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ABSTRACT

The paper analyzes a first price, sealed bid auction with a random reservation
price where the object has an unknown common value, but one buyer has better
information than the others. We permit the reservation price to be correlated
with the information of the informed buyer, which reflects both his assessment
of the value of the object and probability of rejection at any bid. Assuming
all random variables are affiliated, we establish the following results.

(1) The rate of increase in the distribution of the uninformed bid is never
greater than the rate of increase in the distribution of the informed bid. (2)
The distributions are identical at bids above the support of the reservation
price. (3) The informed buyer is more likely to submit low bids. We
demonstrate that these restrictions are satisfied by bid data from the federal
sales of offshore drainage leases. JEL Classification Numbers: 022,611,632.
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1. Introduction

In this paper we analyze a model of a first price, sealed bid auction
to study the federal sales of offshore oil and gas leases on drainage tracts. '
Kenneth Hendricks and Robert Porter (1988) (HP henceforth) provide strong
evidence that the value of these leases, while uncertain at the time of the
sale, is approximately the same for all participants, and that one bidder has
superior information. Furthermore, Hendricks, Porter and Richard Spady (1989)
(HPS henceforth) argue that, from the point of view of buyers, the reservation
price of the seller is effectively a random variable, correlated with the bid
of the informed bidder. We extend a model of Richard Engelbrecht-Wiggans,
Paul Milgrom, and Robert Weber (1983) (EMW henceforth) to incorporate these
features and establish some restrictions on the equilibrium distributions of
bids. We then test these implications with bid data for 295 drainage tracts
off the coasts of Louisiana and Texas which were sold between 1959 and 1980.

Previous studies of auctions with asymmetric information by Robert
Wilson (1967), M. Weverbergh (1979), and EMW were also motivated by the
drainage auctions. The basic model is a sealed bid, first price auction with
a single informed buyer and one or more uninformed buyers bidding for an
object of unknown but common value with a fixed reservation price. Under
these assumptions, EMW demonstrate that the distributions of the high
uninformed bid and the informed bid are identical above the reservation price
with some informed bids possibly concentrated at the reservation price.

We extend the basic model to allow for an excgenous random reservation
price which may be correlated with the value of the object and/or the

information of the informed buyer. Consequently, to incorporate both his

! Drainage tracts are adjacent to tracts on which deposits have already been

discovered,



estimate of the value of the object, V, and his estimate of the distribution
of the reservation price, R, the signal of the informed buyer, X, must
generally be multidimensional. This extension considerably complicates the
analysis. To guarantee sufficient regularity conditions on the joint
distribution of (V,R,X), we require these random variables to be affiliated, a
concept first introduced in the bidding literature by Milgrom and Weber
(1982). This assumption implies that the conditional expected value of V is
nondecreasing in the realizations of both variables. It also implies that the
distribution of R, conditional on X, satisfies the monotone likelihood ratio
property with respect to the realizations of X.

With these restrictions, we establish that the equilibrium informed
bid is a nondecreasing function of his signal and, consequently, also
affiliated with V and R. This relation in turn allows us to establish the
following restrictions on the distribution of bids. First, the rate of
increase in the distribution of the high uninformed bid is never greater than
the rate of increase in the distribution of the informed bid. Second, above
the range of R, the two distributions are identical. Third, near the lower
bound of the range of R, only the informed buyer bids with positive
probability.

Working with data on tracts sold before 1970, HP established that
neighbor firms, those which previously purchased leases on adjacent tracts,
possessed considerable inside information about the value of the drainage
tracts offered for sale. The average return to neighbor firms submitting a
winning bid was roughly 180% of their bid, while the average return of
nonneighbor firms was approximately equal to their bid. Also, after

conditioning over relevant variables which were public information, the ex



post discounted returns on drainage tracts sold before 1970 were highly
correlated with the highest neighbor bid and essentially uncorrelated with the
high nonneighbor bid. They also provide evidence of collusion among the
neighbor firms, so that there was effectively only one informed bid. For
example, the average high neighbor bid did not increase with the number of
neighbor firms, nor was there a significant effect on nonneighbor bidding.
Working with a superset of this data set that includes tracts sold
between 1970 and 1979, HPS argue that the reservation price of the govermment
also had a significant exogenous random component. The official minimum price
was typically $25 per acre. Nevertheless, the government rejected a higher
bid on 58 of the 295 drainage tracts. In addition, the rejection decision
appears to be nonstrategic. Only about a third of the tracts in which the
high bid was rejected were offered again at a later date, generally with a lag
of 12 to 18 months. Also, the rejection option was rarely used In those
instances when the government had the most to gain. Bids over five million
dollars on drainage tracts were almost always accepted. HPS conclude that
"the purpose of the government’s rejection policy was to reduce the incentive
that firms might have had to bid the preannounced minimum price on tracts
that, on the basis of public information, were regarded as low value tracts."
On the basis of these analyses we treat all neighbor firms as a single
bidder and treat the highest neighbor bid as the informed bid. The
nonneighbor firms are assumed to be uninformed bidders. Figure 1 illustrates
"the empirical distributions of the highest neighbor and nonneighbor bid on
each tract in our sample (scaled by the log of the bid). Our data includes
only those tracts on which at least oné firm submitted a bid. Consequently,

the height of a distribution at 0O represent the proportion of tracts on which



the firms submitted no bid among those tracts which received at least one bid.

Notice that the three restrictions mentioned above appear to be
satisfied. The rate of increase in the distribution of the high neighbor bid
appears to be everywhere at least as great as the rate of increase in the
distribution of the high nonneighbor bid. The distributions are roughly equal
above 4 million dollars, where the high bid was rejected on only 6 of 122
tracts (as opposed to 58 rejections on the full sample of 295 tracts).
Finally, neighbor firms were much more likely to submit relatively low bids
than were nonneighbor firms. For example, more than 15% of the high neighbor
bids lie between 0 and .25 million dollars, whereas less than 5% of the high
nonneighbor bids lie in this range. We provide formal tests of these
restrictions in Section 6.

The paper is organized as follows. The basic model is developed in
Section 2. In Section 3, we introduce the concept of affiliated random
variables and use this restriction to establish that the bid function of the
informed buyer is monotonic. This proof may be of some independent interest.
It is apparently the first such result which allows for a multidimensional
signal that may be correlated with both the value of the object and the
seller’s reservation price. In Section 4, we calculate two specific examples
with an independent random reservation price and indicate some key features of
the equilibrium distribution of bids. Section 5 contains the main theoretical
results of the paper, and, in Section 6, we report our statistical tests.

Section 7 summarizes our conclusions.

2, The Model
An indivisible object with unknown value V is to be sold in a sealed

bid, first price auction. The participants consist of an informed seller, who



observes a private signal and sets a reservation price R determined before the
bids are revealed, an informed buyer, who observes a private signal X, and an
uninformed buyer who observes only a public signal which we hold constant
throughout.2 The buyers submit sealed bids without knowing the reservation
price. A buyer wins the object with certainty if his bid is strictly greater
than any other bid and no less than the reservation price. If both buyers
make the same bid and it is not less than the reservation price, the object is
allocated according to some rationing rule which is independent of the
reservation price. The winner of the object receives the object in exchange
for his bid.

We suppose that V is a real valued random variable and R is a positive
random variable, both with finite expectation. The realization of X lies in
an n-dimensional Euclidian space. The joint distribution of (V,R,X) is common
knowledge. Throughout the paper, random variables and their associated
probability distributions are denoted by upper case letters, real numbers by
lower case letters, and functions by lower case Greek letters.

In equilibrium, the uninformed buyer must generally randomize his bid.
Therefore, we suppose that he observes the realization of a random variable U
which is unifermly distributed on [0,1]} and independent of (V,R,X). A
strategy for the uninformed buyer is a real valued function a of the
realizations of U which, without loss of generality, we restrict to be
nondecreasing. The probability induced by a(U) is denoted by P, and the

associated distribution function by G,. Similarly, a strategy for the

2 We restrict attention to a single uninformed buyer only to simplify

notation. As we argue below, the equilibrium restrictions on the informed
bidding strategy and the distribution of the highest uninformed bid are
independent of the number of uninformed buyers.



informed buyer is a real valued function B of the realizations of X.> The
probability induced by A(X) is denoted by P; and the associated distribution
function by G,.

If the seller conditions his reservation price on private payoff
relevant information, the informed buyer will also condition his valuation of
the object on the event of acceptance. Furthermore, the realization of X will
affect the informed buyer'’'s estimate of the probability of acceptance. Let
J(-}x) denote the distribution function of R conditional on a realization x of
X. Then, in the absence of an uninformed buyer, E[V-b|R<b,X=x]J(b|x) is the
expected profit to an informed buyer with information x from bidding b,
Assuming for the moment that the distribution funct: :n of the uninformed bid,
G,, is continuous, E[V-b|R<b, X=x]J(b[x)G, (b) is the expected payoff to the
informed buyer with information x from bidding b when facing the strategy a.

Let K(-|b) denote the distribution function of R conditional on an
informed bid of b, induced by J and 8. Then K(b’|b) is the probability that
the reservation price is not greater than b’, given that the informed bid is
b. If the uninformed buyer wins the object with a bid of b, then he knows
that b is not less than the reservation price and that the informed bid is no
greater than b. Both events are informative in assessing the value of the
object., If G, is continuous, fhmj]E[V-b|Rsb,ﬂ=t]K(b|t)PB(dt) is the expected
payoff to an uninformed buyer who bids b when facing the strategy S.

