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Abstract
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I. INTRODUCTION:

The purpose of this essay is to prove some core convergence results when
preferences are not monotone (M) and there is no free disposal of commodities
(FD). In an exchange economy, the two assumptions are technically related.
More precisely, when preferences are transitive, assuming local non-satiation
(LNS) and FD is equivalent to assuming M. Throughout the text we will use FD
and M interchangeably.

Although the FD hypothesis is not crucial to the existence of competitive
equilibria, little attention has been paid to relaxing that hypothesis in core
convergence theor‘ems.2 Several examples in Manelli (1989), however, show that
many of the existing core convergence results for large finite economies do
not hold when M is weakened.3 Scme of these non-convergence examples consist
of well-behaved sequences of economies, purely competitive in Hildenbrand’s
sense, with strictly convex and almost monotone preferences. Although
equivalence of the core and the set of competitive equilibria may hold for the
limit economy, there are no prices that can approximately decentralize a given
core allocation of the finite economies along the sequence. The examples
mentioned also demonstrate that without monotonicity, the convergence results
which had been obtained for general sequences of economies with nonconvex
preferences may not even hold in the replica case.

In this paper we prove some core equivalence relations for large finite
economies. We do not assume monotonicity or free disposal. Preferences in our

setting must be such that changes in consumption that belong to a given cone

2McKenzie (1855, 1859, 1961) first established that FD is not required to
prove the existence of a competitive equilibrium. This result was further
generalized by Debreu (1962). Bergstrom (1973, 1976), Hart and Kuhn (1975) and
Rader (1972) provided alternative proofs of somewhat similar results.

3For instance, Anderson (1978, 1981, 1985), Brown and Robinson (1974), Cheng
(1983), Dierker (1875), Theorem 3 in Hildenbrand (1974) and Theorems 5 and 9
in Hildenbrand (1982).



in the positive orthant make consumers better off.

We show that for any core allocation there is a price system such that,
on average, individuals’ core bundles lie close to their budget sets and there
is no bundle preferred to the core assignment which is far below the budget
line. Theorem 1 finds a bound on the sum of a measure of non-competitiveness
of a core allocation for a fixed economy. The bound depends on the size of the
nonconvexities, the size of the endowment of the largest consumer, the total
endowment and the number of agents with similar preferences, but it does not
depend, essentially, on the size of the economy. Theorem 2 asserts that when
the size of the economy increases, the average measure of non-competitiveness
goes to zero. For this we require that first, as the economy becomes large, no
consumer’s preferences become arbitrarily different from those of most other
consumers, and second, nonconvexities must not increase too rapidly. The
non-convergence examples mentioned show that, in general, it 1is not possible
to dispose of these requirements. Thus, core equivalence relations will hold
without M or FD, but under more stringent conditions.

An example from Anderson and Mas-Colell shows that when preferences are
nonconvex the stronger core convergence theorems may not hold.4 Theorem 3
proves that when preferences are strictly convex in a uniform sense over all
agents, the distance between core allocations and demand sets tends to zero in
measure.

Qur work is closely related to that of Anderson (1978), Arrow and Hahn
(1971) and Dierker (1875). These authors obtain a bound on the sum of a
measure of non-competitiveness of core allocations which depends on the

endowment of the largest consumer but is independent of the number of agents

This example appeared as an appendix in Anderson (1885).



in the economy. Anderson assumes monotonicity and free disposal but makes
almost no further restrictions on preferences,and in particular assumes no
convexity, transitivity or continuity. Arrow and Hahn assume monotone
preferences and place restrictions on endowments, core allocations and the
size of nonconvexities of preferences.

Anderson (1981) imposes strict convexity of preferences uniformly over
all agents in the economy and proves that the deviation between core
allocations and demand sets tends to zero in measure. If in addition the
endowments are uniformly integrable, he obtains convergence in mean. When
preferences are not monotone, however, uniform integrability of the endowments
does not imply uniform integrability of the core allocations and, therefore,
convergence in mean may not occur.

