v=l Sy, ...ty 21 i1y (P1oig1))¥

eylasi(2yrPai(2y)er %---xlay 5(ny +Pn i(n))en-

(iii) The principal vertex of

b e

[a1 i'bl i)elx...x[a n i) n

n i-

is (al i€ *t.--ta, jeq)-

(iv) The set of principal vertices of a
rectangular decomposition is called the

lattice of the decomposition.

If L. is the lattice of a decomposition and veL,
then

B( v ) = v+[al,bl)elx...x[an,bn)en,
where v=(alel+...+anen). The set B( v ) is the cube of

the lattice with principal vertex v. We call each

v+la;,bjle; a side of B{ v ). For xeV and L the
lattice of a decomposition of V, v( x ) denotes that

vertex such that xeB( v ).

Definition 9.2. Suppose L;, i=l,...,n, is the

lattice of a rectangular decomposition of V;, where V.
is a Euclidean space. Let €>0 be a real number. A
function

f:]]jo; ™ L;-->R

is an e¢-approximation of a function

F:le....xvn———>R

- n
if for each (vy,...,vp) €llj=7  Lj and each
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(xl,...,xn) € B( Vi }JX ...%XB( Vh ),

| £( VireesrVy )-F( Xq0ee Xy )yl <e.

Definition 9.3. The lattice of a rectangular
decomposition of a Euclidean space is regular if the
length of each side of each cube of the lattice is S,

for some fixed real number S.

Definition 9.4.

(1) If R denotes the real numbers and if D is an

integer greater than 1, then a radix D lattice in R is

a regular lattice in R such that each vertex P of the

lattice can be expressed in the form
i(amDm+...+a0+...+a_tD't)

where m and t are nonnegative integers and the a; are

integers between 0 and D-1. The sequence of numbers

(s,ap,...,a_y) (where s=1 if the sign of the expression

is negative and s=0 otherwise) is the radix D_encoding

of the lattice point P.

(ii) A radix D lattice in a Euclidean space X with

standard basis {el,...,en} is a regular
lattice of a rectangular decomposition of X
along the basis {e1,---,ep} in which each of
the lattice points of the decomposition along
each direction e; forms a radix D lattice in

Rei.
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For example, in the case D=10 the radix D
encoding of a real number is the number’s decimal

expansion using the digits 0,...,9.

Definition 9.5. If D is an integer greater than 1

then a radix D encoding of a radix D lattice is a

function which assigns to each vertex of the lattice
the sequence (sl ,...,sr) where each s, is the radix D

th

encoding of the i component of the vertex of the

lattice.

In this chapter we impose the condition that a
network that computes a lattice approximation of a
continuous function using an alphabet (0,...,D-1} does
so by computing outputs in a radix D lattice.
Furthermore, the output vertices of the network carry
the values a; that are the digits of the radix D
encoding of the radix D lattice. Note that the number
of output vertices depends on D, and furthermore,
separator sets depend on the choice and number of
output vertices. If the output vertices were not
explicitly determined, then this oversight would lead
to a problem similar to one discussed in Chapter IV.
That is, if the encoding of the lattice or if the

output vertices required for the encoding of the

lattice L, have not been fully specified, it is
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possible to hide computations by allowing the decoding
to carry out some of the computations of f. 1In the
case of a continuous function this possibility arises
when one allows a network to compute an encoding of the
function into a high dimensional space. This
possibility already arises in the case of a finite
network (as we have seen in the case of linear
functions in Chapter IV) where computation time can be
reduced by a Jjudicious choice of a change of basis
which amounts to expanding the number of output lines
of the network. This problem shows up when one
considers the size of separator sets for networks
computing a function. It is, of course, true that the
definition of separator set for a network is tied to
the specification of the output vertices for the
network and this is in turn connected with the choice
of the encoding for the image points. This is
illustrated by the following example.
Denote the set
{(0,0,0),(0,0,1),(0,1,0),(0,12,1),(2,0,0),(1,0,1),
(1,1,0), (1,1,1)) by V. Define the function

£f:VxV -=-=->{0,1,2,3}

by the following table:
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f (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1.0,0) ¢1,0,1) (1,1.0) (1,1.3)

(0.0.0) 1 3 1 3 1 3 1 3
(0.0.1) 2 1 2 1 2 1 2 1
(0.1.0) 3 2 3 2 3 2 3 2
(0.1.1) 1 2 1 2 1 2 1 2
(1.0.0) 3 1 3 1 3 1 3 1
(1.0.1; 2 3 2 3 2 3 2 3
(1.1.0) © 3 0 3 0 3 0 3
(1L.1.1) 3 0 3 0 3 0 3 0
Table 9.1

If we consider (2,4)-networks that have a single
output vertex carrying the alphabet (0,1,2,3}), then it
is easy to see that the first component of V x V is a
separator set for that output vertex and that the
maximum separator set for the second component has two
elements. Thus the minimum delay for (2,4)-networks

computing this function is

INT[ log2( INT][ log4( 8 ) ]+INT] log4( 2) 1) 1=2.

Suppose we allow a recoding of the set (0,1,2,3} (with
the same alphabet) by the function t defined by the
equations
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t( 0 H)=(0.0). t( 1 )=(0.1). t( 2 )=(1.0). t( 3 »=(1.1)

and we consider again (2,4)-networks, but this time
with the possibility of two output vertices. The table

for the function now becomes Table 9.2:

f* (0,0,0) ¢(0,0,1) (0,1,0) (0,1.,1) (1,0,0) (3.0,1> (1.,1,0) (1.1.1)
(0.0.0) (0. 1) (1.1 (0.L) (1.1) (0.1 (1,1 (0.1) (1.1
(0.0.1) (1.0) (0.1 (1.0} (0.1) (1.0) (0.1 (1.0 (0.1)
(0.1.0) (1.1 (1.0) (1.1 (1.0) (1.1 (1.0) (1.1) (1.0
(0.1.1) (0.1) (1.0 (0.1) (1,00 (0.1 (1.0} (0.1) (1.0)
(1.0.0) (1.1 (0. 1) (1.1) (0.1} (1.13 (0.1 (1.1) (0.1)

(1.
(L.

(1.

D) (1.0) (1.1) (1.0) (1.1) (1,05 (1.1) (1.0) (1.1
.0) (0.0) (1.1) (0.0) (1.15 (0.0) (1.1) (0.0) (1.

) (1.1) (0.0 (1.1) (0.0) (1.1) (0.0) (1.1) (0.0)

Table 9.2

Consider a (2,4)-network which has output vertices

h; and h, where the table entries are (h;,h,). For
example,

f*x( (0,0,0),(0,0,0) )=

(hy{ (0,0,0),(0,0,0) 1,hy[ (0,0,0),(0,0,0) ])=

(0,1).
A quick inspection of the table reveals now that
neither h; nor h, has the first component of the
space as a separator set. The separator set in VxV

that has maximum cardinality in each of the components
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of VxV has only 3 points and this serves both h; and
h, . The minimal delay for a network to compute f
using the encocding of Table 9.2 is

INT] logz( INT{ log4( 3 ) ]+INT] 1og4( 3 ) 1) 1 =

1.

We investigate the limit of the times required to
compute lattice approximations of a fixed continuous
function defined on some domain, where the limit is
taken as the length of the sides (mesh) of the
approximating lattices is decreased. We suppose that
the finite networks that compute the approximating
functions use a fixed finite alphabet. As the lattices
are refined, i.e. as the mesh (Definition 9.7) is
decreased, the number of lattice points in the domain
and in the range of the function increases and
therefore, at least in general, the number of output
vertices for the finite networks that compute the
approximations must increase. Limit results on
computing time may well depend on the way the output
vertices of the finite networks are specified. We have
chosen one way of making a uniform designation of the
output vertices that allows us to conclude that there
is a close relation between the Dimension Based Lower
Bound on the time required to compute an encoded
version of a continuous function given in Theorem 4.2

and the Arbib and Spira lower bound for the time
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required for a network to compute approximations of the
function. Even with this choice of encoding some
restriction on the continuous functions in required.
One such restriction is gradient separation (Definition
9.6).

Definition 9.6. Suppose that

FiX x...xX --->R is a continuously differentiable
function defined on the product, X, of the Euclidean

spaces X;,...,X Suppose that for each i, U; is a

n* 1

nonempty subset of X,. Set U=U;x...xXU,. Suppose that

X; has coordinates X(i 9y 1<j<d; . Let x€X. For i
an integer, 1<i<n, set

grad__; . F=

(OF/3X 1y s+, 0F/3%X(4_1 q)

OF /3% (4 41y s+ 10F/I%(p qy )

Two points, x and x’ in X; are aradient separated by F

in U,._;» (or g-separated by F in Ucjs ) if there
exists a point z* in U__;, such that
|grad__; F( x,z* )| #|grad _; F( x',z* )|.
Lemma 9.1. If F is a continuocusly differentiable

function, and if x, x’ are points that are g-separated

in X; » then x and x’ are separated by F in X__;,

Proof. Because x and x’ are g-separated in

X:. , there is a z* in X such that if

i <=1i> !