An equilibrium is a pair (e,8) which maximizes the expected payoff to

each buyer given the strategy employed by the other buyer. Since we have

3 If X contains mass points, it may also be necessary for the the informed

bidder to randomize his bid. In this case, we may add a continuously
distributed independent component to his signal. To simplify the notation, we
avoid this complication. See Milgrom and Weber (1985) for further detail.



defined R to be positive, it follows that J(0|x) = O a.s,-Px“ so that a bid

of 0 guarantees a buyer zero profits. Standard arguments then establish the

following properties of an equilibrium.

LEMMA 1: Suppose (a,B) is an equilibrium. Then, for any bid b,

(a) E[V-B(x)IR<B(x), X=x]J(B(x)|X)G,(B(x)) Z E[V-b|R<b,X=x]JI(b|%)C, (D)
a.s.-Py.

(b) 0 = [ op E{V-b"[R<b’ A=t]K(b"|t)Py(t) = [, E[V-b|Rsb,f=t]K(b|t)Py(dr)
a.s.-P,.

(c) E[V-b|Rsb,B=b]K(b|b) P,((b)) P,((b)) = 0.

Condition (c¢) implies that the rationing rule in the event of ties is
irrelevant. The informed buyer never makes a bid which earns positive profits
and has a positive probability of being matched by the uninformed buyer. By
increasing his bid slightly, one of the buyers could obtain a positive gain at
essentially zero cost. The inequalities in conditions (a) and (b) are then
just the statement that each buyer chooses a best response given his
information.

Condition (b) also implies that the uninfermed buyer earns zero
expected profits. The argument, which essentially follows EMW, goes as
follows. Let b, be the lower bound of the support of G, and suppose that
G,(b,) = 0. 1If the expected profit of the uninformed buyer is positive, then

his probability of winning the object with a bid slightly above b, must also

‘ For any random vector Z, let P, denote the probability induced on R®. Then,
for a:®° - R, a(z) =0 a.s.-P, if f1a(z)|P,(dz) = 0. 1In general, a
restriction on Z is satisfied a.s.-P, if it is satisfied with probability 1
with respect to P,.



be positive. This implies that the informed buyer bids b, or less with
positive probability. Moreover, the expected value of the object to an
uninformed buyer who wins at a bid slightly above b, is the expected value of
the object when the informed bid is b, or less, conditional on the reservation
value being no greater than b, . Therefore, there must be a realization x of X
for which B(x) =< b, and which, in the abserce of the uninformed buyer, earns a
positive return with a bid of ba.’ But since the informed bidder never wins
the object with a bid of b_ or less, his optimal bid must be greater than b,.
This contradiction establishes the result. A slight modification of the
argument also can be applied in the case where G, (b,) > 0.

Lemma 1 reveals that the role of the uninformed buyer is essentially
to impose a constraint on the bid function of the informed buyer. Conditional
on realizations of R and the bid by the informed buyer which are no greater
than b, the expected value of the object cannot exceed b. Also notice that
the restrictions of Lemma 1 remain essentially unchanged if there is more than
one uninformed buyer and G, represents the distribution of the maximum
uninformed bid. It is only to simplify notation, therefore, that we restrict

attention to the case of a single uninformed buyer.

3. Affiliation and the Monotonicity of the Informed Bid Function

To derive the restrictions on the equilibrium distribution of bids, we
must first determine the relation between the bidding strategies and (V,R).
However, without some restrictions on (V,R,X), little can be said about
(V,R,8). One possibility is to assume that R is independent of (V,X).
However, for our application, the evidence strongly suggests that R is

correlated with (V,X). To allow for such correlation, we exploit the concept



of affiliated random variables, first introduced in the bidding literature by
Milgrom and Weber (1982).

A random vector Z is affiiiated if any two nondecreasing functions
over the range of Z are nonnegatively correlated. The precise definition and
some general properties are provided in the Appendix (see also Milgrom and

Weber). The key restriction on (V,R,X) is provided by Assumption 1.

ASSUMPTION 1: (V,R,X) is affiliated.

This assumption guarantees that the realizations of the signal can be
ordered so that higher values of X imply (on average) higher values of both V
and R. We allow R to be correlated with V and, in addition, allow it to
contain information about V not contained in X. Notice that in general, we
cannot reduce X to a one dimensional signal.

Lemma 2 summarizes the critical implications of Assumption 1. The

proof is presented in the Appendix.

LEMMA 2: (a) E[V|R-r',X-x'] < E[V{R=r,X=x] for (r,x) = (r’,x')

a.s. -PpoXPpx. (b)) J(r’|x")J(r|x) = J(x'|x)J(r|x'") for r=1r', x

v
"

a.s.-PxPy.

Part (a) states that the conditional expected value of the object is
nondecreasing both in the reservation price and in the information of the
informed buyer. If J(-|x) is differentiable with density j(-|x), Part (b) is
equivalent to the statement that the survival rate j(-|x)/J(-|x) is
nondecreasing in x. Note that, by setting r = », Part (b) also implies that

J(r'|x) < J(r'|x') for =x = x'.
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To establish that the informed bid function is monotonic, we require a

slight strengthening of Lemma 2a.

ASSUMPTION 2: E[V|R=r',X=x'] < E[V|R=r,X=x] for (r,x) =z (r’',x'), x = x',

5
a.s. - PpyXPpuy-

If the reservation price is not stochastic, then, using standard
arguments, Assumption 1 implies that expected profit must be nondecreasing in
x. However, if the distribution of the reservation value shifts too much with
an increase in x, expected profit may decline, possibly to zero. To avoid
this complication and other technical points, we assume a condition that is
only slightly stronger than the requirement that the lower bound of the
support of the reservation price is independent of the realization of X. To
equate a zero bid with no bid, we also restate our convention that the

reservation price always exceed zero.

ASSUMPTION 3: J(r{x) > 0 implies J(r|x') > 0 a.s.-PyxPy.

Qur analysis requires no additional regularity conditions. Using

Assumptions 1 to 3, we may establish that the equilibrium bid of the informed

buyer is a nondecreasing function of the realization of X. The proof extends

5 Inspection of the proof of Lemma 3 below reveals that Assumption 1l is

sufficient to guarantee that a monotonic § may be selected as a best response
to a. However, without Assumption 2, there may be another best response with
a different distribution of bids in which 8 is not monotonic. We have not
investigated the conditions under which a continuity argument, combined with
lLemma 3 below, could be used to establish the existence of an equilibrium with
g monotonic in the absence of Assumption 2.
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the standard self-selection argument used by EMW for the case where R is

constant.

LEMMA 3: If (a,8) forms an equilibrium, then x = x' and

E[V-8(x) |R=B(x),X=x|J(B(x) |x)G (B(x)) > 0 1imply B(x) < B(x') a.s.-PXxE.

PROOF: For any pair (x;,x,), let b, = B(x;), G = G,(b,), JiJ - J(b1|xj), vy o=

E[V|R5bi,X-xJ], and v

8y = E[V|bl<R5b2,X-xJ], i,j = 1,2. Suppose the lemma is

false. Then there is a subset L C R™R", PyxP,(L) > 0, such that for
(x,,%,) € L, x, 2 %,, X, # X,, b, < b,, and
(1) (Vyp-D,)J G, > 0.

2272

For (x,,%,) € L, the best response property for f (Lemma la) implies

(2) (vi-b)J1,Gy = (vy,-b;)J,,G, a.s.-PyxPy
and
(3) (vi;-b) T 1,6, = (v,,-b,)0,,G, a.s.-PyxPy.

Multiplying equation (2) by J,,, equation (3) by J,,, and subtracting implies

that the following relation holds a.s.-P,XxP,.

(4) (V3192165 - vid 116110y, S [vd,6, - vipdp61 0y + 0G0, - Jypdoy)
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By definition, Vaday = vquj + VM(JZJ”JU)' Therefore, (4) may be written as

(5) (Vvy,-vi)3153311(65-G) 4 (vay-b,) (J11T55-T 1502106, + (Vap-Vy) (J5y-010) 7,6, = 0.

Lemma 2 and Assumptions 2 and 3 imply that all three terms in equation
(5) are nonpositive., (Note that v,, 2 v,, by Lemma 2a, and v,, > b, from
equation (1).) All that remains to be shown is that at least one term is
strictly negative. Note first that relation (1) implies that J,, > 0. It

follows from Assumption 3 that J,, = J,; > 0. Lemma 2a, which dictates that

v

v

v and equation (1), which implies G, > 0, together with relation (2)

21 22°

then imply that J,; > 0.
By definition, J,, = J,, implies v,, = v,,. Therefore, relations (1) and
(3) imply that either G, > G, or J,, > J,, First suppose that G, > G,. Since

J,y, > 0 and J,; > 0, and because Assumption 2 implies that v, > v,;, the first

21
term in equation (5) is then negative,
Alternatively, suppose that J,, > J,,. Manipulation of Lemma 2b then

implies that J,, > J which, combined with Assumption 2, implies that the

11

third term is negative. Q.E.D.

To understand the role which Lemma 2 plays in the proof of Lemma 3,
notice that Lemma 2a ensures that the first and the third terms in equation
(5) are nonpositive. If R is independent of (V,X), then the second term of
"equation (5) is zero, since the distribution of R does not depend upon X. The
contradiction then follows immediately from the fact that the change in the
probability of winning can be positive only if b, is smaller than b,. When
(V,R,X) is affiliated, Lemma 2b ensures that the second term in equation (5)

is nonpositive.
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To facilitate the statement of our results, we adopt the following

convention for zero profit bids.

ASSUMPTION 4: Suppose (a,f) forms an equilibrium. Then
(a) [ opK(B|E)Py(dE) = O implies G,(b) = G,(0), and

(b) E[V-b|R<b,B=b]K(b|b)G, (b) = 0 implies b = 0, a.s.-P,.

