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1. INDRODUCTION

An important question in the theory of implementation is whether or not
a given social choice function (correspondence) is consistent with the
self-interested behavior of agents in some institutional setting, i.e.,
whether or not a certain social choice function can be implemented by
some informationally decentralized resource allocation mechanism. This
question was systematically studied in Maskin (1977). The main result
in that paper is the following: With the feasible set known, a
necessary and sufficient condition for a social choice correspondence
satisfying the "no veto power" to be Nash implementable 1is a
"monotonicity” condition. Hurwicz, Maskin and Postlewaite (1986} (This
will be refered toc as HMP later. Earlier versions of the paper date
back to 1980) later studied the feasible implementation problem of a
social choice function when the feasible set is not known. With the
assumption that preferences are known, they first constructed an
endowment game that implements in Nash equilibria individually rational
social choice functions (as functions of agents’ initial endowments)
for pure exchange economies with three or more agents, strictly
monotone preferences and semi-positive endowments. Combining this with
Maskin’s result, they proved that for those economic environments just
mentioned, any individually rational and monotone social choice
function is Nash implementable.

In their endowment mechanism, a message from any agent is an
endowment profile, i.e., n - tuples of endowment vectors, one is a
claim about his own endowment, the rest are estimations about others’
endowments. Every agent may conceal part of his endowment but is not
allowed to exaggerate it. The dimension of the message space 1s thus
n?Z, where n is the number of agents and £ is the number of goocds. In
this paper,we will present an alternative mechanism with
n(f+1)-dimensional message space and with an outcome function no more
complicated, if not simpler, than that in HMP. In this sense, our
mechanism is informationally more efficient.

Our main ideas are as follows: First, in the HMP mechanism, the

claim of agent i about his own endowment is compared to others’



estimations about his endowment (component by component) in order to
provide incentives for truthful revelation of endowments. Since he is
not allowed to overstate his endowment, the following is true:

1) The "size" of his claimed endowment vector equals the "size" of his
true endowment vector if and only if he tells the truth about the
endowment.

2) The "size" of his claimed endowment vector is smaller than the
"gize" of his true endowment vector if and only if he conceals part of
his endowment.

(The "size" of a vector is later defined as its norm.)

This is most easily understood through an example. Suppose that there
are two goods in the economy: apple and bread. Suppose that we know Mr.
Smith has a total of 12 units of goods. If Mr. Smith claims that he has
3 apples and 9 loaves of bread, then this has to be his true endowment
vector. The reason is that if he is not telling the truth, it must be
that he has either more apple or bread or both so that the total is not
12 units.

This suggests that it might be enough to have each agent estimate
only the "size" of every other agent’s endowment (not a whole vector)
in addition to announcing his own endowment. Further, if we think of
agents as being arranged in a circle, we may only need each agent’s
neighbor to provide him incentives to reveal his true endowment. This
way, a message from any agent consists of a claim about his own
endowment and his estimation of the "size" of his neighbor’s endowment.

The rest of the paper is organized as follows: In Section 2,
notation and assumptions are discussed. They are almost exactly the
same as those in HMP. Section 3 contains the main contents of the
paper: a mechanism with n(f+1)-dimensional message space is formally
described and it is shown that it implements in Nash equilibria
social choice functions under our consideration. Section 4 provides

concluding remarks.

2. NOTATION AND ASSUMPTIONS

Let £ be a positive integer. Let x=(x1,...,x£)eR£ & y=(y1,...,y£)ERg



We use the following conventions:

x <y iff x; < yi for all 4=1,...,¢
x =y iff x<y&x=#y
x < iff x.< vy, for all 4 =1,...,¢
Yy i yi 4

Rf= { x € Rgl x>0 }

L ¢
R++— {xeR]| x>01%

e _ L
R+o— R+\{O}

in L 4 .
R+o- R+Ox...x R+°(n times)

2.1. The Economic Environment

N=4{1,...,n} = the set of agents; n 2 3.
L={1,...,8 ) = the set of commodities.
&L= the true initial endowment of agent {.

