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Abstract

Sufficient conditions are described such that small perturbations in
the coefficients of a nonsingular system of linear equations have no effect
on some components of the solution vector.

Applications in linear program-

ming and game theory are discussed.



For all values of t in some domain, let B(t) be an m* m matrix of
real numbers and let b(t) be an m-vector of real numbers. Assume that
B and b are both continuous functions of t. Suppose that for some £°
in an open subset of the domain, B(to) is nonsingular. Then B(t)
is also nonsingular on some open neighborhood N containing to. In this
paper, we shall be interested in discovering usable sufficient conditions
such that certain components of x(t) = B-l(t)b(t) are constant on N, That
is, we are interested in discovering conditions under which certain com-
ponents of x are insensitive locally to continuous parametric variations
in both B and b.

To provide some motivation for this problem, suppose that B(t%) is
the optimal basis for some linear programming problem; and suppose that both
the primal and dual problems are nondegenerate at B(to). (See DANTZIG[Z],
for example, for a text on linear programming.) It is generally considered
to be important that for small parametric variations in the linear program,
the corresponding columns of B(t) still constitute an optimal basis. This
information often makes sensitivity analysis in applied linear programming
problems relatively easy, especially when B(t) = B(t°). We seek conditions
under which, even though B(t) may not equal B(to), computation of some of
the components of x(t) is unnecessary; since they are the same as the cor-
responding components of x(to).

Two sufficient conditions will be established. The first, which is
easy to check in specific problems, will be applied to dynamic Leontief-

type models and to two models in noncooperative game theory. The second



condition is somewhat more difficult to verify in specific problems; but

an example will be presented to indicate its possible usefulness.

1. First Condition.

Suppose that B(t) and b(t) are partitioned as follows:
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nonsingular, O is a matrix of appropriate dimension each element of which
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is the constant zero, and B11 and b1 are constant with respect to t. Then,
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whenever B22(t) is nonsingular, x(t) = (

is the unique solution of B(t)x(t) = b(t).
We now discuss three applications of this observation.
Application 1: Consider the linear programming problem:
minimiée ch

subject to Ax =b
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where A may be partitioned in the form
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Aii is a Leontief matrix for i = 1,..., n and Aij £ 0 for i > j. Such pro-

grams have been widely used in economic modeling (see, for example, VEINOTT[6]).

It is well-known that any optimal basis B for such a problem has the form
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B21 BZZ ) where each Bii is nonsingular., Suppose further that
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the optimal basis is both primal and dual nondegenerate. Consider now suf-
ficiently small continuous perturbations in the coefficients of ¢, A, and
b. Partitioning x and b accordingly, if for some k < n the perturbations

do not affect Bij and bi for i =1,..., k, then it follows that the optimal

values of x

1200 xk for the program are unaffected by the perturbations.

As an example, suppose that the problem is one of minimizing the cost
of satisfying certain production requirements b in each of n time periods,
when the Aij are appropriate technological coefficients. The result then
implies that changes in costs, future requirements, and future technological
coefficients, small enough that primal and dual feasibility are maintained,
do not affect optimal activity levels in earlier periods.
Application 2: It is known (see COTTLE AND DANTZIG_[I] and LEMKE AND HOWSONLY))
that the problem of finding all Nash equilibrium points for a two-person non-

zero-sum game may be solved by finding all solutions to a system
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<w, (x, y9)> = 0 (2)

w, X, y =2 0 (3)

where G and H are strictly negative matrices of the same dimensions, say
rXs, and I is the (r+s) * (r+s) identity matrix, A complementary basis
for this problem is a nonsingular submatrix M composed of (r+s) columns

from the partitioned matrix with the property that



has a solution and exactly one of the ith column of I and the ith column
0 G
H' 0

of is present in M for i = 1,..., r+s. Under the usual nonde-

generacy assumption, (xo, yo) is a Nash equilibrium for the game (G, H)
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if and only if X = —= T > y0 = —%r; and (w , x , ¥y ) is a solution
ex ey

of (1), (2), (3), the positive components of which correspond to columns of
some complementary basis. (ez is an f-vector of ones for £ = r, s.)