Assumption 4 requires a nonzero uninformed bid to win the object with
positive probability. Similarly, whenever the informed buyer cannot earn
positive profit, he submits a bid of zero.® Given Assumption 2 and Lemma 3,
this convention guarantees that g is nondecreasing a.s.-P;, but does not

restrict the equilibrium bid distributions of bids above the lower bound of R.

4. Two Examples

In this section, we illustrate some of the properties of the bid
distributions by way of two simple examples. These examples will serve as a
guide to our analysis of the general case.

In both examples, we assume that R is independent of V and X. In this
case, J(b|x) and K(b|b') reduce to K(b), and E{V|X,R] reduces to E[V]|X].
Consequently, the expected payocff to the informed buyer with signal x who bids
b may be written as E[V-b[{X=x]K(b)G (b). As noted by EMW, one immediate
consequence of this simplification is that the optimal bid of an informed

buyer with signal x depends only on E[V|X=x]. Consequently, regardless of the

® Condition (b) is consistent with the best response condition for B

(Lemma la) since we have assumed that J(0|x) =0 a.s.-p,. Consequently, b =
B(x) and E[V-b|R<b,B=b|K(b|b)G (b) = O implies E{V-b|R<b,8=b]J(b|x)G (b) =
0
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dimensionality of X, the information of the informed buyer can be indexed by
the realization of the conditional expected value of the object, E[V|X], which
for simplicity we will identify with V. In this case, the strategy of the
informed buyer, 8, is simply a function of the realizations of V.
Consequently, if B(v) = b, the expected payoff to the uninformed buyer from
bidding b may be expressed as E[V-b|ﬁ5b]K(b)Gﬁ(b).

Let ﬁo denote an optimal bid function for the informed buyer in the
absence of an uninformed buyer, and let B denote the equilibrium bid function

of the informed buyer when competing against an uninformed buyer.

Example 1: R 1s a Uniformly Distributed Random Variable

Suppose R is distributed uniformly on {1,3] and V is exponentially
distributed with mean 6. 1In the absence of competition from an uninformed
buyer, the problem of an informed buyer with valuation v is to choose b to

maximize (v-b)K(b). Solving for b then yields the bidding strategy

0 v < 1;
8P (v) = { (v+l)/2 ve [l,5;
3 v > 5,

The optimal bid function is illustrated in Figure 2a, with the value
of v represented on the vertical axis and the bid on the horizontal axis. If
the expected value of the object ié less than 1, the buver does not bid. For
values of v between 1 and 5, the bid function is increasing with slope 1/2 and
range [1,3]. For values of v which exceed 5, the buyer bids 3, which is just

sufficient to win the object with certainty.
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Example 2: R 1s a Bernoulli Random Variable

Alternatively, suppose that R has a Bernoulli distribution with equal
mass concentrated at 1 and 3, and again assume that V is exponentially
distributed with mean é. In the absence of competition from any uninformed

buyer, the optimal bid function for the informed buyer is

0 v < 1
Bovy =41 v e [1,5]
3 v > 5

The optimal bid function for Example 2 is illustrated in Figure 3a.
If the expected value of the object is less than 1, the buyer does not bid.
For values of v between 1 and 5, expected profit is maximized by a bid of 1
which wins the object with probability 1/2. For values of v greater than 5,

the buyer bids 3 to win the object with certainty.

Now consider the effect on the equilibrium bid of the informed buyer
when an uninformed buyer enters the auction. Since we have assumed that X is
identical to V, it follows trivially that (V,R,X) is affiliated. Therefore,
from Lemma 3, we know that A(v) is nondecreasing in v. The nonpositive profit

condition for uninformed buyer (Lemma 1b) then implies that, for pj(v) > 0,

(6) B(v) = E[V|Vsv].

Lemma 1lb also implies that the uninformed buyer never bids in the

range where B(v) exceeds E{V|Vsv]. Consequently, G (8(v)) = G (E[V|V=v]).

Since the best response condition for the informed buyer (Lemma la) implies
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that (V-ﬁ(v))K(ﬁ(v))Ga(ﬂ(v)) > (v-b)K(b)G,(b) for all b, and since G,(b) is

nondecreasing, it follows that B(v) must also satisfy, for all b = E[V]|V<v],

(7) (v-B(v))IR(B(v)) = (v-b)K(b).

We conclude from relations (6) and (7) that B(v) is the maximizer of (v-b)K(b)
subject to b = E{V|V=v]. Since ﬁo(v) is the maximizer of (v-b)K(b), it
follows immediately that g{v) = ﬁo(v), This relation does not depend on the
monotonicity of B, and, in the Appendix, it is established for any
distribution of (V,X,R).

Define v to satisfy E[V|Vsv] = 3. In Example 1, 8°(v) > E[V|V=v]
for 1 < v < v. Therefore, given 8", the only bids at which the uninformed
buyer earns positive profit are between 3 and 6, where the expected return is
6-b. (A bid above 3 wins the object for sure against g°, and 6 is the
unconditional expectation of V.) However, if the uninformed buyer bids in
this interval with certainty, the informed buyer no longer earns positive
profits. To restore equilibrium, the informed buyer with v > v must
increase his bid to fg(v) = E[V|Vsv]. Faced with this revised strategy, the
uninformed buver is now indifferent between submitting a bid between 3 and 6
and staying out. Consequently, his strategy can be adjusted so that the
informed buyer with a value of v less than v has no incentive to change his
bid from Bo(v).

In Example 2, Bo(v) =1 for 1 < v < 5. However, as indicated in
Figure 3a, E[V|V=5] > 1. Therefcre, by bidding slightly above 1, an
uninformed buyer earns positive expected profits. Also, as in Example 1, a

bid slightly above 3 yields positive profits as well. In this case,
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therefore, the strategy of the informed buyer must be adjusted over two
intervals of v, [v,5] and [G,m), where v and v satisfy E[V|Vsv] = 1 and
E[VEVsG] = 3. To compute the equilibrium strategy of the informed buyer,
relations (6) and (7) imply that when the value of the object lies between v
and 5, he must choose between a bid of E[V|V=v], or a bid of 3. This choice
arises because the informed buyer's profit function is discontinuous at a bid
of 3, where the probability of beating the reservation price jumps from 1/2
to 1. Let v* denote the value of v at which the informed buyer is just
indifferent between a bid of E[V|V=sv] and 3. It is easy to show that v <v*
< 5. Therefore, for v < v, B(v) = BO(V), and for v < v < V*, Blv) =
E[V|V<v]. For higher realizations of V, the construction follows Example 1
with A(v) = 3 for v¥ < v < G, and A(v) = E[V|V=v] for v > G. The
function is illustrated in Figure 3a.

The distribution of the informed and uninformed bids for our two
examples are illustrated in Figures 2b and 3b. Although it is not possible to
compute a closed form solution for the bid distributions in either of these
examples, it is a direct consequence of a result in EMW that they are
identical for bids above the range of the reservation price. 1In fact, it is a
implication of Theorem 1 below, which also implies that the rates of increase
in the two distributions in Example 2 are equal over the interval [l,b*].

In general, the introduction of a random reservation price may result
in an irregular distribution of bids. For instance, in Example 2, the
supports of the distribution function of both buyers are not connected. Also,
in both examples, there is at least one mass point at a positive bid in the

distribution function of the informed bid. Notice, however, that in both

cases the support of the informed bid contains the support of the uninformed
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bid. This property follows from the observation that the expected value of
the object to a winning uninformed bid is the same at any price in an interval
(b’ ,b) in which the informed agent never bids. Therefore, if the expected
profit to the uninformed buyer is zero at b’, it must be negative at any
higher bid in (b’',b).

Also note that in both cases there is a bid b such that G (b) = G (0)
and Gﬁ(b) > GB(O). In example 1, GB’is strictly increasing over {1,3], but
G, {(3) = G,(0). In example 2, G  is strictly increasing over [1,b*], but G, is
discontinuous at 1. This property is a consequence of the fact that the
expected value of the object to a winning uninformed bid is its average value
to an informed buyer who bids less. Therefore, to earn nonnegative profirt,
the bid of the uninformed buyer must exceed some profitable informed bids
which would earn positive profits.

In the next section, we extend these arguments to the more general

case where (V,R,X) is affiliated.

5. The Bid Distributions

Given that the informed bid is nondecreasing in X, it follows from
Assumption 1 that (V,R,8) is also affiliated. In this section, we exploit
this relation to establish the main theoretical results of the paper.
Theorem 1 establishes two results. First, the rate of increase in Gy is never
less than the rate of increase in G,. From this property it follows
immediately that (i) the support of B contains the support of a, and
(ii) B stochastically dominates a. Second, when R is independent of (V,X),
the rate of increase in G, equals the rate of increase in KG, . It follows

immediately from this property that G, and G, are identical above the support
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of R. Theorem 2 establishes that the informed buyer is more likely to submit
a low bid than is the uninformed buyer.

For the remainder of the analysis, we assume that (a,8) forms an
equilibrium. Lemma 3 and Assumption 4 then yield the following restatement of
Lemma 2 and Assumption 2 in terms of bid of the informed buyer rather than his

information signal.

LEMMA 4: (a) E[V|{R=r’,B=b’'] =< E(V|R=r,8=b], (r,b) 2 (r',b’), (with strict
inequality if b > b') a.s.-Py xPp,.

(b) K(r’'|b")K(r|b) = K(r'|b)K(r[b'), r 2 r', b = b’' a.s.-PyxP,.

