Because m 1is privacy preserving
m=na(La X Xc(a))

where
La=Mg » M-

As before, m is the projection of m into the set

ax M

Xa x M. TIf t € M, then

n ()=l ¢ A Ly t(E)-
Indeed, if t € M and if x is an element of m'l(t), then
t € m(x)=naLa(xa).
Therefore
t € La(xa)
and thus
-1
xy € Ly~h(t).

. -1
We have shown that x is an element of Ha e a La (t).
More interesting is the assertion that the rectangle
Ha €A La_l(t), is contained in m'l(t).

Suppose that
-1
x €] a € A Fa {(ty.
The element
(xa,t) € La
for each a. Thus
t € naLa(t)
and therefore t is in the set m—l(t). We have shown
that for each t € M, m~1(t) is a rectangle.
Conversely, suppose that for each t € M, the set

m_l(t) is a rectangle. For each t € M and each a € A

274



there is a set U, (t) in X5 such that
n )=, ¢ A Ug(t).
Set
Ky=Ug e M (Ua(t),t) < Xy x M.
The relation Ky is a correspondence from X, to M: that

is, for each x_ in X Ka(xa) is nonempty. Because m

al
is a correspondence, if
(y,%5) € X for x, € X,
then there is a t in M, such that
((y,%3),t) €m
and hence X, € Ua(t).
If x € X, and if t € m(x),
then
™1 (t)=]] U, (t)
: a € A "a d
therefore
(x,,t) € Ug(t)
or, what is the same thing,
t e naKa(xa). Thus
m( X );naKa(xa).
If tenaKa(xa), then teKa(xa). Therefore
..-l _
x €K, () =U, (t).
But then
—_m—1
x€ll; ¢ a Uag(t)=m 7( t )
so that tem( x ). This shows that
m( x )=na Ka(xa)

for each x in X. It follows that m is a privacy
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preserving correspondence. i

In the next section we will attempt an elementary
classification of privacy preserving correspondences.

As motivation for the discussion, let us look at
an example. Suppose that

X,={0,1},

X,={0,1},

Y,={a,b},

Y,={a,b},

M={r,s,t}
and

N={u,v,w}.

Define a correspondence m:X; X X2—-—>M by setting
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m( 0,0 }=r,
m( 1,1 )=t,
m( 0,1 )=r
m( 1,0 )=s.
Similarly, define
n:Y; x Y,--->N by setting
n{ a,a )=u,
n{ b,b )=w,
n( a,b )=u
n( b,a )=v.
The correspondences m and n are different because they
are defined on different spaces. They are both privacy
preserving since it is easy to see that each satisfies
the criterion given in Lemma Al.2. It is also clear
that the two correspondences differ only in the way the
points in the various spaces are labelled. In fact,
the correspondence m can be transformed into the
correspondence n if 0 is renamed a, 1 is renamed Db
while we rename r, s, t, u, v, w, respectively. In
order to treat these correspondences as equivalent we
introduce a concept of isomorphism. The next section
is devoted to building such a concept. The approach
taken is directly analogous to classical definition of

the equivalence of functions. We start by defining the

concept of map between privacy preserving
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correspondences. This mapping theory is not necessary
in order to define the concept of isomorphism, but the

slight increase in generality is useful.

Section A2. Mappings.

A function f:X-->Y is equivalent to a function
g:Z->W if there are one-to-one onto maps h:X-->Z and
k:Y-->W so that the diagram in Figure A2.0
commutes(c.f. [10, p.72]). More generally, a map from a
function f to a function g is a pair of functions h and
k that make the diagram in Figure A2.0 commute. The
same definition is to be used to define a map between
correspondences f and g, however one must be careful in
defining the commutativity of a diagram when
correspondences are used. Because the concept of map
is to be used in the discussion of privacy preserving
correspondences we give the definition only for that

case,

Fiqure A2.0
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f: g ¢ A Xa '__>Ha e A Ya
5 |
1 {
u:M —_——— N
Fig. A2.1

condition (iii) of Definition A2.1 is the
commutativity condition we use. In the case that
correspondences are isomorphic, a stronger
commutativity condition applies. For this reason
Definition A2.1 includes the definition of strict

mapping.

Definition A2.1. Suppose that (X, !} and (Y.} are
two collections of nonempty sets indexed by a set A.
Assume that

m:l, ¢ p Xg———>M
and

n:] 4 ¢ a ¥a—>N
are privacy preserving correspondences. By a mapping
from m to n we shall mean a pair of functions

(Ha € A ua,v)
such that:

(1) u X ——=>Y, is a function for each a,

(ii) v:M--->N is a function,

iii) for each x €[], - A X5/

-1
m(x)ev T [n(]] 4 ¢ A Ya(Xa))1-
The mapping (][] a € A u,,v) will be called a strict
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mapping if
(iv) for each x €J] a e A Xar

m(x)=v 1(n(][; ¢ a Ualxx)))-

Lemma Al.2 characterizes privacy preserving
correspondences in terms of the inverse correspondence;
i.e. m:] a € A Xgm—>M is privacy preserving if and
only if the inverse correspondence carries points to
rectangles. Because of that characterization it is
useful to describe mappings by what they do to inverse
correspondences. This the content of the next lemma.
The representation applies equally well to arbitrary
relations, and the more general statement significantly

lightens the notation.

Lemma A2.l1. Suppose that m:X--->M and

n:Y--->N are relations and assume that u:X--->Y and
v:M--->N are functions. Then
(1) m( x )gv'l[ n( u( x ) ) 1 for each x in X
if and only if
u( m iz ) yenTH( vz ) )
for each z in M,
(1i) m( x )=v—1[ n( u( x ) ) ] for each x in X
if and only if
nl( z )=uTl n7H(C v( 2z ) ) ]

for each z in M.
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Proof. We first prove (i). If
v( m( x ) Jen( u( x ) )

and if

weu(m “1( z ) ),
then w=u( x ) for some xem’l( z ). But zem( x ) and,
because

v( m( x )} Jen( u( x ) ),
it follows that v( z )en( u( x ) ). Hence w=u( x ) is
an element of the set n_l( v( z ) ). Then

u( m7i oz ) yen”Ho vz ) ).
on the other hand, the proof of the "if" part of (1) is

the same as the argument already given if one replaces

m by m—l, n by n"l, X by M, Y by N, v by u and u by V.
We turn to the proof of (ii). If we assume that
m( x )=v7 [ n( u( x ) ) 1

for all xeX it follows from (i) that
u( w2 ) denTH vz ) )

for each z in M. We need only show that
ol z youmi nTi vz ) ) )

for all z in M. Suppose that

“lenlivezy .

weu n
Then

u( wen Y v( z ) )
and therefore

v( z )en( u( w ) ).

But if
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m( w)=v"1{ n( u( w) ) 1,

then zem( w ) and hence wem'l( 2 ). Now replace u by
v, m by m'l, n by n~l, X by M, and Y by N in the proof
of (1). The equality

m i w)=u"t n7I( v w ) ) ]
for all weM implies that

n( x )=v"1[ n( u( x ) 1

for all xeX.®

Lemma A2.1 has the following simple consequence.

Theorem A2.1. Suppose that {Xa} and {Ya} are two

collections of nonempty sets indexed by a set A. If
m:[[, ¢ o Xg———>M
and
n:l; ¢ o Ya=—=>N
are privacy preserving correspondences, then a pair of
functions
(Ha € A ua'V)
such that
[ug:X,———>Y
and
v:iM --->N
is a mapping from m to n if and only if for each

zZ € M,

m Lz )=([aen u) "t 07O VO 2 ) ) 1L
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The pair (][] u.,v) is a strict mapping if and

acA “a’
only if

m L oz )=(lyen u) "t 07O VO 2 ) ) ]

for each zeM.

In general, two mathematical structures M and N
are considered to be equivalent or isomorphic, relative
to the mappings defined between them. Once the
mappings have been defined, then two objects M and N
are isomorphic if there are mappings u:M--->N and
v:N--->M so that the compositions u.v and v-u are
identity maps on M and N, respectively. We use the
same definition for the concept of isomorphism between
privacy preserving correspondences. For such a
definition to make sense one must define the
composition of mappings between privacy preserving
correspondences, check that such compositions are again
mappings, and define the mapping that is to play the
role of the identity mapping. The following definition
and lemma are devoted to these housekeeping tasks. The

proof of the lemma is routine and not included.

Definition A2.2. Suppose that (X} is a
collection of nonempty sets indexed by A, and suppose
that m:HaeA X =-—>M is a privacy preserving

correspondence from HaeA X, to a set M. The identity
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mapping from m to itself is the pair
(HaeA Id,,Idy) where Id, is the identity function on X,

and Idy is the identity function on the set M.

Lemma A2.2. Suppose that m:X--->M, n:¥Y--->N, and

p:Z2--->P are correspondences and suppose that
s:X--->Y,
u:M--->N,
t:Y-=-=->7
ViN--->P

are functions such that
(i) m( x Yeu ™l n( s x ) ) ]
for all x in X:
(i1) n( y )ev i p( £y ) ) ]
for all y in Y.
Then,
(iii) m( x Je(u-v)"1p( tes( x ) ) ]
for all x € X.
Further if
(iv) m( x )=u"l{ n( s( x ) )} 1:
and
(v) n( y )=v"i[ p( t(y ) )]
for all x€X and all YyevY:
then,
(vi) m( x )=(u-v)" [ p( tes( x ) ) ]

for all xeX.
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We can now give the definition of isomorphism

between privacy preserving correspondences.

Definition A2.3. Suppose that £X5) and (Y} are

two collections of nonempty sets indexed by A. Suppose
M and N are nonempty sets and assume that
m:[[ ca Xz-——>M and n:ll, ¢ o Yg~~—>N are privacy
preserving correspondences. A mapping

(u,vi=(Jlg ¢ A Ug /V):im--=>n
is an isomorphism, and m and n are isomeorphic, if there
is a mapping

(s,t)=(Ha e a Sg/B)in-——>n
such that

(u,v)-(s,t)=Id,
and

(s,t).(u,v)=Idm,
where Id  and Id, are the identity mappings on m and n,

respectively.

