes

Yp'e Q(p): Uo(p'):= Vni{xe ASN s.t. C(p') € C(x))
x(0) € Uo(p’) => VYt = 0: x(t) € Uo(p’) because:
A(ei s.t. 1 € B(p)) € V so starting in UO we will stay in V.

The only way to leave Uo(p') is to leave

W(p'):={x € ASN s.t. C(p') € C(x)).

Assume that the path x(t) doesn’t stay in W(p'):
x(t) is continuous in t

=> 3 £y, > 0 s.t. x(tl) € aW(p')
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i.e. 31 €C(p') s.t. x(tl)i =0

=> 2(x(t)),p') = 0

but x € W(p’') => i(x,p') >0 and Z(.,p’') continuous
=> Z(x(ty),p") = Z(x(0),p’) >0 (x(0) € Ug{p'))

and hence we get a contradiction

va@en:= U Uy’ = (g eVs.t. 3p €Q) s.t. Cp') € C(q))
p'€Q(p)
This ends the proof.

kst sk ot

Now to the results assuming discrete dynamics:

ASSUMPTIONS:

Population structure: only types using pure strategies are present in the
population
Dynamics: discrete

THEOREM / COROLLARY 2.2:

N
AeRN’

0 s.t. (A

O)ii = 0, p eESS of AO
=> 3 a+ € RN s.t. Ya = a+ (ae RN) theorem and corollary 2.1 hold for

discrete dynamics if the payoffs are E(x,y)=xTA(AO,a)y

PROOF: Weissing [1989] pp. 72-76 can easily be generalized for Q(p) instead

of p
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3. ESS and dynamic stability in populations where types use mixed

strategies:

We now want to drop the assumption that types only use pure strategies,
Consider a population where finitely many different types (not necessarily
using pure strategies) are present,

Taylor and Jonker [1978] and Zeeman [1980] proved that every ESS is an
asymptotically stable dynamic equilibrium given that types only use pure
strategies. The proof can’t be directly applied to the case of (finitely
many) mixed strategy types since it relies on the fact that the population
mean uniquely determines the frequencies of the separate types. This

generally doesn’t hold for mixed strategy types:

EXAMPLE 3.1:
Game : Population structure:
el e2 e3 T:el
eq | 11 ] 1 | //// ‘\\\\
€ | -1 I 1 ] 3 | N o . o B
/ m
e, | 1| 3 | -3 |
. 0 L
e2 M ey
(o:= type)
types T,M,N,B in the population where
T = e M=1/2 e, + 1/2 ey,

N=1/2e +1/2e), B=1/2 e +1/2 e,

28



mi= 1/2 [e] + 174 [e,] + 1/4 [ey] = 1/2 [N] + 1/2 [B]

- 1/2 [T] + 1/2 [M]

So the mean of the population being at m doesn’t determine the
frequencies of T,M,N,B uniquely. If we define a new game where each original
mixed strategy type coincides with a pure strategy type of the new game and
define the payoffs respectively then we will generally get a game with

equivalent strategies.

EXAMPLE 3.1.(continued):
Payoffs in above game when using T, M, N, and B as pure strategies are

shown in example 2.1.

NOTE:

The equivalent strategies that appear when rewriting the game in the
normal form w.r.t. the pure strategies T, M, N, B have to be considered the
same since they are randomizing over the same strategies €1r - ey-

If we use the results developed in section 2 on games with equivalent
strategies, Taylor/Jonker’'s [1978] and Zeeman's [1980] results on dynamic
stability can easily be extended to the more general case of finitely many
different mixed strategy types being present in the population.

Just like in the former setup the population will be defined as stable
w.r.t. changes in the frequencies of the fixed types, not w.r.t. arbitrary
types.

The same scenarios for possible stories about the entrance of mutants
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hold as long as the total number of different types used by mutants or
present in the initial population is finite and fixed.

As a special case it will follow that a monomorphic population is
stable w.r.t. the repeated entrance of mutants belonging to a finite set of
types of sufficiently small frequency. This generalizes the very specific
setup of theorem 1.0 (trivial process) in the way that mutants can enter
repeatedly. As a restriction the possible mutants have to belong to a

specified finite set.