Debreu and Scarf’s (1963) equivalence result for replica sequences of
economies is obtained under LNS and strict convexity. Aumann (1964) assumes
monotone preferences in an economy with a continuum of agents, but M plays a
minor role in his proof.5 Vind (1865), without monotonicity or convexity,
obtains a bound on the number of agents that violate a certain competitiveness
condition.

Gabszewicz and Mertens (1971), Shitovitz (1973) and Khan (1976) are
concerned with the presence of large traders in the economy. The
non-convergence examples mentioned do not have significant traders either in
the sense of having large endowments or in the sense of having large weights
as in Shitovitz and Khan, but they do have significant traders, at least in
the convex case, in the sense that their preferences are very different from
the rest of the agents in the economy. It is this peculiarity, obliterated

when preferences are monotone, that must be ruled out in order to obtaln our

5See Hildenbrand (1982).



results.

II. NOTATION:

For any x in Rk, |x]| = Max {|xi‘ 1 =i = k}, “x“l = Er:1|xi , where

%' is the ith component of x. For any subset D of Rk, con(D) is the convex
hull of the set D.

Let D be the set of binary relations p on Rt which are irreflexive. We
write x p’ y for y is not preferred to x. A preference relation p is convex if
for any two commodity bundles x and x’ such that x’ p x, the bundle (ax’ + (1
- «)x) p x for all « in (0,1).

An exchange economy is a map & :A — D x Rt that assigns to each agent a
€ A, a preference relation pa and an endowment e(a) in the consumption set Rt
An allocation g is a consumption assignment that precisely exhausts the total
endowments. The core of an economy &, G(&), is the set of allocations that
cannot be blocked by any coalition. A coalition B € A blocks an allocation f
if there is an assignment g, such that XBg(a) = E;e(a) and g(a) P f(a) va €
B.

Prices belong to U = {p € RX. lp| = 1}. The demand set of an agent "a" at

price p is D(p) = {x : x p'y, Vy with pry = pre(a)}.
a a

III. DEFINITIONS AND THEOREMS:

Given any open convex cone V &€ Rt, let P(V) be the set of preferences p
which are complete, transitive, continuous ({(x,y) € R x P y} is an open
set) and proper; that is Vx € Rf, (x + V) p x.8 When V is the strictly

positive orthant, preferences are monotone.

6We believe that the notion of proper preferences or cone monotonicity was

first used by Grodal, Trockel and Weber (1984). Also see Mas-Colell (1988).
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We employ the Hausdorff distance 8(+,+) between sets (Hildenbrand (1974)
p. 16-18) both in measuring the size of nonconvexities and in the notion of
similar preferences. We will discuss its use after stating our results.

Let C(y) = {z : z pay} be the upper-contour set relative to bundle y.
The nonconvexities of the preferences of consumer "a" are measure by

c(a) = Sup {8(C(y), conlC(y}]): y € Rt)
This asserts that for any bundle x in the convex hull of any given
upper—-contour set, there is a consumption bundle z (in the upper-contour set)
which is at most c(a) away from x. The measure c(-) 1s less restrictive than
the measure of nonconvexities used by Arrow and Hahn (1971) among others,
which is based on the inner radius of upper-contour sets. For a given set

of agents, the maximum individual nonconvexities in preferences are given by:

Q(A) = Max c(a).
aE€A

For any agent a’ € A and any real number S > 0, let B(a’,S) = {a € A:

3(p ,g,) < S}. Note that a’ € B(a’,S). Thus,
a

I(A,S) = Min lB(a,S) )
a€A

is an index of how uncommon or "peculiar" preferences are in the given

economy.

For a given economy with agents in A, we define respectively measures of

the maximum individual endowment and the size of the average endowment:

E(A)

»

[L,et@) 1/1A].

Max [e(a)
a€A

M(A)

Finally, we employ the following notion of approximation which measures
the extent to which an agent’s commodity bundle x looks like a demand relative

to a given price p.



Y(x,a,p) = |p » [x - e(a)]l]| + |inf{p ¢+ [y - e(a)): y v x}‘.7

The first term is a measure of the budget deviation and the second one of the
excess expenditure, both incurred when consumer "a" purchases bundle x at
price p. Note that when p >> 0, y(x,a,p) = 0 implies that x belongs to the
demand set.