G( x,%’:2z )=F( x,z )-F( x",z2 )
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then, grad__ G( x,x7;z% )#0. If G( x,x’:2* )=*0 we

i>

are finished. Suppose that

Z*=(Z*(l) ,...,Z*(i_l),Z*(i+l),...,2*(n)) ’
* . . . . <k<d. ]
where =z (3) €X., and assume that z(j K) l_k_dj, 1s a
local coordinate system for Xj at z*(j) sSuppose,
Z*(i) =(Z*(i l),-..,z*(i di)).

Because (grad G)[ x,x";2* ]#0, it follows that

<-1>
(aG/az(j k))[ z* ]#0 for some fixed j and k. Denote by
e the vector that has 1 as (j,k)th component and has
all other components 0. Denote by L the line in the
direction of e that passes through the point z*. The
line L. is parameterized by the function

zx( t ), for teR,

zx( £t )= 2%+t e=

* * * * *

(27 (pyreeer2 (4-1)2 (3 1) 7% (3 K)TE 2 (3 k+1) 7
z* ).

*re o (n)

Denote by Gy the restriction of G to the line L. The
function Gy, is a function of t and

d(Gp)( 0 ) = (86 )( 2% )#0.
dt az(j k)

Because d(G;)( 0 )#0, Gy is either increasing or
dt

decreasing near t=0. Thus for some t#¢0, (GL)( t# )=0.
Then if z#=z*( t# Y, G( x,x";2z# )#0. Therefore x and

x’ are separated.
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Lemma 9.1 shows that if F is g-separated in X5
then the spaces X; and (X;/F) coincide. If F is
g-separated in each X;, then the message space for the
essential revelation mechanism (c¢f. Defintion 6.1,
Chapter VI) is the original product space X; X...x Xp.

Computing approximations to a continuous function
by means of finite networks makes it necessary to
restrict the domain to be a bounded subset of
Euclidean space. It is reasonable to suppose that
greater accuracy of approximation requires refinement
of the lattice of approximation. The next lemma

justifies that supposition.

Lemma 9.2. Suppose that F:K;x...XK --->R is a
continuously differentiable function, where each Kj is
a compact subset (with nonempty interior) of a
Euclidean space X; of dimension d;. Suppose that
k=(ky,... k) is a point in the interior of

K;x...xK such that (grad F)[ k ]#0. Assume that for

n

each 1<i<n and 1<j<d;, the elements e is the

(i 3
standard basis for X;- There is then an open set U in
K;x...xK, and a real number M>0 satisfying the
following conditions:

(1) keU,

(2) for some i and j, if L is a line segment in

the direction e that is contained in U,

(1 3)
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if €>0, and if x and x’ are elements in L
such that

[F( x )-F( x* )|<e,
then’

|x=-x’]<(e/M).

Proof. Without loss of generality we may
suppose that k=0, the origin of X)X XX . Denote by
X(i ) the coordinate system at 0 dual to ey )
Because (grad(F))[ 0 1=0, it follows that

(GF_ )( 0 )=0,

IX(i §)
for some i and j. Because F is continuously
differentiable, there exists an open set U
around 0 and a positive real number M such that for

each z’ in U,

[(dF__ ) ( z’ )|>M.
IX(i §)
Suppose that L is a line segment contained in U in the

direction e Parameterize L by setting

(i 3)°
=¥+ . .

z{ €t )=x te(l i)

for some x€lL. Denote by Fr the

composition of F with the

function z( t ). If x*¢€l, then x*=2z2( t* ) for t*eR

and

(4 _Fr)( e* )|=|(dE_ )( z( t* ) )|>M.

If x, x' are in L, and t and t’ are such that z( t )=x
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and z{( t’ )=x’, then the Mean Value Theorem shows that

[(Fp)C £ )=(F )t )| = [ttt |[( 4 F ) " )|
L L dtL

for some t"e(t,t’), where (t,t’) denotes the open
interval from t to t’. Therefore
|F( x )-F( x’ )|=
jt-t/| [ A F))( " ) |=[x-x] |(@F _ )(x" )| >
dt ox (i )
|x-x’1 M.
It follows that,
|x=-x?|<|F( x )=-F( x’ )|/M,
and
therefore if
[F( x )-F( x' )|<e,
then

|x=-x’|< €/M.3

Definition 9,7. Suppose that L is a lattice in

a Euclidean space X. The mesh of the lattice L is the
maximum (if it exists) of the distance between adjacent

vertices (along sides) of L.

Definition 9.8. If X is a Euclidean space with

standard basis {ey ,...,e, } and if L and L’ are

n

lattices of rectangular decompositions of X along the

basis {eq...,e,}), then we say that L’ is a refinement

n

of L if each vertex of L is a vertex of L’.
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Theorem 9.1 relates the Dimension Based lower
bound for a gradient-separable function
F:X;x...xX,--->R to the lower bound given by Arbib and
Spira for e-approximations to F. The relationship
between these two lower bounds is established in two
steps. The first step is to show that the function
F( x ) can be replaced by a function defined only at
lattice points and that takes values of the form
z ap( x )DP, where D is a positive integer. The second
step is to show that if v, v’€X; with v=#v’, and if F is
e-approximated by a function f that also takes values
of the form = a_ DP, one can choose a sufficiently

P
small integer p and a point zeX_.; such that the

i
coefficient of DP in the radix D encoding of f( vjiz )
is different from the coefficient of DP in the radix D
encoding of f( v’jiz ). Both of these steps are
carried out in Lemma 9.4. The proof of the second step
is a tedious argument that uses linear approximations
of F( vji z ) and F( v’ji z ). The next lemma, Lemma
9.3, is used in the proof of the second step to
establish that if f({ vfi z ) and
f( v’ji z ) have the same coefficient of DP in their
radix D expansions, then a small change in z to a point
z’ changes the values of f( vji 2z’ ) and f( v’ji z’ )
so that the coefficients of DP are different. Lemma

9.3 refers to the relationships shown in Figure 9.1.
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The argument is carried by references to that diagram.
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Lemma 9.3. Suppose that A, B, A, B/, a, B, ¢
are real numbers so that 0<A<A’, 2A>A’, 0<Za, B <e. If
0<B<B’<A<A’, then there is a nonenpty open interval I
contained in the interval (-2¢/A, 2¢/A) that satisfies
one of the following conditions:

(1) for each t € I, e<At+a, A’'t+a<2e,

0<B’'t+B<Bt+f<e;

(ii) for each t € I, At+a<0, -—-e<A’t+a,

O0<B’'t+B<Bt+B<e.

If B’/<B<0<A<A’ and |B’|<A’, then there is a
nonemnpty open interval I contained in the interval
(-2e/A, 2€/A) so that one of the following conditions
is satisfied:

(111) At+a<0, -e<A’t+a, O0LB’'t+B<Bt+B<e;

(iv) At+a>e, A’t+a<2e, O0<B’t+B<Bt+B<e.

Proocf. If we divide the inequalities in each of
the conditions (i)-(iv) by A’, and if we replace € by
€’'=e/A’, we can assume that A’=1 and that A>1/2. The
condition that Ic(-2¢/A,2¢e/A) will be satisfied if we
can choose an interval I‘c(-2€¢’,2¢’) so that the
following translations of (i)-(ii) are satisfied:

(i’) for each t € I, €< At+a, t+a<2e’, 0<B't+B<e’;

(ii’) for each t € I, At+a<0, —-e’<t+a, 0<B't+B<e’,
or that the following translations (1ii‘) and (iv’) of
conditions (iii) or (iv) are satisfied:

(iii’) At+a<0, -e‘<A’t+a, O<Bt+B, B/t+B<e’;
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(iv’) At+a>e’, A‘t+a<2e’, O0<B’t+B<e’.
Now refer to Figure 9.1. 1In Figure 9.1 a line is
labelled with its slope. The vertical axis is Y and
the horizontal axis is the t axis. 1In order that one
of the pairs of conditions

At+a>e’, t+a<2e’
or

At+a<0, t+a>-¢€
be satisfied for some values of t, it is both necessary
and sufficient that values of t can be chosen from the
section of the t-axis that occurs in the "hatched"
regions shown in Figure 9.1. Denote by K the open
interval along the t-axis between the points where the
line Y=B’t+B intersects the line Y=0 and the line Y=e.
In order that the conditions

0<B’t+B<B’t+B<e, for B’>0
or

e>B’t+p3>0, for B'<O0,
to be satisfied for values of t on an interval J, it
suffices that there are values of t on the interval J
that lie in K. Therefore, to prove that an interval I
exists that satisfies the conditions (i’) or (ii’),
when B>0, it suffices to show that K intersects the
interior of the hatched areas in Figure 9.1.
Equivalently, it will suffice to show that the section

of the line with equation Y=B’t+B that lies between the
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lines Y=0 and Y=¢ intersects the interior of the
hatched areas in Figure 9.1. If B’>0, the line B't+8
intersects the hatched area in interior points because
B’<A. Indeed, the length of the intersection of the
hatched areas with the t-axis is (3e€-e¢/A), the length
of K is €¢/B’, and the length of the segment of the
t-axis between the value of t where the t+a line
intersects the line Y=-¢ and where the line Y=t+a
intersects the line Y=2¢ is 3e. Thus the length of the
intersection of the hatched section of the t-axis and K
is at least (3e¢-e€/A)+(e/B’)-3e=€(1/B’-1/A)>0. The case
when B’<0 is handled in a similar fashion.#

