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FICTITIOUS-TRANSFER SQLUTIONS IN COOPERATIVE GAME THEORY

by Roger B. Myerson

It is easy to see that games with transferable utility (TU) really are
just a special case of games with nontransferable utility (NTU), because
transfer activities can be remodeled as strategic options in a game "without
transferable utility.” Thus, it is natural to ask why game theorists should
have devoted substantial efforts to developing solution concepts for games
with transferable utility. When I teach cooperative game theory now, more
than 45 years after von Neumann and Morgenstern [1944], 1 try to motivate the
old emphasis on coalitional games with transferable utility by two
propositions. First, because ccalitional interactions can be very complicated,
we may initially want to simplify our analysis by assuming transferable
utility, so that the set of feasible utility allocations for each coalition
can be described by a single number. Second, by the method of fictitious
transfers of weighted utility (or A-transfers), we can easily generalize any
solution concept for transferable-utility games to the case of games without
transferable utility. Thus, from the perspective of 1990, the method of
fictitious transfers appears to justify the original decision of von Neumann
and Morgenstern [1944]) to concentrate on games with transferable utility.
However, the method of fictitious transfers was recognized only after the
pivotal breakthrough of Harsanyi [1963]. My purpose in this paper is to
reexamine the importance of this method, in the context of the history of its
development and some recent results.

The assumption of transferable utility seems to have been adopted almost

without discussion in the seminal work of von Neumann [1928] and von Neumann



and Morgenstern [1944]. In the index of von Neumann and Morgenstern [1944],
there are only two references to transferability of utility. Remarkably, in
the book where it is first proven that cardinal utility is measurable from
the risk preferences of a rational decision maker, the main justification of
transferability appears to be to avoid measurement questions. Von Neumann and
Morgenstern [1944, page 8] assert:

We wish to concentrate on one problem -- which is not that of

measurement of utilities and of preferences -- and we shall

therefore attempt to simplify all other characteristics as far

as reasonably possible. We shall therefore assume that the

aim of all participants in the economic system, consumers as

well as entrepreneurs, is money, or equivalently a single

monetary commodity. This is supposed to be unrestictedly

divisible and substitutable, freely transferable and identical,

even in the quantitative sense, with whatever "satisfaction”

or "utility" is desired by each participant.

But from von Neumann and Morgenstern's own theory of utility, we now
understand that, with great generality, the opticns available to a coalition
can be represented by a convex set of expected utility allocations. This
result was used by Nash [1950]; but it was not until his second paper on
bargaining (Nash [1953]) that Nash emphasized that, by studying games without
transferable utility, he was dropping one of the restrictive assumptions of
the previous work in game theory.

In the same volume of Econometrica, Shapley and Shubik [1953] published
a one-page abstract that describes how von Neumann and Morgenstern’s solution

theory can be generalized to games without transferable utility, and they found



that nontransferable utility did not seem to create major new conceptual
problems. However, if Shapley and Shubik had also considered the problem of
generalizing the Shapley [1953] value, no doubt they would have had more
difficulties to report. By the late 1950s, published work in game theory
reflected a much greater frustration with the prevailing assumption of
transferable utility. Luce and Raiffa [1957, pp. 233-4] remark:

The assumption ... that there exists a transferable utility in

which sidepayments are effected is exceedingly restrictive --

for many purposes it renders n-person theory next to useless.

It is at this point that John Harsanyi began the search for a one point
solution concept for n-person cooperative games without transferable utility.
He had two partial solutions to build on: the Shapley value for n-person games
with transferable utility and the Nash bargaining solution for two-person games
without transferable utility. Each of these solution concepts had been
compellingly derived as the unique solution satisfying a natural set of axioms,
and each selects a unique payoff allocation for each game in its respective
domain. In the fourth Princeton volume on game theory, Harsanyi [1959]
published a general solution concept that determines a payoff allocation for
any n-person cooperative game with nontransferable utility. He showed that
this bargaining solution coincides with the Nash bargaining solution in the
two-person case, and coincides with the Shapley wvalue iIn the transferable
utility case. Thus, for the first time, it was suggested that the Nash
bargaining solution and the Shapley value might be understood as special cases
of a more general solution concept.