Occasionally the following lemma simplifies the
problem of verifying that two privacy preserving
correspondences are isomorphic. The proof is straight

forward and not included.

Lemma A2.3. Suppose that {Xa} and {Ya} are two

collections of nonempty sets indexed by A, and suppose
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that M and N are sets. Suppose that

m:[]

Ha e a Xg==—>HM

and
n:jly ¢ o Yg~—=>N
are privacy preserving correspondences. The
correspondences m and n are isomorphic if and only if
for each a € A there is a one-to-one onto function
ua:Xa———>Y,
and a one-to-cne onto function
v:M--->N
such that the pair

(Ha € A Ug V)

form strict mapping from m to n.

The following example shows that the strictness
condition given in the statement of Lemma A2.3 cannot
be dropped.

Suppose that A consists of one element X and
assume X={P,Q}. Set

M=N={R,S,T}.

Define a correspondence m:X--->M by setting

m( P )=R
and

m( Q )={S,T}.

Define a second correspondence

n:X-->N by the equations
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n( P )=(R,S}
and

n( Q )={5,T}.

Then, I=(IdX,IdM) is a mapping from m to n, however I
is not an isomorphism because the pair of functions
(Idy,Idy) do not form a mapping from n to m.

It is an easy exercise to check that the relation
of isomorphism is an equivalence relation on the class
of privacy preserving correspondences. In the next
section we investigate the equivalence classes of this

equivalence relation.

Section A3. Isomorphisms

Lemma Al.2 shows that if a correspondence
m:Ha c A Xg——=>M is privacy preserving that for each
teM the set m—l( t ) is a rectangle. If one treats
these rectangles as the points of a set R then
associated to m is a correspondence m¥* from HaeA Xy to
R given by setting

m*( X )={m"l( t Yixen 1( t ).
The correspondence m* is privacy preserving since the
inverse of each point in R is exactly that rectangle.
For example, suppose that X1=X2={0,1} and suppose
M={a,b,c}. Define m:Xl X X2———>M by the equations

m( 0,0 )={a,b},

m( 1,1 )={a,ct,

287



m( 1,0 )=m( 0,1 )={a}.
Then
m~1( a )=((0,0),(1,1),(0,1),(1,0)}=R(1),
m~1( b )=¢(0,0))=R(2),
and
n~l( c )=t(1,1)1=R(3).
The correspondence m* is given by
m*( 0,0 )={R(1),R(2)},
m*( 1,1 )={R(3),R(1)},
m*( 1,0 )=m*( 0,1 )={R(1)}.
Note that in the example we can reconstruct m from m*.
Set
v( a )=R(1),
v( b )=R(2)
and
v( ¢ )=R(3).
Then for each t in M,
n it )=l m it ) ).
Since v is one-to-one and onto it follows from Lemma
A2.3 that m and m* are isomorphic. There is a clear
advantage to working with the correspondence m* over
working with the correspondence m, because the points
of R are subsets the product space X; X X,. The
representation of a privacy preserving correspondence
by the rectangles associated to it is the powerful

constructive technique used in [11]. The search for
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message spaces which have minimal cardinality and
realize a function is reduced to the consideration of
spaces of rectangles.

Tt is not true that every privacy preserving
correspondence is (to within isomorphism) a
correspondence with message space formed of rectangles
in a product Ha c A Xy consider, for example, the
following correspondence. Use

X1=X2={O,l},
set

M=I(the nonnegative integers)

and define

m( 0,0 )={4.3:3j a nonnegative integer},

m( 0,1 ) = {1+4.3:j a nonnegative integer},
m( 1,0 ) = (2 + 4.j: Jj a nonnegative integer}
m( 1,1 ) = {3+4.3:3 a nonnegative integer}.

The correspondence m has as message space an infinite
set and therefore is certainly not isomorphic to a
correspondence formed of subsets of the product
X; X X5 It is also clear, however, that m can be
reconstructed from the correspondence m* from X, x X,
to {0,1,2,3) given by

m*( 0,0 )=0,

mx( 0,1 )=1,

m*( 1,0 )=2,

mx( 1,1 )=3.
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In this section we make precise the relation between a
correspondence m:Ha c A Xa———>M and the associated
"internal" correspondence with message space consisting

of rectangles in [[; . a X4

Definition A3.1. Suppose that (X } is a collection

of nonempty sets indexed by A. Set X=Haxa. Denote by
R(X) (or R when there is no fear of confusion) the set
of all rectangles in X. Let ry:X--->R denote the
correspondence defined by the equation

rX( X )={r€R:xe€r}
for each x € X. The correspondence ry is the rectangle

correspondence for the collection {Xa).

Lemma A3.1. Suppose that {X_ ) is a collection of
nonempty sets indexed by A. The rectangle
correspondence for the collection is privacy
preserving.

Proof. If R is the set of rectangles in
X=[]; ¢ o Xa+ then for each r in R the set
{x:x€r} is a rectangle. The conclusion of the lemma

now follows from Lemma Al.2.E

The construction of the introductory paragraph of
this section can be restated in terms of the rectangle

correspondence.
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Theorem A3.1. Suppose that (X,) is a collection of

nonempty sets indexed by A and suppose X= HaEA X5- Let
ry:lly e Ao ¥a~~~>R(X) be the rectangle correspondence.
Denote by Id the identity function X to itself. If
m:X--->M is a privacy preserving correspondence, then
there is a unique function

v:M--->R(X) so that the pair (I4,v) is a strict mapping
from m to ry.

Proof. If m:X--->M is privacy preserving, define
v:M--->R(X) by the equation

vt )=t ),
for each t in the set M. The correspondence Vv is
clearly a function. If xe€X, then for each
teM,

ry v e ) =T e ) =T e ).

It follows from Lemma A2.3 that v is a strict mapping
from m to ry.

To prove the assertion on the uniqueness of v,
suppose that v’:M--->R 1is a second function so that
(Id,v’') is a strict mapping from m to ry. For each
t € M, set S=v{ t ) and S’=v’( t ). Both S and S’ are
elements of the set R. But

s=ry 1 v( t) y=m"1( t )
and

sr=r"1( v'( t ) )=mTi( t ),

because both (id,v) and (Id,v’) are assumed to be
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strict mappings. Therefore v( t )=S=8/=v/( t ).¥

For a given collection {X_,} of nonempty sets Xj

a
indexed by a set A, Theorem A3.1 shows that all privacy
preserving correspondences defined on a set
X=Ha c A X5 are in one-to-one correspondence to
functions that map to special subsets of R(X). The
special sets in R are those sets of rectangles that
cover X. To build a privacy preserving correspondence
on X, choose a collection of rectangles in R(X) and
call the set of those rectangles M*. The
correspondence has as domain all of X, therefore the
set of rectangles chosen must cover X. Define a
correspondence m*:X---->M* by setting

m*( x )={r:reM and xé€r}.
If M is a set and if viM——>M* is a function from M
onto M*, set

m( x )=v i omE( x ) )
for each X in X. The correspondence m is then a
privacy preserving correspondence from X to M. Theorem
A3.1 guarantees that as M* varies through all the
classes of subsets of R that cover X, the procedure
outlined above constructs all possible privacy
preserving correspondences defined on the set X. This
procedure leaves open the question of which privacy

preserving correspondences (constructed by the choice
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of M* and the function v) are isomorphic. Some

information which is readily available.

Lemma A3.2. Suppose that (X } is a collection of

nonempty sets indexed by A, set X=HaeA Xy and suppose
that M and M’ are subsets of the set of rectangles
R(X). Let i and i’ denote the inclusion maps of M and

M’ into R, respectively. Set

=1

m=1 Iy
and set
r—sr—1
m’=i ry

where ry is the rectangle correspcndence. The
correspondences m and m’ are isomorphic if and only if
for each acA there is a one-to-one onto function
ua:Xa———>xa
such that
(la e a ua) IMI=M".
Proof. Suppose that m and m’ are isomorphic.
There is a mapping
(ﬂa e aAUg,V)im--->m’
where each u. is a one-to-one onto mapping from Xa to

a

X and Vv is a one-to-one onto mapping from M to M’.

al
Further, because
(Ha c a UYz,V) must be a strict mapping, it follows that

for each reM,

n L )=([y e a ug) T 7RO VO ) ) T
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r=([lqea ug) 10 VO T ) T,
or

(Maea ug)( r )=v( r ). But v must be a
one-to-one and onto function. Therefore,

[[qea Uy carries each rectangle in M onto one and only

one rectangle in M’ .#

We can describe the isomorphisms between privacy
preserving correspondences, at least in the case in
which both correspondences use the same collection of
sets {X,) indexed by a set A. Suppose that
HaeA X4=X and that m:X--->M is a privacy preserving
correspondence. Denote by v( m ) the function from M
to R(X) that is uniguely determined by m (c.f. Theorem
A3.1). Let M* denote the image of v( m ) in R, denocte
by i the inclusion map from M* into R, and dencte by m¥
the correspondence i"lrx, where ry denotes the
rectangle correspondence of the collection {Xa}. If
n:X--->N is a second privacy preserving correspondence,
and if (HaeA ua,v):m--—>n is an isomcrphism, then
HaeA uy carries rectangles to rectangles and determines
a one-to-one onto function u* from R onto R. Extend
the v(.) notation used for m, and denote by v( n ) the
uniquely determined map from N to R(X) determined by n.

