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Abstract

Rational lLearning Leads to Nash Equiiibrium

by

thud Kailai anda Ehua Lehrer

Two players are about to playv a discounied infinitely repeated bimatrix
game . tach piayer knows nhis own payotf matrix and cnooses a strategy which
is a best response to some private beliefs over strategies cnosen by his
opponent. if both piayers' beliefs coniain a grain of truth (each assigns
some positive probability to the strategy chosen by the opponent). tnen they
will eventualily (a) accurately predict the future piay of the game and (b)
piay a Nash equilibrium of the repeated game. An immediate coroliary is
that in piaying a Harsanyi-Nash equilibrium of a discounted repeated game of

incompiete information about opponents' pavoffs, the plavers will eventually

piay an equilibrium of the reai game as if they had complete information.



1. Introduction

The concept of Nash (1950) eguilibrium has become central in game
theory, economics. and other social sciences. Yet the process by which the
players learn to piay it, if they ao, is unknown. This is not surprising
for a game which is played oniy once since the players do not have much

+

opportunity to iearn. However, in infiniteliy repeated games, where the
piavers do have enough time to learn the behavior of their opponents, one
would expect them to learn to play a Nash equiiibrium.

[f a repeated game involves incomplete information. a second issue of
fearning arises. The justification of a Nash equilibrium now requires the
existence of a commonly known prior distribution of the uncertain parameters
in the game. Otner than general verbal discussions about the piayers having
a common prior when they were very young. or before they were born (behind
the velr of ignorance), we have no satisfactory way of deaiing with this
probiem.

Iin this paper we study an infinitely repeated two person game with
discounting. We assume that each plaver knows his own pavoftf matrix and
chooses a sirategy which is a best vesponse to his vrivate beiietfs about his
opponent's strategy. We show inat if both piavers' beliefs contain a grain
of truih (each assigns some positive probabiiity to his ovponent's strategy)
then eventualiy:

(i) they wi:i accurately predict the future pliay of the game, anda
{(ii) they will play according to a Nash equilibrium of the
repeated game.

Moreover. this learning takes piace without reiiance upon a common



prior aistrioution or common <howledge of the strategies piayed or other
parameters of tne game. Every Nash equilibrium can result from such
iearning.

While the experimentali literature of Smith and others (see, for
exampie, McCabe-Rassenti-Smith, 1989) have shown that agents in repeated
interactive situations do learn to piay Nash equilibrium, no theoretical
expianation for this phenomenon has been provided. This is in spite of thne
existence of a continuously growing game theoretic literature on repeated
games with or without complete information {see Aumann (1981) and Mertens
{1986) for surveys that are aireaay outdated; see the forthcoming book by
Mertens-Sorin-Zamir (1990) for state-of-the-art knowiedge on repeated games
with and without complete inforwmation}, ana the interest in the topic of
learning in economics (e.g., Blum-Bray-Easley (1982), Easlev-Kiefer (1986),
Grandmont-Laroque (1990), Jordan (1985), McLennan (1987}, Woodford (1990},
and references thereinj.

Motivatea by the imporilant appiications of Nash equilibrium in
economics, recent researchers have started studving processes of learning to
piay it. For exampie, papers by Brock-Marimon-Rust-Sargent (1989), Canning
{1989), Crawford (1988), Fudenberg-Kreps (1988). Fudenberg-Levine {1990).
sordan (1989, i990), Linhart-Radner-Schotter (1989), Milgrom-Roberts (1989},
Seiten {(1988), and Stantord (1990) have studied such processes. 1ln severai
of these papers the authors consiruct specific learning rules and specitic
dynamic environments and show that together they lead to a Nash equilibrium
after a long enough period of real or fictitious play. Thus, these papers
show that positive theories of learning to play Nash equilibrium can be

constructed.



In this paper we show that for two rational piayers, participating in a
reai (not fictitious) repeaced game, learning to piay Nash equilibrium is
unavoidablie. Our assumptions regarding the rationai:ity of the players
invoive two items.

i. The piayers seek to maximize their overail expected present and
future payoffs evalualed under discounting. Learning is not a goal in
itselt here but is, rather, a consequence of an overall payoff maximization
plan. 1t is obtainea as the real game progresses and in this sense it may
be thought oif as learning by piaying, paraitleiing the economic iliterature on
"learning by doing" (see Arrow (1962)).

2. Learning is modeled by Bayesian updating of prior beliefs. This
foliows the traditional approach of games of incompiete or imperfect
information, e.g.. Kuhm (1953), Harsanyi (1967}, and Aumann and Maschier
{1967). which was recently used by Jordan {(1989) to construct a process,
converging to Nash equiiibrium, in an incompiete information game piayed by
myopic piavers.

We depari trom ithe standard assumptions of game theory by not requiring
that the plavers nave common knowledge or even common beiiefs about each
'

others' strategies ana the uncertain parameters of the game (we do not

prohibit such assumptions but ihev are not necessary in our model). This
assumption is rep.aced by a weaker one requiring that the initial private
beliefs of eacn plaver assign some positive probability to the strategy
actually usea by his opponent. Uven though stronger versions of this
assumption are used in aimost all papers using the incompiete information
approach of Harsanyi:, we think that this assumpiion can be wcakened and we

discuss in the body of tne paper some exampies that are important for future
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research.

An interesting coroiiary to the main resuit of this paper rejates to
Harsanyvi-Nash equilibria of a two person infinitely repeated game under
discounting with two sidea incompiete information about opponents' payoff
matrices. The cocollary states that at any such equilibrium the piayers
wiil eventually play according to a Nash equilibrium of the infinitely
repeated underlying realized game (the one with complete information) as Iif
the uncertainty was not presenct. (In other worads, players iearn to play the
"right" game!) This corollary is closeiy reiated to Jordan's (1939)
resuits. If we consider the case where the discount parameter is close to
Zzero, i.e.., the piayvers are mvopic, our cocollary reconfirms the result ol
Jordan regarding convergence to a Nash equilibrium of the one shot game.