Lemma 4 combined with the equilibrium conditions of Lemma 1 provide
the restrictions necessary to establish our main result on the equilibrium
distribution of bids., The details of the argument are complicated by the fact
that GB need not be continuous, piecewise differentiable, nor strictly
increasing over the convex hull of its support. Therefore, we confine the
text to a heuristic demonstration of the result and provide a complete proof

in the Appendix.

THEOREM 1: (a) b, < b, implies G, (b,)G,(b;) = G, (b,)G,(b,).
(b) Suppose R is independent of (V ,X). If G, is strictly increasing over

{by,b,], then K(by)G,(b,)G,(b,) = K(b,)G,(b)G,(by).

SKETCH OF PROOF: Suppose G, and G, are both differentiable and increasing at
bid b > 0. Denote the densities of all distribution functions by their lower
case letters and let w = E[V|R<b,A=bl, v = E[V|R=b,8=b],

v = [2E[VIR=b,B=t]dGs(t)/G4(b), K = K(b|b), and K = ["K(b|t)dG,(t)/G,(b).
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Suppose the informed buyer considers a unit increase in his bid.
Since he wins the object with probability KG, at bid b, his expected cost
conditional on winning at bid b rises by KG,. On the other hand, the gain in
his expected profit from the additional chance of winning the object can be
decomposed into two compomnents. The first is his gain when the uninformed
buyer bids just above b, (w-b)Kg,. The second is his gain when the
reservation price is just above b, (v-b)kG,. Consequently, the first order

condition for profit maximization is

(8) (w-b)Kg, + (v-b)kG, = KG_.

Similarly, the first order condition for profit maximization by the
uninformed buyer is
(9) (w-b)Kg, + (v-b)kG, = KG,.

By Assumption &, the informed buyer makes positive profit at bid b.
Therefore, w-b > 0,

To prove part (a), note first that Lemma 2b implies that K = K, and

Lemma lb and Lemma 2a imply v > b. Therefore, we may combine equations (8)

and (9) to yield

il

10) (2B s w2 @b

3 a

Lemma 4a implies v = v, and Lemma 4b implies k/K = k/K. It follows from
(10), therefore, that g,/G, = g, /G,. Integrating over [b’,b] establishes

part (a).
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To prove part (b), note that if R is independent of (V,X), then K =

K, k ~k, and w = v. Furthermore, the zero profit condition (Lemma 1b)

implies that v = b. Combining equations (9) and (10) then imply

@

(11) c.

+

Ll
Jq
i w

Integrating over [b’,b) establishes part (b). Q.E.D.

Theorem la implies the fcllowing corollary.

COROLLARY 1: (a) G (b,) < G (b)) implies Gu(by) < Gy(b,). (b) G, = G,.

Part (a) states that the support of G, contains the support of G,.

Part (b) states that GB stochastically dominates G,.

Notice also that, wherever G, is increasing, Theorem 1b implies that

the distribution of max({R,a}) grows at the same rate as the distribution

of 8. This generalizes a result of EMW which established that G, and G; are

equal whenever the reservation price is not random. More generally, since at

any bid above the support of R, max({R,a})) = a, it follows that the
distribution functions are identical over this range.

COROLIARY 2: If K(b|b) = 1, for b = by, then G, (b) = G,(b) for b =z=b
Besides the assumption that all distribution functions are

differentiable, the sketch of the proof of Theorem 1 provided above also

supposes that the two distribution functions have the same support. Aas we

hE

sSaw
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in Example 1 of Section 4, this restriction need not be satisfied when the
reservation price is random. The more general proof provided in the Appendix
handles these cases as well.

We turn next to the restrictions on the distribution functions at low

bids. These results require the following assumptien.
ASSUMPTION 5: P,({x € R": J(b|x) > 0 implies E[V-bjR<b,X=x] < 0}) > 0.

Assumption 5 states that the informed buyer sometimes receives a
signal for which his expected profit is negative at any bid which exceeds the
reservation price with positive probability.

Recall that the expected value of the object to the uninformed buyer
when he wins the object with a bid of b is the average value of the object to
the informed buyer when his equilibrium bid is no greater than b. Therefore,
if the informed buver sometimes e:jects negative profit at any winning bid,
any zero profit, positive uninformed bid must exceed some profitable informed
bids. This observation motivates Theorem 2. A precise proof requires a

careful limiting argument and is presented in the Appendix.
THEOREM 2: There is a b > 0 such that Ga(b) > GS(O) and G_(b) = G_(0).

Thecrem 2 implies that the informed buyer is more likely to submit a
low bid than is the uninformed buyer. Either the informed buyer will submit
his lowest bid with positive probability while the uninformed bid distribution
is continuous, or there is an interval around the lowest informed bid in which

the uninformed buyer never submits a bid. The size of this interval depends
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on the distribution of (V,R,X). Roughly, the interval will be larger as X
becomes a more accurate predictor of V and as the distribution of R becomes
less concentrated. As X becomes more informative, the distribution of E[V|X]
becomes more risky and hence the expected losses, conditional on low
realizations of X, increase. As the distribution of R becomes more diffuse,
the informed buyer has less incentive to shade his bid over a wider range of
signals, reducing the expected profit to a winning uninformed bid over that

range.

6. Tests of the Theory

In this section, we analyze the bidding data from a superset of the
drainage tracts used by HP in their study of auctions for offshore oil leases.
Our data set contains the number and characteristics of the firms who
submitted bids, the value of their bids, and the rejection decision on all
drainage tracts offered for sale between 1959 and 1979 on which at least one
firm submitted a bid.

As we noted in the introduction, the structure of our model is based
on the analysis of HP. Working with data from tracts offered for sale during
the period 1959 to 1869, they estimated the ex post values of tracts offered
for sale and the adjacent tracts owned by firms participating in the auctions.
With these estimates, they investigated the relation between tract values and
the bidding behavior of the firms.’ Their work provides strong evidence that

neighbor firms had betrter information about the value of a tract than did

7 For tracts sold after 1970, we were unable to generate reliable estimates of

tract value, both because the production histories are truncated and because
expectations of firms about future oil and gas prices are difficult to measure
or infer.
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nonneighbor firms and that the neighbor firms cocrdinated their bidding so
that there was effectively only one informed bidder. Therefore, we will
ignore all but the highest neighbor bid on any tract and call it the neighbor
bid, B;. We will call the highest bid among all nonneighbor firms, B,, the
high nomneighbor bid.®

Our assumption that the reservation price is an exogenous random
variable is based on the HPS study of the same data set we employ here.
Although the rejection decision is made after the bids are submitted, HPS
found no evidence of strategic behavior on the part of the government.g Also,
based on their estimates of a probit equation of the rejection decision, they
conclude that the precbability of rejection was higher if the bid was submitted
by a neighbor firm, even after conditioning on the value of the bid. While
neighbor firms submitted the highest bid on 62% of the tracts, they submitted
82% of the rejected bids. Of tracts on which the high bid was less than .5
million dollars, 27 of the 54 bids submitted by neighbor firms were rejected

while only 4 of 15 bids submitted by nonneighbor firms were rejected.10

® There were two or more bids by neighbor firms on only 59 of the 257 tracts

on which at least one neighbor firm submitted a bid. There were two or more
bids by nonneighbor firms on 92 of the 168 tracts on which at least one
nonneighbor firm submitted a bid.

3 According to Darius Gaskins (1976, p. 241), "the primary factor used in
evaluating bids is the government's evaluation," which is determined prior to
the sale date.

'Y HPS do not report the relation between the rejection decision and the
number of bids. While 169 of 295 tracts received two or more bids, those
tracts accounted for only 11 of the 58 rejected bids. (Of the 130 tracts that
received at least one neighbor and one nonneighbor bid, only 3 were rejected.)
Although these figures suggest that the number of bids may have influenced
their rejection decision, HPS found that the number of bids is sufficiently
correlated with the maximum bid and the neighbor dummy so that its coeffecient
is not significantly different from 0. In any event, we have not investigated
the theoretical implications of this assumption.
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Any test of the theory must incorporate the fact that the properties
derived in Section 5 are valid only after conditioning on all relevant
information, S, possessed by the nonneighbor firms. Let G;(:,s) denote the
distribution function of B;, conditional on S=-s, G,(-,s) the distribution
function of B;, conditional on S=s, and T(s) the upper bound of the support of
R, conditional on S=s. Theorems 1 and 2 then imply the following relations

for each realization s of §.

A

(R1) (Gy(b,s)-Gy(b-€¢,5)]/G,(b,s) < [G/(b,s)-G(b-€,s)]/G(b,s) for

GI(b,s),GU(b,s) >0 and ¢ > 0.

(R2) Gy(b,s) = G;(b,s), b = r(s).

(R3) For some b(s), G;(b(s),s) > G;(0,s) and Gy(b(s),s) = Gy(0,s).

Ignoring for the moment the complications introduced by the
information variable S, the histograms presented in Figures 4 and 5 illustrate
two aspects of the empirical distributions which directly test these
relations. Figure 4 illustrates the relation between AG,/G, and AG,/G,. The
ratios were constructed by partitioning the set of all positive neighbor and
high nonneighbor bids into 8 equally sized subsets according to their rank.
The interval of bids for each subset is indicated on the horizontal axis. For
each interval of bids we then divided the number of neighbor bids in that
interval by the number of tracts for which the neighbor bid was in that
interval or below plus the number of tracts for which no neighbor firm

submitted a bid to obtain AG./G,. We computed AG;/G; similarly.
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Figure 4 lends strong support to all three relations. First, AG./G;
is as least as large as AG,/G, over each range of bids, as required by (Rl).
Second, the two ratios are roughly equal in the upper four intervals as is
required if the distributions are equal over that range. Finally, AG;/G,
exceeds AG,/G, by more than a factor of 5 over the first two intervals lending
support to (R3).