Lemma 9.4 is

Lemma 9.4. Assume that X;,...,X are Euclidean

n

spaces of dimensions di,...,dp, respectively. Assume

that Kj is a compact subset of Xj with nonempty

interior Kjo - Set K=K x...xKp, set

K0=Klox...xKn0 and assume that
F:K-->R (R the real numbers) is a positive and
continuously differentiable function. Assume that D>1
is an integer and:
(1) for each positive integer m, and each 1<j<n,
Lj(m) is a regular radix D lattice in X. of
mesh D™™;

(2) if m and m’ are positive integers and mzm’,

then Lj(m) is a refinement of Lj(m'):
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(3) 1if L(m)=L;(m)X...xXL,(m), then for each

n!
integer p there is a function ap( X:m )
defined on KnL(m) with values in
{0,...,D-1}) so that the ap( x;m ) satisfy
the following conditions;
(1) for each m, there is an integer
A( m )>0 so that
ap( x;m )=0
if p<=A( m );
(1i) if m’>m, then A( m’ )Y>A( m ) and
Limy___ e 1/A( 3 )=0;
(11i1) if m‘>m, then for each p=-A( m )
and each x in L(m)nKO ,
ap( X:m )=ap( x;m’ )
(iv) if €»>0 1is a real number, then there
ig an integer M( € )
so that for M>M( ¢ ), the function

£(M( x )=x ay( xiM )DP

p
is an e¢-approximation of F on K;
(4) for some integer m*, and a fixed integer i,
1<i<n, there are vertices v and v’ in
Lp(m*)nKi that are gradient separated in
K<—i>0
Then there is an integer J( m* )>0, and for each

p>J( m* ) an integer M( p )>m* such that if m>M( p )

the vertices v and v’ are separated by a_p( x;m ) in

205



L {m).

<=3>
Proof. The proof breaks into three sections. In
the first section, we show that the function F( x ) can
be replaced by a function f( x ) that is defined only
on points x that are in Kn u L(m) and that has as
values series of the form 25 ag( x YDP where the
ap( x )} are functions of x. This shows that it is
possible to talk, unambiguously, about the coefficient
of DP in the radix D representation of F( x ) as long
as X is chosen from the union of lattices Um L(m). In
the second section we establish that for a fixed i, 1if

F is gradient-separated by K and if v, v’e€X

<_i> ’ il
v#v’, are the vertices given in condition (iv), then it
is possible to choose linear approximations of F({ vjix

) and F( v'fix ), X€X so that the directional

<=i>!
derivatives of F( vjix y and F( v’ji ¥ ) along some
coordinate direction satisfy the conditions placed on A
and B in Lemma 9.3. The last part of the proof uses
the linear approximations to argue that if p is a
sufficiently small integer, and if for a y eX__j
grad__; F( v[;y )#* tgrad__;,F( vy ).
and if
ap( Vfiyo )=ap( V'fiyo )
then it is possible to choose a small change in y to a

value y; such that either

ap( VJ.j_YO )*ap( V.[iyl )
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and

aj( v'iivy )=a

or

ap( V’_[iyO )*ap( V’fiyl )
and

ap( VJ‘iyO )=ap( V—[iyl )-

Set X=Hij . Suppose that the lattices Lj(m) are
the lattices of a rectangular decomposition of Xj
along the standard basis {e(j k)}' where for a fixed j
the vectors {e(j k)} form a basis for X. . Set

3

L= L(m’).

m’
Note that L is dense in X and the vertices of L are
also dense along each line that passes through a vertex
of L and is parallel to one of the basis elements

ey k) Condition 3(iii) guarantees that if xeL(m)nKO,
then for pz-A( m ) and m’2>m, ap( x:m’ ) is independent
of m’. 1In particular, this shows that for each xeLnKO,
xeL(m’)nKO for m’ sufficiently large. Furthermore,

for each p, a x;m" ) is independent of m", if m" is

p!
sufficiently large. Set

lim ( X ).

m’-—>oo ap( X,’m’ )zap

There is an integer P, such that for each xeLnK? and
each p>P, a,( x )=0. To see this, note first that |F|
is bounded on the compact set K. Furthermore,

condition 3 (iv) assures that for e=1 there is a real

number M(1) such that if M>M(1l), then
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£(M)( x )=2p ap( x;M YDP
is a l-approximation of F on K. Therefore, for each
X € L(M)InK,

(M x )-F( x )<
It follows that If(M)( x }| is bounded on K by

1+max |F{ x )|. Therefore, ap( x;M )=0 for p

X €K
sufficiently large and x€eLnK. The series
p

Zp ap( X D
converges for all x€eLnK. This is because OSap( X }<D,
and for p sufficiently large ap( X )=0. Set

= P

fi{x) Ep ap( x )D

We next show that for each xeLnKO ,

F( x )=Ff( x ).
If XELnKO, then there is an integer N such that if m>N,
xeL(m)nKO. For each such m it follows from condition 3
(1) that there is an integer A(m)} such that
ap( x;m )=0 if p<-A(m). Furthermore, condition 3(iii)
implies that for xeL(m)nKO and p2-A(m),

limm,__>Oo ap( Xxym’ ):ap( X;m )=ap( X ).
Therefore

— . P P

f( x ) ZpZ-A(m)ap( x:m )D +Ep<—A(m)ap( X )D
and therefore

l£( x ) -£(M( x )=

|z a.( x )DP|<(p-1)p"A(M) (5 _ pDP]=

p<-A(m)%p = p<0
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If €e>0 is a real number, condition 3 (iv) states that
there is an integer M(e/2) so that for each

M>M(e/2), the function f(M)(x) is an e/2-approximation
of F on K. Choose M* so large that for m>M* and
xeL(m)nKO, £(M) g an € /2-approximation for F on K and
p~A(M)+l ¢ /5.  Then

|£¢C x )-F( x )=

£¢ x y-fM™ ¢ x Y+ (M x y-F( x )]<e.
We have established that for xeLnKO, and for >0 a real
number, |f( x )-F( x )|<e. Therefore,

f( x )=F( x ).
It follows that the function f( x ) determines uniquely
the radix D representation of F( x ) for each x€LnKO
Furthermore, for each integer p and each XELnKO,
ap( x ) 1s a function of x. This completes the first
section of the proof.

We turn to the second section where we construct
the linear approximations required. For the integer i
and the vertices v and v’ fixed in condition {4), and

for each ze€K set

<=1> !
g( z )=F( vfjz )

and
g’( z )=F( v'[;z ).

If x and y are elements of K, then denote by x-y the

dot product of x and y (that is, the inner product
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determined by the basis {e(j k)}). Because v and v’

0

are gradient-separated in K__;,”, there is a point

z+eK__.. 9 such that
| (grad_._;.9)[ z* 1|#|(grad__;,9’)[ 2z* 1].
Therefore, there are integers a* and b* such that
(grad__;.9)[ z* ]-e(a* bx)*
i(grad<_i>g’)[ z* ]-e(a* b*) -
Because g and g’ are continuously differentiable on K,
there is a ball S in K<_i>0 such that z*eS and such

that for each xeS,

(grad _;,9)[ % l-€(g% px) *

t(grad _;.9")[ X 1-8(5% px)
For a sufficiently large M’, if M>M’ then L(M)nS is
nonempty. Choose a weL(M’)nS. Then weL(M)nS for all

M>M’. Denote by g the function from R to K__;

i> 9iven

by the eguation

g( t ):w+te(a* b*)
Because we can interchange g and g’ and reverse the
direction of Sla* bx) - if necessary, we can assume that
if

B¥=(grad__;,g’)[ W I-€(5% px) -
then

0<|B*|<(grad _;,9)[ W 1€ gqx px)=A*
Because A*>0, for |t| sufficiently small,

(grad__;.9)! w+te(a* b* ) ]-e(a* b* ) >0.