There is a easy way to generalize the Nash bargaining solution to any

number of players, by simply maximizing the product of all players’ utility



gains over the disagreement point. However, this simple n-person Nash
bargaining solution is unacceptable because it neglects the power of
subcoalitions, and thus it does not coincide with the Shapley value in the TU
case. In particular, this simple multiplayer Nash bargaining solution would
generally give positive payoff to a dummy player with no strategic options.
In his first general solution concept, Harsanyi [1959) brought all coalitions
into the analysis by assuming that every coalition (or nonempty set of players)
would negotiate a vector of "dividends," such that the sum of all coalitions’
dividend vectors would be a feasible allocation for the grand coalition of
all players. Within each coalition S, Harsanyi [1959] tried to determine the
dividend vector by applying the simple multiplayer Nash bargaining solution,
where the disagreement point would be the sum of all dividend vectors for
subsets of the coalition S. A difficulty with this approach arises because,
for games with three or more players (such as the three-person majority game),
the disagreement point for some coalitions may be outside of the feasible set,
so that negative dividends may be required. Harsanyi’'s [1959] attempt to deal
with this negative-dividend case seemed unsatisfactory, and Isbell [1960]
showed that the solution can violate the basic individual-rationality
constraints (that each player must get at least what he could earn on his
own), Isbell [1960] sugpgested an alternative solution concept that always
satisfies individual rationality and generalizes the Shapley value, but does
not generalize the Nash bargaining solution. (From a modern perspective,
Isbell's solution looks more like a generalization of the Kalai-Smorodinsky
[1975] solution.)

In response to such objections, Harsanyi re-examined the Nash bargaining

solution, to identify other ways of extending it to the multiplayer case. The



key insight appears as Theorem 1 in Harsanyi [1963]. We may state it here as
follows. 1In a two-person given game, let V(({1,2}) denote the set of feasible
utility allocations for players 1 and 2 when they cooperate. Let A(Ci) denote
the set of randomized strategies for player i, and let ui(al,az) denote the
expected utility payoff for player i when players 1 and 2 use the randomized
strategies oy and ¢, respectively. Then (Xl’XZ) is the Nash bargaining

2

solution and (r 12) are the rational threats for the game with variable

l *

threats iff there exist nonnegative numbers A, and A_,, not both zero, such that

1 2
(L (xy.%,) € V({1,2}),

(2) A¥ A%y T mEx g, 2y P T AMo)

(3) A Gy - r))) = A G - u(ryr))),

(4) ™1 € argmaxaleA(Cl) (Alul(al,rz) - Azuz(al,rz)),
(5) p € arEmax, ooy Oy (rpaey) - A (ryep).

These conditions have a natural interpretation. With nontransferable
utility, we have no grounds for interpersonal comparison of utility, so we may
feel free to rescale either player’s utility separately by a positive scaling
factor or utility weight Ai. Now, in a rescaled version of the game, pretend
that the weighted-utility payoffs are transferable. Suppose that each player
chooses a threat that maximizes the difference between his own and the other
player’s weighted-utility payoff (4,5), and they then divide among themselves
the maximal transferable weighted-utility worth that they can earn together
(2), in such a way that each player gets the same weighted-utility gain over
the threat point (3). If the resulting utility allocation would actually be
feasible even without these fictitious transfers (1), then it is a Nash

bargaining solution.



Given a game in strategic (or normal) form, Von Neumann and Morgenstern
[1944] defined the worth of a coalition S to be the maximum total payoff that
the members of S can guarantee themselves against the most offensive threat
from the complementary coalition N\S (where N denotes the set of all players).
Conditions (4) and (5), derived from Nash's [1953] rational threats criterion,
pose a challenge to von Neumann and Morgenstern’'s definition of the
characteristic function. For a game with transferable utility, condition (2)
just implies that Al = AZ, and then (4) and (5) assert that the worth of each
one-person coalition should be defined in terms of a threat game where each
player seeks to maximize the difference between the worth of his (one-person)
coalition and the complementary coalition. Harsanyi [1963] generalized this
criterion to create a new way to derive coalitional-form games from games in
strategic form, for both the TU and NTU cases. Around the same time, Aumann
and Peleg [1960] and Jentzsch [1964] developed other ways of deriving NTU
coalitional-form games from strategic-form games, but Aumann and Peleg and
Jentzsch’'s derivations coincide with von Neumann and Morgenstern's minimax
definition in the TU case.