Figure 5 provides additional evidence regarding the relative frequency
of low bids by the neighbor and nonneighbor firms. Relation (R3) implies that
over intervals of low bids, there should be relatively more neighbor bids than
high nonneighbor bids. In fact, the theory implies that regardless of which
nonneighbor bid is selected on any tract, there should be more neighbor than
nonneighbor bids. Figure 5 illustrates the ratio of the number of bids in any
interval to the total number of positive bids for the following four criteria:
(1) the high positive nonneighbor bid on each tract, (2) all positive
nonneighbor bids, (3) the low positive nonneighbor bid on each tract, and (4)
all positive (high) neighbor bids. Notice that in the lowest interval, the
relative number of neighbor bids is twice the relative number both of high
nonneighbor bids and of all nonneighbor bids. The relative number of low
nonneighbor bids in this interval is roughly equal to the relative number of
neighbor bids. Although a bit weaker, these relations are also satisfied in
the second interval. We note also that since relatively more neighbor firms
submitted at least one positive bid, these figures actually understate the
‘predominance of neighbor bids in the lower interval when we include the zero

bids of the firms.
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6.1 The Wilcoxon Test Statistic

We turn now to the question of whether or not the relationships
illustrated in Figures & and 5 are statistically significant. All of our
tests are based on an application of the Wilcoxon rank sum statistic, extended

to accommodate mass points in the distributions as outlined by Lehman (1975,

pp- 5-23). The test works as follows. Let {x,, t -1,...,T;}, and (y,,
t=1,...,T,) denote the observaticns from two samples, and define
1 if x, <vy,,

h,, =41/2 if x, =vy,,

st s

0 otherwise.

The Wilcoxon rank sum test statistic is then defined as U = zrq'th. st -
When all T,T, possible pairs of observations are considered, U is the total
number of pairs in which the observation Zrom the first sample is less than
the observation from the second sample, plus one-half of the pairs in which
they are equal.

Let {w,,...,w_ } denote the values at which at least one pair of
observations are equal. Let T = T,+T, denote the total number of
observations, and let K, denote the total number of realizations from both
samples at each value w,, i = 1,...,n. Then, for samples of independent
observations generated by the same distribution, the distribution of U is
approximately normal with E[U] = T,T,/2, and Var(U] = [T,T,/12T(T-1)] x
T(T+1)T(T-1) - ZTﬂ_l(K -1y ] The approximation is close even for relatively
small sample sizes (e.g. T, = T, = 10). Let Z = (U-E[U])/Var[U]"?. Then we
may reject the null hypothesis that the two samples are generated by the same

distribution if the realization of Z is significantly different from 0, under

the assumption that Z has a standard normal distribution.
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6.2 Test for Independence of the Bid Distributions

Given the enormous variation in the winning bids (from $28 Thousand to
$114 Million), it is reasonable to suppose that nonneighbor firms were able to
differentiate among some of the tracts in our sample and that this fact was
common knowledge‘11 If nonneighbor firms do possess a substantial amount of
information, one implication is that B; and By should not be independently
distributed. To test for the dependence of these distributions, we partition
a subset of tracts into two subsets according to the value of the high
nonneighbor bid on that tract. Assuming the neighbor bid is independent of
the high nonneighbor bid, the empirical distributions of the neighbor bid from
the two subsamples should not be significantly different.'* We consider three
variations of this test.

In the first variation, we divide the set of neighbor bids into two
subsamples depending on whether or not a nonneighbof firm bid on that tract.
In the second variation, we assign a value of zero to the neighbor bid on
those tracts in which no neighbor bid was actually submitted. We then
consider only those tracts on which a nonneighbor bid was submitted and divide
the corresponding neighbor bids into two subsamples depending on whether or

not the high nonneighbor bid exceeds the median monneighbor bid, SU. The

11 1n their earlier study, HP established that, conditioning on the number of
neighbor firms, the tract acreage, and the ex post value of the adjacent tract
(the most significant of these variables), there is no significant relation
between the high nonneighbor bid and the ex post value of the tract. From
this, they conclude that these variables contain most of the information
possessed by nonneighbor firms in assessing the value of the tract. As noted
above, however, we are unable to construct this information for most of the
tracts in our sample.

12 plternatively, this can be viewed as a test of whether the pair (B;,B;) is
identically distributed across all tracts.
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third variation is similar except that we consider only those tracts on which
both a neighbor and nonneighbor bid were submitted.’® As reported in Table 1,
each of these tests strongly rejects the hypothesis that B; and B; are
independent. 1In all three cases, the conditional distribution of B; depends

significantly on the range of By.

Table 1. Test For Independence

Sample X: B, = 0, B, > 0 0 < B, < by 0 < By <by, B, >0
Sample Y: By, >0, By >0 b, < By b, < By, B; >0
# of X Bids 127 84 65
# of Y Bids 130 84 65
# of 0 Bids 0 38 0
z 4.17 5.57 4.76
(0.0000) (0.0000) (0.0000)

The number in the parenthesis is the probability that |Z]| > z. Gu is the
median positive nonneighbor bid for the given sample of tracts.

Given the strong dependence between B; and B;, we conclude that any
tests of our theory must be based on the presumption that Gy(:,s) and G (-,s)
depend nontrivially on additional characteristics of the tract offered for
sale. Let p denote the measure on the nonneighbor information, s, for those
tracts used in our sample, and let G,(b) = fGU(b,s)u(ds) and G;(b) =
fGI(b,s)p(ds) denote the respective marginal distributions of B; and B;.
Rather than test relations (R1l) to (R3) directly, we will test their

implications for G, and G;.

13 We cannot examine the distribution of neighbor bids over all tracts, with

and without nonneighbor bids, because the tracts on which no bids were
submitted are not included in our data set. Consequently, of the tracts with
no nonneigbor bid, we can include only those with positive neighbor bids.
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The dependence of B, and B; also introduces a complication for other
tests based on the Wilcoxon test statistic. Since the calculation of Var[U]
presumes that all observations of B; and B, are i.i.d., any test comparing the
distributions of G; and G; will properly require that we draw our observations
of B; and B; randomly from different tracts. ' Unfortunately, this
considerably reduces the power of our tests. We will therefore adopt the
following strategy. We have assigned each tract to one of two equally sized
subsets based on the realizations of a sequence of random numbers. For all of
our remaining tests, we then report three statistics. The first statistic
uses the neighbor and nonneighbor bids from all tracts. The second and third
statistics are computed by alternatively drawing the neighbor bids from the

first subsample of tracts and the nonneighbor bids frem the second, and visa-

versa.
6.3 Test of the Monotone Likelihood Ratio Property

Relation (R1) implies a monotone likelihood ratio property between
Gy(+,s) and G;(-,s). This relation is preserved even after we integrate over

s. To test relation (Rl), we consider n equally sized subsets of the positive
neighbor and high nonneighbor bids partitioned according to rank. Let b, =0
and let b, denote largest bid in the ith subset, i = 1,...,n. For each value
of i =1,...,n, we restrict attention to those bids which are less than or

equal to b,. We then define two simple step functions as follows. For

' Although we know of no general results, the expression for Var[U] appears

to typically overstate the variance of U for random variables which are highly
correlated. Therefore, if we consider samples which contain both the neighbor
bid and the high nonneighbor bid from the same tracts, the variance of Z is
typically less than 1 so that the tests based on these samples are biased in
favor of the null hypothesis.
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j-1,U, let X} =1 if b, < B, <b,, and X, = 0, otherwise. If relation
(R1l) is satisfied for all s, then X; should stochastically dominate Xé for
all i. That 1is, the ratio of the number of neighbor bids in interval i to the
number of all neighbor bids (including zero bids) in interval i or below
should exceed the corresponding ratio for the high nonneighbor bids.
Unfortunately, since our data includes only those tracts on which at
least one bid was submitted, we cannot directly test this relation. Let Hé
and H; denote the respective distribution functions of Xé and Xi. As a
substitute, we test the relationship between Hé(-|B:>O) and H;(~1BU>O).H
Notice that, if the distribution of S conditional on B, > O is equal to the
distribution of § conditional on B, > 0, then HG(b|BI>O) - Hi(biBU>0) -
H;(b) - H;(b), so that a test of a relation between Hé(b|BI>O) and H;(b|BU>0)
is equivalent to a test of the same relation between Hé and Hi. There appears
to be no obvious way to test this equality, however.
Table 2 reports the value of our test statistic under the hypothesis
that H;(b|BI>O) - H%(b|BU>O) for partitions of 8 sets of bids, and of 4 sets
of bids, each for the three subsamples described above. Let Z denote the

Wilcoxon test statistic defined above where X; generates the {x,} sample and

X; generates the {y,} sample. Table 2 uses the following definitions.

> An alternative is to simply guess the number of tracts which were offered
for sale but received no bids and add that number to the number of zero bids
for both neighbor and nonnneighbor firms. Tests based on the assumption that
neighbor and nonneighbor zero bids were independent choices generated similar
results. Figure 4 is constructed under the assumption that at least one bid
was offered on every tract offered for sale. Since there were 127 tracts on
which only neighbor firms submitted a bid but only 38 tracts on which only
nonneighbor firms submitted a bid, this figure probably overstates slightly
the ratio AG;/G; relative to AG,/G;.
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neighbor bids and high nonneighbor bids in (b, ., ,b,].

tracts on which the highest bid is in (b,_,,b,].

rejected high bids in (b,_,,b,].

neighbor bids in
high nonneighbor
neighbor bids in

high nonneighbor

Realization of Z using the

(0,b,] on tracts with B, > 0.
bids in {0,b, ] on tracts with B; > 0.
(b;.;.,b,] on tracts with B; > 0.