If B*=0, then either
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(grad__;.9")I w+te(a* b ) ]-e(a* p*) O
for t in a neighborhood of 0 where
(grad<_i>g)(w+te(a* b*)'e(a* b) >0
Oor we can replace w
with a w'=w+t’e(a* b ) such that
|B/*[=|(grad _;,9")( W )+ % px)|>0,
and
(grad__;.,9)( w )-e(a* b*)=A'*>0.
Therefore, we assume that either 0<|B*|<A* or that
g’( t ) is constant along the line parameterized by
g({ t ) near w.
Set
G( t )=g( a( t ) )
and
G'( £t )=g’( a( t ) ).
By definition, the wvalues G( 0 ) and G’( 0 ) are the
values F( vfiw ) and F{( v’jiw ). Since F and f are the
same function on LnNK,

G( 0 )=f( vjiw )

and

GT({ 0 )=f( v’fiw ).
Thus

= . P

G( 0 ) Zp ap( vjlw YD

and
’ - o, P,
G'( 0 )=2, ay( v [{w )D

For an arbitrary integer T, if we write
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a’p=% p>T ap( viiw yDP
and

b=z

T ag( vifiw )DP

p>T
then we can write

G( 0) =a’m+ap( vjiw )DT+aT
and

G’( 0 )=bp+ap( v/[; w )DT +Bg
where OSaT, BTSDT. Because G( t ) and G’( t ) are
differentiable, there are functions u{ t ) and upu‘( t ),
such that

G( t )=Aa* t +u( t Y+G({ 0 ),

G’( t )=B* t+u’( t )+G’( 0 )
and such that

l1im £==>0 Ul t )/t=limt__>O w( t )/t=0.
The approximations above require bounds that conform
to the hypothesis of Lemma 9.3. To achieve this we
consider two cases that depend on the relation of B* to
0.

First suppose that 0<B*<A*. We can choose an

interval U around 0 so that for each te€U,

lu( t )/t|<min( A%/4,(A*-B*)/4 )=C

and

lu’( t )/t|< min( B*/2,(A*-B*)/2) ).
Set

B=B* /2, B'=B*+(A*-B*)/2=(A%+B*%)/2, A=A*-C,
and

212



Al=A*+A% JA=0CA% /4,

Set
Attt y=a%ru( t )/t
and set
B¥( £ )=B* +u’( t )/t.
B#( t ) A#( t )
t |
| | | |
0 B=B# /2 B%* (B*+A%)/2=B‘ A=A*~C Ax  A'

Diagram 9.1

Clearly (see Diagram 9.1),

O0<B<B*<B' <A<A*<A'
and

2A>A",
Also

B#( t )=B* + u’( t )/t > B*x-B*/2=B
and

B#( t )< B* + (A*x-Bx)/2 =B’,
Further

A#( t )=A* + u( t )/t >A* -min((A*-B*)/4 ,A*/4)=A
while

A#( Tt )< A% + Ax/4 =AT,
Finally

2A= 2(A*-C)=6A%*/4 >BA*/4=A",
It follows that
0<B<B#( t )<B’<A<A#( t ) <A',
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and
2A>A7 .
Second, suppose that B*<0. Set C¥=min(A*-|B*|, |B*|).
Choose an interval U so that for teU,
lu( £ )/t|<cx/4
and such that
lp( t )/t|<ax/a.
Then set
B’= B*-C*/4, B=B*+C*/4, A=3A*/4, and A’=5A*/4.

Then (See Diagram 9.2)
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B#( t ) A¥( t )

] |

C* /4 C* /4 | A%

/4 |a*| /4

Diagram 9.2

B’<B#( t )<B<O<A<A#( t )<a’
while
2A>A’7 and
|B" |<Ar.
We now begin the last section of the proof, making
use of the linear approximations. For teU and T a
nonnegative integer, set
G( t )=A#( t t+ag +ap( vjiw )DT+aT
and set
G( t )=B*( t )t+bgtap( v/[yw IDT +B,
Choose T so small (i.e. |T| so large) that the interval
U’ (T)=(-2DT /A, 2DT/A)
is contained in U. If g{ t )€K, then
G( t )=f( v[iqg( t ) )=25 ay( v[ia( £ ) )DP
and

G'( t )==% ( v'fsq( £ ) )DP

p %p
Set

a,( vijat £ ) )=af ( t)
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and set
—F
apl v/ [ia( t ) )=b" ( t ).
To complete the proof of the lemma it will suffice

to show that for each -p<T, there is a teU’ so that a?

p( t )Y#b_ #( t ). Because

P
_a# # -p

G( t Y=A"( £t )Yt+a _p( 0 )D +a_p +a_p

and

’ :# # -P
G’'( t )=B"( t )t+b _p( 0 )b +B_p+b_p ’

it will suffice to show that if

a_p( 0 )=b_j( 0,

P
then there is a teU’ so that one of the following

conditions is satisfied:

(1) a#_p( 0 )<D-1 and a”__( t )=a#_p( 0 )+1,

p

p¥__(t)=b*__ (0,

P
or

-P

# :# =])=—
a _p( 0 )=b -p( 0 )=D-1,

# - #  _n_q.
a _p( t }=0, and b _p—D 1:

(ii) 0<a#_p( 0 ) and a#_p( t y=af__( 0 -1,

P

# i
b ,p( t )=b"__( 0 ),

p
or
# —# - # —-D-
af_,( 0 )=b*_ ( 0 )=0, and a”__( t )=D-1,
# =
b _p( t )=0.
Condition (i) is implied by the conditions:

(1) a#_p( o y<D-1, D P<a¥( t Jt+a_, <2D7P

p P>p¥( t )t+B_._ >0,

p
while condition (ii) is implied by the
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condition,

(II) OSa#_p( 0 ), -DP< a¥( t )t+a_. <0,

p

D P >B#( t YEHB_, >0

Because A<A®( t )<A’ and B<B¥<B’, if B0,

At+a_ < A*( t Yt+ra_ < A't+o_

p p
Therefore (I) is satisfied if ;

p

(I) D“P<At+a_p , A't+a_p<2D‘P and
0< Bt+B_j <D7P.
Similarly, condition (II) is satisfied 1if;
(TI7) at+a_, <0, -D‘P<A't+a_p , OSB’t+B_p<D_p ,

Lemma 9.3 shows that there is an interval I
contained in the interval (-2D"P ,a,2Dp”P /A) so that
for teI, either (I’) or (II’) is satisfied. If m 1is
sufficiently large, then there are vertices of L(m)
that lie in the interval I. Therefore the function

-

a_p( x:m ) separates v and v’.H

Theorem 9.1 . Assume the hypotheses (1)-(4) of

Lemma 9.4. Assume that each pair of points x and x’ in
K; are g-separated by F. Then for € sufficiently
small and M sufficiently large, if the network C(e€e,M)
computes f(M)( X ) in time T, then

T>INT{ logp( Z; dim X; ) 1.

Proof. For M sufficiently large, we can assumne

that for each 1<j<n, all the vertices of a cube Q(3J)

of Lj(M] are contained in the interior of Kj . The
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lattice Lj(M) has each side of Q(3j) split into D
points. The vertices of Lj(M) that are contained in
0(j) consists of pd(3) points where d(3})=dim Xj
Lemma 9.4 shows that if S is sufficiently large, then
each pair of vertices in Q(Jj) form a separator set for
the function a_S( ¥ ). Therefore, the vertices form a
separator set for the function f(M)( X ). The lower
bound given by Arbib and Spira for finite
functions(c.f. Chapter II, Theorem 2.2) shows that the

minimum computing time for f(M)( X ) is at least

INT [logg( D4(1) ) 1=d(§)=dinm Xj . B
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Chapter X

Separator Sets for Smooth Functions TIT1;

Differentiable Separability

In this chapter, as in the Chapter IX, we relate
the computation lower bound based on dimension for a
network that computes a real valued function F to a
lower bound on the computing time required for networks
that compute ¢-approximations of F. A principal
distinction between the approach of this chapter and
that of Chapter IX is the type of e-approximation used.
In Chapter IX the networks that compute the
e-approximation use a fixed finite alphabet, and
compute a radix encoding of the values of the function
F. In Chapter IX, as € decreases in size, the number
of output vertices of the networks carrying out the
computation increases. In this chapter, the network
used to compute the approximation has one output
vertex, but the alphabet used by the network grows in
cardinality as € decreases in size.

The rest of this chapter is organized as follows.
In section 10.1 we introduce separator functions and
discuss their uses. Separator functions are a
convenient method of constructing the separator sets
introduced in Chapter III. Separator sets for a
function F:X;X...xX,--->R are used to establish a lower
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bound on the time required to compute F by networks
whose modules are continuous functions. Recall that a
locally Euclidean subspace S; of X is a separator set
if for each pair of points s, s’ of Sy, with s=#s’,

there is a point wi( s,8" )eX such that

<=1i>!
F( sfyw;( 8,8 ) )#F( s'[;w;( 8,8’ ) ).
We make the natural assumption that the relation w; is

a function of s and s’. If w; is a function then we
use the notation W;. However, this is not by itself
adequate to ensure that an e-approximation to F has
sufficiently many (lattice) points in a separator set.
A mild additional condition is imposed on the function
W; to ensure that separator sets for the function F
have in them a collection of lattice points that form
separator sets for functions that e¢-approximate F.
Functions that satisfy this additional condition are
separator functions.

In order that a lattice function f be an
e-approximation of a function F, the mesh of the
lattice on which the approximation is defined must be
sufficiently small. Section 10.2 analyzes a relation
between € and the mesh of the lattice used for the
approximation. The section ends with a theorem
stating that if F:X;x...xX --->R 1s a function with
locally Euclidean separator sets S;<Xy and separator

functions, then there is a lower bound on the computing
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time for e-approximations that can be stated in terms
of the dimensions of the S; when the mesh of the
lattice and € are nicely related.