Let N* denote the image of v{ n ). The function u*
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must carry the set M* onto the set N*. Indeed, if
SeM* (so S is a rectangle) and if S=m"1( t ), then,

(1) (Iyea ug)(S)=(pr upm™>( t )=n"r( u( t ) ).
Further the pair

(HaeA Ug s u¥)
(with u* restricted to M*) is an isomorphism from m* to
n*., The equation (i) shows that the pair
([Joep ugeu*) defines a strict mapping from m* to n*.
Because (HaeA ua,u) is an isomorphism, each of the
functions u, and the function u must have an inverse.
Suppose V, is the inverse of u, and suppose V is the
inverse of u. Denote by v* the restriction of v to the
image of v( n ). Then (HaeA va,v*) is a strict mapping

from n* to m* that is the inverse for (HaeA u, u*).
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These relations are illustrated in the diagram of

Figure A3.1.

HaGA Ya
i e% Xg====7=TmTmTmT T >[laea Xa
m l m* (1) n#* n
u*
Mk ————m————m—— — —— > N*
\
/ v{(m) (IT) v(n) \
/ \
M —mmmm—mmmm e mm—m— > N
u
Fig. A3.1
If teM, then
ux[ v(m )( t ) 1=

(Maea U)L m7HC £ ) 1=

n"lf u( £ ) 1=v( n)uC t )],
Thus the diagram in Figure A3.1 commutes. Because the
square labelled (II) commutes, it follows that the
isomorphisms u* and u induce an isomorphism from the
function v( m ) to the function v{( n ). Thus
isomorphisms between the privacy preserving
correspondences m and n are constructed of an
isomorphism between the associated correspondences m¥*
and n* and an isomorphism between the functions
v( m ):M--->M* and v( n ):N--->N¥.

The construction of privacy preserving
correspondences was for the purpose of realizing

performance functions (c.f. [11] or [21] ). In the next
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section we shall apply the concepts introduced in this

section to the study of realizations.

Section 4. Realizations.

In [20] privacy preserving correspondences were
used to realize a performance standard. A performance
standard is a function defined on a product, but when
one need not contend with topological questions it is
easy to extend the discussion to realizations of
correspondences. We begin with the following

definition.

Definition A4.1. Suppose that {Xj} is a

collection of nonempty sets indexed by A, assume Z is a
set and suppose that F:HaGA Xy=—=> 2 is a relation. A

realization of F consists of:

(i) a set M called the message space,

(ii) a privacy preserving correspondence
m:[] ca Xy-——>M, called the

message correspondence,

and

(iii) a function h:M--->Z, called the outcome
functicn,

such that,

(iv) for each x€[[ ca X5

h( m( x ) )<F( % ).
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condition (iv) is the nonwasteful condition of
[12]. In case F is a function, condition (iv)
guarantees that h is constant on m( x ) and that for
each xe[ ca X5+

F( x )ech( m( x ) ).

Definition A4.1 coincides with the definition in
[20] of an allocation mechanism that realizes a
function F.

Lemma A2.3 is applicable also to the situation

presented by a discussion of realizations. For the

purposes of this section we would like to restate it.

Lemma A4.1. Suppose that (X, )} is a collection of

nonempty sets indexed by A, assume that M and are
sets, and suppose that
F:[luep Xg~——> 2 is a correspondence. If
n:] gep Xgmm>M
is a privacy preserving correspondence and if
g:M——->7
is a function, then the pair (m,g) realizes F if and
only if for each teM,

it YeFT g t ) ).

The condition
nl e )P g £ ) )

has some elementary consequences.
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Suppose that the correspondence F has domain
x=[1 aca Xg- Suppose further that m:X--->M has image M
and assume that F has image Z. If teM, then
tem( x ) for some x. Similarly if ze€Z, then z€eF( y )
for some yeX. In the case that m, g, and F are
functions the condition

g( m( x ) Y<F( x )
implies that

gl m( x ) )=F( x ),
because F( x ) is a point. Because m has image M it
follows that g is uniquely determined by m. Indeed if
t is an element of M, then t=m( x ) so g( t )=F({ x ).
Otherwise stated,

g( m( x ) )=F( x )
implies (by Lemma A2.1) that

m (£ )P g £t ) )
for each t, so

g=F‘m_1.

Lemma A4.1 summarizes the set theory used in [HRS]
to construct minimal message spaces for performance
standards that are differentiable functions. Suppose

that (X is a collection of nonempty sets indexed by

a’

A, that ] X =X and that F:X--->Z is a performance

aeaA
standard. In order to realize by a mechanism that uses
a privacy preserving correspondence m, the

correspondence m* :X--->R(X) must cover each level set

299



F_l( z ) by disjoint rectangles. The privacy
preserving correspondence required to realize F
associates to each xeX the rectangles that contain x.
The outcome function from the set of rectangles to the
set is uniquely determined by the function F and the
function m. In order to build a message space of
minimum cardinality, it suffices to cover each level
set of F by a collection of disjoint rectangles of
minimum cardinality.

We complete this section by considering a few
examples. First suppose that X;=X,={0,1,2}. Define a
function F: X, %X X,--->{0,1} by setting

F( i, )=a( 1,3 )

where (a( 1,3 )) is the 3 x 3 matrix

1 1 0O

1 1 1

o 1 1
Thus

F( 0,0 )=1
while

F( 2,0 )=0.
The set F_l( 0 ) consists of the points (0,2} and
{2,0}. The set F_l( 0 ) can be covered only by the two
rectangles SO={0,2} and Sl={0,2}.
The set F'l( 1 ) has several different coverings by

rectangles. We give three such covers.
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Case 1. The first cover consists of the three
rectangles

R,=1(0,0),(0,1)},

R2={(l,0,(l,l),(l,2)}

Ry={(2,1),(2,2)}.
In this case a message space for a realization for the
function F is the set of five points

(Sg:1Sy Ry /Ry, Ry}=M.
The message correspondence 1s given by

m( x )={r:reM and xer}.
Thus

m( 0,0 )=R,
while

m( 1,1 )=R,.
The functicon g:M-->{0,1} carries the "S" labelled
rectangles to 0 and the "R" labelled rectangles to 1.

Cage 2. The second covering of F'l( 1 ) consists
of the three rectangles

Ry,

Ro* ={(1,1),(1,2),(2,1),(2,2)},

R*¥={(1,0}}.
Again the message space correspondence m* assigns to
each point the rectangles that contain it. The outcome
function, g, again assigns O to S labelled points and 1
to R labelled points. Note that the two

correspondences m and m* are not isomorphic since no
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one-to-one and onto function from X; x X, to itself can
change the number of points in a rectangle.
Furthermore, it is relatively easy to see that any
covering of the level set F_l( 1 ) must contain at
least three rectangles if the rectangles are to be
disjoint. (A proof of this will be given in the next
section). It follows that m and m* are both privacy
preserving correspondences for realizations of F with a
message space of minimum cardinality. Thus
realizations with message spaces of minimum cardinality
are not necessarily isomorphic.

Case 3. 1In this case cover F'l( 1 ) by the two
rectangles

T,=((0,0),(0,1),(1,0),(1,1)}

T2={(l,l),(1,2),(2,1),(2,2)}.
The message space for F consists of the four points S,
Sy, Tq, and T,. The message correspondence is not a
function since the point (1,1) is in both rectangles T,
and T,. Thus it may be possible to lower the
cardinality of a minimal message space by dropping the
condition that the message correspondence be a
function.

One might alsoc hope that if (X is a collection

al
of nonempty sets indexed by A, then a message space of
minimum cardinality for F:HaeA X4~--> occurs alsoc as

the minimum message space for the realization of a
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thread of F. This is not true. 1In Case 3 above, the
correspondence m* is privacy preserving and can be used
to realize itself. The message space for the
correspondence m* is the set

M*={S,,5,,R;*,R*}.

It will be convenient to represent m* by the matrix

2 0
Ry * {R{*, Ry*} Ry*
Sq Ry* Ry*

where

m*( 1,1 )=(Ry*, R,*).
The outcome function from M* to itself must be the
identity. The correspondence m* has an image that
consists of four distinct points. Each of these points
is actually a value of the function m* restricted to
the complement of the point (1,1). Therefore the
message space of any privacy preserving correspondence
used to realize m* must have at least four points. The
realization of m* by itself is then a realization with
a message space of minimum possible cardinality. To
examine the threads of the correspondence m* represent
the subsets of the product space X; x X, by the
standard device of associating to a set its
characteristic function. The characteristic function
of a set takes the value 1 on points of the set and is

otherwise 0. A subset of the product X; X X, is
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identified with a 3 x 3 matrix of 0’s and 1’s. There
are only two distinct threads of the correspondence m¥*.
Each of the threads coincides with the correspondence
m* on the complement of the point (1,1). The first
thread, s,, takes the value R;* on the point (1,1),
while the second thread s, takes the value R,* at the
peint (1,1). The thread Sq has as level sets the

following matrices:

s, (R %)= 1 1 0
1 1 0
0 0 0
s, Ll(Rrx,)= 0 0 0
1 2
0 0 0
0 1 1
s. t(s,)= 0 0 0
1 1
0 0 0
1 0 0
-1 _
s, Hsg)= 0 0 0
0 0 0
0 0 0

It is easy to see that five rectangles are
required to cover these level sets. It follows that
the minimum cardinality for the message space of a

realization of Sq is five. The thread s, is
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constructed from s; by interchanging the rows and
columns of the matrix for s,, interchanging the
subscripts of the R*’s and then, interchanging the
subscripts on the S’s. The thread s, also reguires a
message space cardinality at least five. It would
appear, therefore, that restricting realizations to
threads of correspondences inflates the size of the
message space. We do not know this to be true in the

topological case.

Section A5. Rank Conditions

In Section A4 the characteristic function of the
level set of a function defined on a product X x Y was
described as a matrix of zeros and ones. It is
possible to give a bound on the number of disjoint
rectangles required to cover a level set in terms of
the rank of the matrix which describes the
characteristic function of the level set. 1In
particular this will give necessary and sufficient
conditions to ensure that a function has a realization
with a message space of finite cardinality. We shall
explore only the case in which the function is defined
on a product X x Y. We shall be very lax in specifying
the set in from which the elements 0 and 1 are chosen.
The elements 0 and 1 are to be taken from a field, but

any field will do. The two fields of most interest are
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the field of real numbers and the field Z/2Z that has

only two elements 0 and 1.

