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Abstract

Two theorems are given; the first extends the Sonnenschein-Mantel-Debreu
theorem characterizing aggregate demand functions from the set of n > 2
commodities to all 27 - (n+l1) subsets of two or more commodities. The second
theorem concerns spatial voting models for k > 2 candidates over a space of n
issues. The relationships among the sincere election rankings of the
candidates for all of the sets of 2! - 1 issues are given. Both theorems have
the same kind of conclusion; anything can happen. By showing the mathematical
reasons for these results and by recalling some recent results from
statisties, voting, and economics, it is argued that this "anything can
happen" conclusion is the type one must anticipate from aggregation
procedures; particularly processes of the type commonly used in economic
models where the procedure is responsive to changes in agents' preferences,
changes in data, etc,
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In 1972, H. Sonnenschein asked whether the aggregate excess demand function possesses
any general properties other than the classical assertions about continuity, homogeneity,
and Walras’ Law. The stunning conclusion, discovered by Sonnenschein (26, 27], Mantel
(10], and Debreu [3], is that there are no others. (Also see A. Mas-Colell [11] and the
nice exposition found in W. Shafer and H. Sonnenschein [25].) The SMD theory proves
for n > 2 commodities that starting with any choice of a continuous, homogencous (of
degree zero) function é(p) satisfying Walras’ Law, an assignment of monotone, continuous,
strictly convex preferences and initial endowments for n agents can be found so that £(p)
is the aggregate excess demand function for this economy over most values of the prices
P = (piv"' apn)'

A related problem concerns the kind of information revealed about an economy once £(p)
is specified. So, for a given £(p) wheren > 3, let e represent one of the associated economies
guaranteed by the SMD theory. Instead of exchanging all n commodities, suppose these
n agents exchange only the k commodities, C = {e1,...,ex}, 2 £k < n; the remaining
n — k commodities, {Cx+1,.-.,Cn}, are withheld from the market for legal or other reasons.
Represent the relevant prices and the aggregate excess demand function for this restricted
market by pc = (p1,..,p) and £c(Pc).

An extension of Sonnenschein’s question that is in the spirit of the revealed preference
literature is to determine all relationships that exist between £(p) and Ec(pc)- For n-
stance, suppose for k = 3,n > 3 that £(p) satisfles the Arrow-Hurwicz [1) condition of
gross substitutes; a condition that ensures {(p) defines a well behaved dynamic (gradient-
like) with a unique stable equilibrium. How much of this regularity must ¢ (pc ) inherit?
Does this assumption on € preclude the possibility that £ exhibits a limit cvele of the
form created by Scarf [24], or that it prevents {¢ from admitting an even more extreme
structure with many different equilibria where each is locally unstable? (Sce Saari-Simon
[21].) Conversely, what happens when new commodities are introduced into a market? As
an illustration, suppose liberalized laws permit previously proscribed cominodities to be
exchanged in the market place. What properties of {¢ impose restrictions on the behavior
of &7

Morc generally, let C" = {c1,...,cn} denote the set of all n > 3 commodities. The
set €™ admits 2" different subsets of commodities. One of these subsets is empty and
n of them consist of a single commodity, so denote the remaining 2" — (n + 1) subsets
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(with at least two commodities) by Di, ... v Dan_(a41y- When only the goods listed in
D; are exchanged in this economy, represent the corresponding prices as pp; and the
aggregate excess demand function as {p; (pp;)- The more general issue for an exchange
economy is to determine all possible relationships among these 2™ — (n+1) aggregate excess
demand functions. Forinstance, using the intuition behind the consumer surplus literature,
one might wonder whether the excess demand functions for the restricted markets tell us
anything about the excess demand function for the full market. As an extreme example,
suppose for each of the 2" —(n+2) proper subset of goods that the excess demand function,
£p;, satisfies the gross substitutes property. Does this strong regularity assumption impose
any restrictions on the excess demand for the total economy? What are the relationships
among the 2" — (n + 1) excess demand functions?

The somewhat unexpected conclusion, as proved here, is that for most prices there need
not be any relationship whatsoever among the demand functions {{Dj}_?;;(nﬂ);
can happen! Indeed, the formal statement has the exact same flavor as the SMD theory.
As asserted in Theorem 1, for each D; one can choose any continuous function £p, (PD;)
that is homogencous of degree zero and satisfics Walras’ law for pp;. Theorem 1 ensures
the existence of an economy e - an assignment of monotone, continuous, strictly convex
preferences and initial endowments for n agents — so that whenever only the goods listed in
D; are exchanged, the chosen function {p; (pp; ) is the aggregate excess demand function
for most values of the prices pp;;j =1,...,2" — (n + 1).

anything

As it will be apparent from the proof, this conclusion that “anything can happen”
extends to other price models. In fact these results extend, in part, cven to individual
excess demand functions. This last assertion is an immediate by-product of the nature
of the proof of Theorem 1. Here, following the lead of Debreu, cach aggregate excess
demand function ¢p, (pp;) is divided into an individual excess demand for each of the n
agents. Then an individual preference relationship and initial endowment is constructed
for each agent that generate the assigned demand functions. Because these individual
excess demand functions for the different choices of sets Dj can be unrelated, it follows
immediately that even for an individual, very few constraints can be imposed upon the
excess demand functions defined by the different subsets of commodities.? This assertion,
for example, suggests an immediate explanation for some of the well known difficulties
in consumer surplus and other topics. However, rather than discussing the conscquences
and corollaries of these results, [ choose to emphasize the nature of this conclusion which
asserts the existence of chaotic outcomes from an economic model.

This claim that “anything can happen” is surprising. It appears to add further sup-
port for W. Hildenbrand’s opinion that “an exchange economy can no longer serve as an
appropriate prototype example for an economy if one wants to go bevond the existence
and optimality problem.” (3, pp26]. Perhaps; but perhaps there is another interpretation.
Perhaps, as argued here, the deeper message is that this conclusion where anything can
happen is the type of outcome we must anticipate for large classes of economic models. As
I show, there is a growing body of evidence to indicate that this kind of outcome occurs
with many of the aggregation processes — from statistics, choice, and allocation systemns —

2The qualification arises because, in the proof, the assigned individual excess demand functions are of a
particular form. However many of these restrictions can be eliminated.
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that are widely used in economic modeling. This in itself suggests that unless proved oth-
erwise one must expect that anything can happen with many different economic models.
To support this assertion I offer another theorem with a very similar conclusion, I discuss
some related results from the literature, and I indicate how some standard assumptions
from economics and decision theory are responsible for this kind of outcome.

Before discussing the prevalance of this behavior, it is worth considering some immediate
consequences. In particular this assertion means that, unless and until proven otherwise,
one must not assume that conclusions based on economic models are robust. Without
proof, we cannot assume that a “minor” change in assumptions or procedures will cause
only slight changes in the conclusions. Instead one must suspect, until proven otherwise,
that the outcome of an aggregation, decision, or allocation procedure can be highly sensitive
to modifications of certain basic assumptions; e.g., changes in the set of agents, restrictions
on the set of commodities, variations in the set of issues, preferences, etc. As shown
here, “small” changes in these variables can lead to radical differences in the conclusions.
Conscquently one must wonder, for example, whether “simplifying assumptions” about
such variables (e.g., “let all agents have preferences of the type . . .7} serve merely to
simplify the analysis, or whether they critically dictate the final outcome. One must wonder
whether conclusions derived from such a model indicate universal truths about economics,
or whether they reflect only what occurs in special cases. If it is the latter, then, as argued
in (Saari and Williams [22]), different mechanisms and procedures are required for different
economic settings.

The assertion that a chaotic® state of affairs should be anticipated with economic models
is strongly supported by the behavior of the commonly used system of plurality voting; a
system that admits strikingly similar conclusions. To motivate the discussion, suppose that
the outcome of a departmental plurality election for the one tenure-track position is ¢y >
¢y > -+ = ¢n and that the bottom ranked candidate, ¢y, withdraws from consideration.
Confronted with such a situation, it would not be uncommon for a department to act as
though nothing important has changed; the tacit assumption would seem to be that the
situation changed so slightly that ¢; remains the department’s top-choice. Would she?

As above, from the n > 3 candidates C" = {ci,...,¢n}, construct the 2" — (n + 1)

sets of two or more candidates {Dj}il;("“). With voting, the outcome for cacli D is an
election ranking rather than an excess demand function. So, for cach D; arbitrarily select
a (complete, binary, transitive) ranking of the candidates, a;. The conclusion (Saari [17})
is that there exists a profile of voters, p, where the sincere plurality election outcome of p
for the subset of candidates D; is aj;j = 1,...,2% —(n+1). This conclusion asserting that
“anything can happen” holds for almost all ways there are to tally ballots; the singular
exception where relationships always exist among the election rankings for n > 3 is the
Borda Count (Saari [17, 20]). (Recall, the Borda Count for n candidates is where a

voter’s ith ranked candidate is assigned n —: points, ¢ = 1,.-- ,n.)t In fact, even in a

3The word “chaos” is used both in its generic sense as well as to invoke comparisons with recent de-
velopments from dynamical systems. One such comparison is made above with the comment about the
sensitivity of aggregation procedures with respect to small changes in certain assumptions. The connec-
tions with dynamical systems are much deeper; the technical approach used in this program was motivated
by ideas from “chaos” and “symbolic dynamics.” These connections are described in Saari [15, 16].