Theorem 1 asserts that given an economy and a core allocation f(+) for
that economy, there is a price system p that approximately decentralizes the
core allocation, in the sense that there exists a bound on (Z y(f(a),a,p)) the
sum of the budget deviations and on the sum of the excess expenditures
(incurred when purchasing the core bundle at the given price.) The bound
depends on the total endowment, the size of the nonconvexities, the size of
the largest endowment and the number of agents with similar preferences, but
it does not depend, essentially, on the size of the economy. Theorem 2
provides conditions for the average measure of non-competitiveness to go to
zero as the size of the economy increases. After stating Theorems 1 and 2, we

discuss our assumptions, state Theorem 3 and end with the proofs.

Theorem 1: Let & be an exchange economy with preferences in P(V). Let f €

Bkzner(a)H
G(&). Choose v so that B(v,1) € V and define L(A) = A ST + 4kQ(A) + Bk
E(A) + 2kS. Then, 3dp € U such that ZAw(f(a),a,p) = 4kL(A)”v”f

Theorem 2: Let £:A" — D(V) x Rt be a sequence of economies. Let f' e

ee™). 1f:
Q(A™)

(i) (NIN) Negligible Individual Nonconvexities of Preferences: Lim =~ =0
n — o |An1

7
See Hildenbrand (1974), Khan (1974), Dierker (1975) and Anderson (1978) among
others.



n
(ii) (NIE) Negligible Individual Endowment: Lim EGAD) 0
n — IAn|

(iii) (BAE) Bounded Average Endowment: Sup M(A") < w

n

(iv) (NPI) No Peculiar Individuals: 3S > 0 such that I(A",S) 5> w as n —> o.

then 3 {p} € U, such that

Lim ! Z W[fn(a), a, pn] = 0.
n l n

n—)001A A

Proof of Theorem 2: Divide both sides of the inequality in Theorem 1 by |Any

As the number of agents goes to infinity, L(An)/ |A”] — 0.

Corollary 1: Let g A" 5 P(V) x Ri be a sequence of economies. Let £ e

ee™. 1r (1) (NN Lim XA Z 0 and (11) Lim  E(A")/I(A,S) = O then
n— o A" n — ®
Lim 1 Z w[fn(a), a, pn] = 0.
n— o |A"] TA"

Corollary 2: Theorem 2 still holds if assumptions (iii) and (iv) are

replaced by (and therefore weakened to) Lim M(An)/I(An,S) = 0.
n — ©

Remark: If all agents in the economy are drawn from a compact set of
agents’ characteristics, then Theorem 2 holds provided that nonconvexities do
not increase too rapidly as the the economy becomes large. To see this, let T
be a compact set of agents’ characteristics, where the Hausdorff distance is
the metric on T. Then there exists S such that L(A) = L(T) and |A| = I(A,S)

for all A with &(A) € T. Corollary 1 justifies our claim.

NIN prevents nonconvexities from increasing to rapidly as the economy



becomes large. If NIN does not hold, a counter-example to Theorem 2 may be
found.8 NIE requires that the endowment of each individual become negligible
in relation to the size of the economy. A group of agents of increasing size,
however, may progressively possess a larger fraction of the endowments. BAE
states that the average endowment of all economies in the sequence should not
go to infinity. This is a common assumption, implied by Hildenbrand’s
definition of purely competitive sequences of economies. The assumption is not
required, however, to obtain the results in Theorem 2 which still hold if the
average endowment goes to infinity with the size of the economy, provided the
number of agents that are not too different I(A",S) increases rapidly enough.
This is stated in Corollary 2.

NPI is a weak assumption as well. Intuitively it requires that the
economies should have no consumer with preferences that become arbitrarily
different from those of most other individuals. A somewhat related assumption
is the no "isolated" individuals (NII) condition:

¥S Inf I1(A",S)/|A"] > 0.