DEF.:
P is an eESS w.r.t. X (X C ASN) iff
peX and Vg € Z\Q(p) 3 % > 0 s.t. Ve € (0, %)

E(p,(1-£)p + €q) > E(q,(l-e)p + £q)

ASSUMPTIONS:

N = # of pure strategies

Population structure: a finite number of different types ql, R qn are
present in the population

Dynamics: continuous

THEOREM 3.1:

p eESS w.r.t. conv(ql, .. qn) => population with mean in Q(p) locally

asymptotically stable

i.e. 3 U(Q(p)) s.t. any population with mean in U(Q{(p)) and distribution on

{ql, . qn) converges to a population with mean in Q(p)
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NOTE: the distribution of a population with mean p is unique iff the types

i, . -
q , i-l,...n are independent w.r.t. p, meaning:

s.t. p =2 . ql

3 unique 1" n i

Furthermore: U(Q(p)) can be chosen s.t. starting in U(Q(p)} the path of the

dynamic process will stay in U(Q(p)).

NOTE: If p is an ESS (i.e. Q(p) = (p)) then theorem 3.1. shows that in
central theorem of ESS theory proven by Taylor/Jonker and Zeeman the

assumption of types using pure strategies was unnecessary!

IDEA of the proof:

The space where the population dynamics take place conv(qi, i=1, ... n)
c ASN will be transformed into a simplex of dimension n. Each pure strategy
e, in the new simplex will correspond to the mixed strategy qi in the
original simplex. Next it will be shown that the eESS p corresponds to an
eESS in the new simplex ASn. The neighborhood U’'(Q()) will be constructed

following theorem 2.1 and finally transformed back into the original simplex

to get U(Q(p)).

PROOF: N = # of pure strategies

types present in population ql, - qn
frequencies at time t: dFT(ql), ... dFS(q") (% dF%(ql) = 1)
i
continuous dynamics:
R | it t t t, i .
dF (q")= (E(q",m") - E(m",m")) daF(q") , i=1, ... n )
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. . :
m = q1 dFt(ql) mean of population at time ¢
i

Define new simplex ASn and payoff function E(,) s.t. the pure strategy
e in ASn corresponds to the mixed strategy ql in AS
. 1 n i
Define T: ASn =>econv{q , ... q) s.t. T(x):=Z X; g
T is linear, surjective and T(ei) = ql i=1, .. n

Define E: AS_ x 85 -> R s.t. E(x,y):= E(T(x),T(y))

With x":= % dFT(ql) e, €45 we get
i
1 ~ ~
E(q,m) = E(T(e),T(x)) = Fe,,x") and  E@m® %) = Fxb,xb)
(*) turns into kti = (E(ei,xt) - Ekxt,xt)) xti , 1=1, ... n

Lemma: p eESS w.r.t. conv(ql, e qn} <=>

dn e ASn s.t. T(nx}) € Q(p) and n eESS w.r.t. ASn

Proof: p eESS w.r.t. conv{ql, ... qn), T surjective => 3 n € ASn s.t. T(m)=p
The rest follows from: E(x,y):= E(T(x),T(y)) and T(Q(x)) = Q(T(x))
**¥(end of proof of lemma)

Now theorem 2.1 can be applied to the dynamics in ASn since by
definition all types are using pure strategies w.r.t. ASn.
Theorem 2.1 => Q(x) locally asymptotically stable

i.e. 30 (Q(n)) ¢ AS_ s.t.

Using this U'(Q(n)) we will finally show that a u(Q(p)) ¢ ASN exists:

Need U(Q(p)) C ASN s.t.
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X € ASn, = X4 ql € U(Q(p)) => x € U'(Q(n)
Assume that U(Q(p)) doesn’t exist:
k . k
3p'e Q(p)y 3 x € ASn , k=1,2,... s.t. lim T(x ) = p'

but vk : xk & U’ (Q(n))

X, k=1,2,.. bounded sequence => 3 convergent subsequence

so w.l.o.g. 3 x*x e ASn s.t. x¥ = lim xk

T continuous so T(x*) = p’' and since T-l(p’) € Qlm) : x* € Q(n) C U'(Q(x))