Definition A5.1. Suppose that T is a subset of

the product X x Y. We denote by M(T) the matrix that
represents the characteristic function of T. We call

M(T) the matrix of T.

Thus M(T) has rows indexed by elements of X,
columns indexed by elements of Y and an entry in the
(x,y) position that is a 1 if (x,y) is in T and a 0 if
(x,vy) is not in T. If T is a subset of X x Y, it is
convenient to think of M(T) as a function on the
entries of X x Y. Thus we will write M(T)(x,vy) for the
(x,y) entry of M(T).

The following lemma characterizes a set T as a

rectangle by a condition on M(T).

Lemma A5.1. Suppose that T is a nonempty subset

of a product X x Y. Then T is a rectangle in X X Y if
and only if the matrix of T, M(T), has rank one.

Proof. Suppose that T 1s a rectangle. Then there
are sets UcX and VcY so that for each z € X X Y,
M(T)(z) = 1 if and only if z ¢ U x V. 1If a row of
M(T) is indexed by an element u which is not in U, then

the row must consist entirely of 0’s. Suppose that u
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and v are elements of U. Then for each y in X,

M(T)(u,y) = M(T)(v,y) = 1
if y 1s in V
and
M(T)(u,y) = M(T)(v,y) = O
if y is not in V.
Thus the nonzero rows of M(T) are identical. It

follows that M(T) has rank one.

Conversely, suppose that M{T) has rank one. Let U
denote the set of elements of X which index a nonzero
row. Similarly let V dencte the set of elements in Y
which index a nonzero column. Clearly if

M(T)(x,y) = 1

then ¥ is in U and v is in V.

Thus suppose that x € U and vy ¢ V. Then

M(T)(x,2)

1
and

M(T)(w,y)

i

1

for some z and w.

But the row indexed by x 1is nonzero and,since M(T)
has rank one, each nonzero row of M{T) must be a
nonzero multiple of row x. 1In particular the row
indexed by w must be a multiple of the row indexed by
X. But since the only nonzero entries in either row
are 1’'s jt follows that row w is 1 times row x. Note

that this is true no matter which fieid is used for the



elements 0 and 1. That is, the rows are identical.

Thus if

M(T)(w,y) = 1,
then

M(x,y) = 1.

It follows that M(T) is nonzero on U x V. Thus M(T) is

the characteristic function of the rectangle U x V.

As an immediate consequence of Lemma A5.1, we prove

the following assertion.

Theorem A5.1. Suppose that T is a nonempty subset
of the product X x Y with matrix M(T). Then T can be
covered by a finite number of rectangles if and only if
M(T) has finite rank.

Proof. First suppose that T can be covered by a
finite number of rectangles, R1 ""'Rt' Each R
consists of the repetition of one single nonzero row
vector v since Lemma A5.1 shows that the characteristic
matrix of a rectangle has rank one. It follows that
the nonzero rows of T all occur among the finite
collection of row vector v;,...,V¢. Therefore T has
finite rank.

Conversely, suppose the matrix of T has finite
rank, say t. Choose elements x; ,...,Xt in X

and elements yq,...,Y¢ in Y so that the submatrix M of
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the matrix of T which has rows and columns indexed by
KypooooXg @nd Yq, 000, ¥g respectively, has rank t.
Suppose that the row vectors of M are v’l,...,v't.
There are only 2t-1 possible nonzerc rows of zeros and
ones with t entries. Denote by R the set of all
possible nonzero rows of zeros and ones with t entries
which are linear combinations of the row vectors
v’l,...,v’t. For v in R, if v=x1(v)v'l+...+xt(v)v’t,
then the xi(v) are uniquely determined because the
matrix M is nonsingular. If u is a nonzerc row of the
matrix of T, then the vector u’ with entries in the
columns Yi,---,¥y equal those of u is an element of
the set R. It follows that

u'=x1(u’)v'l +...+xt(u’)v’t,
and because u is a linear combination of the linearly
independent vectors v, then

u = xl(u’)vl+ ...+xt(u')vt.
Therefore, there are only a finite number of distinct
nonzero rows among the rows of the matrix of T. It
follows that we may cover T by a finite number of
rectangles, since we may choose for each distinct row
vector v of T the rectangle which consists of all the

rows of T which are identical to v.i

Theorem A5.1 establishes an upper bound on the

number of rectangles required to cover a set T in X x Y
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in terms of the rank of the matrix of T. In
particular, if the matrix of T has rank t, then no more
than 2%+t-1 disjoint rectangles are required to cover
T.

A more interesting problem is to establish a lower
bound on the number of elements in a rectangular
covering of a set in X x Y in terms of the rank of the

matrix of the set.

Theorem A5.2. Suppose that X and Y are finite

sets and suppose that S is a subset of the product
X x Y. Suppose that S has matrix M of rank t. Then
each covering of S by disjoint nonempty rectangles

requires at least t distinct rectangles.

Proof. Assume that X = {1,...,n} and
Y = {(1,...,m}. Suppose that S can be covered by s
distinct disjoint rectangles Ry,....,Rg. Each

rectangle R; has a matrix M which can be described as
a repeated row vector v, because M must have rank one.

th

Suppose that the r row is nonzero in the matrix of S.

The rt? row must be covered by intersections with the

th column

rectangles R;, by which we mean that if the j
of the row r is nonzero, then the jth column of row r
in one of the matrices My must alsoc be nonzero.

Because the rectangles R, were assumed tc be disjoint,

each nonzero entry in the rth row can be covered (in
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the sense just described) by at most one rectangle. It
follows that the rt row is a sum of the vectors Vi for
those i’s for which the rectangle R; intersects the set
of points {(r,]J):1<jJ<m }. This shows that the rank of
the matrix of T is at most s, the number of rectangles
in the covering. Thus if the rank of T is t, then
there are at least t rectangles in a covering of T by

disjoint rectangles.:

Finally, note that Theorem A5.2 can be used to
establish that in the examples which are at the end of
section A4, a covering by disjoint rectangles of the

set described by the matrix
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requires at least three rectangles. This follows from
the fact that the given matrix has rank three no matter

what field is used for the elements 0 and 1.
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Computational Complexity of Mechanisms

Appendix B.

I.eontief and Abelson Theorem

Suppose that F( x;,...,Xy ) is a function of N
variables which has continuous partial derivatives to
order D. If a =(a(l),...,a(N)) is a sequence of
nonnegative integers, denote by |a| the sum
a(l)+...+a(N). we denote by

D(xla(l)...xNa(N);F)
the derivative alaiF/axla(l)...axNa(N),D>|g|. Set

ZOF/ZXjO = F.

Notation. If F is a function of one variable and
G is a real valued function of a vector x, then
(F.G){ x ) denotes the composition F( G(x) ).

The following statement is a classical result
sometimes referred to as the "General Theorem on

Functional Dependence" c.f.[29].

Theorem B.l. Suppose that x=(xl,...,xm) and
y=(yl,...,yn) are sets of real variables and suppose
that F{ x,y ) and G( x ) are real valued cl-functions
defined on a neighborhcod U of the point (p,g)=

(pl,...,pm,ql,...,qn) that satisfy the following
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conditions.

(1) D(xl;F) ...D(xm:F)
D(xl;G)... D(xm;G)
is a matrix of rank at most one,
(1i) at p, D(xl;G)¢0.
Then there is a function C( w,y ), w a real
variable, such that F( x,y )=C( G,y ) 1in some

neighborhood of (p,q).

Proof. Because of assumption (ii), the equation w-

G{ X3,...,%Xy )=0 has a unigque solution in a

m

neighborhood U’ of (p,q). That is, there is a function

c( W, Xy oo Xy } such that

w=G( c( W,X5, .., Xp ),xz,...,xm )
and such that

c( G Xq,e.. Xy [P VRIS )=%q -
Set C( W,X5, .-, X, ¥ )=

F( c( W, X5, 0o Xy ),xz,...,xm,y ).
Then

D(xj:C)=D(xl;F)D(xj;c)+D(xj;F)
for j>1. Because
w=G{( c( W Xo, e Xy )P SRS ),
it follows that
0=D(xl:G)D(xj;c)+D(xj;G) for j>1.
Further, by condition (i), there is an Q so that

D(xj;F)= ﬂD(xj;G) for 1<j<m. Therefore
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D(xj7C)=Q[D(xl;G)D(xj:c)+D(xj;G)]=0. Hence the
function C is independent of the variables x,,...,Xpy

and we can write

C( W, Xo oo XY 1=C{ W,y ).
Then
C( G( XqreeorXpy Y,y )=
F( c( G( Xqrvee X ),x2,...,xm PP SIS S )=
F( XyseeeiXp Y ).E
Leontief proved the following result in [11].
Theorem B.2. Suppose that F is a function of the
variables Xj,...,Xp,eees¥qre-r¥p- Set
F;=D(x;:F),1<i<m.
Assume that (p,q)=(pl,...,pm,ql,...,qn) is a set of
values for the variables (Xl""'yl""'yn)' A

necessary and sufficient condition that there exist
functions C( w,yq,...,¥, ) and G( X;,...,Xy ) such that
F( x,y )=C( G( x ),y ) in a neighborhood U of the point
(p,qg) is that
(i) for each 1<i,j<m and each 1<k=n
a/ayk[Fi/Fj]=0f

(ii) for some 7, Fj(xl,...,xm)(p,q)¢0.

Proof. Form the matrix

1 .- Fp

F*l N F*j
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where F*j= D(xj:F(x;q)). For the point g,
D(x4iF) (y)=D{(x4iF(xiq) ).
Condition (i) implies that the derivative
D(Yk?Fi/Fj)=0-
Thus the ratio Fi/Fj is independent of y. Also at
(piq),
Fxi/F*4=F;(x,q)/F4(x%,q).
It follows that F#;/F* =F;/F; for all (x,y).
Therefore the matrix M has rank at most one.
Further, by assumption, Fj( p,q )*0 for some jJ.