41n a conversation (May, 1990) L. Hurwicz wondered whether there are allocation procedures for exchange
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more general social choice setting, one can argue (Saari [19]) that Arrow’s Impossibility
Theorem, Sen’s parcto liberal paradox, etc. are further manifestations of this property
that almost anything can happen with aggregation processes.

Similar assertions about chaotic outcomes hold for many other kinds of aggregation
processes including, say, statistics. As just one example, consider the widely used, non-
parametric Kruskal-Wallis procedure (see, for instance, Kruskal [8]). This method permits
the alternatives from a given set to be ranked. As above, from the set of all n alterna-
tives, C® = {¢1,...,¢n}, construct the sets Dr,...,Dan_(n41) consisting of two or more
alternatives. In her PhD dissertation, D. Haunsperger [4, 5] shows, in part, that the II-W
test does admit relationships among the rankings of the various sets of candidates, and
these relationships are the exact same kind admitted by the Borda Count from voting. As
Haunsperger also shows, should only slight differences be made 1n K-W procedure, then
there need not be any relationships whatsoever among the rankings of the different subsets
of alternatives. This kind of conclusion for statistics is not restricted to non-parametric
methods. A somewhat worrisome fact is that similar conclusions arise with Bayesian statis-
tics and Bayesian decision analysis — procedures commonly used in game theory and other
aspects of economic theory. (For a related type of problem sce Saari (18] and Haunsperger
and Saari [6].)

“Incentive Theory” is an economic topic specifically designed to avoid allowing every-
thing to happen. After all, by admitting additional alternatives, one may be creating
extra opportunities to manipulate the outcome. One incentive approach, the Bayesian-
Nash equilibrium of games, has enjoyed great success in explaining a wide variety of eco-
nomic behaviors. But, as J. Ledyard [9] noted, such research incorporates a standard set
of simplifying assumptions that frequently include “risk-neutral agents with quasi-linear
preferences and independently distributed private values.” He goes on to wonder whether
“it is the assumption of Bayes equilibrium behavior or the assumptions of specific utility
functions and beliefs which drive the results. If the former, then the assumptions are
merely simplifying and the conclusions of research in this area can be widely applied; if
the latter, then the assumptions are substantive and care must be taken not to attribute
too much to any particular result.” Ledyard then proves it is the latter! When a wider
class of utility functions and beliefs are admitted, anything can happen. By being free to
select preferences, he essentially proves that “any non-dominated behavior can be ratio-
nalized as Bayesian equilibrium behavior.” Ledyard’s conclusion. then. supports the theme
of this paper — we must anticipate that anything can happen. One must expect cconomic
procedures to be preference specific and sensitive to basic assumptions. (See Section 3.)

The basic reason for the above assertions is that for each system, each agent’s preferences
(or the data) can vary over a wide selection of quite different rankings. Each of the above
conclusions is a manifestation of the diversity of heterogeneous profiles and the sensitivity of

economies where, instead of Theorem 1, a Borda type of conclusion holds. There are. One 1s obtained by
replacing each agent’s individual excess demand function with the sum of the agent’s excess demands for
ecach pair of commodities. This procedure providesa Borda type of conclusion, but the resulting equilibrium
need not be a Pareto point. Indeed, with only a slight modification of the proof of Theorem 1 one can
show that the general properties among the sets of pareto points for the different sets of commoditics have
little to do with one another. This probably can be used to show there does not exist a procedure that
always satisfies both Hurwicz’s requirement and the pareto property.
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the procedure to changes in these profiles. Thus the plethora of different possible outcomes
follows from the richness of the space of profiles; a richness represented in Section 3 by
the geometric dimension of a space. To illustrate these comments a second theorem ( of
independent interest) is given. One of the advantages of this theorem is that the associated
geometry is sufficiently simple to illustrate the source of these assertions about chaotic
outcomes. (As a by-product, the geometry also indicates why these outcomes are “robust”
— they persist for open sets of preferences.)

To introduce this second theorem, note that in the above discussion about positional and
plurality voting, the outcomes can vary randomly with changes in the sets of candidates.
What happens should the set of candidates remains fixed, the voters remain the same,
but, say, the sets of issues change? (This modeling involves spatial models for voting.) As
asserted in Theorem 2, anything can happen. For each subset of issues, arbitrarily choose
a ranking for the candidates. There exist assignment of voters’ preferences so that the
plurality ranking of the candidates for each subset of issues is the chosen one.

2. Excess Demand and Spatial Models for Voting

Let p € R7. Recall that a function f(p) : RT — R"™ is homogeneous of degree zero iff
for any positive scalar A, f(p) satisfies

(2.1) f(ap) = f(p).

Function f(p) satisfies Walras’ Law iff

(2.2) <p, f(p)>=0

where < —, — > is the standard Euclidean inner product in R". If f(p) is homogeneous,
we can restrict attention to

Sil={peRi|<pp>=) pi=1}
j=1

Thus S_T__l is the portion of the unit sphere in the positive orthant R .

THEOREM (SMD). Let é(p) be a continuous function satisfving Eqgs. 2.1, 2.2. For e >
0, there exists an economy — an assignment of monotone, continuous, strictly convex
preferences »; and initial endowments for the agents — so that {(p) is thc aggregate
excess demand function for all p in

(2.3) St ={peSitp;>2ej=1...,n}

This assignment process can be accomplished with only n agents; there exist examples
where it cannot be accomplished with fewer than n agents.

The culmination of the SMD theory for exchange economies, as expressed in the above
strong, general assertion, is due to G. Debreu [3}.

Using the notation from the previous section, we have that if a function is homogeneous

of degree zero in pp,, then attention can be restricted to pp; € SL_[)jl_l.
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THEOREM 1. Let € > 0 be given. Let {.ij(ij)}flf(”H) be a collection of continuous,
homogeneous (of degree zero) functions where £p;(pp,) € R\Dil satisfies Walras’ law
< ép,(pp;),pp; >= 0. There exists an exchange cconomy consisting of n agents, ecach
with a fixed initial endowment and with monotone, strictly convex, continuous preferences,
with the property that should these agents exchange only the commodities in set Dj and
hold fixed the remaining commodities at their level of initial endowment, then the aggregate

excess demand function is {p,(Pp; ), PD; € Sle”“l'j =1,...,2" —(n+1).
7 2 7 H

A similar theorem also asserting that anything can happen occurs in spatial models
for voting®where the issues confronting the electorate can change. See, for instance, the
papers by McKelvey [12] and Kramer [7] and the book by Ordeshook and Riker [13] and
their references. In this setting the issues C® = {c1,...,¢n} are represented as points in
an issue space R" where the ith issue is assigned the coordinate direction e; the value of
a component of a point in R™ determines the degree of intensity in support of thie corre-
sponding issue — perhaps on a “liberal — conservative” scale. The ith voter is characterized
by a particular point q; € R® and, quite naturally, the closer another point is to q;, the
more the ith voter prefers it. Thus this agent’s utility function is Ui(q) = —||q. — q|| where
| — || is the Euclidean distance. A voter votes for the candidate whose views on the 1ssues
are closest to his; namely, voter i votes for the jth candidate characterized by her stand
lq; — ai || for all k # j. To become elected a candidate
attempts to position herself in issue space so she receives the most votes.

on the issues a; iff —|lq; —a;|| = —

The plurality method is a special case of a positional voting method. A positional voting
method for k candidates is defined by a voting vector WF = (w1,...,wy) where the scalars
w; satisfy the inequalities wy > wy = 0,w; > wipr,t = 1,..., k — 1. In tallying a voter’s
ballot, w; points are assigned to the voter’s ith ranked candidate. The candidates are
ranked according to their point totals where “more is better.” Thus, plurality voting 1s
defined by the voting vector (1,0,...,0) while the Borda Count is defined by (k — 1,k —
2,...,1,0).

Corresponding to each of the 2" — 1 subsets of one or more issues, {Dj}f_:;l from C'", let

RIPil be the appropriate coordinate plane (or axis) of R™ that represents the issue space for
D;. It is natural to wonder how a particular positioning of a candidate’s views affects her
chances with respect to different subsets of issues. It is obvious that if a candidate’s views
about abortion, foreign aid, or some other previously undiscussed issue suddenly become
disclosed, this changes the set of issues and it can affect her standing. The intcresting
issue is to determine whether there exist relationships among the election rankings for the
different sets of issues.