By rearranging columns, it is clear that any complementary basis can be
written in the form (g g) where D and E are nonsingular. All columns
corresponding to positive y are in <g> and those corresponding to posi-
tive x are in (g). Suppose that the elements of the matrix H (i.e., the
second player's payoff matrix) are perturbed a sufficiently small amount;
then by the first sufficient condition, the same strategy yo for player 2
is part of a Nash equilibrium in the perturbed game against a slightly dif-
ferent strategy for the first player. (Of course, we may rename the players
and make the same statement about player 1.) That is, in a nondegenerate
bimatrix game, small changes in one player's payoff matrix alter only the
equilibrium strategies of his opponent.

Application 3: We now turn to a class of two-person, nonzero-sum games
with the extensive-form structure pictured in Figure 1. (In words, chance
makes one of K possible moves with probabilities I ERREE Py respectively,

known to both players. Player 1 then makes one of r moves, having observed

k

chance's move k. Player 2, in ignorance both of chance's move and 1's move
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makes one of s moves. The payoffs for all possibilities are known.) As

a special case of Theorem 1 in HOWSON AND ROSENTHAL[4] and the construction
in HOWSON[3], it can be shown that Nash equilibria in behavioral strategies
correspond to solutions of a linear complementarity problem with the same
structure as in (1), (2), (3) except that for this case G is not a function
of (pl,..., pK) while H is. Again applying the first condition, we conclude
that in a nondegenerate game of the form represented in Figure 1, for suf-
ficiently small changes in the chance-move probabilities, player 2's equili-
brium strategies are unchanged.

Although applications 2 and 3 both concern two-person nonzero-sum
games, they differ in that the perturbations of the probabilities in appli-
cation 3 affect the payoff matrix of player 2 in the normal form of the
game, but in such a way that his equilibrium strategies are locally con-
stant., On the other hand, the results in both applications 2 and 3 can
be uﬁderstood intuitively in the following way. The equilibrium conditions
require each player to make his opponent just indifferent between each of
the opponent's basic strategies. For sufficiently small perturbations from
a nondegenerate game the basic strategies do not change, and for the parti-
cular perturbations in these two cases neither does the opponent's expected
payoff; hence, no change in the player's own equilibrium strategies. (I am

indebted to Lloyd Shapley for this observation.)

2. Second Condition.

In this section, we derive a sufficient condition from considerations

of duality.



Partition the original linear system as follows:

. Xl(t)
KBl(t)Bz(t)> ] = v,
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Since we seek conditions under which xl(t) is constant on a neighborhood of
o . .
t , rewrite this as

o
Bz(t)xz(t) = b(t)-—Bl(t)xl(t )
From linear algebra, this system has a solution at t if and only if:

LT
Bg(t)y = 0 implies (b(t) - Bl(t)xl(to)> y=0. (%)

Since it is generally difficult to ascertain whether or not (4) holds for
all t in some neighborhood of to, this necessary and sufficient condition
is useless for practical purposes, The following special case is, however,

verifiable. Suppose that for all t in a neighborhood N about to,

T
5,(6) = {y : By(t)y = 0} and 8,(t) = {y: (b(t) - B ()% (7)) y = 0}

are constant; then since (4) holds at to it must hold throughout N. In
order that Sl(t) be constant over N it is sufficient and necessary that the
Hermite normal forms of all Bg(t) are the same over N. In order that Sz(t)
be constant over N it is both sufficient and necessary that b(t) -Bl(t)xl(to)
be a nonzero scalar multiple of b(to) -Bl(to)xl(to) throughout N, In many
practical problems, both of these may be easy to verify when true.

Consider the following example.

-t t 14+ 3t 0 ) r’xl(t)\ [ 1- t2
0 - -tD) 0 a+o’| | 5of - | 20-
B3a-t)  3a-6) 30430 20+07 | | x(® 9(1 - t2)
2(1-t%)  2(1-t%)  5(1+3t)  4(l+ t)zJ x, () 21(1 - tz)J
. ) . :
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At t = 0, x(0) = is the unique solution. It is not immediately

3

clear from inspection whether or not, for t near zero, the system remains
solvable with xl(t) = 1 and xz(t) = 1. Checking the second sufficient

condition,

T (1+3t) 0 3(1+3¢t) 5(1+3t)
B, (6) = 2 2 2
0 (1+t) 2(1+t) 4(1+t)

Clearly its Hermite normal form does not depend on t for t> - % .
b(t) - Bl(t)xl(to) = (1- tz)(l, 3, 9, 17), a nonzero scalar multiple of
b(to) —Bl(to)xl(to) = (1, 3, 9, 17) for \t\ < 1. Hence, the system re-

mains solvable with Xl(t) = xz(t) =1 for - %-< t <1,
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