The previous theorem shows that we can write

F( x,y )=C( G( x ),y ).&

The conditions discussed in this appendix are rank
conditions on matrices that are bordered Hessians for
functions defined on products. The notation for these

matrices extends the notation H(F:xi;x } and

<=i>
BH(F:x;:x__;,) already introduced in Chapter VI to the
case of m-tuples of functions. Because the notation is

cumbersome, at best, we give the extended notation in

detail.
Suppose that El,...,En, are Euclidean spaces of
dimensions d(1l),...,d(n), respectively. We suppose

that the space Ei, 1<i<n has coordinates
{Xil""'xid(i)}' Assume that (pl,...,pn) is a point

of Elx...En, and assume that Uj is an open neighborhood

316



of the point p; for 1<i<n. Suppose that Fj, 1<i<m, 1is

a real valued C2-function defined on le...xUn.
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(I):
BH(Fl,...,Fm:xi 1o Xy d(i)7xl 1re--eXio1 d(i-1)’

©X41 10000 %n a(n))T

BH(F, -+ FpiXiiXoq5)

is a matrix that has rows indexed by Xi q1r--+0r%{ d(i)

and columns indexed by Fl,...,Fm,(Fl,x1 l),...,

(F1o%y1 q(i-1))/(F1rXieq 1) e-eo (FuoXp qeny)oe-oy

(FpoXp ) e r (FruXi g qei-1)) (FnrXieny 10

(F_,% y. The entry in the x: th yow and in the
m’“n d(n) iu

th : ST Y= i
F, column is D(x; u,F)—aFv/axi u+ The entry in the

th : th :
Xi u row and in the (Fv,xj w) column 1s

D(x; JF,)=3%F, /0%, O

u X3 w iu %%y we

As we noted in Chapter VI, the matrix

tX: X is a type of bordered Hessian

BH(Fl"“’Fm 1 <—i>)

because it consists of a matrix of second derivatives

bordered by collection of columns of first derivatives.
(II):
H(Fq,...,F ) is the submatrix of

m:Xi;X<_i>

BH(Fl,...,Fm:xi;x<_i>) that consists of the columns
indexed by (F;,x, ) for 1<i<m, u€{i,...,i-1,i+1,...,n}
and 1<v<d(u). In other words, we derive H from BH by
eliminating the columns indexed by the functions
Fl,...,Fm.
Leontief and Abelson used the matrice BH and H in

the special case of one function F defined on a product
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ElxE2. As already noted in Chapter VI, if El has

coordinates {xl,...,xp} and E2 has coordinates
{yl,...,yq} then we use as row indices for
BH(F:xl,...,xp;yl,...,yq) the variables X1se000%p and
as columns indices F, Yyres-1¥qye The (xi,F)th entry in

BH(F:xl,..,xp:yl,...,yq) is aF/axi=D(xi;F) and the
(xi,yj)th entry is

D(xy yj;F)=62/axi ayj.

We follow the same convention established in
Chapter VI that when a partial evaluation of the
matrices BH(Fy,...,Fpix;ix

) and H(F,,...,F_:%X./X
1

m <—i> m**ir <=

i>) occurs we indicate this by adding an asterisk to
the H or BH. Specifically,

(III):

BH*(Fl,...,Fm:xi;x<_i>)[ Xi /1 Pemis> ) is the matrix
that results from evaluating the variables

XppesoXi_q %4100 %p

in the entries of

BH(Fl""'Fm:Xi:X<~i>)
at the point p<_i>=(p1,...,pi_l,pi+1,...,pn).

The matrix BH*(Fl,...,Fm;Xi,x<_i>)[ XirPeoi> ] is
a function of the variables xj q1,..-,%§ a(i) alone.

Similarly, the matrix

H*(Fl,. . ,Fm;Xi,X<_i>)[ Xi,p<_i> 1
is the submatrix of BH*(Fl,...,Fm:Xi,x<_i>)[ XiPeoi> !
derives by deleting the columns indexed by Fqi,...,Fp.
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Corollary B.2.1. A necessary and sufficient

condition that there exist functions C( w,y ) and
G( x ) such that F( x,y )=C( G( x ),y ) in a
neighborhced of (p,q) is that the matrix BH(F:X;y) have
rank at most one in a neighborhood of (p,q) and
D(Xij)( p.q )*0,
for some j.
Proof. The necessity of the given rank condition
has already been demonstrated in Chapter VI, Lemma 6.1.
Set Fj=D(xj;F). Theorem B.2 shows that in order to
prove the sufficiency of the rank condition on
BH(F:x;y), we need only prove that D(yk;Fi/Fj)=0 for
each i,3 and k. But D(yk;Fi/Fj)=
[D(yyiF;)F3=D(yyiF4)F;1/F42.

By assumption,

Q(Fy, ... F)t =
(D(XqYyiF), v o D(Xpyp i F))E
(Mt denotes the transpose of M). Thus

ﬂD(xi;F)=D(xiyk;F)=D(yk;Fi) for each i and k.

Therefore D(yk;Fi/Fj)= 0 for all k. ¥

Corollary B.2.2. Suppose that F( x;y ) is a
c2-function in the variables x=(Xq,...,X,) and
(yl,...,yn). A necessary that there exist functions
C( u,v ), A( x ), and B( y ) such that

F( x;y )=C( A( x ),B( y ) ) is that the matrices
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BH(F:x;y) and BH(F:y:Xx) each have rank at most one.
Further, assume that for some 1<j<m and some 1<k<n,
D(xj;F)( p,q )#0 and D(yk;F)( p,q9 )#0, then the matrix
rank conditions are also sufficient for the existence
of ¢, A, and B such that F=C( A,B ).

Proof. Because BH(F:x;y) has rank at most one and
D(xj;F)¢0 for some j, it follows from Corollary B.3.2
that F( x:;y )=C( A( x ),y ) for some A and C. To
complete the proof, it will suffice the prove that
C( w,y ) satisfies the conditions of Corollary B.2.2
using yj’s as the xj’s and w as x,. For convenience
of notation, assume that D(x;:F)( p,q }#0, Then

Cl w,y )=

F( h( W, Xy, .., Xy ),xz,...,xm;yl,...,yn ).
Therefore

D(yyiC)=

D(yj;F( h( w,xy, .0, Xy ) i Xo e Xy Y:;y )) and

D(wyj;c)=D(xlyj;F) D(w:h).

By hypothesis there is a © such that

D(xlyj:F)=eD(yj:F)
for each j. Therefore

D(wyj:C)=eD(yj;F)D(w;h)=eo(yj;C)D(w;h).
Therefore, by Lemma B.2.1

c( w,y )=G( w,B( y ) )
if for some Yy and for wP=F( pig )

D(Yj:C( w,Y ))(p:ig)=0.
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However, from the proof of Theorem B.2,

C( w,y Y=F{ h{ W Xy, e s Xg ),x2,...,xm;y )
where

h( F( Xqse00Xnid ),xz,...,xm )=x1.
If wO=F( p:g ), because C(w,y) is independent of the
variables L STERRIS it follows that

c( wo,y)=F( h( F( Piq ),Pp/-++,Ppi¥ J=F( Piy¥ )
Therefore D(yj;C)=D(yj;F( p:y ))#0 for some .

Corollary B.2.3. Suppose that x 1<i<r,

i,
1<j<d(i) are r ordered sets of variables. Denote by xj
the set of variables (Xi,l""'xi,d(i))' Assume that
P=(Py,.++/Pp) =(Py 1+++-+Pr d(r)) is a point.
Necessary conditions that in some neighborhood of the
point p there exist functions G, A., 1<j<r such that

F( xl,l""'xr,d(r) )=G{ Al( X1 ),...,Ar( X, ) )
is that each matrix

X

BH(F:x-:xl,... r)

3

has rank at most one. The condition is alsc sufficient

,Xj_l,Xj+l, o s

if for each Jj, there exists a k(Jj) such that the
derivative
D(%3 x(4)iFC PyseeeyPyo1s%¥4sPj41r+ /Py )#0.

Proof. The necessity of the conditions was proved
in Chapter VI, Lemma 6.1. The sufficiency is a

straight forward induction.
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our results on adequate revelation mechanisms
require a slightly altered version of Leontief’s
Theorem. This version is closely related to a result

announced by Abelson(c.f.[1]). We begin with a lemma.

Lemma B.1. Suppose that X and Y are Euclidean
spaces of dimensions m and n, respectively. Assume

that X has coordinates Xqreeo 1 Xp and Y has coordinates

Yyrer-1¥pe Assume that F .,FN are functicons from

1+
X x Y to R that are defined on a neighborhcod U x V of
a point (a,b), a € X and b € Y.

A necessary condition that there are functions

Al( Xqseee Xy ),...,Ar( XqseverXp ),
functions
Gi( Wypeoo Wy V000 00¥p ), 1<i<N,
such that
Fi( Xlr"'lmeY1l"’IYn ) =
Gi( Ay evee Ar ¥Yys---s¥Yy ), 15icN,
for each (xl,...,xm)eU and (yl,...,yn)ev is that the
matrix
BH(Fl,....,FN:xl,....,xm;yl,...,yn) has rank less

than or equal to r at each point of U x V.
Proof. Because
Fi( SRR S S 4 }=
Gj( Ayyeee /Al Y reees¥n )

it follows that
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. — r . .
D(Xj,Fi) = ZS=1 D(AS'Gi) D(Xj,AS)

and
D(Xj kaFi)=

z D(yk AS:Gi) D(xj;AS).
Each of the columns is a linear combination of the r
columns

(D(xl;Ai),...,D(xm;Ai))T, 1<i<r,
where the superscript T denotes the transpose.