To pose this question in more specific terms, note that a basic assumption is that a
candidate attempts to choose her positions on the issues to appeal to the largest number
of voters. Presumably she does this by using surveys. So, suppose by use of totally reliable
polling information a candidate chooses the winning position for each of the n issues. Is it
possible for her to end up in a bottom-ranked position whenever sets of two or more 1ssues

5This model has close connections to other areas such as location theory, statistics, cte. As such, Theorem
2 illustrates that this “anything can happen” conclusion extends to several other topics. Indeed, it 1s easy
to modify Theorem 2 so that the conclusion applies to these areas.
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d.

are considered? As an even more dramatic example, suppose by using very sophisticated
polling techniques a candidate skillfully positions herself so she has the winning position
for each of the 2" — (n + 2) proper subsets of issues. Is it possible for her to end up being
bottom-ranked for the set of all n issues? As asserted in the following theorem, anything
is possible with a wide selection of choices of positional voting methods. This 1s because
there need be no relationship whatsoever among the candidates’ rankings for the different
sots of issues. As true for the earlier statements about positional voting, the Borda Count
provides some relief from all possible paradoxes. However, in this setting, the BC is not
alone: there are other choices of voting vectors that avoid even more paradoxes.

The second part of this theorem depends on the following non-degeneracy condition
imposed upon the positions taken by the candidates. It is a vector independence condition
that requires each candidate to distinguish herself in that her position is not a simple linear
combination of the positions assumed by certain other candidates.

DEFINITION. Represent the candidates’ stands on the issues by the vectors {a;}%_,. The
I candidates are distinguishing on the issues if for each D; the following condition holds.
For the set of issues D;, let v(D;) = min(k,|D;| + 1). For cach set of v(D;) candidates’
stands on the issues in D;, the convex hull of the points has dimension equal toy(D;)—1.

THEOREM 2. Assume there arc n > 2 issues, k > 2 aspiring candidates defined by their

position on the issues {a;}¥_,.
Assume that for each set of issues, the candidates’ stands are distinct — no two are the
same. There exists an open set of voting vectors W¥ containing the plurality voting
vector such that if W* € W is used to tally the clections, then the following holds:
Let a; be a ranking of the k candidates for Dj, j =1,...,2" — (n + 1). There exists a
choice of the m > 2 voters characterized by their beliefs over the issues, {q;}}L,, so that
when these m voters vote on the candidates subject to the sct of issues Dj, the outcome
isaj,j=1,...,2" =L
Assume the candidates’ stand on the issues is distinguishing. For each set of issucs
D;,|D;| > k, choose a ranking a; of the k candidates. For any choice of a voting vector
W* used to tally the elections, there exists a choice of m > 2 voters characterized by
their beliefs over the issues, {q;}",, so that when these m voters vote on the candidates
subject to the sct of issues Dj,|D;| > k, the outcome is a;.

From this assertion, it follows that anything can happen in the election rankings (based
on a wide choice of positional voting methods) when the sets of issues change. The conclu-
sion of the theorem extends to where voter’s preferences are modeled by use of auy other
choice of norms (where, say, the level sets are ellipsis or rectangles rather than circles), to
where different sets of voters can use different kinds of norms (to reflect different weight-
ings of the issues), and even to the setting where some voters' preferences are given by
semi-norms used to model those situations where some voters’ interests are restricted to
single or a limited number of issues. Some cxtensions to other classes of utility functions
can be made. In fact, the same conclusion holds even if the choice of the positional voting
method changes with the set of issues. (This last extension is more of interest for statistical
procedures than for election processes where the tallying method is designated in advance
and it is independent of what issues may emerge in an election. )
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To see the size of the WF sets, it follows from the proof that W} contains all methods
(there is only one), and that

(2.4) W3 = {W? = (w1, w2, 0)w; > 2wa}.

As a consequence, about half of all positional voting methods available for three candidate
clections are in W}. Moreover, the BC just avoids being in W} by being on the boundary.
The anti-plurality method (1,1,0) is the extreme case of a procedure not in W3, To see
why these last two voting vectors are not in W3, suppose for each set of issucs that the
positions of the three candidates form a straight line. This means that one candidate, say
¢o, always is in the middle. In such a degenerate (but admissible) setting, for each D;
¢; never can be bottom ranked by any voter. This restriction on the admissible profiles
forces ¢; to be BC ranked in first or second place. Thus the worse clectoral fate she could
encounter is a complete tie with all three candidates. Should the anti-plurality mecthod be
used, ¢ can do no worse than be tied for first- place with one other candidate. (This 1s
the only positional voting method W3 with this property.) So, because of the restrictions
on the profiles, not all election rankings can occur with these procedures. In fact for all
s,k > 2, the Borda Count, the voting vectors

8 times

and the convex combinations of these vectors are not in Wf.

By imposing more realistic non-degeneracy conditions on {a]'}f:], more types of profiles
are admitted. The effect is that Theorem 2 holds for larger classes of positional voting
methods. For instance, for integer §, 1 < 6 < k—1, and for each D;,|D;| > ¢, suppose that
the convex hull defined by each subset of 6 + 1 positions of the candidates has dimension 6.
This non-degeneracy condition admits more profiles, so there are fewer restrictions on the
voting vectors leading to the above type of conclusion. As such, the conclusion of Theorem
2 holds for much larger classes of voting vectors W§ (but the election outcome over sets
of issues fewer than § may be restricted.) This conclusion is indicated in part b of the
theorem for & = k — 1. When the candidates have distinguishing stands on the issues and
an arbitrary choice of W* is used, then there may be restrictions on the rankings when
the election is based on a fewer than k issues, but the restrictions lift as the value of |Dj]
increases, and they disappear once |D;| > k.

With the Euclidean norm, the flexibility in choosing the ith voter’s preferences, char-
acterized by q;, allows us to restrict the number of voters needed for the plurality vote;
it appears that the conclusion holds for m that is an integer multiple of & such that
m > (k;]). To appreciate this value of m, note that m = (k;”) voters are needed should
cach candidate receive at least one vote and should there be a one vote margin between
each candidate’s tally in the selected ranking. The condition that m is a multiple of k1s
needed only to accommodate a ranking of a complete tie vote among the candidates.

While Theorem 2 appears to be a new, different type of result for spatial models of
voting, there are other statements in this large literature with this same “anything can
happen” flavor. As a particularly well known example demonstrating how this flexibility
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can lead to problems of “manipulation,” I point to McKelevey’s important paper [12]
where, with some mild assumptions on the locations of the q;’s, he proves that one can
start with two erbitrary points Xp,yo € R"™ and then build an agenda (a listing of points
that are compared, in a specified order, with a majority vote) starting at point Xg, passing
through yo and returning to Xo. In other words, the set of issues and the voters’ points,
{q:}™,, points remain fixed, and the {aj}le points are chosen appropriately to create a
cycle.

3. The Basic Idea and Other Applications

The purpose of this section is to indicate that this kind of conclusion results from as-
sumptions that are most natural to many economic models. The mathematical approach is
a modification of the main theme in (Saari [14, 19]). It starts with the fact that aggregation
processes with m agents and n alternatives can be viewed as defining a mapping

m 8

(3.1) F:HPJ'—>HA1‘

3=1 =1

where P; is the space of preferences for the jth agent, A; is the outcome space characterizing
the different outcomes or rankings for the alternatives associated with the subset D;, and
the ith component of F' specifies the outcome of the profiles for D, 1=1,...,8. f Fis
onto, then it follows that any outcome admitted by A4; can be coupled with any outcome
from A;, j # ¢. This means that “anything can happen;” the outcome for one set D; need
not have anything whatsoever to do with the ranking for D;, j # 1.

Proving that a mapping is surjective concerns rank conditions for the Jacobian DPF.
Here the proof involves either a direct, or an indirect argument concerning how the value
of F varies with changes of profiles. Thesc rank conditions, then, arc identified with the
responsiveness of the procedure to changes in agents’ preferences. As responsiveness is a
common assumption in economics, one must expect, in general, that the rank conditions
will be satisfied. Thus, what remains is to compare the dimension of the domain and range;
if din".e(l_[;-n:1 P> dim(H?:l A;), then we must question whether F'is surjective; we must
anticipate the possibility of chaotic lists of outcomes. Stated in slightly different terms,
should a responsive model admit a rich selection of heterogeneous profiles, then one must
expect “anything to occur.”