Since U’'(Q(n)) open we get a contradiction to "xk & U’ (Q(m)) vk

So U(Q(p)) exists and we are done. Note that U(Q(p)) is not necessarily
equal to T(U'(Q(w))).

ket

Again we get the global result assuming the same assumptions as in

theorem 3.1:

COROLLARY 3.1:
P eESS => population with mean in Q(p) globally asymptotically stable
w.r.t. the set of populations s.t,.
type qi with frequency dF(qi), i=1l, ... n, Z dF(qi) =1
C{q) € B(p) where q:= I dF(qi) qi is the population mean

3p'eQlp) s.t. p'e conv{ql s.t. dF(ql) > 0)
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PROOF: It follows directly from the one above.

Now to the results assuming discrete dynamics:

ASSUMPTIONS:

Population structure: only types using pure strategies are present in the
population
Dynamics: discrete

THEOREM / COROLLARY 3.2:

A e :RN’N

0 s.t. (A

O)ii = 0, p eESS of AO

=> 3 a+ € RN s.t. Va =z a+ (ac RN) theorem and corollary 3.1 hold for

discrete dynamics if the payoffs are E(x,y)=xTA(A0,a)y

PROQF:

Just change (*) into the following and quote theorem / corollary 2.2,

E(q",m")
dynamics: dFt+1(ql)= — T dFt(ql) , i=1, ... n (*)
E(m™,m")
~ t
E(e. ,x")
(*) turns into xt+l. = —p—21 xt. , i=1, n
1 ~, Tt t 1
E(x",x7)

Khkkk
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4. Dynamic stability of asymmetric games:

The assumption that the types in the population play a symmetric game
(i.e. cannot distinguish between different states they're in) is in many
cases counter intuitive. Therefore Selten [1980] extended the definition of
an ESS to asymmetric games.

The ESS condition was generalized but either the dynamics were ignored
or it was just assumed that the same results hold without proving themn.

Of course if we are talking about a monomorphic population with
everyone using the ESS strategy then this population will be stable against
the one time entrance of an arbitrary type of sufficiently small frequency
(see "trivial” process in section 1).

But what about the case of different types in the population or
different types entering?

Theorem 1.1 generally cannot be applied. It applies to games in normal
form. If an asymmetric game is written up in its symmetric normal form then
equivalent strategies appear and these destroy the existence of an ESS if
the ESS is not a pure strategy. However these equivalent strategies that
appear when going to the normal form representation coincide to the same
behavioral strategy and therefore should be regarded as the same. Therefore
the theorems from section 2 can readily be applied and we get the same

results for asymmetric games as for symmetric games.
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ASYMMETRIC GAME (U, (Cu) (w E ) T):

uely’ uv’' Tuv’u,v € U’
U = finite set of information states
Cu = finite set of pure strategies in state u (u € U)

ACu = set of probability distributions on Cu

a, € ACu local strategy in state u

Euv(au’bv) = expected payoff to strategy a against strategy bv’
uvelU, a €AC , b e aC
u u v v
B:={p: U ~»u ACu s.t. Yu € U: p(u) € ACu) set of all behavioral

sStrategiles

T C B finite set of types in the population

e.g. T:= {(£: U>uUC s.t. Yue U: f(u) € C} the set of all pure
u u

strategies of the normal form

Notation: pu:=p(u)

LA probability of state u being matched with state v

vu, v € U: w =W
uv vu

E(p,q@):= Z w E (p .q,) expected payoff to strategy p

u,v

against strategy q, p,q € B

To illustrate the problems arising in asymmetric games consider the

following example:
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EXAMPLE 4.1:
There are two states of nature "rain" and "shine". Both players are in
the same sctate.

U:={r,s}, v = Voo T 1/2, Cr = {t,b}, CS = (T,B}

/ \
12/ \ 172
/ \
t b T B
vt o | 1] T o |1 |
b [ 1 ] o] B |1 [o |
rain shine

types present in population (t,T), (t,B), (b,T), (b,B)
p:i= (/2 [t] + 1/2 [b},1/2 [T] + 1/2 [B]) € B 1is an ESS
To apply theorem 1.1 we have to rewrite the game inte its symmetric normal

form. The only relevant payoffs are the ones between the different types.