Before moving to the formal modeli and general results, we discuss here
the speciai case of finitely many pure strategies. This discussion shoulda
serve to explain the approach and intuition before getting invoived with the
genera: notacions and the probabilitly computations.

We start with two plavers facing a finite bimatrix game and assume that
eachh knows his own vavoff{ matrix. The plavers will play this stage game
infinitely many times with perfect monitoring and evaiuate their payoff
streams according to some fixed discount parameter. A player's strategy for
such a repeated game is rational if (a) he has a finite-support probability
distribution describing his beliefs about the pure strategy Lo be usea by
his opponent, and (b) his own pure strategy is an optimal response to tnese
peliefs. Two rational strategies are compatibie it each player's beliefs
assign a positive probability to nis opponent's strategy.

The main resuit of this paper is that, given any two such compatible
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rational strategies ol the repeatea game, after a finite time T the players
must play according to a Nash equilibrium of the repeated game. We do not
ciaim that the players wili necessarily iearn the identity of the true game
(i.e.. the opponent's payoff matrix), but their actions along the piay path
will be the same as the actions of players piaying a Nash eguiiibrium of the
real fully Known repeated game (the one with complete information).
Moreover, each player will be predicting correctiy his opponent's actions
along the equilibrium play path.

To give a sketch of the proof f{or this speciai case, assume that p.iayer
two's beliefs about player onc's strategy are described by a private prior
vrobabiiity distribution over finitely many pure strategies fi'f2""'fN of
player one. Assume without loss of generality that plaver one is actually
using the strategy fl. Piayer two is using a strategy g. [or each of the

Fa

strategies I, the piay path generated by (fi,g) either coincide forever with
4 .

1’2

the play path of (fj.g) or there is some time when they differ. This mean
that there is a [inile time T by which player two can rule out some of the
strategies not used by piayer one and after T no {urther ruliing out is
possible. In other words, the remaining strategies f,i not ruled out by
J

player two by time T all generate the same play path with g as f; aoves. In
effect we just argued that after the time T. player two will accurately
predict the future viay of the game. Appiying the same argumeni ito player
two we conclude that there is a time T after which both piavers accurateiy
predict the future pliay of the game.

To construct an equilibrium of the repeated game that coincides with
the play path of the originai game after time T we do the following. After

histories that are continuations of the play path after time T we let the
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players take the same actions as in the original plav. After other
nistories, we jet each pliayer piay the mixed strategy coinciding with the
beliefs of his opponent about him.

it is clear that the sirategies jusi constructed vieid the same
equilibrium path as in the original game after time T. [% is also ciear
that they are an equilibrium of che repeated game, since now each piayer's
beliefs {(to which he is best responding) coincide with his opponent's actual
strategy.

Notice that in the above moael it was never necessary for a player to
know nis opponent's payoffs. The only interaction between the two players
was through the fiow of information regarding each other's actions and in
the assumption of compatibility. This assumption essentially replaces the
comnon knowliedge of solution assumption. Whiie this assumption stii]l has a
flavor of commonality, it is much weaker than full common knowledge. All
that it requires is that a player's private prior distribution regarding the
strategy of an opponent be dispersed enough to aliow positive probability to
what the opponent actually does.

With the above result the move to the case of incomplete information
games is easy. Assuming that the m x n bimatrix game was drawn firom a
finite set of such games using some commonly known prior distribution and
chat each piayer is informed about his own payoff mairix before playing the
repeated game. In a puve strategy Nash equilibrium of this incomplete
information repeated game, eacn player chooses one repeated game pure
strategy for ecach one of his types {matrix realizations). Moreover, each
player's beliefs about his opponent's type are given by the alstributions

derived from the original prior and conditioned on his own realization.



With the pair of realized types prescribing the strategy to be played by the
piavers we are back in the situation described above. Thus, after a finite
time T each plaver will predict correctly his opponent's future actions on
the play path and they will be tollowing a piay path of a Nash equiiibrium
of the repeated game vealiy drawn. This is the case since the strategies of
the true types actually drawn, are rational with respect to their beliefs
regarding the behavior of the opponent's other types. And they are
compatible because of the common prior used by both players.

[t is important to note that in the above discussions we started with
pure strategies and constructed quasi-pure sirategies, 1.e., strategies that
are pure on the piay path but ranaomize off it. This is not surprising.
Players iearn to predict with high precision future behavior on the
equilibrium path after observing enough past behavior. On the olher handag,
in the above model they do not learn to predict their opponent's behavior
off the equilibrium path. The randomization off the equilibrium path
ref'lects this uncertainty.

in the remaining sections we generaiize the avove results to mixed

strategies and a broader class of beliefs.

2. The Model and Assumplions

2.1 The Repneated Game

Two players are about to piay an infinitely repeated game. The stage
game is described by the following components.
i. Two tinite sets 21.12 of actions with I -~ L x I, denoting the set

of action combinations.

2. Two payoff functions u.: L - R.
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We let H, denote the set of histories ol length t, i.e., ¥ . and
1 set ol pistories ol .engen

H =

(-

tH, be the set of a1l histories

¢y histo s. A (behavior) strategy of player i is

a function f: H - A(Zi) with A(Zj) denoting the set of probabiiity
distributions on Zj. Thus, a strategy specifies how a player randomizes
over his choices of actions after every history of past actions (see
Appendix 1, "Behavior and Mixed Strategies,"” for important elaborationsj).