NPI is considerably weaker than NII in three aspects: First, NII requires
that as the size of the economy increases there are many agents that are
"arbitrarily close" to each other; the definition must hold for all S > 0. NPI
requires instead that no agents are "arbitrarily different" from most others;
the definition requires the existence of some S > 0. Second, NPI allows the
fraction of agents endowed with similar preferences to go zero as the size of
the economy increases. Thus, there may be preferences that are present
throughout the sequence and that disappear in the limit. Third, NII has
generally been stated in terms of agents’ characteristics, thus requiring no

isolated endowments or preferences.

8See Manelli (1983) for the example.
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Finally note that if preferences are drawn from a compact set then
NPI is satisfied, although this is not the case with NII. Furthermore, weak
convergence of the distribution of preferences to a limit distribution is not
enough to imply NII. The additional restriction of convergence of the supports
must be placed.9

In order to define either NPI or NII, a notion of similar preferences is
necessary. We consider preferences to be similar if they are close to each
other in the Hausdorff distance sense. This notion of proximity is stronger
than the one implied by the Hausdorff distance applied to the one-point
compactification of the commodity space (i.e. closed convergence topology. )
The latter views points that are large as being close to each other, that is,
no weight is assigned to occurrences at infinity.

Example 1 in Manelli (1989) introduces a sequence of economies with
non-monotonic preferences. In the example there is a large coalition for which
the joint core assignment is strictly less than its joint endowment. The
excess goods are distributed among a few "peculiar" individuals who value
those commodities. Thus, there is an individual whose core assignment of a
certain commodity goes to infinity with the size of the economy.11 Any price
that approximately decentralizes the core allocation must assign to that
commodity a price close to zero, so that our peculiar agent is able to
purchase a large quantity of it. At zero price, however, most agents in the
economy have a consumption bundle which is preferred to the core assignment

and, on average, considerably less expensive than the endowments. By assuming

9See Hildenbrand (1974) page 192 and Mas-Colell (1985) page 284.

1OSee Hildenbrand (1874), pages 16-18.

11See Wooders (1990) and the references there for a discussion of the

competitive properties of economies where large coalitions are inessential.
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that there are no peculiar individuals, we are able to eliminate this type of
example. Some coalition (including agents relatively similar to our peculiar
individual) will eventually be able to block the allocation proposed in the
example. This is the role of assumption (ii) in Corollary 1 (or NPI in
general.) The endowment of any individual (or coalition) potentially may be
divided among many agents (I1(A",S)) who value it.

With monotone preferences, Bewley (1973) first showed that bounded
endowments imply that the core allocations are bounded. The one-point
compactification topology is therefore sufficient in the monotone case because
the core allocation is well-behaved (no ocurrences at infinity.) As soon as
monotonicity and free disposal are abandoned, the non-convergence examples

suggest that a stronger notion of similarity is necessary.

Theorem 3 asserts that if a form of strict convexity is imposed uniformly
over agents, the distance between demands and core allocations tends to zero
in measure. When preferences are not monotone, prices may be zero or
negative. So budget sets need not be compact. Therefore non-emptiness of the
demand set is not guaranteed by the standard theorems. A consequence of
Theorem 3 is that, at the prices found in Theorem 1, the demand set is
non-empty for most agents.

We reproduce the definition of equi-convexity of a set of preferences,
notion introduced by Anderson (1981).12 For x 1in Rt, let

B(x,8) = {y € Rt: ly - x| < 8. For x 2y e Rt, let

o(x,y,p) = sup { s B[ % ; Y, a] p B(x,8) or B[ % ; Y 5] P B(y,a)}

If Pcd(V), olx,y,P) = inf{o(x,y,p) : p € P}. We say that a subset P of P(V)

12, related idea may be found in Grodal (1976).
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is equi-convex if o(x,y,P) > 0 for all x # y € Rt.

Note that o(x,y,P) is a continuous function of x and y for all P.