Therefore the matrix BH[x,y] has rank at most r.g

The next theorem shows that for a preoduct of
Euclidean spaces, 1if F is a differentiably separable
function of ranks (rl,...,rn), then the rank rj give
the number of variables required from the space X; in
order to compute the function. The theorem is stated
for the more general situation of a sequence of
functions Fireeo/Fy because the proof of the more
general assertion is complicated only by the notation
and the conclusion is applicable to the case of the

vector function that computes a Walrasian equilibrium

when there are more than two commodities.

Theorem B.4. Suppose that X and Y are Euclidean

spaces of dimensions m and n, respectively. Suppose
that X has coordinates XqreeerXp and that Y has
coordinates y,,...,¥,. Assume that peX, g€y, that U is
a neighborhood of p, V is a neighborhood of ¢, and that
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Fi, 1<is<N, is a Ck+l—function, k>2, from U x V to R.
Then
(i) a necessary condition that there is a
neighborhood W x V of a point
(p’,q) € Rf x v, cK-functions, k22,
Gl( Wl""'wr'yl""'yn Y, e,
GN( Wl,...,wr,yl,...,yn )
defined on W x V , and ck-functions
Al( SRR % ),...,Ar( Xisee-rXp )

defined on U x V such that

Fi( XyreoorXp1¥Yyreoor¥n )=

Gi( Al( Xq e Xy ),...,Ar( Xqyeeer¥p ),
Yiree1¥p )
for 1<i<N, is that the matrix
BH(Fl,...,Fn:xl,...,xp;yl,...,yq)
has rank less that or equal to r at each
point of U x V.

(ii) If

BH(Fl,...,FN:xl,...,xm;yl,...,yn)

has rank at most r in the

neighborhood U x V, and if
H*(Fl,...,FN:xl,...,xm;yl,...,yn)[x,q]
has rank r at each point of U, then
there is a point (p’,q) in

R x Y, a neighborhood W x V'’ of (p’,d),

a neighborhood U’x V' of (p,q),
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K_ .
c™-functions Gl""'GN'

defined on W x V’, and
ck-functions

Al( XqreoorXp ),...,Ar( Xqr---sXp )

defined on a neighborhood of p, such

that on U’ x V/,

Fi( XyseeerXpi¥ioee4¥p Y=
Gi( Al( Xy Xp Yoo,
A X9 e Xy )4¥qr---0¥p ), 1<i<N
for each (xl,...,xm)eU’ and
(Y1,---/Ygq)EV™.

The proof shows how to construct the functions Ay
and Gj. As an example, we carry out the constructions

for the function

F( Xq,X5,X3i¥7,Y5/¥3,Y4 )=

X (Y11Y31Y 1Y) tX 5 (Y oty 3-Y1Vy)

+35 2 (Y1 +Y3+Y ¥ ) +X32 (Yo tY5-Y Y, -
It is relatively easy to see that F can be written in
the form

yl(xl+x22)+y2(x2+x32)+y3(xl+x2+x22+x32)—
Y1¥4(xy=x+x,%-x5%) =
Y1211Yp25+Y3(217%5) 7YY, (2,725

We first construct the matrix BH(F:x:;y}.
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BH(F:x:;vy)=
Y11tY3+Y Yy 1+Y, 0 1 Y1
Yoty3mYi¥at  Tygt2xp(liy,) 1 142X “Y1+2X,Y)
2X5 (Y11Y31Y1Yy)
2x3(Yo+y37Y ¥4l —2X3Y4 2X3 2%3 —2¥%3Yy
The matrix BH(F:x,y) has rank at most 2, and for the
point (X;,X,,X3i¥1,¥5,¥3,¥,4)=(0,0,0;1,1,1,1)=(p,q),

BH* (F:x;y}[x,q]=

3 2 0 1 1
1+6x2 -1+4x2 1 1+2 X, -1 + 2 X5
2 X4 -2 X4 2x3 2 X4 ~2x3

It is an easy exercise to check that BH* has rank 2 in

R3. Furthermore,
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the matrix H*(F:x:v)[p,q]=

2 0 1 1
-1 1 1 -1
0 0 0 0

has rank 2. Theorem B.4 states that there are two
functions A and B with variables XqreeerXgy and a
function C of two variables such that F=C( A,B ). To
construct A and B, we first compute the derivatives
D(y;iF), 1<i<4. The derivatives are
D(yl;F)=xl+x22+xly4—x2y4+x22y4-~x32y4
D(yz;F)=x2+x32
D(y3;F)=xl+x2+x22+x32 and
D(y,iF)=x1¥1~%p¥1 +%p 2y %57y -
At the point g these derivatives are
D(yl:F)=2xl—x2+2x22—x32
D(yZ;F)=x2+x32

2 2

D(y3;F)=xl+x2+x2 +X4 and
D(y4:F):xl—x2+x22—x32.

The 2 x 2 submatrix of H* whose entries are in the

first two rows and columns has rank 2. This is

equivalent to the observation that the functions

2_, 2

D(yl;F)=2xl-—x2+2x2 X4

and

D(yz;F)=x2+x32

are independent at the point p. It is the conclusion
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of the theorem that the functions

D(yl:F)=2xl—x2+2x22—x32

and

D(y2;F)=x2+x32
can be used as the functions A and B. To check this,
set

wl=2xl—x2+2x22—x32
and

W= x2+x32.
We can solve these equations for Xq and X,, using the
Implicit Function Theorem [7:p.7], because we have
already observed that the necessary rank condition is
satisfied using the first two rows and first two
columns of B*(F:x;y)[ p,d ]. In this case, of course,
the solutions are easily written down. That is,

x2=w2—x32
and

xl=(1/2)(wl+w2—2 w22+4w2x32—2x34).
The final computation in the proof of Theorem B.4 shows
that if we substitute these functions in the original
function F, we derive the function a function
G( Wy,Wsi¥q1,---,Y, ) that is independent of the
variable X4. Indeed,

G( Wy, Wyi¥y/¥p,¥3,¥Yy )=

(W Y1) /2+(Wyyq) /24wy 5t (W Y3) /24 (3wyyg) /27

(W1Y1Y4)/2‘(W2Y1Y4)/2-
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If we set

- _ 2_, 2
A =2%y ~X,+2X5 "X,
and
= 2
A2~x2+x3
then G( Aj;,A,iy ,.-.,¥y )=F.

We now turn to the formal proof of Theorem B.4.
Proof. Condition (i) has already been established
in Lemma B.1l.
We turn to the proof of (ii). Because the matrix
H*(Fl,...,Fn:xl,....,Xp:yl,...,yq)[x,q]
has rank r in the set U, there is neighbcrhcod U" of p
and an (r x r)-submatrix of
H*(Fl,...,Fn:xl,...,xp;yl,...,yq){x,q]
that has nonzero determinant everywhere in
U". We can assume, without loss of generality, that
the rows of the submatrix are indexed by X;,...,X, and
that the columns are indexed by
(Fa(l)'yﬁ(l))""'(Fa(r)'yB(r))' The functions of
x=(xl,...,xp),
AlzD(yB(l):Fa(l))( X, g Yeeoo,

Ar=D(yB(r) 7Fa(r))( X,q )

are cX-functions of (xl,...,xm) in a neighborhood of p.
Set

zl=Al( Xqpsoeer¥y ),...,zr=Ar( Xqreeor¥p ).
Because
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D(xj;Ai)( p )= D(XjYB(j);Fa(i))( p,q ), the matrix with
(i,j)th entry D(xj;Ai)( p,9 ) has rank r. Therefore,
the Implicit Function Theorem [7] shows that there is a
neighborhood U* of p, and cK-functions

hl( ZyseeerZpiXpiqreea ¥y Yy eeey,

hp 2y, -ev 200 Xpyqree Xy )
that are defined on U* such that

(Eq.4-l) Zl=Al( hl,...,hr,xr+1,..,xm ),

1<i<r, 1in the set U*., Then

hi( Al( LS EERS ),...,Ar( XqreeeXp ),
Xpgppre-r%p )=
X5 1<i<r,
for (xl,...,xp)EU*. Set
Gyl Wyyee e Wy Xpyqree s X ¥yrees¥n )=
Fi( hl( Wiseoo Wy Xppqse00Xg |
h,( wl,....,wr,xr+l,...,xm),yl,...,yq ), 1<i<N.
Because
Gi( Al""'Ar'xr+1'""xm'yl""'yn )=
Fi( hl( LS ERNT: s S PR |
hr( Al""'Ar'Xr+1""'xm ),xr+1,...,xm,
Yireees¥pn J)=
Fi( XqreoorXpr¥yr-ee1¥p Y,

in order to complete the proof of the assertion it will
suffice to show that each of the functions Gj is
independent of the variables X, q,.-- /X"

The hypothesis of (ii) asserts that the column vector
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(D(%y:F;),ene,D(xpiF3 )T
is a linear combination of the columns of the matrix
H*(Fl,...,Fn:xl,...,xm;yl,...,yn)[x,q]
in the neighborhood U* x V, because BH has rank at most
r in U x V, and H* has rank r in U*. Therefore, the
column
(D(xl;Fi),...,D(xm;Fi)T
is a linear combination of the columns indexed by
(Fa(l)'YB(l))"'"(Fa(r)'yB(r)) in the neighborhood U*
X V. It follows, that for each 1<i<N, and 1<tzm,

D(x¢iFj)=Tg_q" Cig

D(x¢iAg),
where the Cis are functions on U* x V. Furthermore, if

one differentiates Eq 4.1 by X for r+1<j<m, it

jl
follows that

Ozztzer(xt;Ai)D(xj;ht) +D(%4iA5).
Therefore, if r+1<j<m,

D(Xj;Gi)z

Zpo1 T (D(XgiF3)D(x47he ) 4D (x5 F ;)=

r r
Zg=1 [Zg=1" C;

is D(xt;As)]D(xj:ht) +

Lg=1 Cig D(xj;AS) =
r r . . . =

0.8
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Computational Complexity of Mechanisms
Appendix C

Graphs and Networks

In this appendix we present a formal version of
the McCulloch and Pitts model for computing that allows
described informally in Chapter III. It is convenient
to use the terminology of graphs and directed graphs.