= (51,...,&n) = the true endowment profile.

-]
w
_)
R+ is the consumption set for every agent.

ﬁL= the true preference relation of agent 1 defined on Rf.

§L= the true strict preference of agent I.

{

+o°

Assumption 1 For all { € N, &Le R

Assumption 2 For all ieN, ﬁL is reflexive, transitive, total and

strictly increasing.

2.2. The Social Choice Function

The social choice function under our consideration is a function

£ = (f,,....£,) where f: er” 5 ®Y for all ieN such that Assumptions 3,
Q

4 & 5 are satisfied.

Assumption 3 f is balanced, i.e. V = (v

in _
.,vn)eR+°, 'z fL(X) = 0.
ieN
in
+o’

v ..
> 1’

-V.

Assumption 4 f is feasible, i.e. V = (v ,...,vn)ER i

1 fL(X)

<
[1RY%

for all ieN.



Assumption 5 f is individually rational, i.e. V

(v.+ f.(v))ﬁ.v. for all ieN.
P R S A

3. THE MECHANISM

We construct an individually feasible and balanced mechanism (S,h) such
that it implements the social choice function for true preference
profiles, 1.e. for any true endowment profile é, a Nash equilibrium
* * o
exists, and further, for any Nash equilibrium strategy s , h(s )=f(g).

The message space of the mechanism is S = Slx.<.x Sn’ where
o 1 X . i+l .
S.= (0,0.]xR. . A generic element of S, is s.,= (v.,t. ") where v, is
i i ++ i i O i

agent {'s claim about his endowment and ti+1 is interpreted as agent
i’s estimation about the "size" of his neighbor’s endowment. Since

0 = \ S &L’ agent i is allowed to withhold part of his endowment, but
not all of it. The outcome function h(s) = (hl(S)""'hn(S)) specifies
each agent’s net trade as follows:

Vs esS, define M(s) = {L e N: llvil >t .}

B.(s) = T livi - tf | VieN
j#i,i+1 ¢
B(s) = Y BL(S)
ienN
Remark: In this paper, li-ll can be either il<ll,-norm or fl«ll_-norm where
2 2 2 2,172
for any x € R, Hlea (|x1|+...+|x£|) & lixli,= ((Xl) +...+(X£) ) . In

fact, it can be any positive function that is strictly increasing in
each argument. Of particular interest is the value function ( the inner
product of the endcwments and a strictly positive price vector). This
allows us to make the following statement: "Given a strictly positive
vector of world prices, the agents need only report their own endowment

vector and an estimate of the total wealth of his neighbor." It is much
easier to know the wealth of an agent than to know the precise vector
of goods the agent owns. The concept of the “size" of a vector x in
this paper is expressed in terms of Ixl.

Case (1 {Norm-unanimity) If ¥ ieN, HvLH = ti—l’ we set h(s) = f(X).

Case (2 If M(s)=2 and there is no norm-unanimity, we set



hi(s)=[(BL(s)/B(s)) rv,l - v, for all ieN
€N
(This is well-defined because in this case, B(s)#0. In fact,

B(S)=(n-2)EIHV."-t$_1l > 0 since there is no norm-unanimity.)

JEN
Case (3) If M(s)#@, then we set
(1/(#M(s))) R v, - v, for i € M(s)
hL(S) = JeN
v, for i ¢ M(s)

These three cases exhaust all the possibilities of se€S5, so that
the outcome function is completely defined. It is also easily seen that
the individual feasibility and the balance condition are satisfied.

As in HMP, we prove three claims which together imply that our

mechanism implements the social choice function f.

Claim 1 Truthful norm-unanimity is a Nash equilibium, i.e.