Theorem 3: Let £: A" — P(V) be a sequence of economies which satisfies
the hypothesis of Theorem 2. In addition, suppose P(V) is equi-convex and
Je > O such that e"(a) >> (g,e, ...,e) Va € A", ¥n. If f" ¢ €(&"), then 3 pn

such that Ve > O

[{a e A" |f"(a) - Dgpn)H > g}

Lim
n — ® ]Anl
The proof of Theorem 1 uses, for convenience, three lemmas. It roughly
follows these lines. For a given f in ©€(€) and for any agent a in A, define
the set of "net preferred trades" by
pla) = {x - ela): x € X(a), x v f(a)} v {0},

and let & = ZA¢(a). By definition of a core allocation, ¢ n (-v) = ¢. Then, if
con(®) does not go too far into (-V), a separating hyperplane argument
provides the p needed in the thesis of the theorem. Basically, these steps are
in Anderson (1978) for the case where V is the positive orthant. To show that
con(®) does not go to far into (-V) we need our extra assumptions: For any
element w in con(®) n (-V), there exists (by the Shapley-Folkman theorem) a
coalition that could almost block the core allocation except for at most k
troublesome members that may oppose the blocking. These k agents are not
satisfied with their proposed bundles at the blocking allocation. It is
possible, however, to find k new individuals (using NPI and NIN) who would
actually accept (Lemmas 2 and 3) bundles "similar" to those refused by the k
troublesome agents. Replacing these k agents with the new individuals we have

a new coalition. Since both coalitions are very similar, if w is far inside
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(-V) then we can associate w [in & n (-V)] with the new coalition and

therefore the core allocation could be blocked.

Lemma 1: Let a be any consumer and g(a) € con(¢(a)). Then there exists

h(a) € ¢(a), y(a) Rk, [y(a)]| < c(a) and A € [0,1] so that g(a) can be

m

expressed as g(a) = A h{a) + y(a).

Proof of Lemma 1: First, we show that for each a, there is h(a) e ¢(a)
and y(a) € R, ly(a)| < c(a) so that g(a) can be expressed as g(a) = A h(a) +
y(a), with A € [0,1]: If g(a) = O then by taking h(a') = 0 the clainm is
established. If g(aé) # 0, there is a set {xj € ¢(a): 1= j =k + 2, x1 = 0}
k+2

and non-negative weights Aj so that z A; =1, a1 > 0 and
j=1

k+2 k+2 Ay % k+2 A
_ oo = _ j j . j _
gla) = z. Aj X A1 0 + (1 A1) Z. T Since ‘Z T 1,
j=1 j=2 j=2
k+2 A <
Z (Ti:#X%T e con(¢(a)\{0}). By definition of c(a), there is h(a) € ¢(a)
j=2
kvz o
so that H Z (Ti:_X%T - h{a)| < c(a). Finally, define
=2 ke2
yla) = (1 - Al)[ Z SRADEEE.S N h(a)]. Taking A = (1 - A1) we obtain gla) =
5 (1 - A1)
A h(a) + y(a). ——

Lemma 2: Given any agent a, gl(a) € con(¢(a)) and any consumer b with f(b)

p’ f(a), then there exists a net trade g’(a) in ¢(a) so that
a

lg’ (a) - gla)| = 2Q(A) + 3E(A) + |f(b)] (1)

Proof of Lemma 2: By Lemma 1, given g(a) there is h(a) e ¢(a), y(a) € R
ly(a)| < c(a) and A € [0,1] so that gla) = A h(a) + y(a). Since f(b) p’ f(a),
a

then (A [h{(a) + e(a)] + (1 - A) £(b)) € con({x : x p; f(a)}) and, by
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definition of c(a), 3 g’ (a) € ¢(a) and y(a), |y’ (a)| < c(a) so that g’(a) = A
[h(a) + e(a)] + (1 - A) £(b) + y’(a) - e(a). Then |g’(a) - gla)|| = |A [h(a) +

e(a)] + (1 - ) £(b) + y’(a) - e(a) - Ah(a) - y(a)| = |h(a) - h(a)| + |y’ (a) -

y(a)| + [f(b) - e(a)]| = 2c(a) + |f(b) - e(b)| + [e(b) - e(a)| = 2c(a) + |f(b)]

+ 2fe(d) ] + jea)]. e

Lemma 3: Given any consumer a, g(a) € con(¢(a)) and any consumer b with

f(a) P f(b) and d(pa,pb) < S, then there exists g’ {b) € ¢(b) so that

le” (b) - gla)| = d(pa,pb)+ 3E(A) + 2Q(A) + [f(b)| (2)