In Section 10.3 we show that if F is
differentiably separated of rank (ry,...,rp), then
there is a separator submanifold 8; of dimension r: in

1
X; and a separator function W associated to S;. The
section ends with the relation between the Dimension
Based lower bound on the time required to compute a

function F and the time required for finite networks to

compute lattice approximations of the function F.

Section 10.1

We begin with some notation.

Notation: If Y is a set, then

diag(Y)={(y,y) € ¥YxY}.

Definition 10.1. Assume that for 1<i<n, X5 is a

Euclidean space and suppose that 5; is a subset of Xj.
Let U; be a nonempty neighborhood of the origin in X;.
A function F:X;x...xX --->R is said to have W; as a
separator function in an open set U;x...xU  along the
set S, if

Wi:(UinSi)x(UinSi)-diag(UinSi) —>S__i>

and there is a positive number M such that the
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following condition is satisfied:
For each
(y,y’) € (UinSi)X(UinSi)—diag(UinSi) ’

[F( y, Wi y,y" ) )=F( vy’ ,W;( y,y" ) )|2M |y-y'][.

Note that if F has a separator function in a
neighborhood Uyx...xXU, of a point p=(pPy,-..:Py) along a
set S;, then the function F also has a separator

function on a neighborhood Vy[; U of p if

<=1>
piEVi<Ui.
We can extend this definition to a function F

defined on a product of differentiable manifolds. We

use the definitions and conventions found in [6].

Definition 10.2. Suppose that X=Hi=1n Xy is a
product of differentiable manifolds X, dim Xi=d(i),
and suppose that F:X--->R is a real valued
differentiable function. Suppose that p=(p;,...,Pq) is

a point of X and assume that for each i there is a

coordinate neighborhood V; based at p; with coordinate

functions (@5 1700194 d(i)} that map Vj into the
Euclidean space E;. Suppose that for each l<i<n, S is
a subset of Xi‘ For each YEVS, set

ei(y)=(e; 1y ),eees9; q¢i)( ¥ )). Denote by U; the
open set in E; that is the image of V; under the
function y;. The function F is said to have separator
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function W; in the coordinate neighborhood V. x...
the point p=(pl,...,pn) along the set S; in the
coordinates (0q /e ry) if there are open sets V’
p; € V/;<V;, and a function
Wi:(V’iﬂSi)X(V’inSi)—diag(V’iﬂSi)
such that the function
(Hj¢i wj)-wi-wi—l is a separator function for
F-(H@i)"l in the open set Hj Uj along the sets
{wi(si)}(c.f. Figure 10.1).
Wy
V’Tnsi -——> VlnSl X «.. X Vinsi XeooX
| [I el
1 { jl
tp(V’l)ntpl(Si) -_———2> Ulntpl(Sl) X .. X Uln(pi(Sl) X.

(les) ™t w05

Fiqure 10.1.
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In the following lemma, we show that the
property of having a separator function is coordinate

free.

Lemma 10.1. Suppose that for each 1<i<n, X;
is a cl-differentiable manifold, and assume that 55 is
a submanifold of X;. Assume that p=(pl,...,pn) is a
point of X;x...xX, and suppose that U;x...xUy is a
coordinate neighborhood of p with two sets of
coordinates (@1,-++-,9,) and (91""'9n) defined on
Uyx...xU,. If F has a separator functions W; along the
set S in the coordinates (@qr---s9,), then F has a
separator function along the set S: in the coordinates

i
(8144 19p) -

Proof. We may assume, without loss of
generality, that the X; are Euclidean spaces and that
the coordinates (@1,...,@n) are linear coordinates on
the X relative to the standard basis. The functions
905 3 (where wi=(wi 1reeerPy d(i)) are functions with
continuous derivatives on a compact subset of X; that
contains U;. It follows immediately from the Mean
Value Theorem, by summing the inequalities for the
components of the @5 that there is a real number N
which is independent of i, such that if p, p‘€U;, then

le5C p )-ey( P’ ) [2M|84( p )=04( P’ ).
Suppose that Wj; is a separator function for F in the
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coordinates ¢;. Then for p, p’€U;nS;, p#p’,
|F( p,W;( p,p’ ) )=F( p" ,Wi( p,p’" ) )|z

Mlws( p )-es( p’ ) |2N[ey( p )-e4( B’ ) [.E

Section 10.2
Recall that if a map g:X--->Y is a submersion,
then the Jacobian Jg of the mapping g has rank equal to
dim(Y) at each point of X. If dim(X)-dim(Y)>0, and if
the map g is a submersion, then it is known(c.f. [6,
p.9]) that the map can be linearized. That is, if

dim(X)=n, dim Y=m, and if p € X, we can choose

coordinates Xq,+..,%q at p in a neighborhood U of p,
and coordinates yy,....,¥p., in a neighborhood of g( p )
so that for each geU, g( g )=(xl( o ),...,xm( q )).

In the following theorem, we show that if a
function is differentiably separable at a point on a
c3-manifold, then the function has separator functions

in a neighborhood of the point.

Theorem 10.1. Suppose that for 1<i<n, X; is a

c3-manifold of dimension d(i) and suppose that
F:[[;"X;--->R is a c3-function. If

p=(pl,...,pn)eHXi and if F is differentiably separable
at p, then for each 1<i<n, F has a separator function

W, on a neighborhood Uy x...xU of the point p.
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The procf of this theorem is intricate. Before
giving the general proof, the argument is given in the
context of a simple exanmple.

Example. Suppose that U, and U, are open balls of
radius R>0 around the origin of RZ. Choose R>r>0.
Assume that U1 has coordinates (x,y) and assume that U2
has coordinates (z,w). Let

F( x,y,2,w )=x(5+z+x2)+y(—10+w—x3).

It is easy to see that the matrix H(F:x,y:;z,w) has rank

2 in the set U.xU

1 XU, . Then

IF( x,y,2,w )=F( x’,y",2,w )|=

| (x=x7) (5+2)+(y-y*) (-10+w)+x3-x/3x3y+x /3y | .
The Taylor series expansion of x3-x'3—x3y+x’3y’ around
the point (x’,y’") is

3 2(1-y ") (x=x" ) +(=x" ) (y-y ')+

1/2[6%4(1-yg) (x-x")2+12%, (X=X ) (y-y*) ]
where (x4,Yq) is a point on the line segment from
(x,y) to (x’,y"). Denote (x,y) by v and (x’,y’) by v’.
The functions 3x’2(l—y’) and (—x’3) are the first
derivatives of the cubic part of the
expansion of F( x,y,z,w ) and therefore these functions
have limit zero as (x’,y’) approaches (0,0). The
values |6x,5(1-y,)| and |12x,| are bounded above in the
set U;xU, by some number N. Furthermore

(x—x’)25P|v—v’|2
and

|x=x"| |y-y’|<P|v-v’|?
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for some positive real number P. Therefore
|1/206x%4(1-yq) (x-x")2+12xy(x-x") (y-y*) 1]<
P’lv—v’]2

for some positive real number P’. Then

.F( X, ¥:2,W )_F( X',Y':Z:W )|2
/ /

| X-X 2 / y-y 3. . /
| i (5+Zz+3x°(1-y' )+ (-10+w-x>)1 (P {v-v' )]
vv’ | v—v’ |

Choose a neighborhood U’, of (0,0) in U, so small that
|3x72(1-y*)| and |-x’3| are both bounded by r/8

in that neighborhood and so that P’|v-v’|<r/8 in U’;.

Then
| [(x=x")(5+2+3x72(1-y’))+{y=y’') (-10+w-x"3) |-
F= =
(P’ |v=v’]) | |v-v']| 2
| (] [ (e=xf) (5+2)+(y=y ) (-10+w) |-
v-v’| [v=-v’|
r/4|)|-r/8| |v-v’|
because
|lr/8(x=x*)+r/8(y-y ) |=
|v-v” | [v-v’|

|r/8 cos(B)+r/8 sin(8) |
for some 0<6<2m, and
|lr/8 cos(0)+r/8 sin(8)|<r/4.
For each v-v’, set
(cos(@(v—v')),sin(@(v-v’)))=(v—v’)/|v—v’|.
The inequality
|5 cos (6)-10 sin(8)|<3r/4
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defines an open set I in R. Define a function
|

x(8)= —ﬂl if QeI
|0 otherwise
L
Set
z(v-v')=(r)x(0(v-v’))cos(B(v-v'))
and set
w{v=-v )=(r)x(8(v-v’))sin(B(v-v’)).
Then
| (x=%'")(5+2)+({y=y’)(-10+w) |=
[v=v] [v=v|
| cos(8)(5+x(8)cos(0))+sin(B)(-10+x(0)sin(8)) |2
3r/4 if 6¢7,
and
I | (x=x") (5+2)+(y-y ) (-10+w) | |=>
|v-v”| |v-v’|

| |(r)cos(8)2+(r)Sin(9)2)|‘
|5cos(6)-10 sin(8)| |2

| r-3r/4 |=r/4.
Then
|F( x,y,2,w )=-F( x',y’',2,w )|2

[(r/4)=-(x/8)| |v-v'].
We now give the general proof.