We assume that each plaver knows his own payoff function and that the
game is played with perfect monitoring, i.e., the players are fully informed

about ali realized past action combinations at each stage.

2.2 The Payoffs

Let Ai‘ 0 < ki < 1 be the discount factor of player i and let xi denote

piaver i's payof! in stage t. If pliayer one piays [ and player {two pilays g

then the payoff of piaver i in the repeated game is defined as

where E_ o denotes the expected value calculated with respect to the

LR 53

probability measure induced by {{.g).

2.3 Behavior Assumptions

Let E be a strategy denoting piayer one's belief over the strategy that
player two will piay in the repeated game. I[f plilaver two plavs the strategy
g we say that g contains a grain of g (or that g contains a grain of truth)

g can be obtained from a mixeda strategy choosing g with probability o and

&

if

some oither strategy ¢ wiih probabilityv I - « for some positive number o,
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0 < a < 1. (Appendix 1 contains useful elaborations on the definitions of
mixed and behavior strategies and their relation to each other.)

As usuai, we say that a strategy of player one, ', is a best response
to a strategy of player two (a belief of how plaver two plays) §, if

) £ 0, for all strategies tf of piayer one. We say that f is

2

Co(f.e) - Uoe,
an €-best response {€ > 0) if the same inequalities hold but with ¢
repiacing 0 in the right side. The corresponding definitions apply to
plaver two.

For our main resuit we wiil be assuming thal each player plays a best
response strategy to some beliefs over the strategy of his opponent and that
each player's beliel contains a grain of truth regarding the strategy
actually chosen by the opponent. Formaliy. we assume that the players piay
the pair of sirategies (f,g) with ' (resp. g) being best responses to some
strategy g (resp. F) and that § {(resp. ) has a grain of truth.

Before proceeding to the statements of the results it is useful to

ejaborate and show some examples where the behavior assumptions described

above are relevant.

2.4 Remarks and Examples

Assuming that a piayer's beliefs are described by a behavior strategy
of the opponent, allows for a larger set of beliefs than may seem at first.
This is due to Kuhn's theorem (see Appendix 1) stating that every mixed
strategy can be represented by a singie behavior strategy. Thus. if a
playver's beiief consists of a probabiiity distribution over a wholie family
of possible opponent's strategies, then it can be reduced to an aggregale

belief represented by one behavior stirategy.
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The assumpiion that the pliayers' beliefs contain a grain of truth is
important. Later we show an exampie illustrating that without this
assumption, or other alternative assumptions of this type, there are beliefs
that do not ailow for any learning over time.

The following examplies iilustrate situations where two players best
respond to beliefs containing a grain ot truth.
Example i: A Nash equiiibriuwm in a two person repeated game.

[f (f,¢g) is such an equilibrium we have g = g and f = T and each

plaver best resvonding to his beiiefs which are the full truth.

Ixampile 2: A variation of the prisoner's ailemma game.

Each playver has two possible actions: «c¢ (cooperate) and d (double-

cross). The stiage game payoffs of player one are given by the traditional

prisoner's dilemma pavoffs: ul(c,c) = 3, ul(d,c) = 4, uj(c,d) = 0, and

u,(d,d) = 1. Player two, on the other hand, strictly prefers cooperation to
s

noncooperation, no matter what plaver one does and his payoffs are given by

w

uz(c.c) = 4, u,(c,d)

5 . u,{d,c) = 1 and u2((l.d) = 0.

2

We let C denote the constant cooperating strategy, D denote the
constant double-crossing strategy, ana c¢-tft denote the strategy in which a
playver starts by cooperating and continues by mimicking his opponent's
previous aciion.

Suppose player one believes that player two's strategy can be
represented by the {ollowing mixed strategy: D with probability .90, C with
provabiiity .05, and c-tft with probabiiity .05. The following learning

sirategy, L. is a best responsc to these beliefs. Start with the action d.
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[f player two played d {(now piaver one's posterior belief is that player two
is playing D with probability one) continue with D forever. 1f player two
started with ¢, however, player one does not know if playver two plays C or
¢-tit and each has a posterior probability of .5. Waiting one period and
observing playver two's response to player one's initial d wili indicate
which of the two sirategies player two really uses. [f player one's
discount parameter is sufficiently low, then playving d while waiting is
optimal. Now, if playver two cooperated, he must be a constant cooperator
{i.e., he is playing C). and playver one's optimai response from here on is
to play D. [t player two piayed d, however, player one's posterior shows
him to be a tft-er and plaver one's best response is to piay c to bring back
cooperation and then to play c- tft.

It is easy to check that. for a proper discount factor, the above
learning strategy is a best response of player one to his initiaj beliefs.
This shows, in particular, that best responding to beliefs involving several
possibilities is not totaily passive and can call for some active
experimentation.

To complete this example, assume that player two believes that piayer
one piays c-t{t with probabiiityv .99 and the learning strategy L with
probabiiity .01. He plays c-tft, which is an optimal response to these
beiiefs.

c

Note that the resutting play in this examplie is (0)(q)(g)(2)((),
c’'d e

oo c,, cC . e ; e . .
I'ne play (C)(C) . . . dis an equilibrium path of this game and learning to

play it took three steps. The fast convergence is obtained here because the

piavers' beliefs were restricted to a small number of low complexity

strategies.



Example 3: A repeated game with incomplete information.
We consider a repeated game, described as before by a set ot action

combinations ¥ - Zl x 22. However, we assume that the pair of payoff

accoraing to

. . . . e k Q
funct s (u s ¢ ¢ te se X .
ions (u,,u,) is drawn trom a finite set (UJ)REK (uz)er

i 2

a commonly known prior distribution (pk We assume that each

&) (k. &) eRxL

player is told his own realized payoff function and they play a Harsanyi-
Nash equilibrium (q,r) of the incomplete information infinitely repeated
game .