‘bids in (b,_.,,b,] on tracts with B; > 0.

entire sample.

Realization of Z when neighbor bids are taken from the jth random

subset of tracts and the nonneighbor bids are taken from its

complement,
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Table 2. Test For The Monotone Likelihood Ratio Property
1 2 3 4 5 6 7 8
b, .217 .564 1.370 2.447 4.221 6.671 114.133 [114.128
AN 53 53 53 53 54 53 53 53
ANy 37 37 33 30 40 40 37 41
AN 19 15 6 8 4 4 2 0
AN, 13 17 13 16 15 14 19 23
N, 51 68 81 97 112 126 145 168
ANg o 8 5 14 17 19 23 23 21
Nyy 135 140 154 171 190 213 236 257
z 3.75 4.70 1.59 1.57 0.90 0.09 1.01 1.82
(.0001) [ (.0000)|(.0559)[(.0582)|(.1841)[(.4641)|(.1562)|(.0344)
z, 2.68 3.23 0.91 1.24 0.45 -0.31 -0.01 2.21
(.0037){(.0006){(.1814)|(.1075)|(.3264){(.6217)|(.5040)|(.0136)
z, 2.72 3.49 1.42 .96 0.82 0.37 1.36 0.25
(.0033)1(.0002)|¢.0427)|(.1685)|(.2061)|(.3557)|(.0869)|(.4013)
z 5.81 2.22 0.72 1.97
(.0000) (.0132) (.2358) (.0244)
z, 4.11 1.49 0.11 1.57
(.0000) (.0681) (.4562) (.0582)
z, 4.10 1.65 0.85 1.21
(.0000) (.0495) (.1977) (.1131)
The number in parentheses is the probability that Z > z for a standard

normal distribution.

The z statistics reported in Table 2 test the equality of AN./N, and

ANy, /N, for each of the relevant intervals,

For bids less than

.56 million

dollars, we obtain a clear rejection of the equality of AG,/G; and AG;/G; in

favor of the one sided alternative that AG;/G; exceeds AG,/G,;.

The evidence
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for rejecting the null hypothesis for bids in the range .56 to 2.54 Million is
much weaker. For higher bids where the probability of rejection is 10% or
less, our tests provide no evidence that equality of the two rates can be
rejected, except possibly in the highest octile. Furthermore, for no interval
of bids would we reject the hypothesis that the rates are equal in favor of
the one sided alternative that AG, /G, exceeds AG./G;. We conclude that these
tests confirm the evidence provided in Figure 4 in providing strong support

for relation (R1l).

6.4 Tests for Equality of Bid Distributions

Relation (RZ) implies that G; and Gj should be identical above the
support of the reservation price. As indicated in Table 2, the proportion of
high bids which were rejected is not more than 10% at any octile of bids above
2.45 Million. However, it is difficult to obtain a precise estimate of the
rate of change in the probability of rejection. First, the rejection ratios
do not correspond to a single probability distribution, but rather to the
points fK(b]b,s)p(ds) in the one parameter family of probability distributions
fK(-lb,s)u(ds). Second, estimates of K(b|b) require roughly the square of the
number of data points required to estimate G, or G; with the same precision.
Nevertheless, it is clear that changes in the rejection probability are nearly
zero at extremely high bids. We should therefore expect to accept the
hypothesis that G;(b) = G,(b) at the upper tails of the distributions.

When applied to B; and B, and appropriately normalized, the Wilcoxon
test statistic measures I[Gu(b)dG:(b)-GI(b)dGU(b)}. Consequently, if positive
differences in one interval are offset by negative differences in another, we

may accept the null hypothesis that G; = G;, even if these differences are
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quite large. To be reasonably confident that the distributions are roughly
identical, therefore, it is important to compare the distributions from as
many angles as possible.

If the distributions are identical, one implication is that the rates
of change of G; and G; are identical. From this perspective, the results
reported in Table 2 support (R2), since the hypothesis of equality of rates of
change cannot be rejected for bids in the upper tails of these distributions.
More to the point, if the distributions are equal, the proportion of bids in
each sample should be equal over any interval. In addition, the
distributions, conditional on bids in an arbitrary interval, should also be
equal.

The test statistic reported in Table 3 is effectively a weighted
average of these two tests for equality.16 For each interval among the
octiles, quartiles, halves, as well as the complete range of bids, we define

X = Bj if Bj is in the interval, and XJ = 0, otherwise, for j = I,U. We

’ Let Z denote the

then test the equality of the distributions of X; and XU.1
Wilcoxon test statistic where X, generates the (x,} sample and X; generates

the {y,) sample. The following definitions are used in Table 3.

N = Number of tracts on which the highest bid is in (b, ,,=).

= Number of rejected high bids in (b, ,,=).

1® We also performed the two tests separately over the same intervals with
similar results,

Y In this case, the absence of the tracts on which no bids were submitted
does not present a sample selection problem. Letting q denote the probability
that a tract receives no bid, our sample consists of draws from
{GU(b)-q]/(l-q) and [G;(b)-q]/(l-q). Since 0 <q<1, it follows that

G(b) = Gy(b) if and only if {G,(b)-q]/(l-q) = (Gy(b)-qi/(l-q).
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AN; = Number of neighbor bids in (b,_,,b,].
ANg, = Number of high nonneighbor bids in (b,_;,b,].
Table 3. Test of Equality of Bid Distributions
1 2 3 b 5 6 7 8
b, 217 .564 1.370 2.447 4,221 6.671 |14.133 114.128
N 58 39 24 18 10 6 2 0
Ny 295 258 221 188 158 118 78 41
AN 39 42 32 31 27 27 28 31
ANy, 14 11 21 22 27 26 25 22
z 3.60 4,95 1.56 1.21 0.00 0.24 0.41 1.37
(.0002)|(¢.0000)|(.0606)|(.1131){(.5000)|(.5948)|(.3409})|(.0853)
z, 2.38 3.15 0.92 1.34 -0.20 -0.42 -0.43 2.08
(.0087)|(.0008)|(.1814)|(.0901)[(.5793)((.6628)|(.6664)|(.0188)
z, 2.70 3.05 1.37 0.37 0.17 0.65 0.95 -0.29
(.0035)|(.0011)|(.0853)[(.3557)|(.4325)]1(.2578)((.1711)(|(.614]1)
z 5.98 2.04 0.18 1.38
(.0000) (.0207) (.4286) (.0838)
0 4.14 1.72 -0.47 1.49
(.0000) (.0427) (.6808) (.0681)
z, 4.30 1.17 0.65 0.48
(.0000) (.1210) (.2578) (.3156)
z 5.71 1.38
(.0000) (.0838)
z, 4.13 1.09
(.0000) (.1379)
z, 3.97 0.92
(.0000) {.1788)
z 4.52
(.0000)
The number in the parenthesis is the probability that 2 > z for a

standard normal distribution.
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At conventional significance levels, we may certainly reject equality
of the distributions over the entire range of bids. However, our results
largely support equality of the distributions above 2.447M. Notice that, for
this range of bids, less than 7% of the high bids were rejected (although

Table 2 indicates that the marginal rejection rate is closer to 10%).

6.5 Test for Predominance of Neighbor Bids at Low Values

Relation (R3) states that, given the nonneighber information s, there
is a threshold b(s) at or below which only the neighbor firm bids with
positive probability. Integrating over s then implies a b such that
[G4(b)-G,(0)1/G4(0) > [G,(B)-G,(0)]/G,(0).'® This observation leads us to the
following tests of (R3).

Restrict attention to the set of positive bids. For each b,, let Xi
=1 if 0 <B; = b,, and X; = 0 otherwise, for j = I,U. We then test if
the distribution of Xa (weakly) stochastically dominates the distribution of
X;. Relation (R3) implies that we should reject this hypothesis for low
values of i. 1In fact, such a relation should be satisfied not only for the
high nonneighbor bid, but for any selection of nonneighbor bids on each tract.
Accordingly, we also construct X; from the samples of all positive nonneighbor
bids and all low nonneighbor bids (i.e. the lowest positive nonneighbor bid on