For our present purposes, however, the most important consequence of these
conditions (1)-(5) is that they revealed new ways to extend the Nash bargaining
solution to games with more than two players. We may present these ideas most
simply by assuming that we are given a game in NTU coalitional form. When

N denotes the finite set of players, an NTU game in coalitional form is a

function V such that, for each coalition S that is a nonempty subset of N,
V(S) is a convex subset of RS (the set of all vectors of real numbers indexed
on the members of S§). We interpret V(S) as the set of expected utility

allocations that the members of S could cooperatively guarantee themselves.



We assume throughout this paper that V has the following properties, for all

coalitions S and T:
(6) V(S) is a nonempty closed convex subset of RS;

(7 if x e RS, y € V(8), and X < Yo vi € §, then x € V(S);

(8) 1if SNT=@ thenV(SUT) 2 (x € RSUT| (x.) e V(S), (x.) e V(T)).

i’ies j’jer
(Here X and Y3 respectively denote the iI-components of the vectors x and y.)

Condition (7) asserts that each set V(S) is comprehensive and (8) asserts that

V is superadditive. As an additional technical condition, we may say that V

is finitely generated or polyhedral iff, for every coalition S, there exist

a finite set of points W(S) such that V(S) is the smallest convex comprehensive
set containing W(S); that is,
(9) x € V(S) iff there exists a function q:W(S) - R such that

q(y) =2 0 for every y in W(S}, ZzeW(S) q(z) = 1,

and xi < vYi € §.

zeu(s) 1FZg
Let 3V(S) denote the boundary of V(S), so that x € 9V(S) 1iff x € V(S) and
there does not exist any y in V(S) such that ¥y > X5 for all i in S.

A feasible payoff allocation x is a Harsanyi NTU value, in the sense of

Harsanyi's [1963] simplified bargaining solution, if there exists a nonnegative

vector A = (Ai)iEN and, for each coalition S, there exists a
coalitional allocation xs = (x?), , such that:
i’ies
(10) X = XN € argmax z AW, ;
BMAX cv(Ny “ieN 1%’

(11) xs € av(S), VS C N;

S _S-j. S s-i X . .
(12) )\i(xi - XS )y = )«J_(xj Xj ), VS CN, vi €S, vj € S-1.

Condition (10) generalizes condition (2) of the Nash bargaining solution.



Condition (12}, called balanced_contributions by Myerson [1980], asserts that

each pailr of players make equal weighted-utility contributions to each other

in each coalition, and generalizes the A-equity condition (3) of the Nash
bargaining solution. In the domain of two-person games, the Harsanyi NTU value
coincides with the Nash bargaining solution. In the domain of coalitional
games with transferable utility (that is, where there exists some TU
coalitional game v such that

V(S) = (x € RS| Zieg X; = V()

S
for each coalition S), the Harsanyi NTU value coincides with the Shapley value.
Shapley [1964] (see also Aumann [1967] and Shapley [1969]) found

Harsanyi’'s NTU value to be hard to work with in large games, and so he proposed
another NTU value that is also naturally derived from Harsanyi's conditions
(1)-(3) for the Nash bargaining solution. Let R§+ denote the set of all
strictly positive vectors indexed on N, so

N

R = (A = (Ai)

| ». >0, vi e N).
++ i

ieN
For any positive vector X in Rf+, let F(V,X) be a set of TU coalitional games
such that v € F(V,x) iff

(13) v(N) = max and v(S) = ma

yev(N) Zien MYi *vev(s) Zies *iYic VS N

That is, F(V,X) is the set of TU coalitional game that we would get if we
enlarged the feasible set for the grand coalition N, rescaled each player i’s
utility by the weighting factor Ai, and then (fictitiously) allowed every
coalition to make interpersonal transfers of these weighted-utility payoffs.
Now let

BOV) = (9, (V)
denote the Shapley value of any game v in F(V,)X). If we believe in the Shapley

value as a predictive solution concept for TU games, then we should predict



the weighted-utility allocation ¢(v) in the fictitious game with transferable
weighted utility. To convert each player i's payoff ¢i(v) back to the original
utility scale, we must divide by weight Ai. So let

(14) BV, A) = (b (VA | v e FOv).