Proof of Lemma 3: Let h(a) be the net trade identified in Lemma 1. Let b be as
in the hypothesis. Then [h(a) + e(a)] p f(b) by transitivity. Therefore there
a

is a bundle x with [x - (h{(a) + e(a))| < d(p ,p ) and x p.f(bi). Hence, |x -~
a b bl

e(b) - h(a)| = |x - hla) - e(a)]| + [e(a) - e(®)]] = d(p_,p ) + [ela) - elb)].
By construction, the net trade [A x + (1 - A) f(b) - e(b)] belongs to
con(¢(b)). By definition of c(b), there exists g’ (b) € ¢(b), y(b) with |y(b)]|

< c(b) so that g (b) = A x + (1 - A) f(b) + y(b) - e(b). Hence, |

g’ (b) -
g(al] = A x + (1 -2) £(b) + y(b) - e(b) - Ah(a') - y(a)] = A [x - e(d)] +
(1 - A) [£f(b) - e(b)] + y(b) - Ah(a) - y(a)| = |x - e(b) - h(a)]| + fy(b) -
y@)| + [£(b) - e(b)]| =d(p_,p ) + [ela) - e(b)]| + cla) + c(b) + |f(b) -

e(®)| =dlp_,p ) + [e(a)]| + 2]e(d)]] + cla) + c(b) + I£(b) . ¢

Proof of Theorem 1:
Define N(a’) = {a € B(a’,S): [f(a)| < 2kM(A)|A|/ 1(A,S)}. Then
IN(a’) ] > I(A,S)/2.
To see this, note that f is an allocation and let € = 2kM(A)/ I1(A,S). Then,

|[{a € B(a’,S): [f(a)| = e|A]}| = k”i;e(a)H/S|A| = kM(A) fe. Then [N(a’)| >
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|B(a’,S)| - kM(A)/e = |B(a’,S)| - 1(A,8)/2 = I(A,S) - I(A,S)/2 = 1(A,S)/2.

Let & = ZA¢(a) and w € con(®). By the Shapley-Folkman theorem, there is a

set K=4a': 1 =i =k} sothat w = Z gla) + Z g(ai) where g(a) € ¢(a) Va
ANK K

€ A\K and g(ai) € con(¢(ai) Vi.13

Let C = {a € A\K: g(a) # 0} and let w << 0. Suppose that for some al e K,

al ¢ N(j) and N(j) € C. For simplicity, denote N(aj) by N(j). Then w can be

expressed as

w=) gla)+ ) gla) + ) gla'). (3)
K

CAN(J) NCj)

Since for all g(a) e con(¢(a)), gla) = -e(a) (and w « 0) then

- Z e(a) = Z gla) = w - Z gla) - Z g(ai) << Z e(a) + Z ela')

N(j) N(j) C\N(}) K C\N(j) K

0 = Z [gla) + e(a)] << Z e(a) + Z e(a) +Z ela)

NCH) CAN(j) NCH) K
Thus, | Z (gla) + e(a)]]| = | Z e(a) + Z e(ai)H and therefore
N(j) K
INCJG) | _
Min {Hg(a) + e(a)H} = I Z e(a) + Z e(a')| and
k a€EN( j) C K

Min {Hg(a) + e(a)H} = K | Yeta) + ) e(al) (4)
a€N( j) INCJ) | C K

Suppose that for all j, 1 = j =1t with t =k, al ¢ N(j) and N(j) ¢ C.
Let dj be the agent for which the minimum is attained in (4). Define
t
Z g(d’)
j=1

t

t' .
From (4), |w - w'| = | Z g(d)| = E:
j=1

[T eta) + § eta)] =

7=1 IN(J) | C
2
K oL 2k 2k°M(A) |A
Fp (N ”Zce(a) ' XK el = sy ”Z elal] = = grr gy Thus,

1
3For the Shapley-Folkman Theorem see Starr (1968).
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2KZM(A) | A

fw =Wt = TTA.S) (5)
Note that w", by construction, can be written as
w' o= Zg(c) + Zg(ai), (6)
c’ K

where C° = C \ {d’: d’ minimizes (4) for any j with a’e¢ N(j) and N(j) € C}.
We separate the agents in K into two disjoint subsets K’ and K": Let K =

{i: a' € K and b’ e N(ai), £(b') .’ f(a')}. Therefore, for any agent a'
1

a

whose index i is in K" = {1i: a'e Kand i ¢ K}, it is the case that f(a') P,
1

a

£(b') ¥b e N(a'). Note that if i e K" then N(a') is not included in C’.