SYMMETRIC NORMAL FORM of an asymmetric game w.r.t. the types T present:

AT = set of probability distributions on T
Ekp,q):= z p(f) q(f') E(f,f’') expected payoff to p € AT

f,f'eT
against q € AT
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EXAMPLE 4.1 (continuation):

The symmetric normal form w.r.t. the types (t,T), (t,B), (b,T), (b,B)

is:

(e,T) (t,B) (b,T) (b,B)
(e,T) | o |12 12 | 1 |
(e,8) |12 | o | 1 |12 |
.,y |12 | 1 | o |12 |
b,y | 1 |12 |12 | o |

We see right away that there are many equivalent strategies (none of
which can be eliminated) in the symmetric normal form game although there
aren’t any in the asymmetric game in this example.

e.g. 1/2 (£,T) + 1/2 (b,B) equivalent to 1/2 (t,B) + 1/2 (b,T)

Note that this is independent of the payoffs.

As noted in section 2 the equivalent strategies will mostly destroy the
existence of an ESS. This problem was noticed by Selten [1980] and hence he
defined the concept of an ESS for asymmetric games in behavioral strategies.

With the framework built up in section 2 equivalent strategies don't

pose a problem.

NOTATION:

In the following I will write beh. ESS (beh. eESS) if the ESS (eESS) is

defined w.r.t. the set of behavioral strategies B.
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NOTE:

Since only the types in T are allowed in the population, the population
mean can only lie in conv(T} (T € B). However conv{T} and AT should not be
confused, they lie in different spaces.

AT = set of probability distributions on the set of types

conv{T) = relevant set of behavioral strategies

In the following we will say that a behavioral strategy p € B and a
strategy of the symmetric normal form q € AT are behaviorally equivalent if
Yu € U they assign the same probabilities to the pure strategies in Cu'

Formally this means:

DEF.: p € B and q in AT are behaviorally equivalent iff
Yu e U Ve € Cu: pu(e) = 3 q(f)
feT s.t. f(u)=e
NOTE:

From the above definition it can be easily seen that every strategy of
the normal form game has a unique behaviorally equivalent strategy in the
extensive form. However the converse is not true, i.e. generally one
strategy in conv{T) will correspond to a continuum of behaviorally
equivalent strategies in AT (see example 4.1). And by definition strategies

in B\conv{T} won’t correspond to any strategies in AT.

We can define the map F that maps any strategy of the normal form into

the behaviorally equivalent strategy in conv({T}:
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DEF.: F: AT - conv(T) s.t. V¥q € AT
Yu € U Ve € C : F(qd(u)(e) = Z q(f) f(u)(e)
v feT

NOTE: F is linear and F(f) = f Ve € T

CLAIM:

F is surjective, i.e. given any strategy in conv{T} 3 a behaviorally
equivalent strategy to it in AT
PROOF follows by definition

CLAIM: E(p,q) = E(F(p),F(q))

PROOF: (here just shown for p = g € T)

E(g.q) - Z OB - B a® T B (e fw) -
= E oy ta efz:CV F(@)(v)(e) E_ (g(u),e) -
= u?VEU Yoy Euo(8(u) F(q) (v)) = E(g,F(q))

*hkkk

Let Eq(.) be the set of all equivalent classes,

i.e. Eq(conv(T)):={Q(p) s.t. p € conv(T)}), Eq(AT):={Q(q) s.t. q € AT)
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CLAIM: F: Eq(AT) ----- > Eq(conv(T)) , F(Q(p)) = Q(F(p))

PROOF: q'€ Q(q) => F(g') € Q(F(q)) so F(Q(q)) < Q(F(q))
P € Q(F(q)) , ¥Yq' s.t. F(q') = p => q’'€ Q(q)
so Q(F(q)) € F(Q(g))

FLQp)) = Q) where F(q)

]
o

THEOREM 4.1.:

P eESS in conv(T} <=> q eESS in AT (where F(q)=p)

i.e. the concept of an eESS doesn't depend on whether the game is

represented in the behavioral or in the symmetric normal form.