It can be shown that, for any such positive vector A, x € ®(V,)) if and only

3 . <. . 5 I
if there exist coalitional allecations x°, for each coalition S, such that

(15) X = xN, Vi € N;
(l6) z by xN > ma b A ;
ieN “i%1 T " yevN) “ien "17i°
5
(17) EieS Aixi = maxer(S) ZiES Aiyi, VS C N;
S S-j, _ S S-i ) . P
(18) A.l(xi - xi ) = Aj(xj Xj }, VS CN, Vi e §, vVj € $-1i.

Thus, the allocations in @(V,X) satisfy an analogue of the conditions
(10)-(12) for the TU games that is derived from V by expanding the grand
coalition’s feasible set and pretending that A-weighted utility is transferable
for all coalitions. An allocation x in ®(V,\) is a Shapley NTU value of V
if it is actually feasible without any such fictitious transfers, that is, if
x € ®(V,A) n V(N).

To be able to prove a general existence theorem, we must define Shapley
NTU values more broadly, in a way that allows some Ai components to go to
zero. However, condition (14) is undefined when Ai is zero, so some
limit-condition is needed. There are several ways of constructing such a limit
condition; here we consider a technical formulation slightly different from

that of Shapley [1969]. Let us say that x is a Shapley NTU value of V iff

X € V(N) and, for every positive number ¢, there exists vector X in RE+ such
that and a TU coalitional game v in F(V,A) such that

(19) ii + & = ¢i(v)/xi, vi € N.



That is, a Shapley NTU value is a feasible allocation x such that, by slightly
expanding the grand coalition’'s feasible set and making weighted utility
transferable, we could generate a game for which the Shapley value is not
substantially better than x (in the original utility scales) for any player.

Owen [1972] proposed a third NTU value that also extends by the Nash
bargaining solution and the TU Shapley value, but Owen's NTU value requires
the solution of a complicated set of differential equations and has not
attracted much further interest. Shapley’s and Harsanyi's NTU values have been
subsequently derived axiomatically by Aumann [1985] and Hart [1985] for games
where the boundary of V(N) is differentiable. On the other hand, Roth [1980]
has given an example of a game in which the boundary of V(N) is not
differentiable and the Shapley and Harsanyi NTU values seem quite
unreasonable.

Shapley [1969] remarked that the method of fictitious transfers could be
used to extend any TU sclution concept to the more general NTU case. To see
how, suppose that we are given a solution concept that specifies a set of
solutions G(v) for each TU coalitional game v. Then to extend this solution

concept G to NTU games by the method of fictitious transfers, we may say that

an allocation x is a solution for V iff x € V(N) and, for every (small)
positive number ¢, there exists a positive vector i in R§+, a TU coalitional
game v in F(V,)), and a vector z in G(v) such that

(20) ii +e=zz /A, V¥ieN

That is, a solution of V is a feasible allocation x such that, by (slightly)
increasing the feasible set for the grand coalition and making weighted utility
transferable for all coalitions, we could generate a game for which there exist

solutions that are not substantially better than x for any player.

10



When we use the core as our TU solution concept, the NTU solution concept
generated by the method of fictitious transfers is called the inner core (see
Shubik [1982], page 155). As the name suggests, the inner core is a subset
of the core as originally defined for NTU games. The core of V has been
defined (see Aumann and Peleg [1960]) to be the set of all allocations x such
that x € V(N) and there does not exist any nonempty coalition S and any
allocation y in V(S) such that Yi > Xy for every player i in S. That is,

x is in the core iff it is feasible for the grand coalition N, and there does
not exist any coalition that could guarantee a higher payoff to all its
members.