Definitions and terminology can be found in [5].

Definition €.1. A general abstract mixed graph G

is an ordered tuple (V,X,a) where

(i) V is a finite set of elements called points or
vertices,

(ii) X is a finite set whose elements are called
edges,

(iii) a is a function assigning to each element of
¥ an element of the set V x V uB, where B
consists of the subsets of X of cardinality

one or two.

If o assigns to an element x an ordered pair, then

x is a directed edge. If a( X ) is a two element set,

then x is an undirected edge. If ¢( x ) is a single
element, then x is a self loop. If a assigns to each x

a subset of V of cardinality two, then the general
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abstract mixed graph is a graph. In that case, each
edge is called an arc. If o assigns an ordered pair to
each element of X, then the general abstract mixed
graph is called a digraph and the edges will also be

called arcs or directed edges. If x is a directed

edge in an abstract mixed graph with o( x )=(u,v), then

u is the initial point of x and v is the end _point of

X. We will use the notation B{ x ) for the initial
point of x and
¢( x ) for the end point of x.

We will make one change in the discussion of
graphs and digraphs found in [4]. We extend the
definition of a walk to the case of abstract mixed

graphs; that is, we allow self loops.

Definition Cc.2. If (V,X,a) is an abstract mixed

graph, then for each u,v € V, a walk from u to v is an
alternating seguence of points and edges
(u=vgy, ey, Vi, €5,V 1,8, Va=V)

such that for each ey in the sequence

a( e; ) = (vj_q, V;) (ordered pair),

or of e; )={vi_l,vi} (the set).

The number n in the definition of the walk is

called the length of the walk. The vertex vy is the

initial vertex of the walk and e, is the initial arc of
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the walk. If the edges of a walk are distinct, the

walk is a trail. The number of edges in a trail is

called the length of the trail. If the vertices of a
trail are distinct, then the trail is called a path.

The path is a directed path if each edge in the path is

a directed edge. A trail is a closed trail if it is a
path from v to v. A cycle is a closed trail of

distinct points except for the first and last points.

Definition C.3. If (V,X,a) is a digraph, then the

underlying abstract mixed graph of (V,X,a) is (V, X,a%*)

where a*( x )={u,v} when a( x )=(u,v).

In other words, the underlying abstract mixed
graph of a digraph is the abstract mixed graph produced
by ignoring the orientation of arcs. The underlying

mixed graph of a digraph is not, necessarily, a graph.

Definition C.4. A general abstract mixed digraph

is connected if each pair of points can be connected by
a walk. A digraph is connected if it is connected as a

general abstract mixed digraph.

Definition C.5. A tree is a connected graph

without cycles.
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Definition €.6. An out-tree is a digraph such

that the underlying abstract mixed graph is a tree

(i.e. a directed tree) that has a distinguished point

called a root with the property that all other points
are reachable by directed paths from the root. An in-

tree is a directed tree with a distinguished point(the

root) so that each point can be connected to the root

by a directed path.

Definition €.7. If v is the vertex of a digraph,

then type( v )=(a,b) if a is the number of arcs with
end point v and b is the number of arcs with initial
point v. Sometimes a is called the in-degree and b is

called the out-degree.

Definition ¢.8. If (V,X,a) is a digraph, then a

vertex of type (0,.) is called a leaf(See Figure C.1l}.
A vertex v of type (1,a) such that (v,v) is an edge is

called an elementary loop vertex or an elementary

vertex. (See Figure C.2)

]
t
TTT TT
44 ——ril
| ] ||
Figure C.1 Figure C.2

Definition C.9. Suppose that G is a digraph and
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suppose that d is a positive integer. Functions with
values in RY will be called Ed valued functions. A
function with values in RY defined on the vertices of G
is an Ed state of G. The set of all R states of G we
denote by §L§i3dl . In case the value d is clear we

will mean by a state of G, an RY state G.

In the case that V=R, one may also think of the
collection of states of G as a vector space of n-tuples
where n is the number of vertices in G and where each
element of the n-tuple is indexed by a unique vertex of

G.

Definition C.10. A function C from S(G;Rd) to

S(G;Rd) is a transformation of states of G if C

satisfies the following conditions:

(i) for each vertex v of G, if the in-degree of v
is s and v is the end point of arcs €1, rCgy then
there is an RY valued function of s variables
associated to v, C#( v:. ), of variables (xl,...,xs),

where x: corresponds to the arc e

1 ir

(ii) if o is an element of S(G:Rd), and if

C({ o )( v) denotes the vth

component of
C( o ), then

Cl o )( v )=

C#( vio( B( ey ) },..-,00 Bl &g ) ) ),

(where B( e ) denotes the initial point of
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the arc e),
(iii) if v is a vertex that is the end point of no
arc, then

c( o )( v )=o( v ), for each 0eS(G;RY).

The purpose of the definitions is to
construct a model in which a digraph represents modules
in a network and the arcs of the graph represent
cennections between the modules. A digraph G and a
transformation of the states S(G;Rd), C, can be viewed
as representing one instant in a computation carried
out by the functions C#( v,. ) assigned to the vertices
of the digraph. The analysis of the time required for
a computation is simpler if the digraph is without
leaves. The assumption that the digraph is without
leaves is not a significant restriction because each
digraph can be extended to a leaf-free digraph by
replacing the leaves of G by elementary loop vertices.
Indeed, for each v that is a vertex that is a leaf of
G, connect v to itself by an arc. Call the new digraph
G’. Note that the extension replaces leaves with
vertices of in-degree 1. Let C be a transformation of
states of G. Extend C to a transformation of states C’
on G’ by assigning the identity function to each vertex
of G’ that was a leaf of G. The graphs G and G’ have

the same set of states. Furthermore, condition (iii)
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of Definition C.10 shows that the effect of C on the
states of G is the same as the effect of C’ on the
states of G’. Therefore, in the discussion of
transformations of states we may assume, when
convenient, that the graph G is without leaves.

In our formalization, data is to be introduced at
specific vertices and output occurs at designated

vertices. We give the following definition.

Definition C.11. A digraph with a designated
(ordered)array of distinct vertices (vl,...,va) that
are either leaves or elementary loop vertices, called

input vertices, and a designated (ordered)array of

distinct vertices (wl,...,wB), called output vertices,

will be called an input-output digraph.

An input-output digraph may have an empty array of
input vertices or an empty array of output vertices.
Notation. Suppose that G is an input-output

digraph with input vertices (v,,...,Vv Let

@)
a=(al,...,aa) be an array of d-vectors, then lGL_g_l

denotes the function on S(G;Rd) that carries a state o
to that state o¢’, that assigns the value a; to v;, and
otherwise coincides with ¢. 1In general, the function

IG(a) is not a d-valued transformation of states. The

function Igl « ) will also be designated by I( . ) when
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the context makes the subscript superfluous.

In the informal discussion of the previous Chapter
ITI, a function’s complexity was indicated by the
minimum time required for (r,d)-networks to compute the
function. We are interested in the time required for
the computation of the value of a function when the
values assigned to the variables of a function are
assigned to the input-vertices at the beginning of the
computation, and the assignment to the input-vertices
remains fixed throughout the computation.

The complexity of the function depended on the
values of the integers r and d. The integer r was a
restriction on the number of lines connected to a
module, and d was the size of the alphabet used in the

computation. This leads to the following definition.

Definition C€.12. Suppose that G is an

input-output digraph with input vertices (vq,...,V,)
and output vertices (w;,...,Wg). Suppose that each
vertex of G has in-degree at most r and suppose that C
is a transformation of the states of S(G;Rd) such that

C#H( v ) is the identity function for each 1l<i<ea.

ite
The pair (G,C) that consists of the input-output graph
G and C, the transformation of the states S(G;Rd), is

called an (r,d)-network. The pair that consists of a

vertex v of a network and the function C#( v:. )
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associated to that vertex in the definition of the
transformation of states C is called a module of the

network.

Normally we denote an (r,d)-network by the name of
the transformation of states C.

Note that if C is a transformation of the states
S(G:R"™) of an input-output digraph G, where G has
leaves, then replacing the leaves of G by elementary
loop vertices produces a new input-output digraph G’
with a new transformation of the states S(G:Rn). Also,
for ¢ € S(G:R™),

(C-I( a })( o )=(c’-I(a )){ o).

Definition C€.13. Let F be a function from the

space of a-tuples of vectors in RY to the space of
B-tuples of vectors in R and suppose that C,
i.e.(G,C), is an (r,d)-network with input vertices
(vl,...,va) and cutput vertices (wl,...,wB). Suppose
that ¢ is a state in S(G;R9). Let t be a positive

integer. We say that network C computes F in time t

with outputs at the vertices (w;,...,Wg) and inputs at
(Vi,++-,V,) from the initial state ¢ if for each
sequence of real numbers

(al,...,aa)=a,

F( CRIIRRE P )=
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(((c-1Ca Nt o) w 1,...,(4c-IC a )% ) wy 1),
where {C-I( a )}t denotes the t-fold iteration of

C.-I( a }.

Suppose that C is an (r,d)-network with digraph G.
What computation does C make in time t? In
particular, what conditions must a real valued function
F satisfy in order that C can compute F in time t? It
is convenient for such an analysis to replace C with an
(r,d)-network C’ that has an input-output digraph that
is a tree of length t such that the network C’ computes
the same function F in the same time t. Of course,
this requires that the tree that replaces the digraph
of C has vertices with in-degree at most r. We wish
also to assign to the vertices of the tree either the
functions that occur as modules of C, or possibly with
identity functions. The replacement procedure, which
we will refer to as delooping C, is most easily carried
out when the graph of C is leaf-free.