Notice how these comments reflect the spirit of standard assumptions from social choice
and game theory. For example, a “no dictator” assumption requires a choice procedure to

6With the methods developed in this paper, one can show that a similar theorem holds should positional
voting methods be used instead of an agenda. Here values of 3, s are specified where 8 > s > 1. For a arbi-
trarily selected aj, an, a sequence of points {a1,...,an, ..., 8, a; } are given (but chosen appropriately).
The first 8 candidates are voted upon and then the s top-ranked candidates are advanced to be compared
with the next 3 — s listed candidates. The procedure is continued until the last set of candidates is selected,
and then the top ranked candidate is selected. At one of the steps, an will be the top-ranked candidate;
the final winner is a;. So, if # = 2 and s = 1, then this becomes the McKelevey Theorem. Should there be
at least 3 issues, it can be shown that this conclusion holds for all positional voting methods and that 1t
follows from the results in Saari [17). Thus the technically interesting case 1s for fewer than 3 issues with
the accompanying restrictions on profiles.



be responsive to the preferences of more than one agent, while other assumptions, such as
independence of irrelevant alternatives, contribute to the rank considerations or serve to
determine the dimensions of the domain and range. Thercfore one might correctly suspect
that the kind of ideas developed here can be used to explain, extend, and unify many of
the results from social choice, including Arrow’s Theorem — one just nceds to create an
discrete analog for the Jacobian. (Saari [19].)

One way to illustrate these ideas is with the simple geometric proof of Theorem 2 for
k = 2,n = 2, where there are no tic votes for the selected {a;}3_;. Let a; p; denote the
ith candidate’s position on the issues in D;. As each candidate’s position on cach of the
coordinate axes of R* = R? uniquely defines her position for the space of both issues, it
follows that

(3.2) ai 1,2) = (@i 1), 30 2))

For the jth axis (representing the jth single issue), ;7 = 1,2, find the perpendicular bisector
for the points ay {;1,a;,{;}. These two lines, one horizontal and the other vertical, divide R?
into four regions. (See Figure 1.) The ith voter’s preferences based on the two single issues
is determined by which quadrant contains q,. Thus each of these quadrants is characterized
by one of the four pairs of ordinal rankings of the single issues. For instance, the rankings
ap {1} > az,(1), A2, {2} > A1 {2} correspond to where q; is in the quadrant on the a; {;y side
of the vertical line and the a, y,} side of the horizontal line.

To determine the ith voter’s preferences for the full set of issues {1,2}, find the perpen-
dicular bisector of the line segment connecting the two points a; {1 21,22 (1,2} For single
issues each candidate has a distinct position, thercfore this line segment is not paraltel to
either coordinate axis. With the assistance of simple trigonometry (using the fact that
in similar triangles the ratios of similar sides is a fixed constant), it follows that this per-
pendicular bisector passes through the intersection of the horizontal and vertical lines.
Moreover, this bisector passes through the two quadrants where a voter changes his rank-
ing of the candidates depending on which single issue is being considered. What this
bisector determines, then, is how such a voter ranks the candidates when botli issues are
being considered. Geometrically, these three bisectors divide R? into six regions, so there
are six different “types of voters.” Thus it is the geometry that increases the number of
voter types when issues are added; the geometry of the coordinate axis determine the voter
types for single issues with the geometry of the interior determine the voter types when
both issues are involved.

This increase in voter types leads to the proof of the assertion. To illustrate the ideas, I
use the special casc represented in Figure 1. Let n; be the number of voters in the ith region
in this figure, let z; = ﬂﬁi—:, i=1,....6,and let x = (z1,...,¢). By definition, x 1s an

Zj:l J
clement of the five dimensional unit simplex Si(6) = {y € R E?:l y; = 1,y; > 0}. The
combined election outcomes for all three sets of issues can be represented as the mapping

F :Si(6) — R® defined by

_ Fy (zy + 22 + 26) — (T3 + 74 +25)
(33) F = F{z} = (Il',.; —+ Is + .TG) — (fL'l + T +I3)
F{1,2} (T1+$5+IG)—($2+$3+$4)
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The sign of Fp, determines the winner of the election for the set of issues D;; a positive
value means that @; wins, a negative value means that a; wins, and a zero value represents
a tie vote. As F(p')) = 0 € R? for the interior point p’ = (%,...,¢) € Si(6), and as the
Jacobian DF has maximal rank, it follows that F maps an open neighborhood of p’ to V,
an open neighborhood of 0. Thus the image of F contains an open set about the origin in
R3. As such, V intersects all eight orthants of R*, all coordinate plancs, and all coordinate
axes. Consequently any combination of the 3* = 27 election rankings can occur.

To review the steps of this argument, note that the geometry of the 1ssue space defines
a domain for F with a larger dimension than that of the image space. The responsiveness
properties of the election procedure ensures that the rank conditions are satisfied. Thus,
the existence of the asserted chaotic outcomes is ensured.

It is worth indicating how the minimal value of . = 3 arises; it is based on the symmetry
of the problem. Select rankings {ap;} where none is a tie vote. Assign a voter to each of
the quadrants defined by the vertical and horizontal bisectors that contains the diagonal
bisector. For example let voter 1 have the rankings a; (1} = a2 {1},2z,{2) = a1.{2} and
voter 2 has a; (1} > a; (1}, a1,{2} > A2,{2}- (Thus, using Figure 1, voter 1 is in cither region
1 or 2 while voter 2 is in either region 4 or 5.) For each voter, choose his ranking over the
issues {1,2} to coincide with the ranking ay; »3. With this choice, ayy oy is the election
outcome, and this outcome is independent of the third voter’s preferences. On the other
hand, for each of the single issue elections, these two voters split the vote, so the outcome
is uniquely determined by the third voter. Thus, let the third voter’s preferences for the
issue {7},7 = 1,2, be the sclected ranking ay;y.

The above existence argument exploits the difference between the dimension of the
domain and range; a differential that increases significantly with the number of issues.
To see this, note that n = 3 issues creates seven subscts of issues, so R is the image
space of the map corresponding to F' in Eq. 3.3. On the other hand, the geometry of
the various perpendicular bisectors in R* leads to a situation where there are at least 29
different types of voters where no voter is indifferent between candidates for any set of
issues. Thus the domain of F is the 28-dimensional 5i(29). Consequently, when n = 2,
the difference in dimensions between the domain and range is two, and when n = 3 it 1s
at least 21. In general, the difference between the dimension of the domain and the range
grows exponentially with n. As such, all that is required in the proof is to find expeditious
ways to verify the rank condition. Moreover, not only must we expect the conclusion
of the theorem to hold, but, accompanying the increase in the differential hetween the
dimensions, we must anticipate many other kinds of “counter- intuitive” conclusions to
occur. (To see how to construct these other examples, see Section 2 of [16].)

As indicated above, the basic ideas used to verify the different sorts of conclusions are
captured by the representation of Equation 3.1. If the dimension of the domain exceeds
that of the image space, then, unless proven otherwise, one must anticipate the standard
assumption of responsiveness to ensure that the relevant rank conditions are satisfied and
that anything can happen. This comment can be further illustrated with Ledyard’s nice
paper discussed above. Posing his model in the framework of Eq. 3.1, the domain, which
includes the space of all utility functions, becomes infinite dimensional. Thus, one must
expect all sorts of different kinds of outcomes to be admitted should the rank conditions
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be satisfied. As the rank conditions reflect the responsiveness of the procedure to changes
within the domain — in Ledyard’s formulation this corresponds to changes in strategies
_ one must expect a conclusion of his type whenever this responsiveness occurs. This is
Ledyard’s conclusion that “any non-dominated behavior can be rationalized as Duayesian
equilibrium behavior.” As one can show, dominate strategies represent settings where DF
has a lower rank.”

As a final comment to further suggest the wide-spread generality of this approach for
economic theory, consider the much analyzed Saumuclson’s transfer paradox. (This has an
extensive literature; to get the flavor, see Samuelson [23] and Balasko [2).) This paradox
is where in an exchange economy agent one surrenders some of his initial endowment to
agent two. The unexpected conclusion is that agent onc’s Walrasian allocation can be
strictly better than it would have been, and agent two’s allocation can be strictly worse.
With ¢ > 2 commodities, the ith agent is representing by an element from RS X U® where
24° is the set of convex utility functions from RS to R. With k > 2 agents, the allocation
mapping can be considered as

k a
(3.4) ][R, xu) — I &

i=1 =1

This is a mapping from an infinite dimensional domain to a finite dimensional one. There-
fore, only the rank condition — the responsiveness of the Walrasian allocation to changes
in preferences — remains to be verified in order to prove and extend the various kinds of
transfer paradoxes that appear in the literature.

As true with the spatial model for voting, an increase in the values of k.c add to
the dimension differential between the domain and range. As such, one can correctly
expect that the added flexibility is manifested by having the transfer paradox conclusion
accompanied with many other conditions, such as requiring the Walrasian allocations to be
unique for the allocations, etc.. For instance, it is possible to extend this theorem so that 1t
has the flavor of the above two theorems. Namely, for cach set of two or more commodities,
D;, select changes both in each agent’s initial endowment wp, = (W1,;,- -, Wa,D; ) and in
the in final allocations vp, = (vi,p;,...,Va.p;)- Then there exists an economy where the
ith agent is represented by her initial endowment w; and the utility function U;, 0 = 1,...,a.