Given any a' with i in K’ and g(ai), there exists (by Lemma 2) a net
trade g’(ai) so that (1) holds. Similarly given any a' with i in K" and g(ai)
for every agent b' in N(a') there exists (by Lemma 3) a net trade g’(bi) so
that (2) holds. For each i in K", choose b' in N(ai) so that b' is not in
C’ and define

W= }:g(a) + Zg’(ai) +Zg’(bi)

Using (1), (2) and (67,

SHZng—ZgWJ)-ZngHan(gg)—gm5w+
K

i€k’ iek" i€K’

e - W

| ¥ (gta’) - g (6")] = k (20(A) + 3E(A) + 2kM(A) 1ALy |y (oq(A) + S + BE(A)

, I(A,5)
i€K"
2kM(A) |A
T(A.S) ). Thus,
n b < ZkM(A) A
“w - w = 2k (2Q(A)+ S + 3E(A) + I(AS) )
Given that |w - w| = |w - w"| + |w" - w[, and using (5) we have
Bk M(A) | A
[w -l = Sriey + 4KQ(A) ¥ BKE(A) + 2KS
By construction w’ € ® and therefore w’ = z;x(a), x(a) € ¢(a). If we

(-V), define x’ (a) = x(a) + e(a) - T%T, where B = {a : x(a) # 0}. Hence

ZBX’(a) = ZBx(a) + Z;e(a) - w = ZBe(a). Since (-w’/\B]) € V, and x’ (a) P,
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(x(a) + e(a)) p f(a), which by transitivity implies x’(a) i f(a). Thus w ¢
a

-V)°.
6K M(A) | A
I(A,5)

B(v,1) € V by hypothesis, B(r,kL(A)) + V € V. Therefore w ¢ —(r + V). We

Let L(A) = + 4kQ(A) + BKE(A) + 2kS. Let r = kL(A)v. Since

conclude that con(®) n -(r + V) = @.
By Minkowski’s Theorem, there is p € U, p # O such that Inf {p ¢ =

sup {p + w: we -(r +V)} =-p+r=-kL(A)(p * v) 2 —kL(A)Hv“l. By continuity

p » (f(a) - e(a)) = Inf p » ¢(a). Let A’ = {a: p + (f(a) - e(a)) < 0}. Then,

0 = Z p + (fla) - e(a)) = Z Inf {p « ¢(ald} = - kL(A)HV“f
A° A’
Since f is an allocation, Z p * (f(a) - e(a)) = 0 and therefore
A
a) ) lp - (fla) - ela))] =2 ) lp -+ (f(a) - e(a))] =2 kL(A) |v] and
A A’

b) Z |Inf {p - (x - e(a)): x € X(a), x p fla)}| =
A

- I

Inf {p + ¢(a)}| + ) |p - (fla) - e(@))] =

A’ ANA’

= KL(A) v + kLAY [v] = 2kL(A) v,

+
Proof of Theorem 3:
Let a be any consumer in A", {p"} a sequence of prices, {(£™(a)} a
sequence of consumption bundles. Also let T > O and {Bn), Bn > 0 with
Lim g" =0, ”fn(a)“ < T and ”en(a)” < T V¥n, (7)
n
an . (fM(a) - en(a))| < g" (8)
[ Inf{p” + (x - e"(a)): x p_£(a)}] < B (9)
Consider the set {x € Rt: pt e x = p - e'(a), |x] = 2T} which is compact

and therefore has a maximal element x" for a's preferences. That is

n

x ' y, Vy with pr+y=p - e(a), |y| =2t (10)
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We now prove in three steps that if (7), (8) and (8) hold then
Lim |x" - £7(a)] = 0. (11)
e o)

n

Suppose (11) does not hold. Then there is 7, 0 < 7y < T/2, such that (in a
subsequence) nxn - fn(a)H> 2y ¥n. Let r" = (x + fn(a))/Z. Then “rn” = 3T/2.