We recail that such an equilibrium consists of two vectors,
q = (ql,qz,....q‘KJ) and r = (rj.rz,....er’) of strategies for the repeated
game. The interpretation is that player one (resp. player two) will play

the strategy qK (resp. rQ) if his kth (resp. ch) "tyvpe" is reailized. At

such equilibrium each strategy, qK. of player one (ana, similarly, player

two) 1s best response to the mixed strategy obtained by mixing the

) . 1 2 (L . Cy
opponent's type strategies r ,r°.....r! according to the conditional

probability distribution Thus, once a reaiization (k.%) is obtained

p-jk'

. . . . . - . . { ~
we have a situation described by our assumptions with £ = g, g = r” and ¢

being induced by the vector of strategies r with the probabilities p and

e ik
£ being induced by the vector q with the probabilities p . The assumption
i Q
of common prior distributions guarantee that the players' beliefs have a
grain of truth.
The examples above bring to focus one difference between our behavioral
assumptions and the ones of traditional game theoryv. We have plavers'

uncertainty expressed over strategies of the opponent rather than on what is

considered in traditional game theory to be the fundamentais., i.e., the
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unknown parameters of the game. Traditional game theory would require that
piayers have some distriobution over the possible games (as in Exampie 3)
and, if the games have a multiplicity of equilibrium., some selection
criterion wouid determine the chosen one. As [IExample 3 illustrates, our
model is more general. Since a distribution over games and equilibria
selected will yield, after a (possibly large) number of additional

computations. a distribution over opponents' strategies.

3. Statement of the Main Resuits

By a path we mean an infinite sequence of action combinations, i.e., an
element of H = Z[N. For any path p and time t € IN we denote by pt the
t-prefix of p (the eiement in Ht consisting of the first t action
combinations of p).

Let (f.g) and (f',g'}) be two pairs of strategies. We denote by g, u'
the measures on H (endowed with the o~-algebra generated by all finite
histories) induced by (f,g) and (t',g'), respectively. We aiso use g and u'
to denote probabilities over finite histories. For exampie, m(h) wiliil

denote the probability that the history h will be played when the strategies

(f,g) are used.

In a subseaquent section we will introduce a stronger notion of similar
pilay which we call plaving the same up to €. 1t will require that the two

pairs of strategy combinations induce the same probabiliity measure on a
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subset of infinite paths of measure at least 1 - € according to both of
them. Theorem 2 will actually be proven with this stronger notion of

similarity.

Definition: et t be a strategy, 1t € INand h € Ht' The induced strategy

fh is adefined as follows:

£ ' It 1 o !
xh(h ) f(hh') for any h' € Hr'

where hih' is the concatenation of h with h', i.e., the history of length

{ + r whose first t elements coincide with h followed by the r elements

of h'.

The foiiowing theorem states that players with beliefs containing a

grain of truth eventually iearn to predict accurately the future play of the
game. We state it only for player one and omit the symmetric statement for

player two.

Theorem 1: Given € > 0, jet t and g be strategies of player one and player
two, respectively. and let g be a strategy representing player one's
beliefs. Suppose § contains a grain of g. For aimost all paths p
(according to the measure induced by (f,g)) there is a time T such that for
ail © > 7, (¢t ,Qp ) piays e-like (f .,g_ ).

b, . p
L T . "t

in other words. the probability of any history being piaved according
to wnat one believes, 1.e., according to a measure induced by himself and

his beliefs about his opponent. is essentially the same as the probability



ot the history actually being plaved.
Notice that, in Theorem 1, we did not make any assumptions on the
strategy f of player one. 1 essentially states that Bayesian updating by

<

itseit will lead fo a correct prediction of the important parts of player
two's strategy, namely, player two's actual future play in response to f.

It does not state that player one woulid learn to predict pliayer two's future
randomizations in response to actions not taken by himself. (1t is true,
though., that this learning will take place for any strategy of plilayer one.
However, the length of time required mav be diffecrent for every strategy.)

For this reason, the next theorem is only obtained for Nash equilibrium and

not for subgame perfect equilibrium.

Theorem 2: Suppose f and g are best responses to beliefs g and f.
respectively, and that § and T contain a grain of g and f, respectively.
Then for every € > 0 and for almost all (with respect to the probability
measure induced by ({,g)) paths p there is a time T = T(p,€) such that for
every t > T there exists an € equilibrium (f',g') of the repeated game

satisfying (f ) piays e€-like (f',g')}.

g
Py Py

Iin other words, given any € > 0, with probability one there will be
some time T after which the players will play e€-like an e€-Nash equiiibrium.
This means that if players start with beliefs containing oniy a grain of
truth about their opponent's strategies then, in the long run, their
individually rational behavior must be essentially the same as behavior
described by an €-Nash equilibrium.

We turn now to implications of the main theorem in the theory of

repeated games with incomplete information. Returning to the set up



16

described in Example 3, we start with a stage game whose action combinations

are given by a set L - Zl b 22. We assume that a pair of utility tunctions

Q . )
(u2) according to a commonly

k
u is : ' a finite : .
( 1,u2) is drawn from a {inite se (ul) YoeL

K€K

known prior distribution Hach player is informed of his

(0, ) (k. ) eRxL"

own realized index, say, k and 2, and proceeds to play the repeated game.
As usual, it is implicitly assumed that the model and the prior distribution
are common knowiedge.