The comparison between the core and the inner core can provide us with
a new test of power of the method of fictitious transfers. As we have seen,
fictitious transfers were first used by Shapley in the early 1960s, to define
a tractable generalization of the Shapley value for NTU games. At that time,
there was not a controversy about the definition of the core for NTU
coalitional games (although there was controversy about how te construct a
game In NTU coalitional form to represent any given strategic-form game).

So now, unasked-for, the method of fictitious transfers gives us an alternative
way to define cores for NTU games. If the method of fictitious transfers is
really an appropriate way to generate NTU solution concepts, then there should
be some fundamental rationale for considering the inner core to be the
appropriate extension of the TU core to NTU games.

To pose this question more concretely, let us consider the Banker game
analyzed by Owen [1972]. 1In this three-person game, player 1 is the worker,
player 2 is the helper, and player 3 is the banker. By himself, each player

can get zero payoeff. The pairs {1,3) and {2,3} cannot do any better, because

11



the worker and helper are both needed to create anything of positive value.
Players 1 and 2 together can generate a payoff of 100 for player 1, and
player 1 can try to transfer any fraction of this payoff to player 2 but,
without the banker, three-quarters of the transfered amount will be lost.
With the banker, the players can transfer utility among themselves in any way.
So we may let

V({i)) = (xi| x, =<0}, VvVieN-={(1,2,3),

i
< 25},

V({1,2}) {(xl,xz)l x; < 100, x, < (100 - x;)/4, x

2
v((1,31)

IA

{(xl,x3)| Xy + Xy 0y,

A

V({2,3}) == ((xz,x3)| Xy + Xy = 0}, and
V((1,2,3)) = {(xl,xz,XB)I X, + %, + %, < 100}.

The core for this game is
((Xl’XZ’XS)l x1 + x2 + x3 = 100, xl + 4x2 > 100, xi > 0, viy,
which is a triangle with corners (100,0,0), (0,100,0), and (0,25,75). To
compute the inner core, let VA denote the minimal TU game in F(V,X), so

A
vi(S) = maxoyigy Fies MYy

Notice that VA({1,2,3)) would be +« unless Al = AZ = A3. When all Ai are

equal and positive,

v ()

IOOAl if §$ 2 (1,2},
=0 otherwise,
and so the core cf the TU game vA is
{(wl,wz,w3)| Wy + W, = lOOAl, Wy >0, w, =20, w, =0).

Dividing payoffs by A, to translate them back into the original utility scales,

1

A
the core of v then maps to the set

{(XI’XQ’XS)I Xy + Xy = 100, Xq > 0, Xy > 0, Xy = 0},

which is in V(N) and therefore is the inner core. Increasing the worth of the

12



grand coalition would not generate any other core allocations that are feasible
in the original game. Thus, the inner core is the portion of the core where
player 3 (the banker) gets zero.

The unique Shapley NTU value for this example is (50,50,0), which is the
Shapley value of the TU game VA when X, = A, = A, = 1. The Harsanyi NTU value

1 2 3
is (40,40,20), which satisfies conditions (10)-(12) when

1 2 3
{1,2y {1,2) _
Xl = 20, Xy = 20
(1,2,3) (1,2,3) (1,2,3) _
Xy = 40, X, = 40, X, = 20,

S o -
and X; = 0 for each i in any other coalitions 8§.

The Owen NTU value for this game is (51.88, 47.57, 0.58). Owen [1972] suggests
intuitively that a reasonable solution should give a positive payoff to

player 3, but the inner core and the Shapley NTU value contradict this
intuition. To support the inner core, we now construct an intuitive
justification for giving zero to the banker.

To be specific, suppose that the players expect to get the Harsanyi NTU
allocation (40,40,20) unless some blocking coalition forms. The allocation
(40,40,20) is in the core, as originally defined, so it might seem that no such
blocking coalition could be organized. But suppose that a blocking agent (an
outside mediator who is not a player) can try to organize a blocking coalition
according to a pre-announced randomized plan. That is, suppose that an agent
will approach some set of players and ask them to sign over power of attorney
to him for all bargaining purposes. If any player who is approached by the
agent refuses to give him power of attorney, then the agent will not block the

(40,40,20) allocation; but if he gets power of attorney from all the players

13



that he approaches, then the agent will block (40,40,20) and implement instead
some allocation that is feasible for the coalition that he controls. Suppose
that, when the agent approaches a player, the agent does not have to reveal
the identity of the other players whom he has decided to approach, but he does
have to describe the randomized plan by which he has made this decision and
the expected utility allocation that he would implement for each such possible
coalition.