For this economy, if initial endowments were {w;+Ww; D; } &

¢ .. then the Walrasian allocation
would be changed by {v; p,}%;7 =1,...,2" = (n+1). The minimal assumptions on the
changes (which define the directional derivatives of the procedure) are easy to compute;
they reflect the rank conditions as restricted by standard conditions such as the weak

axiom of revealed preferences, ete.
4. Proofs

Two different approaches are given for the proof of Theorem 1. The first 1s a complete
proof based on modifying Debreu’s construction of a preference relationship. A sccond
proof that follows the comments of Section 3 is outlined.

TIntuitively, this is because the same strategy remains optimal even with changes in other agents’ strategies.
Thus, a dominate strategy has the form of a critical point; a point with lower rank for the mapping.
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Both approaches rely on the observation that the analysis concerning different sets of
commodities can involve disjoint regions in commodity space. For instance, compare the
region of R™ used to analyze the exchange of all n commodities and the region used when
¢, is withheld from the market. The difference involves the plane in R™ passing through
the initial endowment with normal vector e,. When all n commodities are exchanged, it
can be that the demand vector is on one side of this plane, so the excess demand function 1s
based on the properties of the utility function in this half space. On the other hand, when
¢, is withheld from the market, the individual’s excess demand is determined strictly by
the properties of the utility function on the plane — the previously important properties
of the utility function on the half space are irrelevant. Should these two regions be disjoint,
then a “cut and paste” argument can be used on each of these regions to define a new utility
function that has the appropriate properties on each of these separate portions of Z™. In
general this approach succeeds because utility functions can be modified in infinite number
of ways — this manifests the larger (infinite) dimension of the domain that is central to the
argument described in Section 3. (This argument has the flavor of the “spatial maodel for
voting” argument presented in Section 3; for different subsets of issues (commodities}, the
preferences are determined by the geometry of the different subspaces of the space.) What
leads to the separation of the regions of R" is the assumption that each price in pp; 1s
bounded below by € > 0.

In both proofs D; denotes both a specific subset of commodities and the indices of these
commodities. This dual use should cause no confusion, but it significantly simplifies the
notation.

E:I("H), with the proper-

ties specified in the statement of Theorem 1. In the indicated variable cach function is
homogencous of degree zero and satisties Walras’ Law, so it follows that £p, can be viewed

Proof of Theorem 1 Assume given the functions, {{p,(pp; )}

as a tangent vector field on S|+D’|_l.

There will be n agents in this economy. List the indices 1,...,n on a circle in a clockwise
fashion: so 7 + 1 is immediately clockwisc of 7 and 1 is immediately clockwise of n. For
agent i consider the hyperspace passing through an initial endowment w} with the normal
vector e;. In this hyperplane, consider a smooth, monotone, strictly convex utility function
v¥. To simplify the proof, we assume that o satisfies the expansion property whereby all
translates of each coordinate axis of RIPi| meets each level set of v}

In RLDfI let Tp,, 5|+Dj1_] represent the tangent plane to SLFDj‘_l at pp,. For ¢ € D;
let b; p;(pp;) be the projection of the unit coordinate vector e; on this planc. Thus the
ith component of b; p,(pp;) is 1 — (pi.p, )2 and the sth component, s € Dj,s # 1, is
—pi,p;Ps,D; - 1 ¢ D;, then by(pp,) is not defined.

Let € > 0 be given. Following Debreu, for each D; there exists a continuous, positive

scalar function bDj(ij) so that each of the f; p, components uniquely defined in the
relationship

(4.1) Z fip,ei = [€p;(Pp;) — 4p,(PD; )]+ bp;(pp; )PD,
{ilc.'EDj}
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exceeds any specified positive bound for pp; € SIPi1=1 - Choose bp;(pp;) so that

(4.2) fip;(pp;)lIbi(pp;)ll = 1.

For each D; and for i € D; assign agent ¢ the individual excess demand function §; p; =
fi,Dj(ij )b,—(ppj). For « ¢ Dj, let & p, be the excess demand function defined by the
utility function v}. By construction, it follows that for each D;, the sum of the individual

. D;|-1
excess demand functions equals {p, for pp; € Sl s1=1

Let Sff_/lsc ={pe S" ! p, > —¢/80}. (Thus,if p € 52:/180} is viewed as a price vector,

some of the prices may be zero or negative.) For cach 7, let {;(p) be a bounded, continuous

n—1

iy Moreover, for each

extension of {f,-,Dj }iEDj from the various portions of Si_l to S

D; assume for the portion where st RIDi| = SLDJI_] that £(pp,) i1s along the ray
defined by b(pp,). Where extended, £p) need not admit the interpretation of being a
demand function.

The ith agent’s preference relation is constructed. To facilitate comparisons of the
following construction with that of Debreu’s proof, I use similar notation. We start by
assuming that the 7th agent’s initial endowment is at the origin of R", and then, by
standard translation arguments, the endowment will be translated to a more suitable
position. For the ith agent there is a distinguished direction, e;; call that direction the
vertical direction. The horizontal plane is the linear subspace passing through the origin
with normal vector e;.

Let n = —€/2 and define g : R — It as

2? for 2 < < 0,

1 4 1
9’(56) :1—077—1‘3 + —5332 + -1—0771' forn <z < _:;_0
(4.3) ar+bfor0 < —n<ux

where a,b are chosen so that g € C. (Thus a = 831/4000 < 0 and b = —241%7/80,000.)
The convex function ¢ is strictly convex in the region where it is not linear.

In the affine plane passing through e; with normal vector e,, consider the level sets
OCt = {x| 3z 9(zj) =1t a* = e/VI— e <t<(2—¢€)/\/4—(2—¢)? =w"}. Let € be
the convex, closed region in this plane that contains e; and that has 9C; as its boundary.
Thus, if ¢; < t, then C, is in the interior of C;. The equation

«

V1-—a?

t =

defines the connection in this construction between C; and p; = a.

Let L* be the cone defined with vertex at the origin and with rays passing through
C,. The boundary of this cone, dL¥, is defined by the rays passing through the set aCy.
Moreover, all n components of the interior normal for 0L at a point on 9L} NRIPil i € Dj,
are positive.
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Let D = {&(p)|p € S77'} and define C; = DN L} and Dy = D N L. By construction,

Ci,p; = {&,p;(Pp;)lpi = a,pp; € siPil-1} c ¢, n RIP!,
Likewise, the set

Dt,Dj = {éi,D,‘ (ij)|Pi > a,pp; € SLD”_I} CDeN Rle‘
and Cy p; 1s In the boundary of Dy p,. Also, by construction, if pp, € SlD” where p; = a
then the corresponding hyperplane (in RIP:1) meets dL} only along the ray b(pp; ), thus
it meets C; at the single point {p,(pp; ).

With only slight modifications, the argument of the next four paragraphs follows De-
breu’s construction but applied to these more general sets Cy, Dy. In fact the only modifi-
cation is to note that the constructed sets lie above the horizontal plane. Therefore, this
argument is only outlined; more detail can be found in Debreu’s paper.

To start, let B(x,r) be the closed ball with center x and radius r and let d(x, 1) be the
distance from x € D, to L}. Define & = Uxep, B(x, %d(x,t)). The set £ C L7 is compact
and £ N AL} = C;. Because of the factor of % in the radius of the balls, & is strictly
above the horizontal plane. To obtain convexity, let F be the convex hull of & and define
Gy = Fi+R7. The set Gy C L7, defined to ensure monotony, is closed, convex, and satisfies
G:NAL; = Cy as well as Gy C IntGy for t' < t. It is clear that ¢ —» G is continuous in the
topology of Hausdorff closed convergence. Also, Gy is strictly above the horizontal plane.
In fact, with the lower bound assumption on ¢ and the above construction, it follows that
G, is bounded below by the horizontal plane translated i units upward along the vertical
axis.

In general, the set G¢ is not strictly convex as it can have segments of straight lines
on the boundary. Let H be the hyperplane passing through the origin where the s + 1
component of the normal vector has the value ¢/4 and the ith component has the value
v/1— (n—1)(e/4)2. Thus, HN L} = 0 for all admissible values of t. Let 6 =(1,...,1) €
R™. Forevery x € H let A(t,x) = min({s|x+s6 € G¢}) and y(t,x) = min({s[x+s6 € Li}).
Thus, v(t,x) < A(t, x) where equality holds iff x + A(t,x)é € C;. Moreover, both functions
are continuous functions of the two variables.