5=(5......5), where 5.=(v,,t"h=(d,1d, 1) for all ieN, 1is
1 n VA AR i i+1

a Nash equilibium.
Proof. Without loss of generality, we show that agent 1 has no

incentive to unilaterally deviate from 51. Vsl= (vl,tf) € S1 such that

s * 5 = (&l,uézu), it has to be the case that v_ < &1, so v Il ¢ u&lu =

1

Then 1 ¢ M(S1’;)1()' There are two possible cases. One is

M(S1'S)1J = @ in which case rule (2) applies and 81(51’Sn1)=31(8):0

so that h (s ,s ) = -v_. The other case is M(s ,s ) # @ so that
1771 T 1 17 7)1 ¢

rule (3) applies and since 1 & M(sl,s)lﬁ, }H(S1’Sn() = -V, By rule

(1), h1(§) = f1(§) ﬁlo ﬁl(—vl) since f is individually raticnal, ﬁ1 is

. . . . . s 1
strictly increasing and v, is semi-positive. Sco Vsle S1 s.t. 51# s,

h1(§) ﬁﬁn(sl,gnl). Therefore, agent 1 does not want to deviate from

Strictly speaking, it should be & +h (5)=6_+f ()R w P ® +h (s.,s._ ).
1 1 1 71> 71111 1 1t
We abuse the notation in this paper since it should be clear what it

really means from the context.



Claim 2 False norm-unanimity is not a Nash equilibrium, i.e.

i+l . e v s
s = (s,,...,s ) where s.= (v,,t; ") is not a Nash equilibrium
1 n i L

if “VL" = t% VvV { € N and there exists a kK € N s.t. 7 # &k'

i-1
. o ° ~ o~ ~F+1 ~ o ~k+1_
Proof. Since 7 * W vks wp - Let Sg= (vk’tk } where Vo= we and tk =
K gince 19,0 = WO, > v Il = ¢k k € M(s,,s , ). Others are not
g -t k & & k-1 ST T

. ~ . . ~k+1 k+1
in M(Sk's)k() because their strategies stay the same and tk = tk . So

M(gk,s } = {k}. By rule (3), hk(gk’s)k() = Y v, Since V { € N,

yk( jok 4

h.(s) > - v, and since Y h.(s) =0, h (s) < Y v,. Now we want to show
i = i , i Kk = i
ieN izk
hk(s) + ) v, Suppose the equality holds. Then ¥V & # k, hL(S) = - v,
izk
But by rule (1), h.(s) = f.(v), so that f.(v) = - v,. Since v, is semi-
A i i i i L4
positive and R, is strictly increasing, OP.(-v,), i.e., OP.f.(v) which
i i i il
contradicts the assumption that f.is individually rational. Thus, hk(S)

- Q 1 . . - ~ (]
= Lgkvt. Since Rk is strictly increasing, hk(sk’s)k() Pk hk(sk}s)k(y
Thus s is not a N.E..

Claim 3 No norm-unanimity is not a N.E., i.e. s = (Sl""‘sn) where
i+l . . .
s,= (VL’tL ) is not a N.E. if there exists a k € N such that
k
Hka # tk-l'
Proof. 1) M(s)=N. In this case, hk—l(S) = (1/n)'z v, T Veq Let Sp.1=
4EN
(v Ek } where Vv, .=V and Ek = liv Il. Then Ek = Jlv, Il implies
k-1 k-1 k-1 k-1 k-1 k- k-1 k

that k ¢ M(s ). For all jz#k, jeM(s) implies 46M(Sk>1’s)k—18'

k-1")k-1¢

Sk-1"%)1k-1¢ ) =

In particular (k-1)e( ). So by rule (3), h

k-l(sk-l’s)k—l(
(1/(n—1)]_z VT Ve 4 = hk-l(s)' Since ﬁk—l is strictly increasing,
JEN

e 1 1% k1P k-1"1
2) M(s)#a & M(s)#N. Suppose i ¢ M(s) & j € M(s). Then hL(S) = v,

let 5.= (v..T"Y) where v.= (1/2)v, and T T S = a2 <
4L 4 L 4 L 4 4 i 4

)