Such a randomized blocking plan could be as follows: with probability
.41, the agent will ask players 1 and 2 to join the blocking coalition and

implement the allocation (XI’X = (100,0); and with probability .59, the

9)
agent will ask all players to join the blocking coalition and implement the

allocation (x ) = (0,79,21). Under this rule, players 1 and 2 are always

1'%2'%3
approached by the blocking agent and get expected payoffs of .41 x 100 = 41
and .59 X 79 = 46.61 respectively. Furthermore, conditionally on being
approached by the blocking agent, the expected payoff to player 3 is 21, which
is strictly greater than 20. So each player should be willing to accept the
agent's invitation to block (40,40,20). Thus, the core allocation of
(40,40,20) can be blocked by a randomized blocking rule. Of course, this
randomized blocking plan leaves player 3 worse off in expected value. Ex ante,
player 3 expects to get .59 X 21 + .49 x 0 = 12.39 1if the agent always
succeeds. However, player 3 cannot prevent the blocking plan unless the agent
approaches player 3, in which case accepting the plan and giving the agent
power of attorney can only help player 3. Thus, unless player 3 can commit
himself to reject the blocking coaliticn before he is invited to join it, the

unique equilibrium in undominated strategies is for every player to join the

agent’'s blocking coalition when invited to deo so.
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Similar tricks can be used to randomly block any other core allocation
that gives player 3 a positive payoff. The idea is to randomize between two
alternatives: either do not use player 3 and let player 1 keep everything;
or use player 3 and transfer everything from player 1 while giving player 3
a slightly higher banker’'s commission than he would get in the allocation being
blocked.

This random-blocking property actually characterizes the inner core quite
generally. Let V be any NTU coalitional game on the finite set of players N.

Define a randomized blocking plan to be any pair (%,Y) such that n is a

probability distribution over the set of all possible coalitions, and Y is a
function such that

Y(S) € V(S)
for every coalition S. Here n(S) represents the probability that the blocking
agent will set out to form the coalition §, and Y(S) denotes the expected
payoff allocation that he would implement if he succeeded in forming the
coalition S.

Let x denote an allocation in RN that is interpreted as the status quo,
which is to be implemented unless the blocking agent is successful in forming
his coalition. Then a randomized blocking plan (%,Y) is viable against x iff

zSg{i) n(S)(Yi(S) - xi) > 0, Vi € N.
That is, (n,Y) is viable against x 1ff for each player i, conditionally on
player i’'s being invited to join the blocking coalition, his expected payoff
in the blocking coalition would be at least X - We may say that x is strongly
inhibitive iff there do not exist any viable randomized blocking plans

against X The following result follows from the work of Myerson [1988, 1991]

and by Qin [1990].
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Theorem 1., Let V be a finitely generated NTU coalitional game and let
X be a feasible allocation in V(N). Then X is in the inner core of V if and
only if there exists a sequence of allocations (xk):=1 such that
1imk»w xk = %, and, for every k, xk is strongly inhibitive for V.

Proof. let (1 = {(S,y)l S is a coalition and y € W(S)}, where W(S) is
the finite set of which V(S) is the comprehensive convex hull. A vector z is
strongly inhibitive iff there is no probability distribution p such that

p(S,yy =0, V¥(S,y) € q,

< 0, Vi e N,

Zso1iy Zyewcsy B YI(Z - ¥5)
z(s,y)en e(S,y) = 1.
By theorems of the alternative for linear systems, or the duality theorem for
linear programming, the nonexistence of such a distribution g holds iff there
exists some vector X in BN such that
A, >0, vienN,
i

EieS Ai(zi - yi) >0, V(S,y) € Q.
The last of these inequalities when S = (i} implies that each Ai must be

strictly positive. Thus, z is strongly inhibitive iff there exists some

s . N
positive vector XA in R++ such that

A
(21) EiGS Aizi > v (§), ¥S CN
where
A
(22) v (S8) =m ¥S € N.