Proof. Set Y=X__.

i> and denote X; by X. Choose a

point (p,q) in X x ¥. In a neighborhood U x V of the
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point (p,q) suppose that X has coordinates (Xqseee s Xp),
m=d(i), and that Y has coordinates Yyre++:¥y+ That is,
we can assume that U x V is mapped homeomorphically
onto a neighborhood of the origin in R™ x R" by the
map, which we denote by (x,y), that carries (u,v) to
(xl( u ),....,yn( v )). The matrix H(F:z,w)[ 0,0 ] has
rank m, because we have assumed that F is
differentiably separable. Set F* = F-(x,y)('l). It
follows that F* is differentiably separable because
the condition of differentiable separability is
coordinate free. To lighten the notation, and at the
risk of very little confusion, denote F* by F.

It follows that the coordinates in X and Y can
be chosen compact neighborhoods U’ of p and V/ of g so
that

3°F/3z; dwy (0,0 )= 6( i,3 )
where 6( i,J ) is Kronecker’s delta function. We can
now fix y and expand F{ x,y ) around the point (x’,y)
using Taylor’s Theorem (c.f. (4], p.200). Then

F( x,y )=

F( x',y )+ VF( x’,y )-(x-x") +6( x*,y )
where for some positive real number N,

| o x*,vy ) |<N|x-x']|2
in some compact neighborhood U" x V" of the point

(0,0). The B(x*,y) is the remainder term of the Taylor

series expansion, and x* is some point on the line
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segment from (x’,y) to (x,y). The expression
VE( x',y )+ (x-x')=
Zj 8F/axj( X',y )(xj—x’j).
Expand the expression aF/axﬁ( x’,y ) around the
point (0,y). It follows that
8F/8xﬁ( X',y )=
IF/3x5( 0,y )+ Ty 82F/8xjaxk( 0,y )%y +&(x",y)
where for a positive real number N/ such that
for all 1<j<m,
5O %",y ) | <N’ |x"|%< N7 ox? |2,
Expand 8F/axj( 0,y ) around the point (0,0). It

| @

follows that

aF/axj( 0,y )=8F/axj( 0,0 )+

i 0°F/dxy dyy( 0,0 )y, + @50 0,y% ),
where for some positive real number N",
| @r5C 0,y% ) faNt] oy |2 <nn]y]2,

Then
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!F( XIY)”F( X/IY) 32
{ {§:j(8F/GXj( 0,0 )+Yj+§:k82F/3Xj3Xk( 0,y )Xk

co( 0,yx )l ¥y M(xgx4) [ -10Cx<,y )] |-

The expressions | aZF/axﬁaxk( 0,y ) | are all bounded
on the set V" by a real number T>0. Set
A=Max (N,N’,N",T).
Choose R>0 so small that the following conditions are
are satisfied:
(1) the ball of radius R is contained in V",
(ii) A(m2+2)R2<R/16.
Choose r>0 so small that a ball of radius r around
(0,0) lies in V" and such that r<min(l,R2) and such
that 2Nr<R/16.

Then

| Ej (aF/axj( 0,0 )+yj.+zk aZF/anan( 0,y )Xk+(bj( O,y* )+

¢ x", v ) (x,-x) |2

1Y, [0F/ax,( 0,0 )+, “20) [ (|x-x']) -

lz:kaszaXJan( 0, x4+, 0,y ) +d( x", ¥y )) | |.

The vector (x-x')/|x-x'|=v(x-x') is a unit vector.
set
(aF/axl( 0,0 },...,aF/axm( 0,0 ))=a.
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Denote by S the unit sphere in R™®. The inequality
|Q-s|<3R/4 defines an open set I in the unit sphere S.
Define a function y( s ), for seS by the equation:

—

x( s )= —i 1 if sel

L_O otherwise.

Set
(yqC v x=x" ) ), e,y v x-x" ) )=
Ry( v( x=x* ) yv( x=-x" ).

If v( x-x’ )¢I and |x|<r, |x’|<r, then

o
Y 10F/ax5( 0,0 )y51 T T 1 (ixx! ) -

fx-x" |
YL OPF/ox xR ( 0,y Yxpre( 0,yx ) 0l Tyt
LN L (F/9x XJ X7 )ix—x/‘ - 2: ( 2: 32F /x40 ( O Y X+
2t J——7 Pt b k JokU PhY Xk

v x-x'

050 0,y )=o( x'y 01 1250 ki) )
X*X/

| 3R/4-m(mAr-ARZAr2) | |x-x'|
But r4<R and r<R2, therefore

m(mAr+AR2+Ar2)<A(m2+2)R23R/l6. It follows

that
| F( %,y )~F( x',y ) |2
| | 3R/4-R/16 || x-x’ |-N| x-x* |? |2
| 5R/8-R/8 || x=x' |,

because

| o( x*,y ) |<N| x-x’ |2 <
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2Nr| x-x' |<(R/16)| x-x’ |I<
(R/8)| x-x’ |.

If v( x=-x’ )€I, if |x|<r, and if |x’|<r, then

! . s Xj—Xj) el
| 1224 [9F/3x5( 0,0) y;](mﬂ jx-x" |
‘EkazF/anan( 0,y )Xk+(pj(0,y* )+ X//,y Y) L=

S tarsaxg( 0,0 )R 2T T TGyl

xx’ | x x|
| Yo 92F/3x50xx( 0,y Yxxre;( 0,y )eo( x' Ly ) | |2
R(x4-x4)° / (x4-%x4), /
Y. — L i x x| Y (9F/9xj( 0,0 ) LI jxx -
J |X~X/i J x-x |

j}:k 82F/HXj6xk( 0,y )Xg+03( 0,y* )+o( Ty

| Rjx x’| 3R/41xx" | -m(mAr+-AR?:Ar?)ix x| -(r/16)x-x"| |2

| R-3R/4 R/16-R/16| |x-x'|=(r/8)ix-x" .

Therefore, we set M=R/8.F

We use the separation properties that have
been established in Theorem 10.1 to estimate the
limiting value of the computing time required for
e-approximations of a differentiably separated
function when there is a precise relation between § and
€. The next lemma (and definition) states the

relation.

Lemma 10.2. Suppose that g( € ) is a continuously

differentiable function of a real variable e, defined
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on an interval around 0. Assume that g satisfies the

following conditions:
(i) for each €>0, 0<g( € )<e,

(ii) dg( 0 )=0.
de

If K, M, and N are positive real numbers, and if

n( € )Y=int{ N/g( € ) 1, then

lim ___ log [—ntr RK/g( € ) ] =1.
€-=>0 n( € ) INT[ €/Mg( € ) ]J

A function g{ € ) that satisfies the conditions of this

lemma will be called a delta-epsilon function.

Proof. Set L( € )=logn( e )[intf K/a( € ) 1—}
INT[ e/M €
L [ e/Mg( )]

The definitions of int and INT imply that

N < INT{N <|N +1 and
g( € ) Lq( € ) g( € )

r; - 1 < INT|N < | K _1

g( € ) g( € ) g( € } ]

with similar inequalities for

T € .
Mg( € )

Because logab=(1n a)/(1ln b), it follows that if we set
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—

I( € )= 1In |(K/g( € ) -1
(e/Mg( € )+1

L____|

in [?N/g( € ) +1_]

and set

II( € )=1ln ‘(K(g[ € )
1 (e/Mg( € )

1n [E/g( € ) _]

then I( € )<L( € )<II( € ). However,

lim,__.q I( € )=lim ___.4 |1n |(K-g( € ) M
e+Mg( € )

Because €+Mg( € ) and g( € ) both have limit zero as e
approaches 0, we can apply L’Hospital’s

Rule to compute the limit. Therefore lime__>0 I( e ) =
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lim,___., [:egjf € )-K-KMg’( € )+a( € )_1 (N+g( € )) 91_5_1f1=

L(K-g( e ) P Mgl e) | |
€

J J -g’( € N J
~K=KM g’ ( 0 ) Nag’( 0 ) | =1,
K(1+Mg’( 0 ) ) -g’( 0 )N

because

limg___,9 9( € )/e =g’ ( 0 ).
Similarly

lim __,o II( € ) =1.%

Lemma 10.3. Suppose that F: Xyx...XX --->R is a
continuously differentiable function on U;x...xU  where
each U; is a nonempty open subset of X;. Suppose that
for each i, 1<i<n, Ky is a nonempty compact subset of
U;. There exists a delta-epsilon function g( € ) such

that for each € sufficiently small, and for each

X, x'€ KyX...xK if |x-x’|<g( € ), then

n’
|F( x )=-F( x’ )|<e.
Proof. Denote by S the unit sphere in X;X...xX..
For each x € U;X...xU, and each v € S set

D( %x,v )=|dF( x )|. The function D( x,v ) is
continuous giom Kyx...xK x S to R. It follows that
there is a real number B>0 such that D( x,v }<B for all
X€K,x...xK, and veS. Clearly we can choose B>1.