The next two lemmas will be used to replace a
network C with digraph G that computes a function in
time t by a network with digraph T that has underlying
abstract graph a tree and alsc compute the same
function in time t. The tree T depends on the time

allotted for the computation. The relation between the
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original digraph G and the directed tree T that
replaces G can be described in terms of a map of graphs
from the directed tree T to the digraph G. Lemma C.1l

is used in the construction of this map.

Definition €.14. Suppose that G and G’ are

digraphs. Assume that G has vertices V(G) and arcs
X(G) while G’ has vertices V(G’) and arcs X(G’). A map
of digraphs © from G to G’ is a pair of functions,
GV:V(G) --=>V(G’) and BA:X(G)—-->X(G’), such that for
each if x € X(G), B( ©,( x ) y=6y( B( x ) ) and

e( €,( x ) )=oy( w( x ) ).

A map of digraphs is illustrated in Figure C.3.
The element x is an arc of G that has initial point
B( x ) and end point p( x }. The map 9, carries the
arc x to the arc eA( x ), while the map 6y carries the
beginning point of x to the beginning point of 6,( x )

and the end point of x to the end point of 6,( x ).
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B( x ) . —==mmm——— > . o x )
Oy ’ l Oy
i d
e
B ©p( X ) })om———————= >. 9 6, x ) )
Figure C.3

If 8=(8y,8,) is a map of digraphs, we will drop
the subscripts A and V when there is no possibility of
confusion.

Note that if 6=(8y,0,) is a map of digraphs, then

the map © carries walks in G to walks in G’.

Lemma C.1. Suppose that C and C’ are
(r,d)-networks with input-output digraphs G and G’,
respectively, and suppose that G’ is leaf free. Assume
that ¢ and o’ are Rd states of G and G’, respectively,
and suppose that t is a non-negative integer. Assume
that the input vertices of C are (Vlf""va)’ the input
vertices of C’ are (v'l,...,v’a), the output vertices
of C are (wl,...,wB), and the output vertices of C’ are
(Ww'y,.-.yW'g,). Suppose that 6=(0©y,0,) is a map from
the graph G to the graph G’ that satisfies the
following conditions;

(1) ev( vy )=v’i and ev( Wy )=w'i,

(ii) o’( ey( v ) )=o( v ),
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(iii) if oyl v ) is the end point of an arc that
is included in a walk of length t ending at
an output vertex of C’, then 8, is an onto
map from the arcs that end in v to the arcs
that end in eyl v ),

(iv) if ey( v ) is the end point of arcs

e’y,....,e’, and if 8y( v ) is the end point

=

of an arc that occurs in a walk of length t

that ends in an output vertex of G’, then v

is the end point of arcs € ---18g
0, ( e )=e’y,
B{ e’y )=6y( B( ey ) ),
and
C’#( ev( v );xl,...,xS )=
C#( ViXqy, ..., Xg ),

(v)y 1if w’ is a walk in G’ of length t that ends
in an output vertex of G’, then there is a
walk w in G of length t so that 68( w )=w’.
It follows that
( (ceI( a )t ) wy )=
( (eI a )%’ )( wy ),
for each 1<i<B’ and each a=(a;,...,a,).
Proof. We will prove the assertion by an
inductive argument on the length t of the walks.
Assume that t=1. Suppose that the output vertex
1<3<ri ().

w’; in G’ is the end point of the arcs e'ij'
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Assumption (i) states that the map Oy carries w: to the

1
vertex w’;, . Let w'ij be the initial point of the arc
e’ij‘ It follows from (v) that for each 1<j<7(i) there

is a walk in G of length 1 that is mapped by © onto the

walk (w’ij,e’ij,w’i). The vertex w’.= eV( w: ) is the

1 1

end point of the arc e’ therefore it follows from

ij
(iii) follows that 8, carries the arcs ending in Wy

onto the arcs ending in w’;. Suppose that the arcs

ending in w; are {e;

i }, 1<3<7(1i) and suppose that the

)

arcs {eij} are indexed so that 0,( e =e’, .. Denote

iy )=e’ 45
by Wi 5 the initial point of e

because 8, as a map of graphs, carries initial points

ij. Then ev( le )=w’ij
to initial points and end points to end points.
Assumption (iv) allows us to conclude that 7(i)=7'(1i)
and

Cr#( w'i;xl,...,xf(i) y=C#( WiiXg oo Xy o) ).
Because of assumption (ii), o’( w'ij ) = of Wi ).

Let a=(a;,...,a Assumption (i) asserts that

ale

the map 6y carries the array (Vis++.,V,) onto the array
(v’l,...,v’a). Therefore

(I( a )o )( v; )=a

i and ( I( a Yo’ )( v’i )=ai.

i
Because o’( Oy( v ) )=o( v ), for each vertex v of G in

the set of vertices {w wi},lsiéa, 1<3<7(1),

ijr
( I( a )o' )o( v )=( I( a )o )( Vv ).
Because of condition (ii) of Definition C.10 the

transformation of states C’ carries I( a )o’ to the
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state C’( I( a )o’ ) that has value on w'i,
C/#( w3 (I( a)o’)( B( 6,( e57 ) ) ) ,onn,
(IC a )a’)( B( 6,5( Cir(i) ) ) ) )=
C#H( wii(I( a )o)( B( eyq ) ),een,y
(ICa)a)( B( ej, 4y ) ) ).
This establishes the assertion of the lemma for
walks of length t=1.
Assume that the lemma is true for all ©, C, and
C’, and walks of length t<L. Assume that conditions
(i)-(v) are satisfied for t=L. As before, the input

vertices of C’ are v/ 1<i<a, and the input vertices

1
of C are v;, 1l<i<e. Let the output vertices of C be

{wj:lSjSB} while the output vertices of C’ are

{w’jrlstB}. Denote by e'ij' 1<j<7(1), the collection
of arcs of G’ that have end point w’;. Denote by w'ij
the initial point of the arc e’;s. Then W’y is the end

point of a walk of length t. Indeed, if W is a walk

that ends in w’ the initial vertex of the walk W is

ir
not a leaf and therefore the initial vertex of the walk
W is the end point of an arc. It follows that there is
a walk of length at least one larger than the length of

W with end point w’ It follows that there are walks

i .

ending in w’.

i that have as length each integer greater

than zero. Because w’i is the end point of a walk of
length t and because of the assumpticon (iii) of the

lemma, eA is an onto map from the arcs that end in ]
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to the arcs that end in w'i. Set e’ijzeA( eij ) and

set w’lj=@V( le
output digraph G*. The arcs and vertices of G* are the

). Construct from G a new input-

same as the arcs and vertices of G. The output vertices
of G* are the array
(wll""'Wlf(l)""’WB'l""'WB’T(B'))‘
The input vertices of G* are the input vertices of G.
Similarly, construct a new input-output digraph G"
derived from G’ by designating as output vertices of G"
the array
(w’ll""’w’lT(l)"'"w’B’l""’w’B’T(B’))'
The state o of G is also a state of G*, while the state
o’ of G’ is a state of G". The map © is also a map
from G* to G" that satisfies the conditions (i)-(v) of
the statement of the lemma, when L-1 is used for the
value of t. Condition (v), when t=IL-1, follows from
the following observation. If W/ is a walk in G" of

length L-1 that ends in w’. then that walk can be

ij7
extended to a walk of length L ending in W’y by

attaching to W’ the arc that connects w'ij to the

vertex w’;. This new walk is the image of a walk W in
G of length L, because of the hypothesis (v) is assumed
true for t=L. The walk through the first L-1 arcs of W
are mapped by © to the walk W’/. Therefore, condition

(v) is satisfied by the map © from G" to G* and for the

transformations of states C and C’. By the inductive
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hypothesis, for each 1<i<B’ and 1<j<7(i),

ij )=
({c’+1¢ a )y lory( we

((c-1( a N loy( w
iy )-

To find the result of applying {C.I( a )}l to the
state o,

tc+1( a yylo=(c-1( a ))¢(c-1( a )t 1o,

with a similar assertion for (C’.I( a )}L. Therefore,
we examine the effect that C.I( a ) and C’.I( a ) have
on the states {C:I( a )}L'lo and {C’-I( a )}L_lo’,
respectively.

Condition (iv) guarantees that the function

C#( wi;xil""’xif(i) )
is the same as the function

Cr#( w'i;xilf""xir(i) ).
Set

[C-I( a Yol wij )=bij.
Then,

[C+I( a )Yal¢{ Wi )=CH#( Wi;bil""'bir(i) }=

Cr#( W'i7bil""'bif(i) }=
[tcr-1C a pleryc w8

When T is an in-tree, unless otherwise stated, we
shall treat T as an input-output graph with the leaves
of T as input vertices and with the root of T as output
vertex.

Note that for an in-tree, the length of T is the
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length of the longest path from a leaf to the root and

it is also the length of the longest walk in T.

Lemma C.2. Let T be an in-tree with a leaves

(Vis++.,V,) and let C be a (r,d)-network with
input-output graph T. Let T have length L. For each

state o in S(T), each a=(al,...,a and each j>L,

o)
{C-I( a }}do=(c-I( a))Jitlc.
Proof. We proceed by induction on the length of T.

If T has length 1 with root R, then each leaf v; must

be attached to the root R by an arc e;. By the

definition of a d-valued transformation of states,

[C-I{ a )ol( R )=C#( Riay,...,a, )
and
C-I( a )( vy )=aj.
Therefore,
[{C-I( a )}%0]( R )=[(C-I( a ))(C-I( a ))ol( R ). But

C+I( a Yo=0'’ is the state with in which og’( vy )=ai and

in which o’( R )=C#( Ri;a;,...,a Therefore

a ).
[{C-I( a )}%0)( vy )=aj=[C-I( a Jo]( v; )
and
[C-I(a)20]( R )=C#( R:iay,...,a
[C-I( a )ol( R ).
Suppose the lemma is true for each in-tree of
length at mest L. Assume that T has length L+1.

Denote by €1,--.,€ the arcs that have common end

rl
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