(s). Therefore, s is not a N.E..

t' . (since i ¢ M(s)) implies { & M(gi’sﬁi) and jeM(s) implies

v, i
i i1

[P



i€ M(SL,S)L(], so M(SL,S)L() # @. Then rule (3) applies and

h.(s.,s.) = -v.= -(1/2)v,z -v.= h.(s). So, h(s.,s.) P, h.(s). Thus
4 i Y4 ( 4 4 4 4L i 4 EA 4 4
s is not a N.E..

3) M(s)=g¢. Since this does not satisfy norm-unanimity, we assume

k
that Hvku * tk—l' We analyze two subcases.
) _ ] L ~ o~ ke
i) Bk—l(S) = 0. In this case, hk-l(S) = Ve g Let Sp_1° (Vk-l’tk-l)
where v, .= (1/2)v and tF = & Then (s s ) is still not
k-1 k-1 k-1 k-17 k-1""rk-1¢
norm—unanimous because Ek' = tﬁc # lv,l. Since Wv = H(1/2)v N <
k-1 k-1 k- k-1 k-1
k-1 ~ ,
Hvk_lu < tk_2 (because (k-1) & M(s)), (k-1) ¢ M(Sk-l’s)k—l()' vi = k-1,

4 & M(s) implies 4 ¢ M(Sk—l’s)k—l()' Thus M(Sk-l's)k-l() = g and there

~

is no norm-unanimity. Apply rule (2), hkrl(sk-l’s)k-l()= - Ve 1T

= - (1/2)vk_12 = Ve because Bk—l(sk—l’s)k-lg = Bk-l(S) = 0. Thus,

B

(s), so that s is not a Nash equilibrium.

by 1(8g_ 125 k-1 Fr1Prot

~

) where Ve~ Va1 and tk—1=

~

.. . ~ ~k
ii) Bk—l(S) > 0. Consider Sp1” (vk—l’tk—l

v, l. Then M(Ek

K )=@. Since Bk—l(sk-l's)k—l() does not depend on

—1’S)k-1(

Sp 1 Bk-l(sk-l’s)k-l() = Bk—l(s) > 0. Since Bk(sk—l’s)k—l() depends on

~ ~k ~ ] ) ~ ~
Va1 not on tk-l’ Veo1™ Va1 implies that Bk(sk—l’s)k-l() = Bk(s).
. ~ _ i ok
V 4 # k-1 &K, Bi(sk—l’s)krl()_. .Z. |”VL" ti—ll + IHka tk—ll
iz§,4+1,k
= I liv - ti o< I hva - ti L vl - tﬁ_ll = B.(s), the
i#f,4+1,k SRS I P - 4

. . . k ~
inequality is because Hka # tkrl' So 0 < B(Sk—l's)k-l() < B(s). Apply

rule  (2), hk—l(sk-l’s)k-l()z(ﬁk—l(Sk-l’s)k-1()/B(Sk—l’S)k-l();gﬂvi_vk-l

= (Bk_l(s)/B(s)iEHv;-vk_1= hkrl(s)' So hk—l(Sk-l‘s)k-l()Pk—lhk-l(S)'
Therefore, s is not a Nash equilibrium.



From the above three claims, we immediately have the following:
THEOREM The mechanism described in this paper has a message space of

dimension n(f+1) and it implements the social choice function.

4. CONCLUSION

The idea of having each agent propose his estimation of the "size" (not
the whole vector) of his neighbor’s (not everybody else’s) endowment
enables us to reduce the message space of the HMP mechanism a great
deal without complicating the outcome function. Although our
mechanism is informationally more efficient, we do not know if it is in
fact informationally efficient. That 1is to say, we do not know if
n(f+1) is the minimum dimension of the message space required to carry

out the implementation.
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