Let p(z,y) = 3/(z? +y2)/2 + 1y —2)? + 14 & — 1] be defined on A = {{z,y) €
R%|z < y}. As shown in Debreu, p is continuous, convex, strictly increasing in cach
variable and it satisfies p(s,s) = s for s € Ry. Morcover, if = # y, and/or 2’ # y', the p
is strictly convex on the segment [(z,y), (2',y")]- The function u(t,x) = p(A(t,x),¥(,x))
is continuous, convex and satisfies A(f,x) < u(¢,x) < ¥(t,x) where one of the equalities
occurs iff both occur iff x 4 pu(t,x)6 € Cp. If M, = {x + sb|s > p(t,x)} then M, is strictly
convex and Gy C M; C L}, Myn0L; =Cy,and t — M, 1s continuous. Moreover, Debreu’s
argument serves to show that the set M, is strictly convex. While M, is strictly above the

horizontal plane, the distance from this plane approaches zero as [x|| — oo in directions
where z; — oo.
To select an initial endowment, choose any point w; € R} so that w; + £(pp;) 1s at

least one unit from the boundaries of R} for all D; and all pp;, € SiDji_l. Let Q¢ =
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—e

[

I M; + wi) N R} be the boundary of the translated set M;. @ is the level set of the
preference relation for a* <t < w*. For ¢ > w7, let Qy = :‘,—Qw

We now construct the indifference sets below Q4-. They are based on the assigned utility
function v?. Translate v} so that the initial endowment w} = w;. The level sets of v} are
defined only on the translated horizontal plane, so the definition of these sets needs to be ex-

tended to R™. Toward this end, let m* = mazp, igp;)({vi(€p; (PD;)IPD; € Sl/D2j|_1}. Re-
strict attention to those level sets of v¥ where v} < m*. According to the expansion require-
ment imposed on v}, each of these level sets passes through all coordinate planes of R™. Let
d be the minimum distance between {x on the translated horizontal plane |v](x) < m*.}
and Qgu+. By construction (where M, is above the horizontal plane) and compactness,
d > 0.

In the two dimensional plane P? spanned by e, and & — e;, consider a smooth, strictly
convex curve h with the parametric representation i : & — P2, h(0) = 0 and h(—|jwi||) =
g—, and the e; component of h approaches —oc as t — oo. Let v, = {x + h(f)|t €
R.X is in the translated horizontal plane and vj(x) = m < mx}. Each level set vipm 1s
strictly convex and this set of indifference surfaces satisfies the monotone property.

It remains to fill the gap between v; p» and Qa+. So, for each x € v; - let 6(x) be
the unique point Qg+ N {x + s6|s € R}. Fort € [0,1], define V; = {(1 - t)x + té(x)|x €
vim»} N RE. Because of the expansion property on v}, each x ¢ R} 1s on a unique level
set: either one of the v;,, sets, one of the V; sets, or one of the Q; sets. All that remains
is to show that the V; sets are strictly convex and monotone.

Select any two points, y; = tx; + (1 —#)8(x,) € V;. To show that V; is strictly convex, it
must be shown that for any A € (0,1) that Ay; + (1 — M)y is above the surface. However,
by the strict concavity of v; = and Qa-, both Axy + (1 — A)xz and Aé(xy) + (1 — A)é(x2)
lic strictly above their respective level sets. Thus, by simple vector algebra, the conclusion
holds for the surface V;. The monotone condition is proved is a similar manner. This
completes the proof.

Outline of an alternative proof. Let U™ be the set of strictly convex, continuous, mono-
tone functions on R". Let ¥ p. be the sct of continuous tangent vector fields on Slel_l
and let ¥, = HD,- ¥, p;. Endow both spaces with the C° topology on compact sets. Let

Fp:E™ =] x R} — @,

=1
be the mapping where F((u1,w1), ..., {(Um,wmn)) is the listing of the 2" — (n + 1) aggregate
excess demand functions defined by the economy e = (uy,wi),. .., (U, wm)- Theorem 1

asserts that F, is surjective. This is true if it can be shown that

each e € E™ has an open neighborhood where its F;, image contains an open neighbor-

hood of Fy(e), and

the image of F), is dense in ¥..

Outline of part (i.) This is done by showing that the tangent map DF, e : TeE™ —
Tr, (e)¥. is surjective. First we show that Tp, (o) ¥ can be identified with ¥.. This follows
from the definition of DF, o(ne') which is the linear approximation for Fr(e +ne')— F.(p)
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for scalar 7. At each point p = (Pp,, -+, PDan_(ay1)) € Yes both terms of this difference
define a tangent vector in each of the components of ¥, so the difference also 1s a tangent
vector. As this holds for all p, the conclusion follows after using a simple continuity
argument,.

As F = 30, F} where F} is the individual excess demand mapping F/ . E' - ¥,
for the jth agent, many of the properties of F, are determined by the properties of F).
We use this fact to characterize certain subspaces of TeE™. For instance, TeE' includes
all C* functions from R% to R!: not just those that are monotone and strictly convex.
This can be seen from the Taylor series expansion nv(x + h) = glo(h) + (Vu(x),h) +
1D%*v(x)(h, h)+ R(h)]. It then follows for any C* function v that on any compact sct and
for sufficiently small values of 1, the function u 4+ nv € 4", Similarly, by use of the strict
concavity of functions in U™, it follows that the continuous functions are in the tangent
space — it is important to note that v need not be monotone or convex.

Let e € E™ be given. To show that DF;, ¢ is surjective, let £ = (Ep,y-.-r€cn) € U, be
given. Decompose this function into individual excess demand functions in same manner
used in the proof of Theorem 1. According to Debreu, on cach of the (translated) spaces
RIPil passing through w; there is a continuous, monotone, strictly convex preference that
gives rise to the indicated demand functions. These 2" — (n + 1) utility functions need
not be compatible with one another. However, the part necessary to define the demand
function is inside of a cone that, with the exception of the vertex, is totally in the interior of
the orthant. Thus, a “cut and paste” argument is used where we keep only those relevant
portions of each of the utility functions. Now, 1t s easy to paste these portions together —
to extend the portions of the function that remain over the whole space. As this extended
function is only in the tangent space, it only needs to be continuous; it need not satisfy
any other properties of monotonicity or convexity. Thus this function v is defined so that
DF) o(v) is the individual excess demand function. This is the basic step in showing that
DF, e is surjective.

An outline of part (ii.). For a given ¢ and a given open neighborhood of , V', 1t must
be shown that there is a utility function u so that F(u) € V. Let C'™ represent the set of
all n commodities and start with & cn. Chose n,0 < n < €/2. Corresponding to the set
D;,|D;| < n, is the vector np; that has the value 7 in the ith component iff ¢ D; where
all other components are zero. The plane passing through w; +np; with normal vector np;
is parallel to the coordinate plane containing &; p;. Continuously extend &; ¢n so that on
each such translated plane it has the form &; p;. There exists 6 > 0 where the precise value
depends upon the value of 7 and the maximum values of ||{p; || so that the extended £cn
is a tangent vector for pcn € Sgl_l. Let U; , be the corresponding utility function given
by Debreu’s construction. This function give the appropriate individual excess demand
function for the set of all n commodities, and the appropriate excess demand function for
the set D; if the initial endowment had been w +np; rather than w;. Now, by a continuity
argument using properties of the extension, one can show that for sufficiently small values
of n, the utility function u, has the desired propertics.

Proof of Theorem 2. The utility function for an agent is defined in Section 2; points
closer to q; are accorded a higher utility. Assume that the k candidates’ positions ou the
issues {aj}f:1 are specificd and that they satisfy the conditions of the theorem. For cach
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set of issues D; the location of q; uniquely determines the 7th voter’s rankings of the k
candidates. The voter’s type is a listing of these rankings where the jth entry is the voter’s
rankings of the candidates subject to the issuesin D;,7 =1,...,2" - 1.

Let ~(n) represent the number of voter types. The value of v(n) depends not only on n
but also on the candidates’ positions {a;}. For instance, in the degencrate (but admissible)
setting where for each set of issues the points all lic on a straight line, certain rankings
never can occur. In particular, a candidate whose position is not an endpoint on the line,
never is bottom ranked by any voter. At the other extreme, if for a set of issues the
convex hull of the points {a;} have dimension k — 1 then all rankings of the candidates
are admitted. Let

v(n)
(4.4) Si(v(n)) = {x € R"™W|z; 2 0,> 7 =1}

=1

be the unit simplex. A rational point x € Si(v(n) can be viewed as being a profile where
component z; determines the fraction of all voters that are of the ith type.

To discuss the image space, note that the voting vectors Wk and W¥—qa(1,...,1),a >0,
are equivalent in the sensc that the election rankings always are the same. The vectors
are normalized by choosing a value of a so that the sum of the components of a voting
vector is zero. In this manner, for instance, the normalized form of the plurality voting

vector, (1,0,...,0), 1s (1,0,...,0) — (%, s %) =(1— %, —%, N —%) The tally for each
candidate can be represented as a vector in R¥ where the value of the jth component is
the election tally for ;. In this way, a voter voting for the jth candidate would cast an
appropriate permutation of the coordinates of WE,

An election can be viewed as being the obvious mapping from Si(v(n)) — RF. Because
the voting vectors are normalized, the sum of the tallies for all candidates is equal to zero,
so the vector for the tally is in the vector subspace V' (D;) which passes through the origin 0
and has (1,...,1) as a normal vector. In this manner, the election outcome can be viewed
as being a mapping Fp, : Si(v(n)) — V(D;).