Suppose that vy, y'ele...xKn such that y=y’.

Set
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P=g
set
q( t )=y’+tv*,
Let
£L(E)=F( q( £ ) ).
Then,

[FC vy )-FC y" )[=ldF C a ). |y-y’]
dt

for some a, O<a<|y-y’|. But

|dF; | is bounded by B, therefore
dt

|F( y )-F( y’ )|<B.|y-y’|.

We can choose as the delta-epsilon function,

g( € )= €/B.§

Definition 10. Suppose that X., 1<j<n are

differentiable manifolds of dimensions d(l1),...,d(n),
respectively. Suppose that F:[;" X4--—>R is a
differentiable function. Assume that

(P1s---/Pp) e[l X4, suppose that for each 1<j<n, Uy is

a coordinate neighborhood of Py and suppose that
=(a e, ) UL === i 1
wj (@] 1 ,wj d(j)) Uj >Rd(]) is a set of loca

coordinates at Py- If for each 1<j<n, L. is a regular

J
lattice on Rd(j), then the set (ij)_l(HLj) will be

called a reqular lattice on

[ Xj along the coordinates ¢; ,,...,9q a(n) in the
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coordinate neighborhood [] Uj. The mesh of the lattice

(Ile5)"H([1 L) is the mesh of the lattice [] Ly.

Definition 10.4. Suppose that for 1<j<n, Xj

is a differentiable manifold, and suppose that
@i:Ui———>Rd(i) is a local coordinate system for Xy in
the neighborhood of a point p;. If (Hwi)_l(HLi)=L is a
regular lattice on Hxi along the coordinates

©3 1r--++®n d(n) - then a function fL:HUi———>R is an

e—approximation of F in the neighborhood HUi, if the

)_l

function fL-(Hwi is an e€-approximation of the

function F-(Hwi)_l in the set H@j(Uj).

Theorem 10.2. Suppese that F:Xlx...xXn——>R
is a continuously differentiable function from the
product of Euclidean spaces X; to the real numbers.
Suppose that for each i, the space X; has standard

basis {e( 1<j<d(i).

S DR

Assune:

(i} for each positive real number ¢,
sufficiently small, L, (€) is a regular
lattice 1in X; along the Dbasis {e(i j)}:

(ii) there is a delta-epsilon function g( € )
(for € sufficiently small) and for each
i, a compact set Kj with nonempty
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interior contained in Xi such that for

each x, x'€ Kyx...xK if | x-x’|<g( € ),

n’
then
\F( x )-F( x' )|<e:
(111i) the lattice Li(e) has mesh g( ¢ ) for
each 1 and each € sufficiently small:;
(iv) for each 1<i<n there is an open set U;
in X; that contains K; and there is a
(nonempty)submanifold Sy of U; such
that F has separator functions W, along
the sets (S;} in the neighborhood
le...xUn:
(v) there is a lattice function
£0€):][;_,"L;(e)-->L(€) that is an
e-approximation of F;
(vi) there is a real number K>0, such
that for d(e)=int[K/g( € ) 1,
there is an (r,d(e¢))-network C(€)
that computes the function £l€),
1f ¢(€) computes £(€) in time T(e), then
lim =m0 T(€)2INT[log,. (= dim S;)1-
Proof. Fix an integer i, 1<i<n. Choose a
point s EH(Ui). Suppose that dim S;= 0. Because the
S; are submanifolds of X; we can choose a coordinate

neighborhood of s so small, and if necessary a

re-indexing of the basis elements {ej xtv such that for
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each 71 there is a coordinate system {xj 1,...,xj d(j)}
at s with coordinate lines in the direction
{ej 1"“'ej o(j)} and such that the projection of Sj

into the linear subspace Pj with equations

X§ 6(3) +17 7% a(§)7°
is a diffeomorphism; that is, the projection is a

diffeomorphism in the neighborhcod U By Theorem 10.1

5
F has separator functions W in the open set le...xUn
along the subsets ({S;}. Therefore by Definition 10.1
there is a real number M>0, such that
for each y#y’ in H(Uinsi),

[F( oy, Wil y,y" ) )=FC vy’ , Wi ( v,y ) )| 2M|y-y/ .
For a sufficiently small S, we can choose for each

1<i<n a cube B; of side length S that is contained in

Ky and has sides parallel to the basis elements e

(1 3)
and such that the vertices of the cube are vertices of
the lattice L;(€).

Suppose that y and y’ are vertices of
L;(€)nP; that |y-y’|>4e/M. Because the projection of
S; to Py is a diffecmorphism there are points q( y )
and q( y’ ) that lie on S; that project onto y and y’',
respectively. The point g( y ) lies in a rectangle
whose principal vertex we denote by v. Denote by v’
the principal vertex of the cube that contains
g( y* ). Suppose the point Wil y,y’ ) lies in a

cube of X__;., that has principal vertex w. Then

1>
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the point yfiw is a lattice point of [] L;( € ). By
assumption, f€ is an e-approximation of F. It follows
that

| £€¢( yfiw )-F( y[;w )| <e
because ( y[;w ) lies in the cube with
principal vertex y[;w. Similarly,

[E£€C vy fyw )-F( y'[4w )<e.
Therefore,

[£€(C y[iw )=£€( y/[;w ) |=

[£€C yf3w )-F( y[;w )+F( y[;w )~

E€C y 4w )-F( y'[3w )+F( y/[;w )| >

| {F( y[yw )=F( y'[;w ) |-

[£€C y[3w )-F( y[3w) -£€( y’[;w )+

F(y'f[ywol | 2

lde-2€¢|=2¢.
The lattice L;(€) has mesh g( ¢ ), and therefore the
number of vertices along one side of the cube B; in an
interval of length S is int{ S/g( € ) 1. Along any one
axis of the lattice L; (e), the distance between the jth
vertex and the j+hth vertex 1is hg( € ). If
hg{ € )>4e/M, vertices are 4¢/M units apart. Set
s=INT[4e/(Mg( € ))]. Along each side of the cube Bj

th

choose every s vertex. Along each such side, the

number of vertices chosen is
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r r |
D=int|int S _W .

INT 4¢
Mg( € )

The number of vertices we have chosen in the cube By is

pd(i)

and all of these vertices are at least (4e/M)
units apart. Set n{( € )=int[ K/g( € ) 1. The

minimum computing time to compute f¢ using an

(r,int[ S/g( € ) ]) network is then

INT[logr{ 5 1ogn( € )Dd(i)}]. To complete the proof of

the assertion, it will suffice to show that

lim €mm=>0 1ogn( € ) int {g( 5 =1. But this is

INT de
Mg( € )J

the conclusion of Lemma 10.2.%
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Chapter XI

A Limit Theorem for Cl'-Networks

In this chapter we analyze the time needed to
compute a C" function F by cl (2,1)-networks as a limit
of times taken by finite networks that compute finite
approximations to F. 1In the limiting process studied
here the structure of the approximating networks
remains fixed while the size of the alphabet is allowed
to vary. This may be interpreted to say that the same
algorithm is used to compute the finite approximating
functions and the limiting function, while increasingly
many symbols are used to encode the finer
approximations as we pass to the limit, much as the
number of positions in rational approximations to real
numbers increases as we consider progressively finer
measurements.

Theorem 11.1 states the result of interest, a
result that helps to justify the use of continuous (or
c™) networks to represent computing. Two lemmas,
Lemmas 11.1 and 11.2 used in the proof of the Theorem
11.1, are of a purely technical nature and are stated
and proved following the proof of the theorem. The
hypotheses of Lemma 11.1, which are part of the
hypothesis of Theorem 11.1, can be satisfied, for

example, by using polynomials for the approximating
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functions.

Thecorem 11.1: Let F:Vc———>R, VC=RC XeoX RC,

where R, is a compact neighborhood of zero in R and Vg
is a compact neighborhocod of zero in the Euclidean
space V, be a function satisfying F(0) = 0 that is
computed by a continuous (resp. C™) (2,1)-network in
time t. Suppose further that if a continuous (resp.
Cn) (2,1)-network computes F in time t’,then t/ 2> t.

For =1, 2, ..., let Ej > 0 be such that

€s > and € and ej+0 as J-wo. Let {Cj) be a

3 €9+1 J+1

sequence of finite loop free (2,dj)—networks such that

c3J computes an ej—approximation to F in a bounded

neighborhoocd of 0, in time tj, and suppose that the

modules of CJ can be approximated at lattice points by
continuous (resp. C?) functions, as described in the
hypotheses of Lemma ll.llo). Then

7 = 1lim inf {tj}
satisfies the inequality r2>t.

Proof: Let {e€.

j}j=100 be a sequence of real numbers

where € > 0, €47€541 and ej——->0 as j--->w, Let

Fj:Lj x...ij———>Lj be an ej/z—approximation of F,

where Lj is the lattice of a rectangular decomposition

of Rc.

