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BRANCHING PROCESSES I SIMPLE RANDOM WALK
MEYER DWASS
ABSTRACT, Let N(a) bs the number of overcrossings of height a in
a simple random walk. For p < i, the process N(0), N(1), ... is a
branching process, which eventually becomes extinet, For 3 < p,
N(0), N(1), ... is a stationary process which is a branching process

with immigration.

1, Introduction. We show that a certain branching process and a

branching process with immigration arise in simple random walk when p # %.

By simple random walk we mean the sequence of random variables, S

0? 519 eeey

S9=0,5 =% + et X ,n= 1, 2, ...

where the Xi's are independent and identically distributed,
1 with probability p
£ =
1 (.1 with probability 1-p = g

Definition 1. An overcrossing of height a takes place at time n if

S,=3 S 1= a+l, Si = a for some i < n,

Definition 2. N(a) denotes the total number of overcrossings of height a.

(N(a) is finite if p # &.)

2. Statement of theorems,

Theorem 1. For p < %, N(0), ¥(1), ... evolves as a branching process with

E MO o (1 - p/e)/(t - pt/a)

¢ )| Na) k) = [/ - pt)TK, ak =0, 1, ...

1/ Without further notice, the dummy variables in all generating functions
are assumed to be less than 1 in absolute value.



(In other words, each of the elements of the preceding generation indep-
endently gives rise to a random number of new elements, according to the
progeny generating function q/(1 - pt).)

Theorem 2. For 4 < p, N(0), N(1), ... evolves as a branching process,

With immigration, with
g0 o (1 _ q/p)/(1 - qt/p)

56" | NGa) =) = [p/(1 - e Tp/(t - a0)], 2k =0, 1, ...
(In other words, each of the elements of the preceding generation indep-
ently gives rise to a2 random number of new elements, according to the
progeny generating function p/(1 - gt); in addition, in each generation
there is an influx of a‘random number of new individuals by immigration

according to the same generating function p/(1 - qt).)

3. Proofs. The proofs of Theorems 1 and 2 will proceed through a series
of steps which follow,
Step 1. Define
T = time at which first overcrossing of O takes place., (For
p#3% P(T<o)<l.)
V(a) = total number of overcrossings of a up to time T.
R (i1, ees , i ) = probability of all paths which start at height
1, overcross height 1 i1 times, overcross height 2 12 times, +ee ,
overcross height n in tinmes; do not overcross height 0 enroute,

and end up eventually at height 1,

Vh(sl, ces 5 Sp) = E( sy(l)- vee ° sx(n)l T< o)
Step 2.
9 P<3
a) P(T< ) =gp/ P
q/P’ 1?" <P

e q/(1 - pt), p<t
b) B( t"\"l'T<m)=g ’
p/(1 - qt), +<p



Proof. a) is a standard fact about simple random wallk., Fart b) follows

from a) by the computation,

PV = k. T < oo) ;<p/q>(p-1>“q =g, p<3
1, = k, < 0) = .
le(peq/p)fq = g*l, 1< p

L( sg(z)' vees ° Sx(n) I V(l) = k, T< m) = [Vn_1(529 cee sn)]k

k=0, 1, oo
Proof. If k=0 then V(2) = ... = V(n) = 0 and the assertion holds, so
assume now that 1 < k. Suppose that p < 4. From the definition of Rn’
PO V(L) =14, ees , V(n} = i, T< ®) = (p/q)Rn(il,...,in)q
For 1 < k, we also have

P( V(:‘) = k, V(2) = 1 g ooe o V(n) = in, T< CD) =

2
X(P/Q)[PRn_]_(jlzo XX ’jln)q]. eos '(PRH.J(sz," . 93kn)QJq

where the summation is over all vector sums of k (n-1)-tuples such that

(Jppsesnsdyy) + oee + (Gezseeesdyy) = (ipye0ei)

Hence, computing generating functions, we have

E(sr(l)u..-sx(n) ; V(1)=k, T< @) =

(p/q)[qE(sg(i)'---'sz(n;"l); e Iq

from which the result follows by dividing through by P(V(1)=k,T < @) =

pk+1 « The proof for £ < p is similar and is left to the reader.