First, we show that
" - (0" - e"(a))| < B° (12)
To prove (12) it is enough to show that pt e (x - e’(a)) > -B". If N p;
f"(a) then by (9), the assertion holds. If f(a) P %", then any convex
combination of both bundles is, by strict convexity of preferences, preferred
to x" and, therefore, x" is not maximal (expression (10) is violated). This

proves (12).

Second, let &€ = Min{o(x,y,P(V)): x =T, y = 2T, |x - y| = 29}. Since
o(+,+,P(V)) is a continuous and strictly positive function defined on a
compact set, € is greater than zero. Let & = Min {§, T/2}. Therefore, by
equi-convexity, for all n

B(r",s) P x"  or B(r",s) v f(a).

Third, it may be assumed by passing to a subsequence that pn —> p.
Suppose there is one commodity, say commeodity 1, with price P, < 0. Note that

for n large enough p? < (p1/2) < -B". Defining t"=r" + (5, 0, ...,0) and

n n n n n

using (12) we obtain that for large n, peti=p e + Spl = p" - e'(a)

n

+ g+ (6p1/2). Since for large n, B + (6p1/2) < -B
n

pte (1" - e'(a)) = B (13)

If B(r*,8) p f"(a), then t" p f"(a) and (13) contradicts (39). We must
a a
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therefore consider the alternative B(Pn,é) pa xn, in which case t" paxn. Note,
however that [t"] = [r"] + & = 3T/2 + T/2 = 2T. Thus, given (13) X" is not
maximal and therefore (10) is contradicted.

Hence, it must be the case that all commodities have non-negative prices

(p > 0). Given our assumptions on endowments, there is £ > 0 such that, for

large enough n, pn' e”(a) > 2ke. For large n, Bn < ke and, given (12), pn e

> ke. Therefore, there must be a commodity, say commodity 1, with (p: F?) > €.
Since r? = 2T and p: < 1, then p? > (e/(2T)) and PT > ¢ for large n. Let & =

Min {e, 8} and let t" =r" + (-8",0, ...,0). For n large pe t" = p" - e"(a)

n

+ Bn - p? 8 and B" - p? 8’ < -B". Therefore we obtain (13): p - " - e(a))
= —Bn. Similarly to the previous case this generates a contradiction. We

conclude Lim an(a)—an = 0, thus proving (11).
n — ©

Since |[f"(a)|| = T, for n large enough |x"| is strictly less than 2T.

Hence there is no consumption y with pn vy = pn - e'a) and y p x". This
a

implies that x" = D (p") for large n. Hence
a

Lim 1t (a) - Dgpn)n = 0.

n
Since the average endowment and therefore the average core allocation is

bounded (Assumption (ii), Theorem 2), given any « > 0, 3T > 0 and a set

n

E" ¢ A" such that va € E” |[f"(a)| = T, |e"(a)] =T and
|A"NE" |
——— < a Vn

A

For any core allocation £" of the economy €" and for the price system pn

n

found in Theorem 2, there is 3 {Bn}, B > 0, Bn — 0 so that
{a e A" |p" « (f"(a) - €"(a))| < B™/[A7] > 1 - B"
|[{a € A" |Inf {(p" ¢ (x" - eM(a)): x pafn(a)}| < B |/|A% > 1 - BN

Thus, Lim  |{a € E": (7), (8) and (8) hold}|/|A"| = 1. But (7)-(9)

n [o4]
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imply (11). Therefore, for any £ > O,

Lin  [{a e E™ [f"(a) - D(pM| < e}|/[A7] = 1.

n o«
Finally, for any € > O
[{a e A" [£7(a) - D(PM| > e}
<

Lim

n

n — |A,
[{a € E™: |f7(a) - D(pM)| > &} |A"NE" |

Lim 2 + < + «
n — © ‘Anl ‘An|
+
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