A strategy g for piayer one in such a game consists of a choice of a

repeated game behavior stralegy as discussed earlier, for each possible

k

reaiized "type" of himself, q = (q ) Similarly, a strategy of player

keK"”

two is a vector of repeated game strategies, r = (FQ) The pair of

QeL’

strategies (qg,r) is a Harsanyi-Nash equilibrium if each type k of player one

is best responding according to his utility u? by playing qK against the
. ! . ) ~K . . .. 12 L .
mixed strategy of plaver two, r obtained by mixing (r ,r ,....r } with

the probabilities p ” describing the conditional distribution on [[.| given

the realized k vaiue. The anaiogous requirement holds for player two types.

~

o ‘ & . . ] Q. . .
fach strategy r” must be a best response to the sirategy ( describing his

conditional beliefs of the strategy of piayer one.
3

For every realized choice of k ana &, k, &, we now nave a situation
. . . . . L K o~ K o~ % e
described by the main theorem with f -~ g . ¢ -~ r", ¢ = r and g - . Thus,

the following result follows immediately f{rom the previous theorem.

Corojjary i: let {y,r) be & Harsanyi- Nash equilibrium of the game described

o

above. For any realized pair of types (k,2) let the real game be described

7o

. . k Q. .. .
,U,)).  For any € > 0 anad almost all paths p drawn by (¢ .r° )} there is

by (uf

oo

a time T = T{p.e) such that for every t > T there exists an c-Nash



equilibrium {q'.r') of the real game

K
T
p
tike {(q'.r').

T %

) piays €-

o
I

in other words, equiliibrium strategies of the incompliete information

game wili eventually converge to equilibrium strategies of

the compiete
information reaiized game.

The players are ied by optimal strategies to
"learn" complete information equilibrium behavior,

even 1f they do not learn
the identify of the true game.

4. Proof of Theorem 1
The foilowing notations and observations wiill be used for proving both
theorems.

Denote by T.O0.7t the probabiiity measures on H, induced by (f,g), (f, g},

and (f.g}, respectively. (f,g) and (f,g) aefine two sequences

of random
variables {Xt}t and {Y_ }

- i .12 , .
attaining values in A X, (p) and Yt(p) are tihe
posteriors of PI and Pl over {g.g} and {f,f}, respectively, after observing
the historyv p, .

As the posteriors are derived from a Bayesian updating,
{XL} and {YL} are martingalies on (H,a) and (H,T), respectiveliy (sce, for
example, Hart (1985)). Furthermore, since all the coordinates ol X,  and Yt
are bounded beiween 0 and 1, by the martingale convergence theorem
(Shiryayev, i984) they converge aimost sureiy to Xm and Ym. Before
proceeding, we need the following iemma.

Lemna 1 :

(a) With probabiiity 1 the first coordinate of X00 is positive, and
(b) with probability 1 the first coordinate of YOo is positive.

.

2 . .
A~ is the unit

1

. L2
simplex in Ko,
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In other words, Xoo assigns, aimost surely, a positive probabiiity to
the strategy player two really plays--that is, g. And Ym assigns, almost

surely, a positive probability to the strategy piayer one really pliays--that

is, f.

Proof: We prove (a). By a similar method one can get a proot of (b). In

order to simplify the notations we denote g, = g, g, . 0 =, and @, =
i 1

1 - al' For h € Ht denote by probg (h)} the probability that the pair of

"

strategies (f.gj) will result in the history in. Understanding h aiso as a

set of paths we may define a measure T2 as foliows: (h) = probO (h).
2 =3 2

With a slight abuse of notation,” but without any contusion, the

Ty

posterior ot gj after h is X (h)(Jj). Thus,
.. [

X . {(h){1) - proh” (h)ot/Z‘j:1 probg (h)ai for ail h € Ht'
E)l - - )J o

Thus,

(1) Xt(h)(i) pr()bgz(h)oc2 = probgi(n)a(] - Xt(h)(l))

Since prob_ (h)o, - T(h) - atr{h) - o, T, ana prob_ (h) = T(h) we can rewrite
gz 2 22 gl

(1) as foliows:

: ( i = i - X, {1 i, for ail ,

(2} IA kt(l)de o gy (1 \t( yydt, for ail A € ?r

where ?F is the field generated by histories of length r, r < t.

2 . . L . Cee . e - .
Recall that X, is detined on infinite pachs and nov on ftinite histories.

%
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Notice that T and 72 are absoliutely continuous with respect to T.

Thus, the limit X satisties (by the bounded convergence theorem) :

o, . - : -
{3a) Ja X.L(l)d't‘2 0 JA Xw(l)de for ali A € ?r
and
3b) io(1 - X iT - r
(3b) a j, (i X A dt = o f, (] X_(1))dt for ail A € ?F‘

From (2), (3a) and (3b) we derive

4 P . < R £ N ! .. 3 e
(4) Jp X liddT, -« JA (1 X, (1))dT for ali 1 and A € F .
As {4) hold for r and every A € §, we deduce
5 o X (1)d = ) - 1))dr t & measurabie sets i
(5) Fy X i1)dr, = o (1 - X (1))dt for all measurabie sets A in H

For A = {Xw(l) = (O} the lett side of (5) is 0 and the right side is « JA dar

= ar(A). Since « > 0, T(A) = 0, which concludes the proof of Lemma 1. //

To complietle the proof of Theorem 1, let € > 0 and let o = 7. We have
to show that for almost aii (w.r.t o) paths p theve is a time T = V(p.€)

s.t. for any t 2 T (fp L€ ) piays g-like (fp €& ). Define A = {piXm(p)(l)
T t T {

1}. The conclusion of Theorem 1 clearly holds for almost every p € A. As
for p ¢ A, by Lemma 1, d{prxw(p)(l) > 0}y = c{Xw(p)(l) > 0} = 1. Thus, for

aimost all p € A there is a time T = T(e,p) s.t. if t 2T
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1Xt(p)(1) S X {p)(i< g min[Xm(p)(l).(l - Xw(p)(l))l/lﬁ. Theretfore,

0 }

(6) :Xt(p)(l) - Xs(p)(l);< £ min[Xm(p)(]),(l - X (p)y(1)yyijss.