Hyev(s) Zies 2175

Now suppose that x is the limit of strongly inhibitive points Xk. For

each k, let Ak satisfy condition (21) for z = xk, let w? = A?x? for each player

i, and let uk be the TU coalitional game such that

Ak

k k, and uk(S) = v (S8), VS c N.

Kk
W) = e A

16



Then uk € F(V,Ak), wk € Core(uk), and limk wk/kk = x, for each i: and
o 177 i
so x is in the inner core.
Conversely, suppose that x is in the inner core. Then there exists a

sequence (Ak,vk,wk)z=1 such that limsupk_mo w?/Ak < x. for every player 1,

i i
and, for each k, Ak € R§+, vk € F(V,Ak), and wk € Core(vk). By increasing
the components of wk and increasing the vk(N) numbers where necessary, we can
assume without loss of generality that the (w?/k?):=l sequence i1s decreasing
in k and converges to ii’ for each i. Furthermore, by increasing the
components of each wk allocation slightly, we can assume that the core

inequalities are all strictly satisfied for each wk. Let x? WE/AE for each

i and k. Then
k

ics A?x? > v (S), VS CN,
So xk is strongly inhibitive (by condition (21)). Thus x is a limit of
strongly inhibitive allocations if it is in the inner core. Q.E.D.

Harsanyi [1967-8] laid the foundations for the analysis of Bayesian games
with incomplete information. Since his paper, perhaps because of rising
interest in noncooperative game theory, the extension of cooperative game
theory to games with incomplete information has been relatively neglected.
(See Harsanyi and Selten [1972], Myerson [1984a, 1984b].)

For any game theorist who wants to develop solution concepts for
cooperative games with incomplete information, a natural methodological
question is how to extend the method of fictitious transfers to this case.
Our technical result about the inner core for complete information games can
be generalized and used to give an answer to this question.

Let us consider a simple model in which N is the finite set of players;

Ti is the finite set of possible types of player i; CS denotes the finite
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set of actions that are jointly feasible for each coalition S§ C N, ui(cs,tN)
denotes the expected utility payoff that player i would get if he joined
coalition S, which jointly implemented action Cg> and the profile of all

' - .
players’ types was CN (ti)iEN’

and pi(ti) denotes positive probability
that player i’'s true type is ti. We assume here that players’ types are
independent random variables, but each player learns his own type before the
play of the game begins. That is, a player’'s type is defined to be the state

of his private information at the beginning of the game. We also assume that

types are unverifiable, in the sense that there is nothing to prevent a player

from lying about his type if he is given an incentive to do so.

For any possible coalition §, let TS =X g Ti denote the set of all

possible combinations of players’ types in coalition S, and let
pS(tS) = HjES pj(tj), VtS € TS.

(Here t_. = (t

S )

j'jes?

The status quo that an agent might try to block can be represented by an
allocation rule x:TN - RN such that, for every possible types profile t and
every player i, Xi(tN) is the expected payoff to player i in the status gquo
if tN is the profile of all players’ types.

Now suppose that an outside agent or mediator attempts to block such a
status quo x by forming a blocking ccalition according to some random rule.
For notational simplicity, we consider here only a very simple (but quite
versatile) class of randomized blocking rules. Let us assume that the agent

will randomly designate a coalition S C N, a profile of types tg for this

coalition, and a feasible joint action Cq for this coalition. Let u(S,c

S’tS)
denote the probability of designating this coalition-types-action triple, under

the random blocking plan p. Then the agent will separately and confidentially

18



approach the members of his designated coalition S and will request that they
give him power of attorney in all subsequent bargaining. If any player in
the designated coalition rejects the agent’s request, then the agent will not
block the status quo. Each player who gives the agent power of attorney will
then be asked to confidentially tell his type to the agent. If the profile
of reported types matches the designated profile g then the agent will
implement the designated joint action cg for the coalition; 1if the profile
of reported types does not match the designated types profile, then the agent
will not block the status quo. We assume here that the status quo will be
implemented if the agent does not block it. (When x results from the
equilibrium of some game, there is a problem about whether the fact that a
blocking coalition has not formed might convey information to the players that
would change their behavior and thus change the status quo payoffs. One way
to get around such considerations is to think of the ,u.(S,cS,tS ) probabilities
as infinitesimally small, so that very little information is conveyed by the
nonformation of a blocking coalition.)