The election outcome over all sets of issucs is an element of Hj;?l V(D;). The election
over all subsets of issues can be represented as the mapping

27 -1
(4.5) F=(Fp,- Fps_):Sily(n) = [] V(D))
j=1

By following the approach of [14], it follows that if the image of F contains an open set
about the origin, then the proof is completed. This proof requires verifying the two steps
described in Section 3.
First it must be shown that there is a profile p in the interior of Si(y(n) so that F(p) = 0;
namely, p is mapped to the origin.
The sccond step is to prove that the rank of the Jacobian of F is (A —1)(2" — 1) — the
dimension of Hjl;l V(D;). This implies that an open neighborhood of p is mapped to
an open neighborhood of 0. This open set meets all combinations of the rankings, so the
conclusion holds.
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Both steps involve algebraic, open conditions, so if they hold for a single voting method,
then they must hold for an open set of voting methods. The strategy of the proof, then, is
to show that each step holds for the plurality vote. The restriction on the voting vectors,
Wk arises in the first step, and only when one considers the (admissible) degenerate
situation where the vectors {a; p, }*_, form a straight line for each choice of D;.

Proof of Step 1: First I show that a tie vote can occur with the plurality vote for each
set of issues. Such a conclusion holds for the profile where for each D; and each candidate
iy 1
can be defined for any admissible configuration of the candidates’ positions.

of the voters have ¢; top ranked. The first part of this proof proves that such a profile

Consider a single issue set D;. By hypothesis, the position points are distinct. The
perpendicular bisectors between adjacent points {a; p,} on the line divide this coordinate
axis RIPil into k regions. Each region is identified with a particular candidate; if q; 1s
in the region identified with the sth candidate, then the ith voter has the sth candidate
top-ranked. In the total issue space, R", the perpendicular bisectors have dimension
1 — 1. These bisectors from the n coordinate axis intersect to create k™ rectangles in R™.
D;| > 2, these bisectors divide the issue space (the

Similarly, for each set of issues D,
coordinate plane) RIP:! into k!Pil rectangles. (These rectangles are based on the division
of the coordinate axes for the individual issues defining D;. The perpendicular bisectors
defined by a set of issues disjoint from D; form planes parallel to the coordinate plane
RIPi1 )

For D, C Dj let Prp; p, : RIPil — RIPil be the natural projection mapping. If
D; = C", denote the mapping by Pr, p,. As the k" rectangles in R™ are similar to a
coordinate grid for R™, it follows that for the ith candidate there 1s a unique rectangle
Rec(i;n) C R™ so that for any single issue Dy, Pry p,(Rec(i;n)) is the region associated
with the sth candidate. Similarly, for each set of issues D; there is a unique rectangle
Pry p;(Rec(iin)) = Ree(1; D;) C RIPi) with this projection property

(4.6) Prp, p(Rec(i; D;)) = Rec(1; Ds).

Construct a profile by assigning }\— of the voters to Rec(i;n),7 = 1,..., k. This mecans
that for any set of issues D;, % of the voters are assigned to Rec(7; D). Next I show that
this assignment leads to a plurality completely tied vote among the candidates for each
set of issues. This assertion clearly holds for each sct of a single issue. For a set of 1ssues
D;,|D;| > 2, the space RIPil is divided into k regions where if q, is in the 2th region then
the sth voter has the ith candidate top-ranked with respect to the issues Dj. The region
for the ith candidate is defined in the following manner: For each s # 1, let P ,.p; be
the perpendicular bisector of a; p, and a, p;. The plane P 4.p, divides RIPi! into two
halfspaces; let H(t,s;D;) be the one containing a; p;. Let T(i; D) = NewiH(1,5:D;).
It is clear from construction that if a voter's beliefs are in the convex set T(7; D;), then
he has the ith candidate top-ranked. (See Figure 2 for the case kb = 3,n = 2.} Clearly
if i # s then T(7; D;) and T(s; D;) are disjoint sets. It also follows for |D;| = 1 that
T(i,D;) = Rec(i; D;). Because of the assumption that the points {ai p, are distinct, 1t
follows that T(¢; D;) contains an open set about a; p;, 50 T(i; D;) is non-empty. Indeed,
it follows from the definition of a perpendicular bisector, the triangle inequality, standard
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facts from trigonometry (that the ratio of similar sides of similar triangles are constant),
and the construction of the grid that

(4.7) Rec(i; Dj) C T(4; Dy) for all D;.

Thus for each D; and candidate ¢, the above constructed profile has —i— of the voters in
T(i; D;); for all sets of issues the election outcome is a completely tied plurality vote.

This profile does not suffice for our purposes because it does not define an interior point
of Si(y(n)). (An interior point must have a positive number of voters for each of the ¥(n)
different voter types.) There are many different ways to construct such a profile using
symmetry and the fact that these points form a convex set in Si(v(n), or by using an
analytic argument involving the implicit function theorem and the above profile. Instead
I use the following more elementary geometric argument that seems to be easier to follow,
simpler to construct, and more intuitive. The ideas are described with k = 2,n = 2 and
Figure 1. Here, the v(2) = 6 regions are indicated in the figure. These regions can be
labeled according to the voter type where, say, (1,2 : 2) corresponds to a voter preferring
candidate one on the first issue and candidate two on the second issue and on both 1ssues.
Thus, Rec(1; {2}) and Rec(2; {2}) are, respectively, the rectangles with the labels (1,1;1)
and (2, 2;2). The above constructed profile places % of the voters in each of these rectangles.
To create a profile that is an interior point of $i(6) and that results in a completely tied
plurality vote for all sets of issues, some of the voters are moved from these to regions
into the other four regions. However, this must be done so that the sum of the fractions
on each side of each perpendicular bisector remains %, so for each move, a compensating
move must be made. The sum for each voter and each set of issues is obtained in the
following manner. A specified candidate and specified set of issues determines an entry in
the triplet. (The first candidate on the second issue corresponds to all triplets (—,1;).)
Thus, the sum is obtained by summing the fraction of voters over all regions with an entry
of that form. (So, for the first candidate with respect to the second issue, the sum 1s
obtained by summing the fraction of candidates in the three regions that have 1 for the
second entry.)

If a voters are moved from (1,1;1) to (1,2;1), then the regions have, respectively,
% — a,a of the voters. By the summation process, this has not changed vote totals for the
frst issue or the sct of two issues, but it has for an clection with respect to the second
issue. To compensate, a symmetric modification must be made with a of the voters moved
from (2,2;2) to (2,1;2). With this compensating move elections over all sets of issues
are plurality tied. The last change is to move 3 voters from (1,1;1) to (2,1:1) with the
compensating symmetric change of 3 voters from (2,2; 2) to (1,2;2). With the constraint
a+ < %, all possible profiles leading to a complete tie vote are determined. A similar
construction is used in the general case.

A general argument depends on the following facts.

1. For cach set Dj and 1 # s, the vector ai p; — as p; € RIPil has no zero components.
This conclusion follows because if the tth component of this vector difference were zero,
then the sth and the sth candidates have identical stands on the tth issue a direct
contradiction to the basic assumption.
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2. If D, C D; then Prp, p,(P(i,t; D;)) = RIP:1 for all i # t. If this were not true, then
the normal vector for P(i,¢; D;) must have a zero component in some coordinate direction
contained in R!P:l. As a; p;, —ayp; 15 a normal vector for this bisector, the assertion
follows from the first statement.

3. If D,N D; =0, then P(i,t;D;) and Pr=L (T(:;D;)) are parallel to the coordinate
J J n,D; J

plane RIP:l. This is immediate from the construction. Alternatively, the normal vector
a; p; —atp; expressed as a vector in R™ has zero components in all component directions
corresponding to issues not in Dj.

4. A perpendicular bisector from one set of issues transversely intersects all perpendicular
bisectors from all other sets of 1ssues. This is immediate from the above.

5. If D, C Dj, then for each 1, the set PTI_)_,lv,D,(T(i;DS)) meets at least two sets
from {T(r; D;)}*_,. If not, then PTB},DJ(T(i; D,)) never meets a perpendicular bisector

P(t,s;D;). This means that the projection of this biscctor does not cover all of RIP:|,
This last statement is a contradiction to Assertion 2.

6. If |D;| < n, of Pr;le (T(i;Dj)),PT;’DJ(T(S;D]')) have a common boundary and
both meet T(t;n), then both sets also meet at least one other set from [T(r;n)}*_,. As
already shown, the common boundary must intersect the boundary of T(t;n). There are
two situations. The first is that there is a point in this intersection away from all other
hyperplanes defining the boundary of T(¢; n). In this setting the conclusion follows from the
fact that the intersection must be transverse. In the contrary case, the common boundary
contains the intersection of several of the bounding hyperplanes for T(t;n). (A situation
where this occurs is when the configuration formed by the positions always form a straight
line.) The portion of this boundary outside of T(#;n) cannot coincide with a boundary
plane of any other T(s;n) by Assertions 2 & 3. Thus the boundary must meet the interior
of at least one other T(s;n). This competes the proof.