NOTE: as a special case of the above theorem we get

p ESS w.r.t. conv(T} => q eESS w.r.t. AT (where F(q) = p)

PROOF of the above theorem: this follows readily
P'¢ Q(p) <=> q' € Q(q) where F(q') = p’' (by previous claim)
Je* >0 s.t. Ve € (0,e%)
Vp'e€ Q(p) <=> Vq' € Q(q) where F(q') = p'
E(p,(1-2)p + ep') > E(p’, (1-e)p + ep’)
<>  E(F(q),(1-e)F(q) + €F(q')) > E(F(q'), (1-e)F(q) + £F(q'))

<> E(q,(l-e)q + £q') > E(q",(1-e)q + eq’)

Fkkkkk
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Now to the dynamic stability results:

In the asymmetric setup a type is characterized by the strategies it
uses in each information state. Since in the symmetric case it is assumed
that types breed true it is natural to assume that the same thing holds for
the asymmetric case: the strategy profile is passed on to the next

generation unchanged and the dynamics only influence the frequency of the

type.

ASSUMPTIONS:

Asymmetric game (U, (Cu)u c U (wuv' Euv)u,v c U)

Population structure: a finite number of different types ql, e qn,

are present in the population

(qi € TCB, se qi is a behavioral strategy)
Dynamics: continuous
THECREM 4.2:
p eESS w.r.t. Conv{ql, R qn] of asymmetric game => population with mean

in Q(p) locally asymptotically stable

i.e. 3 U(Q(p)) s.t. any population with mean in U(Q(p)) and distribution on

{ql, “es qn) converges to population with mean in Q(p)
PROOF: follows directly from theorem 3.1

And again we get the global result w.r.t. the same assumptions:
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COROLLARY 4.2:
p eESS w.r.t. conv(ql, e qn) of asymmetric game => population with mean in
Q(p) globally asymptotically stable w.r.t. the set of populations s.t.

type qi with frequency dF(qi), i=1, ... n

C(q) € B(p) where g is the population mean and

3 p'e Q(p) s.t. p’'e conv(ql s.t. dF(ql) > 0)

Now to the results assuming discrete dynamics:

ASSUMPTIONS :
Asymmetric game (U, (Cu)u c U (wuv’ Euv)u,v c U)
Population structure: a finite number of different types ql, R qn,

are present in the population (ql € T)
Dynamics: discrete
THEOREM / CCROLLARY 4 .3:
A e RN’N s.t. (A.) =0 ESS of A
0 Tt Mglip T Y P oEBSS o6 4y
N
=> 3 a+ el s.t. VYa = a+ (ae RN) theorem and corcllary 4.2 hold for

discrete dynamics if the payoffs are E(x,y)=xTA(AO,a)y

4.1 Truly asymmetric games:

In the following I would like to discuss the properties of the eESS in

truly asymmetric games, i.e. players that are matched to play a game always

belong to different information states.
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DEF.: An asymmetric game (U, (w E )

(Cu)u c U w’ Fuduv e U) is called truly

R v ) _
asymmetric iff vu € U: Yiu 0

Selten [1980] showed that in truly asymmetric games the concept of an
ESS is equivalent to that of strict Nash equilibria. Thus the ESS condition
is very restrictive for these kind of games. Since an eESS is essentially an

ESS condition on equivalent classes we get the same "bad" result for eESS:

CLAIM: p eESS <=> V¥q € conv{T)\Q(p): E(p,p) > E(q,p)

<=>VYu e U Vi e conV{T)(Pu)Z (p\pu)Uei € Q(p)
where [(p\p)Ue;1(u)i= e;, ¥v » u: [(pP\p)Ue ](v):= p_
Selten [1983] developed the weaker concept of a limit ESS to resolve

this problem. However it lacks asymptotic stability and therefore destroys

this important characteristic:

EXAMPLE 4.2
T M B
L I S
Mol 1 ] 1] o]
B ] o] o] o]

T is a limit ESS

but Q(T)=(T) and (T) isn't asymptotically stable (just let M enter)
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Discussion:

The concept of an Evolutionary Stable Strategy (ESS) developed by
Maynard Smith [1982] presents a very intuitive and handy condition for a
strategy to "survive" in a certain selection process. Taylor/Jonker [1978]
and Zeeman {1980] were able to back up this intuition by showing that the
mean strategy being an ESS is sufficient for the stability of a certain
polymorphic population. This connection makes an ESS a very attractive
equilibrium concept.