@D

Moreover,

(7a) Xt(p)(l) > Xw(p)(])/a
and
(7b) 1 - Xt(p)(l) > (1 Xm(p)(l))/z.

for

Let h1 be the history thai satisties pt = psht where s 2 T. Notlice

that

(8} Xt(p)(l) - Xs(p)(J) probf o (nt) /

/[Xs(p)(l) probr (b} o+ (U XS(p)(i)) prob . (ht

b, TP fp »gp~

One derives (the tedious calculation is omitted) from (6), (7a). (7b)

(8) that

iprobt. o (h,} - prob - {h 1P < e, for ail s > T,
v i a3 5

which concludes the proof. /7

5. Prootf of Theorem 2

and



21
We use the notation used in the previous section and we add the
notations 1, = { and f? = {. Denote for any T and v} > 0

1

B = {p € H|there are s,t > T s.t. HXS(p) - Xr(p)um > T}

. [ , . W i . . . . . ;
The set Bn is the set of the "bad" paths. Notice that the martingale

. S ~ 1 . .
convergence theorem impiies T(Bn) - 0 for ail v > 0. Thus,

{0

t' & 2] .
(9) T(BW) - 0 tor all m> 0.

L

Lemma 2: Fix M > 0. Vlor almost all (with respect to T) p € H there exists

a time t = tX(p,n) s.t. it T > t then

T T

10 T(B_ ., = '€ Hip! - and p' "Ipl = <M.

(10) (Bypgd = Tip Ipp = ppoand pt € B M/ T{p" Dy = Do} <M
Proof: Suppose to the contrary that there is a positive measure set {(w.r.t.
T) D € H satisfying: for ail p € I there is an infinite seqguence {Tn} of

Tn
times s.t. T(B_ |p. } =2 M.
" Tn

Define for any t

Lk t
D7 = {p € I)IT(H;IH):) > M.
Thus, any p € I is inciuded in infinitely many Dt. i.e. (recail that

¢
v

BT & D),



in other wora

By the defini

=

T{

This contradi

Similari

Ci

.

Simiiariv to

{10")

Define,

{10)

and (10

D =nN®
n=1 Uth
S,
D - U bt
tzn

e

tion of D°

D

It T

T =
W' - T(ULEH CARAL
cts (9). /7

.
vy to BW define

{p € Hithere

Lemma 2, there
T(C%;pt) <
LT T, .7
Z B, U C

] n ]

) imply

{for

are

for

t

ne
ne

for ali n.

T(D)M for all n.

{y b

s, T 2T s.t.

IY(p.n) s.t. it T > t©, then

aimost aill

1Y

S(p)

p € H.

Yt(p)iloo

> M.



238

10™) Tzt } y if T = {t .
( { U tp,M) = Max{ty(p.M).t,(p,M)}
Denote W% : H\Z;, the set ot Y-"good" paths.

For Lemma 3 recall that Xt(p) is the posterior ot player

{gl,gz} atter observing the history P, -

one over

Xr(p}(j) vgenotes the probabiiity

assigned to g.,j € {1,2}.
Lemma 3: There is a function &: (0,1) - (0,31) s.t. (M) = ¢ and for
every p € W; the following hold:
(a) Xl(p)(l).X_(p)(z) > Y], then
v
' i Y ‘or al > T
Hgl(pt) gz(p:—),00 < 4&(v})) for ail t 2 T.
(b) If Yt(p)(l),Y;(p)(Z) > T, then
[
. e ‘ . o > ™
i ]\pt) iz(pL)Lm < &(m) for ail t > T.
in words. for every Y-"good" path p, if piaver 1 beliieves after time t

(after observing p

the strategies gl

T
Let p € W
: 1

Proof':

For a historv h €& Ht and b

starting with h and proceeding with b

satistyin ),
yving It+1

t

)

D

v

ana g

b.

that pliayer two plays with a probability greater than W

X then g, behave about the same (up to &§(M)).

and g,

(al.az) € ¥, the concatenated history

is denoted by hb. Let b be the one

The Bayesian updating implies:



(11) r‘_YJ.(pt‘b)(i) = prob(i;ptb) - prob(igpt,az) =
. 2 o
gi(pdla,) probliip )/L;_ 4 g;(py)(ay) probljip )
= i I 2 . . Y
gi(pt)(a2)xt(pt)(l)/LJ:1 g, (py)(a,)X (p ) (3},

for all 1 € {1.2}.

Since P, and ptb are both pretixes of p, X _(p,b)(i) and Xt(p,)(i) are

t+1 t
ciose to each other up to M. As (11i) hoids for every i € (1.2}, we conciude

that if Xt(p*)(l) and Xt(p;)(Z) are greacer than v, then gﬂ(ptb) is ciose to
w [ i

p.b) up to &(mM), which tends to zero as m - 0. //

Now we are in a position to compiete the proof of Theorem 2. Actualiy,

we dare going to prove more than what is required.

Definition: Let g and ' be the measures induced by (f.g) and (f',g') on H,
respectively. We say that (f,g) and (f',g') play the same up to € if g and
I

M' coincide on a set of paths, say, A. of a measure greater or equal to

i - e, l.e., adBY = p'(B) for all measurable sets B € A and u(A) = w'(A) 2

Someiimes we say that ({',g') plays the same as ({,g) up to €.
g p £ I

Remark: 1t is clear that if (f.g) and ({'g') play the same up to ¢ then

(f,g) plays e-iike (f',g').