The agent has two problems in the design of his random blocking rule.
He needs that the players in the blocking coalition should expect to do better
by joining it than under the status quo, and he needs to give the players in
the blocking coalition an incentive to share their type information homestly.

So a random blocking plan u is viable against x 1iff

(23)  u(S,eq,tg) 20, ¥SCN, Voo € Cy, Veg € Tg;

(24) ) = = p(S,c.,t.) > 0;
SCN CSECS tSeTS S$'°S

(250 Zgoiiy Pe er . Peec, M55 tg) Py (T ) (uyleg g - xy {6y 2 0,
N-i 'N-1i S S

¥Yi e N, VvVt, € T,;
i i
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(26) X 2, ec P(S.eg,tg) Pty ) (ugleg i) - x.(t))

>
Sali) “r N-1 ©s%Ts b

N-i<T

= Zoo01) e et | Te.ec, M5 cg (fg T P (g ) (U legit) - xg (),
N-iSTN-i CsSCs

vi € N, vt, € T., Vr, e T..
1 1 1 1

We say that the status quo x is strongly inhibitive iff there do not exist

any randomized blocking plans that are viable against p. Extending the
preceding result, we may naturally define the inner core to be the set of
status-quo allocation rules that can be implemented by incentive-compatible
mechanisms and are equal or Pareto-superior to limits of strongly inhibitive
allocation rules. (Of course, such a core may be empty for many examples.
However, Myerson [1988] showed a class of replicated games in which a related
core concept is always nonempty.) Now we may state the generalization of
Theorem 1 which shows us how to characterize such strongly inhibitive

allocations in terms of fictitious transfers of wirtual utility, as defined

in Myerson [1984a, 1984b].

Theorem 2. An allocation rule x:TN - RN is strongly inhibitive iff

there exists nonnegative numbers Ai(ti) and ai(rilti)’ for every player 1 in

N and all possible types e, and s in Ti' such that

~

Paystos? ¥ oyt )

A

z. z
ies tN\SeTN\S

> Z. z

¥S € N, Vc
ies

e C.,, vt e T_;
tN\SETN\S S S S S

~

where ui(cs A,a) =

YtN'
[ (e + ZrieTi ag (rleuyeg e - ErieTi

@y (tylrpugleg ty 470 1/p; (6p)

and xi(tN,A,a) =

[ (e + ErieTi oy (ryledx (e - zrieTi o (ey |z ey ir ) 1/ps ().
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{(Notice that, if player i has only one possible type £y then

xi(tN,A,a) = Ai(ti)xi(tN) and ui(cs, A,a) = Ai(ti)ui(cs,t Y, and so these

Ty N

virtual-utility formulas are a generalization of A-weighted utility for games

with incomplete information.)

Proof. Consider the linear programming problem of maximizing the sum in
line (24) over all nonnegative vectors u, subject to the constraints (25) and
(26). The optimal value of this homogeneous linear program is either 0 or +w.
The allocation rule x is strongly inhibitive iff the optimal value is zero.
So, by the duality theory of linear programming, x is strongly inhibitive iff
the dual problem has a feasible solution. For each i, ti’ and ., let Ai(ti)
and ai(ri|ti) denote the dual variables for constraints (25) and (26)

respectively. Then the constraints of the dual problem can be written

Zies = Py.p byl TugCegnty) - % (B (g (80 + Er.eTi oy (role )

B sETn s

- 2 (ui(CS’(t

1
r. et ) - x| = 1

N-1

C
VS C N, Vt, e Tg, Veg € Cg.

It is straightforward to show that these dual constraints can be satisfied iff
the constraints in the theorem can be satisfied by some nonnegative vectors

A and a. Q.E.D.
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