Vn(51, LX X Y Sn) = Vl(slvn-l(sz, soe o Sn))

Proof. E(sf(l)'..usx(n)’ T< o) =

V(1)
ﬁﬁ(sl *eest .sx(n)l V(1)=k, T< ogP(V(1) = k ] T< w) =

K .
£ 510V, 1055, o ,sn)]kP(V(1)=k T< ®) (by Step 3)
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This last expression equals the right side of the assertion.
Step 5. Let ¥(0), ¥(1), ¥(2), ... be a branching process with Y(0)= 1 and
s(tTOM) ) y(n) = ) = FE()
Define the joint generating function of ¥(1), ... , ¥(n) to be
”n(sl’ cee sn) = E(sf(l)' ces -sz(n))
Then,
wn(sl, cee 5Sp) = F(siwn_l(sz,...,sn))
The joint distribution of Y(1), ... , ¥(n) is uniquely determined by this
iterative relationship.
Proof.

B(sT ) oLl EE(sf(l) ceeersp ™| ¥(1)=)P(X(1 )2k)=
Lsg L, 1 (5ypee005, )] BI(L)=k) = F(syH_4 (555000y5,))

Step 6. Under the condition that T < oo, the process V(1), V(2), ...
coincides in distribution with a branching process Y(1), ¥(2), ... , where
Y(O) =1 and

. k
la/(1 - pt)] , Pp<$
ST |y = af pt)] , p<

[p/(1 - pt)I, +<p nk=0,1, ...
Proof. It follows from Steps 4 and 5 and 2(b) that

I COI (O TS COR )
foralln=1, 2, «vs &«

Completion of proof of Theorem 1. Suppose that p < 4. If N(0) = 0 then

automatically N(1) = N(2) = ... = O. Suppose that N(0) = k > 0. Define
(vi(1)9 Vi(Z)Q see o Vi(n)) = Vi

to be the number of overcrossings of heights 1, 2, ..., n between the time

of the i-1 st and 1 -th overcrossing of height 0. (Vl(a) is the saxe as

V(a) as defined earlier.) Then,

a) the random vectors V1, Vz, eee are independent and identically

distributed in the sense that



P(Vi=vy, one V=9 | N(0)=K) = P(Vi=v1|T<oo)°...~P(Vk= v | T<e)
P(Vi = V) does not depend on i.
b) n(a) = Vi(a) + ou. + VN(O) if N(O) is positive.
c) P(H(0) = k) = (p/@)*(L - p/qa), k + 0,1, ...
By Step 6, the proof of the theorem is now complete.

Completion of proof of Theorem 2. For 4 < p, it is no longer true that

if N(0) = 0 that N(1), B(2), ... are also zero. we must now be concerned
with the overcrossings of height a4l after the last overcrossing of height
a. The number of such overcrossings plays the role of the immigratien
into the population at each generation. An easy computation shows that
E(N(1) = kl 8(0)=0,5,=0) = qu » k=0,1, ...

For the rest, the proof is similar to that of Theorem 1 and we leave the
details to the reader.

4, Complements, Sunnose that p < 4. A direct calculation shows that
L= (p/)*
P(M(a)=k) = ; .

(p/)*(p/a)¥(1 - p/q), 0 <k

Hence,

tN-(a)

6 (t) = E =1 - (p/a)™* (1-t)/(1-pt/q) (4.1)

Let F(t) denote tke progeny generating function,
F(t) = g/(1 - pt)
Since ¥(a) evolves as a branching process, we must have that

G,(t) = GO(F(a)(t)), a=1, 2, ... (.2)

(a)

whers F is the a-fold iteration given by

Fla)(t) = rr(e-1(1)), a=2, 3, ...

It is easy to verify directly by induction that (4.1) satisfies (4.2).
For 4 < p we have that

E(8) = (1 - q/p)/(1 - atfp) = G(t), a=1,2, ...



(Since (a) is a Markov chain it follows that it is a strictly stationary
process,) Since H(0), N(1), ... evolves as a branching process with
immigration, we must have that

G(t) = G(F(t))p/(1 ~ qt) (&.3)
reflecting the relationship between N(a+l) and N(a) stated in Theorem 2,
with

F(t) = p/(1 - qt)

It is easy to verify that (4.3) holds directly.
For p < %, N(a) must equal O for sufficiently large a. This is

consistent with the fact that

Fo/t-p)|,, = pa <t
In other words, if the expected number of progeny is less than 1, the

branching process becomes extinct with probability 1.

5« References. The elementary facts that are needed about random

walk and about branching processes can be found in (1],

(1] Feller, W, (1968) An Introduction to Probability Theory and Its

Applications, Vol. I, 3rd ed., New York, Wiley.