each tract with a positive nonneighbor bid). Our results are reported in

-Table 4. Let

% Since there are more tracts without nonneighbhor bids than tracts without

neighbor bids, rejection of {G,(Q)-Gﬁ(O)]/GB(O) < [G,(D)-G,(0)]/G,(0) in favor
of its alternative is less likely than rejection of Gﬁ(g)-GB(O) < G, (b)-G,(0).
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AN, = Number of neighbor bids in (0,b,].
ANg; = Number of high nonneighbor bids in (0,b,].
AN, = Number of all nonneighbor bids in (0,b,].
AN, = Number of low nonneighbor bids in (0,b,].
Table 4. Test For Predominance of Neighbor Bids in the Lower Intervals
1 2 3 4 5 6 7 8
b, .217 .564 1.370 2.447 4.221 6.671 |14.133 [114.128
AN; 39 81 113 laa 171 198 226 257
AN, 14 25 46 68 95 121 146 168
z 2.08 3.87 3.45 3.13 2.08 1.17 1.25 *
(.0188){(.0001)|(.0003){(.0009)|(.0188)((.1210)}(.1056)
z, 1.38 2.67 2.05 2.20 1.48 C.61 -0.63 *
(.0838)|(.0038)|(.0202)|(.0139)|(.0694)|(.2709)|(.7357)
z, 1.56 2.80 2.83 2.23 1.45 1.05 1.25 *
(.0594)(.0026)|(.0023)|(.0129)(.0735)((.1469)](.1056)
AN, 24 70 129 180 244 297 252 388
z 3.76 3.95 2.75 2.40 0.95 0.15 -1.13 *
(.0001)](.0000) | (.0030)|(.0082)|(.1711)[(.4404)|(.8708)
z, 2.13 2.64 1.36 1.93 0.66 0.15 -2.54 *
(.0166)|(.0041){(.0869)|(.0268)|(.2546)|(.4404)](.9945)
z, 3.16 2.94 2.53 1.45 0.67 0.92 1.01 *
(.0008)|(.0016)|(.0062)|(.0735)!1(.2514)((.1788)|(.1587)
LN, 23 55 91 109 136 146 158 168
z 0.42 -0.26 -2.05 -1.82 | -3.24 -2.53 -2.08 *
(.3372)1(.6026)1(.9798)[(.9656)|(.9994)|(.9943)(.9812)
z, 0.02 -0.26 -1.59 -1.82 -3.24 -2.53 -2.08 *
(.4920) | (.6026) | (.9441)](.9656)|(.9994)|(.9943)1(.9812)
z, 0.56 -0.25 -1.32 -1.64 -2.52 -1.25 -0.52 *
(.2877)1(.5987){(.9066)|(.94535)|(.9941)|(.8944})|(.6985)
The number in parentheses ig the probability that Z > z for a standard

normal distribution.
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For the sample of high nonneighbor bids and the sample of all
nonneighbor bids, Table 4 establishes a clear rejection of the null hypothesis
over the lowest quartile of bids. For the sample of low nonneighbor bids, our
tests do not lead to rejection of the null hypothesis over any of the
intervals. However, it should be noted that they do not lead to rejection of
its alternative over the first quartile either. We conclude that the data

provides reasonably strong support for relation (R3).

7. Conclusion

This paper examines how asymmetries in the distribution of information
among agents affect their behavior in a strategic setting. We study this
issue in the context of a first price auction with a random reservation price,
in which one buyer has superior private information and all other buyers have
access only to public information. Equilibrium bidding behavior under this
information structure requires that uninformed buyers collectively bid less
frequently than the informed buyer but, if they bid, they submit high rather
than low bids. Specifically, we show that the distribution of the informed
bid stochastically dominates the distribution of the high uninformed bid in
the range of the reservation price, and the two distributions are identical
above this range. These theoretical implications are strongly borne out by
our data from the auctions for offshore oil drainage leases.

As Ashenfelter's (1989) discussion of wine auctions demonstrates, a
random reservation price strategy is not unique to offshore oil and gas lease
auctions, but can also be found in the private sector. Therefore, the

implications of a random reservation price for bidding behavior under
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different information structures may be of more general interest than

suggested by our work here.
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APPENDIX

Al. The Effect of Introducing Uninformed Buyers on the Informed Bid
In this section, we establish that the introduction of unininformed
buyers never lowers the equilibrium bid of the informed buyer. We suppose

that bids must nonnegative.

THEOREM Al: If the auction with no uninformed buyers has an equilibrium, then
it has an equilibrium 8% such that, for any equilibrium (8,a) with an

uninformed buyer, G_(8(x)) > 0 implies ﬂo(x) < B(x) a.s.-Py.

PROOF: Let (8,a) be an equilibrium for an auction with an uninformed buyer
and ﬁo an equilibrium for an auction with no uninformed buyer. Then, since
E[V-b|R<b,X=x]J(b|x) is right continuous in b a.s.-Py, we may define ﬂo(x) to
be the smallest maximizer of E[V-b{R<b,X=x]J(b|x) a.s.-P,. Let L = (x € R¥:
B(x) < ﬁo(x) and G_(B8(x)) > 0}. Suppose P,(L) > 0. Then, the definition of
8% implies [, E[V-B(X)(R<B(x),X=x]T(B(X)|X)G(B(x))Py(dx) <
j}deE[V-b|Rsﬂo(x),X=x]J(ﬁ0(x)|x)Ga(ﬂ(x))Px(dx). But since G_(B(x)) =
Ga(ﬂc(x)) for % € L, the best response property for 8 (Lemma la) requires

L ixens ELV-B(X) IRSB(x) , X=x ] T (B(x) |%)G,(B(x)) Py(dx) =

T v ELV-B%(R) RSB (3)  X=x]J (8° () [ )G, (8" (%)) Py (d) =

e, ELV-8°(X) [R=8° (), X=x1J (8° (%) | )G, (B(x))By(dx) . A contradiction. Q.E.D.

A2. Affiliation
In this section, we define the concept of affiliated random variables
and establish Lemma 2 of the text. If Z is a random vector taking values in

RP, then the probability measure on R® induced by Z is denoted by P,.
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For x,y € RP, let x A y denote the pointwise minimum of x and y,
and let x vV y denote the pointwise maximum of x and y. A function £:%% - R
is affiliated if x,y € R®? implies f(xay)f(xvy) = £(x)f(y). A set S € R°
is a sublattice if .y is affiliated.

For any set A C %, let ., denote the indicator function for A on RP.
A set A € ®R® 1is increasing if :, is nondecreasing. Given two sets A and B,
let AB denote their intersection.. A random variable Z is affiliated if, for
all increasing subsets A A, of R’ and every sublattice S of RP, P,(A,A,8)P,(S)

= P,(A,S)P,(A,S). Milgrom and Weber (1982) establish the following result.

LEMMA Al: Z is affiliated if and only if for any nondecreasing functions a,
and a, on a sublattice S C RP, Ela, (Z)a,(Z)5(2Z)] E[tg(Z2)] = E[a,(Z):4(2)]

Ela,(Z)¢g(Z)].

PROOF OF LEMMA 2: (a) Let I and J be two disjoint intervalst? of Rx®R" such
that (x',r’') € I and (x,r) € J 1implies x' <=x and r’' =7r. Let T be be
the minimal sublattice centaining IwJ, let S = RxT, and let Z = (V,R . X).
Then, since T is a lattice, letting «,{(Z) =V, and a,(Z) = (R, XD,

Assumption 1 and Lemma Al imply that

(A1) E[Ve (R,X)] E[¢-(R,X)] = E[Vi(R,X)] E[¢ (R, X)],

9 A subset A is an interval of a subset S C R® if there are p-tuples

(al,...,ap) and (b,,...,b ) such that A = {x € S: a, = (<) x, £ () b,,
i=1,...,p), where the symbol =< (<) indicates that we are allowing arbitrary
open, half-open, and closed intervals.
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Similarly, letting a,(Z) =V and a,(Z) = L(T{)(X), the application

of Lemma Al implies, after cancelling terms,

(A2)  E[Viy(R,X)] E[+;(R,X)] 2 E[V:i;(R,X)] E[¢,(R,X)].

Mulitiplying (Al) and (A2) and cancelling terms, then yields

(A3)  E[Ve,(R,X)] E[¢[(R,X)] = E[¢;(R,X)] E[Ver(R,X)].

(b) Let I and J be two disjoint intervals of R” such that x’' € 1 and

x € J implies x' < x and let T be be the minimal sublattice containing IuJ,

Let S = Rx(-=,r]xT, Z = (V,R,X), and «a;(2) = L(r“rl(R). Suppose first that

a,(Z) = ¢,(X). Then Assumption 1 and Lemma Al imply

(88)  Elv o (R);(X)] E[t g (R)eg(X)]

= E[‘(r"r](R)LS(X)] E£"(-m'r1(R)LJ(X)]

Suppose next that a,(Z) = -¢;(X). Then a similar application of

Lemma Al implies, after cancelling terms,

(A5)  Elig (R ep(X)] Efe o (R (K],

2 Bl (R (X)) Bl g (R) (X))

Multiplying (A4) and (AS5) and simplifying yields

(A6)  Elt(m oy (R0 (0] Elt oy (R)e,(X)] = Elv g (R)4;(] E[t g (R) ()]
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Since the intervals of R" generate its Borel sets, Parts (a) and (b)

follow from relations (A3) and (A6). Q.E.D.

A3, Proofs of Theorems 1 and 2

If £ is a monotonic function, let £ (r) = lim,, f(s).

LEMMA A2: Suppose f and g are nondecreasing, nonnegative, right continuous
functions. Then f£(r,)g(r;) < f(r)glry), ry, < 1r; implies an 7 <1 and

r, > r, such that [g(r,)-g(r)]f(r) < nlf(ry)-f(r)]g(r), r € (ry,1,).

PROOF: Suppose f(ro)g(rl) < f(ryglry) for some 1, < r,. Then we may
choose 17, < 1 so that (g(ry)-n.g(ry) | /[£(xr)-£(xy)] < n,&(ry) /£(xry). Since
n, <1 and f and g are right continuous and nondecreasing,

(g (r)-ny,g(ry) ] /{f(r)-£f(r,)] attains a minimum over (ry,r,] at some r, for
which f(r) < f(r;) for r < r,. Therefore, for r € (r,,r;),

(B () -nag(ry) 1 [£(r)-flry)] = [g (ry)-neglry) HE(r)-£(xy)] =

[g-(rz)‘nog(ro)}[f(rz)'f(ro)] - {g_(rz)'ngg(rg)}[f(rz)'f(r)] which implies
(A7) [g-(rz)_ngg(ro)][f(rz)'f(r)1 z [g_(rz)'g(r)][f(rz)'f(ro)]-

By definition, [g (r,)-mg(ry)1/[£(x,)-£(ry)] < nug(ry)/E(xy).
Multiplying both sides by [f(rz)-f(ro)]f(ro), adding g_(rz)f(rz) + nog(ro)f(ro),

and simplifying implies an n < 1 such that

(A8) (g (1) -mog(ry) 1E(xr,) < ng (ry) [£(r)-£(ry)].
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Multiplying relation (A7) by f(r,), substituting relation (A8), and dividing
by [£(r,)-£f(r,)] then yields ng (ry) [f(ry)-f(r}] > f(rz)[g-(rz)-g(r)] which
may be rewritten as (n-l)[g-(rz)-g(r)][f(rz)-f(r)] + ng(r)(£(r,)-f(r)] >

£(r)[g (r;)-g(x)]. Q.E.D.