T

Fix € > 0. Tor almost every p € H we wiil find a time T and we wiil

4

construct for every t > T an e-Nash equilibrium (f',g') which plays the same



oy

v

[
c

) up to €.
< L

By Lemma 1, for aimost ail p € H, Xw(p)(l) and Ym(p)(l) are positive.

Let v be a small positive number, to be specified iater. B8y Lemma 2.
for aimost ail p € H there is t{p,m) satisfying (10"}.

For a fixed t > t(p,Mn) define (f',g') as follows. For any history h €

Hr if p th) and g'{h)

+
“

h is a prefix of a point in W; let f'(h) = f{p

2
g(Dtn). Otherwise, define f'(h) - zjzl YtTr(pLh)(J)rj(ptn) and

N

g'(h) =25 X

1 ‘t+r(pt“)(J)g1(pth)' In woras, f' is defined on "good

histories as the induced strategy of f, and on "bad"” ones f{' is defineua To
be exactly the expected strategy (from player two's point of view)} piayer
one is about to play.

Since (f',g') plays along p € Wn exactiy as (f,g) does {(which is the
same as (f',gD ) ana (t ,g') play), ({',g'}) and (f_,g ) induce the same

Py Py ' . t Pt
probability distribution on Vn E {p'lptp' € wn}. in other words, (t',g")
and (f,g) induce measures that differ only on H\V;, Moreover, (i',g') and
. t .. . , . \
(f,g) assign to Vn the same probabiiity. Since t satisfies (10"}, (f',g')
and (f ,g ) play the same up to 2v). it remains to show that (f',g'} is an
P Py

¢-equilibrium. We will show that ' is an €-best response against g'. A

simiiar argument would work tfor g'.

For p. deline an auxiliary strategy g ot player two as foliows:

L At+r(ptn)(3)gi(pth) for ail h € Hr'

L.e., g is the strategy piayer 1 expects player two to play atter the
history h.

Since {,g are best responses o the respective beiiefs that contain a
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graln of truth. the induced strategy fo is a best respouse against g in the
“t

repeated game.

That is, for any strategy k of player 1:

1 Lot < [ S o

(12) 1\x,g) < Ll(tp?.g).
By the definition of g', g'(n) - g(h) whenever pth is not a prefix ot a path
in W%. Suppose p_h is a prelix of a path in w%. If Xm(p)(z) > 0 ana if
is smalier than M1n1_152 {Xw(p)(l)}/a, then Lemma 3 implies

{13) vg(h) - ghin)i_ < d(m) + .

in words, the mixed action piayed according 1o Q diflers from that
played by ¢' by at most &(v) + M. On the otner handa, if X (p){(2) = 0 then

0

xt(p)(z) < T, which impiies (13) in this case. Since U1 is continuous one

can find 8(Mm) + v} small enough that
(14) U, (k.g) - U (k,g')! < €/3 for ail k.
{13) and (14) imply

Uk, - oe/8 £ U tikg) S

i

Thus,



ne
-]

{15) Ul(k.g') < U.(rp Lg') + 2€/3.
(fq ,¢') inauce the same probabiiity distribution on V% as (f',g') do.
't

. . . s T L. . . " v
Moreover, they assign the same probability to Vﬂ' wihich is, by (i10"), at

least 1 - 2m.
Hence,
(16) U.L(f,) g') < Ul(f‘.g‘) + 2Y.

Combine (15) and (16) to obtain

(17) U, (k,g')y U, (f'",g") + 2 + 2¢/3 for all k.
If 7 is chosen so that 7 < £/6, (15) and the fact that (f',g') and

(f ,g ) play the same up to 2v conclude the proot of Theorem 2. //

6.  Remarks

in this section we inciude some remarks about the assumptions of the

model. the scope of the resulis. and possibie extensions.

6.1 Is Having a Grain of Truth Necessary for Learning?

Without the assumption that the piayers' beliefs contain a grain of
truth regarding the opponent's strategy, the learning described by Theorems
{1 and 2 wili not hold. To iliustrate this point we present an example which
addresses tite iearning aspect ajone. Consider a repeated game with player

one naving to choose between & and r in every stage. Suppose player one



chose the constant pure sirategy L of always playing 2. Now. let us assume
that piayer two bellieves that piayer one chose Iiis pure strategy according
to the following procedure: after every history player one randomized and
chose & with probabiiity X ana r with probabiiity 1 - X. This proceadure
induces for plaver two a belief probability distribution over the set of
pure strategics of player one which assigns zero probabilily to the strategy
i actually chosen by piaver one. Thus. pliaver two's beliefs do not contain
even a grain of truth.

1t is easy to see that player two cannot iearn anything about the
future actions of plaver one. This is aue to the fact that plaver one's
future choices are assumed to be independent of his past choices--a
situation tnat prohibits learning. Thus, the only hope of piayer two in
predicting player one's future actions correctly would have been if piayer
one's future actions were the same under every possible realization, which
is not the case here.

The discussion above shows that. without the grain of truth assumption,
our results may not hotd. On the other hand, we know that weaker
assumptions than the full grain o! truth could suffice for approximate
learning. Assume. for example, ihat player one plays a constant behavior
straiegy by which he randomizes with propability X on & and (1 - A) on r
after every nistory of tne game. Piaver two knows that this is the type of
piayer one's strategy but does not know which X player one is using. ke
assumes that pilaver one chose )\ according to a uniform distribution on the
intervai 10,1]. Again, piayer wwo's beiiefs do not contain a grain ot truth
about player one's sirategy but it seems that after long enough play player

two could approximate the irue XA and have a fairiy accurate prediction of
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piayver one's future play.

6.2 The Necessity of Knowing Your Own Preferences

The assumption that each piayer knows his own preferences is crucial.

For example, Bium and Lasiey {(1990) show a rcpeated game with incompiete

information where the piayers never converge to play an equilibrium of the

compiete information game. Thus, their results contradict our coroillary.