In R™, the perpendicular bisectors from each sct of issues is an n —1 dimensional plane.
In the manner described above, their intersections form the regions defining the voter
types. Thus, order the 27 - 1 sets of issues; the sets of single issues first, then the sets of
two issues, etc. Assigned to each region formed by the perpendicular bisectors is a label
given by a vector with 2" — 1 entries; the sth entry is the name of the candidate who
is top-ranked for a voter in this region with respect to the sth listed set of issues. For
instance, the rectangle Rec(7; n) has the label with 7 as the entry for each component.

7. If a region shares a common boundary (face) with Rec(izn) then its address differs
from (i,1,...,1) only in an entry for a single wsue. Moreover, if 1 15 changed to s, then
there is a region adjacent to Rec(s;n) where the only non-s entry is in the same compo-
nent and it is i. The first part follows from the fact that Rec(d;n) is in the interior of
T(i;D;);|D;| > 2, and the above description of the boundaries of the various scts. The
second statement follows from the fact that, for the indicated single issue, ¢ and s must
be adjacent candidates. (Otherwise the grid would not allow such an adjacent rectangle.)
Thus, adjacent to Rec(s;n) must be a rectangle of the indicated type.

8. If two ranking regions share o common boundary, then their labels differ in only one
entry. If this entry corresponds to a set of issues D;,|D;| < n, then there is at least one
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other pair of regions that differ only in the D; entry with the same two names. For each
coordinate corresponding to a set of issues D;,|D;| < n, and for each candidate, there s
a pair of regions with common boundary where this candidate’s name s one of the two
entries. The first and third assertions are obvious. For the middle assertion, assume
without loss of generality that the names of the candidates arc 1 and 2. If the assertion
were falsc, then the common boundary between these two issues in R* would not intersect
any other perpendicular bisector. This contradicts Assertion 2.

9. Let positive integer s < n and let |Dy| > s. Then Nip,|=,T(:;D;) C T(I;Dy).
This is fairly immediate from the construction and the argument showing the existence of

Ree(i;n).

We now are ready to start the construction of an interior profile by modifying the profile
used above with % of the voters in each Rec(i;n). Start with the rectangle Rec(1;n)
and move a fraction of the voters into each of the adjacent rectangles that are in the
same ranking region. By the fact that Rec(1;n) is properly contained in T'(z; D;) for all
|D;| > 2, it follows from the above assertions concerning the boundaries of these regions
that this is true for all rectangles sharing a common boundary face with Rec(1;n). For
cach such move, only one entry — an entry corresponding to a single issue D; — changes
from 1 to, say, s. Each such move keeps invariant the number of voters in each region
with the exception of the set D;; here candidate 1 loses votes and candidate s gains votes.
To compensate for this, note that according to the above assertions there is a rectangle
sharing a face with Rec(s;n) where the D; entry is 1. Thus, a compensating move is made
so that the same fraction of voters are moved from Rec(s;n) to this adjacent rectangle.

With this compensating move, the fraction of voters supporting each candidate for each
1

&
rectangles adjacent to Rec(1; n) have voters, then the same process is continued for each of

{Ree(s;n)}*_, where, for any adjacent rectangle to one of these distinguished regions that
is not represented in the profile, a move of voters is made to have it represented. Notice

set of issues remains at but more types of voters are represented. Once all of the

that for certain configurations of {a;}, the associated compensating move may add voters
from Rec(i;n) to a rectangle already containing voters.

After all adjacent rectangles are represented, then a portion of the voters are moved from
cach of these regions to rectangles adjacent and in the same T(i; D;) regions for |D;[ > 2.
The same argument used above, along with the assertions, shows that compensating moves
can be made where the compensating move may require movement of voters between
rectangles already containing voters. In this manner, all ranking regions with a fixed letter
for all scts of more than one issue are represented in the profile.

The argument now moves to provide representation for sets of issues D;, | D;| = 2. Choose
such a sct of issues. In RIPil_ all regions are filled as {T(+; D;)}}*_, forms a partition.
However, in R", the intersection of such regions based on sets of two issues forms another
kind of grid in R", and only k of these grid regions are represented in the modified profile.
In particular, for each candidate ¢ there is a unique grid region that contains Ree(i:n), and,
because of the assumption on the candidates positions, it does not share a face with the grid
region containing Rec(s; n) for s # 7. Consequently, such regions are not represented at this
state in the construction of the modified profile. The boundary between a grid region with
representation and one without must pass through rectangles (ranking regions) containing
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representation.  Thus, crossing this boundary, but staying in the same rectangle, only
effects the vote totals for a particular set of two issues. So, starting with the grid region
containing Rec(1;n), move a portion of the voters to an adjacent grid region by using these
boundary rectangles. For the same geometric kinds of reasons used for changes in single
issue directions, if a grid region share a face with a grid region representing candidate s
over issues D;, then adjacent to the grid region containing Rec(s;n) in the D; component
label direction, is a grid region associated with candidate 1. Thus, the compensating move
involves a rectangle, with voter representation (from stage 1), that includes the boundary
between these grid regions. Once this is done for all boundaries, the same construction used
in stage 1 is continued - voters are moved into adjacent rectangles with the appropriate
compensating moves (which may involve rectangles already assigned voters. )

This same construction is continued over all sets of issues Dj,|D;| < n. The important
points about this construction is that each move is either within a rectangle, or between
adjacent rectangles. When it is within a rectangle, it crosses the surface assoclated with
the regions for a higher dimensional set of issues. As only one component is being changed
and as that is for a set of issues Dj; |D;| < n, there is a compensating move. Moves between
adjacent rectangles are made to fill up grid regions defined by scts of higher number of
issues — here the compensating move can involve rectangles already represented by voters.
As long as the portion of voters chosen at each step is sufficiently smaller than the number
at the previous step, there is no danger of a region being empticd of voters. In this manner.
an interior point of Si((n) is constructed whereby for each set of 1ssues the election leads
to a completely tied outcome.

If for cach pair of candidates and for each set of issues, the perpendicular bisectors
are considered in R™, then the regions defined by the intersections defines ranking regions
where a representation is given for which candidates are ranked in second, third, etc. place.
These ranking regions are a refinement of the ranking regions based only on who is top-
ranked. In this space, the above modified profile can be extended; take an original region
specifying which candidates are top-ranked over each set of issues and split the number
of voters into each of the refined regions. This, in no manner, affects the plurality vote
outcome. This is the final, modified profile.

To sce why the above construction cannot be modified to hold for all voting vectors,
consider the special case of & = 3 where aj,ay,a3 lie on a straight line with a; in the
middle. This configuration restricts the kinds of profiles that can be admitted. So, for the
BC voting vector (2,1,0), a completely tied vote over the first issue is possible only should
there be no voters with candidate 2 as top-ranked. From this, it follows it is impossible to
construct a profile - even for a single issuc — that is an interior point of Si(v(n})). From
this it can be shown that the conclusion of Theorem 2 does not hold. However, it turns out
that if. for each single issue, an interior profile can be constructed, then the above kinds
of modifications produce an interior profile over all sets of issues.

Proof of Step 2: The linear mapping F can be expressed as a (2" — 1) x y(n) matrix
where the sth vector component of the jth column vector represents how the jth voter type
votes on the issues Dy. (Recall, the sum of the entries for each voting vector component
equals zero.) To show that the rank of the matrix is (b — 1)(2" — 1), it suffices to show
that these column vectors span a space of this dimension. To do this, take any set of
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issues, D; and a candidate 7. According to the above geometric assertions, T(z; Dj) shares
a boundary with at least one other {T(s; D;)}. It also follows that there are two ranking
regions where the only difference in the labels is that one has 7 for top-ranked candidate
in D;, while the other has s. (These are any two ranking regions created from a single
ranking region (in the same rectangle) in R by the bounding hyperplane dividing T'(z; D;)
from T(s; D;).) All the entries of the column vectors representing these two voter types
are the same except for the entry corresponding to the set of issues D;. Here the vectors
differ in that the one where candidate ¢ is top ranked has 1 — % for the 7th entry and —7{7
for all others, while the one where candidate s is top ranked has the 1 — —i— value for the
sth entry. The difference between the two column vectors, then, is a zero vector for all
entries corresponding to any sct of issues not D;. The vector value for the set of issues
D; is the scalar 1 — % times a vector with zero for all entries except the ith and the sth;
one is unity and the other is (—1). This is true for all choices of ¢ = 1,...,k, and the
resulting set of vectors spans a space of dimension & — 1. Applying the same argument
to all 27 — 1 sets of issues creates set of vectors of dimension & — 1. Since these vectors
are zero valued in all but one component space, the collection trivially spans a space of
dimension (k — 1)(2" — 1). This completes the proof.
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