PROOF OF THEOREM 1: Suppose part (a) is false. Then Ga(bO)Gﬂ(bl) <
G, (b1)G,(by) for some b, < b;,. It then follows from Lemma A2 and the right
continuity of G, and G, that b, may be chosen so that Gg(by) > Ga(by) > O,

and, for some n < 1,
(A9) [Gé(bl)-cﬁ(b)]Ga(b) < n[G,(b)-G,(b)]Ga(b), b € (by,by).

We will use the best response properties of Lemma 1 to establish a
contradiction to (A9).

Since (A%9) implies that G (b) < G (b;) for b < b,, the zero profit
condition (Lemma 1lb) implies a nondecreasing sequence b* - b, such that
lim . .o ok, E[V-D*|RSb®, =b]K(b*|b)P,(db) = O. Assumption 4 also implies that
(bk) may be chosen so that K(bk|b)G6(bk) >0 a.s.-P,, and hence K(b,|b) > 0

a.s.-P,. Also, Lemma 4a implies E[V|R<b® B=b] < E[V|Rsb,,f=b] a.s.-P,, and

g
Assupptions 3 and 4 imply that E[V|R<b,,B=b} is strictly increasing in b a.s.-

P Then, since the nonpositive profit condition (Lemma lb) implies

8-
E[V-b,|R<b,,B=b,]K(b,|b,)P,({b}) = f(_m,bllE[V-bﬂPébl,ﬁ-b]K(bllb)Pﬁ(db) -
limk_mfc_m’bk]E[V-bk|R5bk,ﬂ=b]K(bk|b)PB(db) < 0, it follows that Py({by}) = 0,

and
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(810)  [(-a b E[V-D;[Rb;, B=b]K (b, |b)Py(db) = 0.
Lemma 4 implies that E[V-b,|R<b,,B=b] is strictly increasing and
K(b,|b) is nondecreasing in b a.s.-Pg,. Then, since K(b,|b) > O a.s.-P;, G4
is continuous at b, and Gﬁ(bl) > Gﬂ(O), relations (A9), (Al0), the best
response property for 8 (Lemma la), and the nonpositive profit condition for a
(Lemma 1b) imply that b, may chosen to satisfy the following relations.

(A11)  [Gy(by)-G4(b) ]G (D) < n[G,(b)-G,(b)]G,(b), b € (by,by),

(A12)  E[V-b |Rsb,, =by]K(b,{by) [G4(b;)-Gy(by) ]

2 1 [ip, 5 E[V-b|R<b,, S=b]K(b,|B)P,s(db) > 0.
(A13)  E[V-b,{Rsbg,B=b K(b,|by)G,(by) = E[V-b |Rsb,,B=b,]K(b,[by)G,(b,).

(Al4) f(_m’bliE[V-bl|R5bl,ﬂ=b]K(b1|b)Pﬁ(db)

= [ (o5, E[V-DgIRSby, f=b]K(by|b)Py(db).

For b>0 and i =1,2, let K (b) = K(b,|b), w;(b) = E[V|R<b, ,f=b],

and w,(b) = E[V|b,<R<b,,f=b]. Then relation (Al3) implies

(A]-S) [wl(bg)'bllKl(bo){Ga(bl)'ca(bo)]

+ [[wﬁ(bo)'bo][Kl(bg)'Ko(bo)] - [bl'bo]Kl(bg)} Ca(bo) = 0.

Similarly, substituting (Al2) into (Al4) and rearranging terms yields
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(A16)  [w,(by)-b 1K, (bg) [G4(by)-Gy(by) ] +

ﬂf(-n,bol[[wa(b)'bo][Kl(b)'Ko(b)} - [bl'bO]Kl(b)] Pﬂ(db) > 0.

We will show that relations (AlS) and (Al6é) and the restrictions of Lemma 4
are inconsistent with relation (All).
Since Lemma 4a implies w,(b) < w,(by), b = by a.s.-PB, relation (Al6)

implies

(Al7) [w,(by) -B 1K (by) [Ga(b ) -Gy(by) | +

v
o

nJ}-,jol{[wA(bOD-bol[K1<b>-Ko(b)] - [by-by]K,(b)] Py(db)

\%
o

Also, since Lemma 4a and relation (All) imply WA(bO) g, and
Lemma 4b implies [K,(b)-K,(b)[K,(by) = [Kl(bo>'Ko(bo)]K1(b)v b=b, a.s.-P

relation (Al7) implies

(A18)  [w,(by)-b,JK,(by) [G4(b,)-Gs(bg) ] K (by) +
1119, (bg) -bg ] [Ky (Bg) -Kg(By) ] = [by-bolK (bg) ] [y Ky (b) Bys(db) = 0.

Finally, since Lemma 4b implies K,(b) = Kq(bo)' b=<b a.s. P

0 B

relation (Al2) implies [w,(by)-b,]K,(b,) > 0, it follows from (Al8) that

(A19)  [w,(by)-b,]K,(by) (G4(b,)-G,(b,)] +

'][[wa(bg)'bo}{Kl(bg)'Ko(bg)] - [bl'bolKl(bo)l Ga(bo) = 0.

Multiplying (Al6) by G,(b,), (A18) by G, (b,)/n and subtracting then
implies [Gﬂ(bl)-Gﬁ(bo)]Ga(bo) = n[ca(bl)-ca(bo)lcﬁ(bO)’ contradicting relation

{(All). This proves part (a).
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(b) If R is independent of (V,X), then K(bjb’') = K(b). Let v(b) =
E[V|B=b] and H(b) = G, (b)K(b). Suppose G, is strictly increasing on (b’,b")
with b’ > 0. Then Part (a) implies that G; is also strictly increasing on
(b' ,b") so that Assumption 4 guarantees that v(b) >b, b € (b',b") a.s.Py.

We establish first that GB and H are continuous on (b',b"). For
b,b+e € (b',b"), the zero profit condition (Lemma 1lb) implies
(b+e)Gg(b+e) - bGy(b) = j}hb+”v(t)9ﬁ(dt). Letting ¢ } O then yields P, ({b})
= 0. Similarly the best response property for § (Lemma la) implies
[v(b-¢)-bJH(b) =< [v(b-¢)-b+e]H(b-¢) or, equivalently,
[v(b-¢)-b+e ] [H(b)-H(be)] < eH(b). Letting ¢ ¢ O then yields H(b-¢) t H(b).

Given the continuity of G,, we may express the zero profit condition
for a in terms of the Stieltjes integral, bGy(b) = byGy(bg) + [p v(t)dG,(t),

b e [b',b"). Let =a(b) = v(b)-b. Then, applying the formula for integration

by parts yields
(a20) L m(b)dG,(b) = [2.Gy(b)db.

Now consider an arbitrary increasing sequence b’ = b, < b, < ... <

b < b, = b". The best response condition for B implies, for i = 1,..,n,

n-1
(A21)  m(b)[H(b)-H(b,_)] = [b,-b_ JH(b, )

and

(A22)  w(b,_) [H(b,)-H(b, )} = [b,-b,_,]H(b,)
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Since x is of bounded variation (the difference between two monotone

functions) and H is continuous, (A21) and (A22) imply

(a23)  [Plx(t)dH(t) = JL.H(E)de, b e [b’,b"].

Furthermore, since Gﬂ and H are continuous and positive on [b’',b"], it follows

from (A20) and (A23) that, for b € [b’',b"],

(a24)  [{/(t)dlog(Gy(t)) = b - b',

and

(a25) [P ix(t)dlog(H(t)) = b - b’.

Subtracting (A25) from (A24) and recalling that =(b) > 0, b € [b',b"], it
follows that j:,dlog(H(t)) = Jﬁ,dlog(cs(t)), be [b',b"]. Upen evaluating

this expression and subsituting for H, we obtain part (b). Q.E.D.

PROOF OF THEOREM 2: We will show that Gﬁ(b*) = GE(O) ‘mplies G (b') =
G,(0), for some b’ > b*. Fix b, > b*. Since Assumptions 4 and 5 imply
that GB(O) > 0, it follows from Assumptions 3 and 4 that K(b,|b)G_(b,) > 0
a.s.-P,. The best response property for B implies
E(V-b,|Rsb,,8=bD]K(b,|b)G (b)) < 0 for b < b* a.s.-Pj. Therefore, it follows
from Assumption 5 that f(qhqu{V-bl|R5bl,B—b]K(bl|b)PB(db) < 0. The right
continuity of G‘g then implies a b' > b* such that, for b2 <b',

J (<o, E[V-D |Rsb;, B=b]K(b, [b)P,(db) < O and hence from Lemma 4a that
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j}-,mZ]E[V-bz|R5b2,ﬁ-b]K(b2|b)Pﬂ(db) < 0. The result then follows from the zero

profit condition for a (lLemma 1lb). Q.E.D.
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Figure 2a. Bid Functions for Example 1.
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Figure 3a. Bid Functions for Example 2.
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Figure 4. Rates of Change in the Distributions
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Figure 5. Relative Number of Low Bids
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