The difference iies in the fact that, in their example, plavers do not know

their own payoff matrix.

6.3 Do _the Plavers Know When Tney Have Learned?

Our main resuits says that the players iearn to predict fuiure piay ana
to play Nash equilibrium. Let T be the time by which this learning took
place. Does a player know at time T that he has learned? Does he know that
his opponent has learned? [f the answer to these questions are positive,
then does a piaver know that his opponent knows that he himself has iearned?
In other words, the entire hierarchy of knowiedge and common knowledge
questions can be asked.

in generali. there is no common knowiedge about the time of the learning
in our modei unless additional assumptions ace imposed--for example, if the
beliefs of both players were common knowledge. With the current
assumptions, it is true that the plavers know thne time of their own learning

and in general xnow no more than that.

6.4 Extensions
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The results of this paper can be proven for the more general model of
stochastic games (see Shapiey (1933)). The informational assumptions
required are that each player knows his own payoff matrices as well as the
transition probabilities and the state realizations ot the stochastic game.
Both theorems and the coroliary hold with essentialiy the same proofs. The
notations, however, become somewhnal more compiex with no significant gain to

our understanding.

General Continuous Payolf Functions
The proof of Theorem 2 apvlies to discounted repeated games as well as
for repeated games with payotf functions that are continuous with respect to

the product topoiogy.
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Appendix [

Behavior and Mixea Strategies

Two types of randomizations have been considered for strategies of
extensive form games. One is described by behavior strategies, where a
player randomizes over his choice of actions at each one of his information
seils. The other is described by mixed strategies, where a player randomizes
initially over his choice of a pure strategy (a strategy for the whole
game ) .

Since a pure sirategy can be thought ot as a special case of behaviov
strategy {(restricted to probabilities O or 1 in choosing actions) extending
randomizacions over pure strategies to ones over behavior strategies results
in a larger class of mixed strategies. 7This larger class obviousiy contains
ail behavior strategies and thus we have two classes of strategies: (a) the
behavior strategies and (b) the larger class of mixed stratecgies which allow
{or randomizations over the choice of a behavior strategy.

The distinction between the two classes of randomizing strategies could
have created difticuities in modeling extensive form games. Fortunately,
Kuhn's theorem (see Kuhn (1953). Aumann (1964), and Selten (1975)) shows
{hat no such difficuliies shouid arise for games with "perfect recall” (all
repeated games have perfect recall). [t states that for such games the
differences dare oniy in presentation and that the class of mixed sirategies
is really not larger. More specifically, to every mixed strategy,
randomizing over the choice of a behavior strategy, there are "equivalenil”
hehavior strategies. 7This equivalence is strong in the sense that for any

strategy of the opponent, the probabiiistic structure over histories is



identical when the player uses a mixed strategy or an equivalent behavior
strategy.

Ffor the purposes of this paper, both representations of a strategy are
important. We therefore elaborate here on the description of the behavior
strategies equivaient to a given mixed strategy.

Consider, for example, ithe repeated prisoner's diiemma game where each
piayer can choose the actions ¢ or d at every stage of the game. We
consider two simple behavior strategies, MC and MD. Under MC (mostly c),
atter every history of piay, playver one randomizes and chooses the action c
with probability .90 and d with probability .10. Under MD he does the
opposite. Suppose player one chooses a mixed strategy g by randomizing 2/3
to 1/3 on the choice of € and D. For this u there will be a unique
equivaient behavior strategy t described as foilows.

At the first stage  randomizes {2/3 x .90) + (1/3 X .10) on the action
¢ and the complement (2/8 x .10} + (1/3 x .90) on d. On subsequent stages f
aiso randomizes between the actions ¢ and d as prescribed by the slratepies
MC and MD. However, rather than using the prior distribution of (2/3, 1/3)
over the application of MC or MD, it must use a Bayes' updated posterior
about MC or MD given the history of the game. For exampie, suppusc the
action combination (;} was observed in stage one (x could be either ¢ or d
here)}, then the Baves' updated posterior distribution over the initial

choices of MC or MD is given by (.90 > 2/3)/[(.90 x 2/3) + (.10 x 1/3)} =

- , - - o . s C.o : .

.95 and 1 - .95 - .05. Thus, after a history (X) f wouid randomize

.93 X .90 + .05 %X .10 - .86 on the action ¢ and .95 % .10 + .05 X .90 = .14
on the action a. it is clear that this Bayesian updating can be done here

after every history of play and the behavior strategy £, equivalent to the
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mixed strategy u, is uniquely determined.

Non-unigueness may arise when the behavior strategies used in the
mixture g do not take all possible actions. For exampie, if a third action
b was present in the repeated prisoner's dilemma game but MC and MD still
put posiiive probabilities on ¢ and G only. Now, atter a zero probability
nistory, for exampie (:}, {he Bayesian updating described earlier is
meaningless. A strategy f is equivalent to the mixed strategy u if and only
if it satisfies the randomizations according to Bayes' ruie after every
pusitive probability history. Thus. all strategies equivalent to a given
mixed strategy coincide on the histories that are possible according to some
of the strategies in the mixture. They differ only on their behavior after
histories which are impossible. From the point of view of this paper, which
deais only with Nash equilibrium, this non-uniqueness is inessential.

it is important to stress, for some future computations in the paper,
that the following structure exists. Suppose f is a behavior strategy
obtained by a mixed strategy g, mixing a {inite number of behavior
strategies. Suppose aiso that h is a positive probability history according
to { (and some strategy of the opponent). Then the strategy induced by f
after h is obtained as the mixture of the strategies induced after h in the
component of g each weighted by its conditional probability given thatl the

history h was played.