However when it comes to equivalent strategies the concept of an ESS
turns out to be inconsistent: treating equivalent strategies as the same is
quite a usual assumption (Samuelson {1989], Hines [1987]) and in many
applications (see section 3 and 4) this becomes quite necessary. But the ESS
concept doesn’t include equivalent strategies being treated as the same. And
getting rid of equivalent strategies by elimination doesn’t work when they
aren’t pure strategies.

The concept of asymptotic stability of a strategy is inconsistent as
well when equivalent strategies are being treated as the same: the stability
must rather be defined w.r.t. the sets of strategies that can’t be
distinguished.

Due to these inconsistencies the traditional concepts don’t capture all
the stability properties they should.

In this paper these inconsistencies are resolved by introducing the
concept of an Equivalent Evolutionary Stable Strategy (eESS) as a weaker
notion of an ESS and considering the notion of asymptotically stable sets,

the sets being sets of strategies that are equivalent,
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The intuition that for these weaker concepts the same connections
should hold between the static eESS condition and the stability of a
population is confirmed by the theorems and proofs in section 2.

In fact the ESS are a subset of the eESS and the asymptotically stable
strategies are also asymptotically stable sets of equivalent strategies,

Of course in practical examples finding an Equivalent ESS in a game
with equivalent strategies can be much more difficult than finding an ESS.
This is mainly due to the nature of games with equivalent strategies, they
are harder to handle w.r.t. any equilibrium condition. So whenever possible
purely equivalent strategies should be eliminated. This can be done without
any problems since the elimination of purely equivalent strategies
simplifies the computation but doesn't change the model when the eESS

concept is used. Remember that this isn’t the case for the more stringent

concept of an ESS!

Summarizing the above: the concepts of an eESS and of asymptotically
stable sets of equivalent strategies are consistent with equivalent

strategies being treated the same and extend the traditional concepts and

results of ESS theory.

In addition to these results on games with equivalent strategies there

are some very nice applications to open questions of the ESS literature.
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The first application (section 3) concerns populations where mixed strategy

types are allowed:

In section 3 the assumption that the types use pure strategies is
weakened to allow for types using mixed strategies and we still get the same
results as in section 2.

The central theorem of the ESS theory is the result proven by
Taylor/Jonker [1978] and Zeeman (1980]) on the link between the ESS condition
and the dynamic stability of a population. In retrospect we now see that
their condition that types only use pure strategies was too stringent and
can be generalized to the case of finitely many different types using mixed
strategies,

Hines [1982] analyzed this case previously using covariance matrices.
He proved the asymptotic stability of an ESS provided that the covariance
matrix is non singular and can be assumed to be constant over time. Here
these extra assumptions aren’t needed and the theorem is more general since

non singularity implies that the ESS must be interior.

The second application (section &) concerns asymmetric games:

Selten [1980] extended the definition of an ESS to asymmetric games
without analyzing the connection to the dynamics. However without this
connection the stability of an ESS is only intuitively justified. This is
made up for in section 4: using the concept of an eESS it is shown that the
same dynamic stability results that hold for symmetric games also hold for

asymmetric games. This gives more meaning to the name "evolutionary stable"
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when looking at asymmetric games.

Selten defined the concept of an ESS in asymmetric games on behavioral
strategies since he ran into problems with equivalent strategies when
looking at the symmetric normal form. It turns out that the concept of an
eESS has a nice property in this respect: the concept of an eESS is
independent of whether it is applied in the symmetric normal form or whether

it is applied to behavioral strategies in the asymmetric game.

A different question is the "bad" properties (equivalent to strict Nash
equilibria) of (e)ESS in truly asymmetric games . The concept of an eESS was
developed to resolve inconsistencies in the ESS condition when equivalent
strategies are considered to be the same. Otherwise ESS and eESS are based
on the same ideas and hence subject to the same criticisms.

However a point should be made: whenever the concept of an ESS is
changed to improve structural and existence properties and the dynamics are
disregarded, in my opinion the central idea and strength of the (e)ESS

theory is destroyed (e.g. limit ESS developed by Selten [1983]).
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