10) By Corollary C.l1 we can, without loss of
generality, confine attention to loop free networks.
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For each j, and €35, let Cy be a

(2,dj)—network with alphabet Lj that computes Fj in

time tj' Since
7 = 1lim inf Tj > 0.

If 7>t, there is nothing to prove. So,

>0
Tj ,

suppose
T<t. Because the Tj and hence 7 are integers, there is
an infinite subsequence {Cj y<{Cj} of networks that

d

compute F. in time 7.
g
For given 7, the number of binary trees of

depth 7 is finite. Therefore, there must be an

infinite subsequence {Cj };{Cj } of (2,dj)-networks
e | q
each of r

which computes Fj and all of which have the same
9y

graph. To simplify notation, let us call this
subsequence {Cj} and correspondingly the sequence of

approximations (Fs:}. Thus, {Cj} is an infinite

J
sequence of (2,dj)-networks, each with the same graph,

that compute Fj in time 7.

Since all the networks Cj have the same

graph, we can identify unambiguously modules in the
same position in different networks. Let Gij be the
module (function) in position i1 in network 7J.

Given the functions Gij: Lj X Lj———> Lj'
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i=1,...,q, ej>0, under the hypothesis of Lemma 11.1

there exist continuous (resp. C") functions

i, _—
P j'Rc X RC >Rc such that
Pi £y - i, i
! n(€j)( ) G J(e)|< 6]/4 !
for 2 ¢ Lj X Lj.

Under the hypothesis of Lemma 11.1 for each

i=1,...,q, the sequence of continuocus (resp. Cn)

functions {Pi y._.* has a uniform limit that is
n(ej) J=1

continuous (resp. c™y. Thus the sequence of networks

Cj converges to a network C’ whose graph is the same as

the common graph of the Cj and whose modules are the
limits of the functions Pij as j--->w. Thus, the
network C’ is a continuous (resp. CI') (2,1)-network.

Furthermore, the network C’ computes F. To see this,

let C’. be the network that results from substituting

J
the function Pij in place of the function Gij in Cj.
Denote by
F’j:Vc-——>R the function computed by C’j.
Since for each €., we may choose the

J

functions Pij such that
i I .
| PEy(e) - 6hy ()] < ey/4,
it follows from Lemma 11.2 that for k sufficiently
large, |F’y - Fy'|< €5/2.
Then,
|F'k—F1s|F'k—Fk|+|Fk—F|<

ej/2 + Ej/2= Ej.
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Finally, the limiting network C’ computes F
in time 7, because its graph is that of a loop free
network whose delay is 7.

Thus, the limiting network C’ is a continuous
(resp. C¢™) (2,1)~network that computes F in time 7<t.
But this is impossible, because by hypothesis, t is the
minimum delay among all such (2,1)-networks that
compute F. This concludes the proof. &

The limiting argument in the proof of Theorem
11.1 uses a seqguence of continuous (c) functions that
approximate the modules of the finite networks at
lattice points. Lemma 11.1 gives conditions under
which the values of such an approximating function

cannot differ much from the finite function everywhere

on the rectangles of the lattice decomposition.

Lemma 11.1:

Let {ej} be a sequence of positive numbers
decreasing to zero as j tends to infinity. For each
€ let Lj be a lattice decomposition of R, (a compact

neighborhood of zero in R) such that

a) | p.(e) - Gj(E)l < ej/4, for €€ L. x L.

J J 3’
where the functions

Pj: RC pid Rc———>RC
form a sequence of continuous (resp. ¢y functions that

converge equi-continuously to a continuous (resp. ch)
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function

P: R. x Rc———> RC

C
and
Gj: L] X Lj——"> L]
is a (finite) function for each j =1, 2,..., and

b) the mesh of the lattice Lj (c.f.

Definition 9.7) decreases to zero as j tends to

infinity. Then, for j sufficiently large, Gj is an

ej/z—approximation to P, i.e.

| P5(x) - G5 [20x)] | < ey/2,
for all x € Rc X Rc'
Proof of Lemma 11.1

To show that for j sufficiently large, Gj is

an ej/z—approximation of Pj on R, x R, it suffices to

show that if x eDj[E(x)], then
| Py(x) - Gj[e(X)] | < €5/2-
Now,

|Pj(x) = Gyle(x) 1] Py(x)-Py [L0)] | +

| P5LL(x)] = Gy

;e |

By hypothesis

| Pa(x) - Gs [&(x)] |< ej/4, for all 7.

] ]
Therefore it remains to show that the other term is
small. Since Pj is uniformly continuous in R, X Rg,

for every nj>0, there exists yj(nj)>0 such that
| x =2(x) [< y5(nd)

implies
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t Pyt x ) = Py [ 2(x) ] | < 5

Under assumption a) of the Lemma, Pj converges
equicontinuously to a continuous (resp. c™) function
P: R, x R, --=> R.. Since P is also uniformly
continuous on R, x R, there is a function
¥: R---> R such that for every n>0,

| x - y|<y( n ) implies

| PCx)-P(y ) | <nm.
Now,

| PyCx)-Py [ e x) 1 |=

| P( x )=P[ 2( x ) 1- P( x )+Pj( X )+

P[ £( x ) 1-P5
| PCx )-P[ &( x ) 1 | + | PCx)= Pyl x )|+

[ e x ) 1| s

| PL &( x ) 1-P40 2C x ) 11,
Given 7, there exists an integer J( 7n/3 ) such that
j > J( n/3) implies

Il P( x )—pj( x ) |< n/3

and

| Pl e x ) 1-PsL & x ) 1 | <n/3.
Further

| x=e( x ) |<y( n/3 )
implies

| P( x )-P[ &( x ) 1 | <n/3.
Now, 1let “j =ej/4 and let Jj=J( nj/3 ) + J( nj/lz ).
Further, define o: N---> N by the condition that o( J )

is the smallest integer, Xk, such that y( n/3 )> 6k,
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where 5k=!Dk!, is the mesh of lattice L. Thus,
corresponding to the sequences j =1, 2 ... and {ej},
there are the sequences {Jj} and {o(j)} such that for
all
k > max {Jy, of J )y = K(3)

| P x )-P [ 2 x ) 1 |< €4/4.
Hence for each j and all k > K(3J),

| PR x )=Gy[ &( x ) 1 | <

| Pp( x )-Pp[ &( x )} | +

IA

! Pk[ e( x ) ]_Gk [ e( x ) 1 |
Ej/4 + Ej/4= 6j/2.

This completes the proof. #

The sequence of finite networks generated by
the construction in the proof of Theorem 11.1 computes
a sequence of finite functions. The sequence of
continuous (C") networks generated by approximating the
finite modules of the first sequence by continuous (CM)
modules also computes a sequence of functions. Lemma
11.2 establishes that these two sequences of functions

converge to a common limit.

Lemma 11.2
Let {ej} be a sequence of positive numbers
decreasing to zero as j tends to infinity. For each

€5 let Lj be a lattice decomposition of R, and let Cj
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ke a finite (2,dj)—network, with alphabet L modules

jl
Gi': : A ak . i=1,...
i Lj X L] > Lj . 1=1, . d

and a common loop free digraph for all j, which

computes a (finite) function

. 11)
F.:L. . e =2 .
jiby Xe.ox Iy L3
Let C'j be a (2,1)-network with the same digraph as Cj'
whose module in position i ist?2)
i, —
P 'k Rc X RC > RC
in place of Gij where for i = 1,...,q, Pij and Gij

satisfy the hypotheses of Lemma 11.1, and where C’j

computes a function

F’j: RC X.eooX Rc———> RC.

11) Let 1L be the lattice of a rectangular
decomposition of R., a compact neighborhood of zero in R,

and let F:L x L--->L be a finite function.

There is a (2,d)-network C that computes F,
where d is equal to the number of points in L. In that
case the alphabet used by C can be identifies with the
lattice L and the modules of C with functions from L x L
to L.

If C uses an alphabet A such that g:L--->A 1is
a one-to-one enceding of L onto A (both sets having d
elements), and if G~ are the modules of C, then the
functions

G( v )(31;22)=G~(g(21),g(32))

are the modules of the corresponding (2,d)-network with
L. as alphabet. It is straightforward to show that if
a:A X A--->A is everywhere computed by C and
F:L x L--->L is computed by the network with
modules G(v) and the same digraph as C, then F and «
satisfy the relation

g( F( erez ) J=al g( 21 ) 9( 22 ) ).

12) The module in position i in the network Cj is
well-defined because all networks are finite and have the

same digraph.
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For each ej there exists an integer K(j)=K(ej), such

that for all k > K(j) and for all x € R, X...x Rg

| Frp( x )=Fl 20 x ) 1 [< €/2.

Proof of TLemma 11.2

We shall give the argument for the case of a
loop-free network of delay 2. The same argument
applies in general; the notation is less complicated

and the argument more easily followed in the delay 2

case. In that case the domain of Fj is (at least) four
dimensional. Then, let
X = (XlIXZFx3IX4)

and 2( x ) = (2( x; ),&( x5 ),( x5 ),2( x4 ))-

We suppose the network for Fj to be
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Figqure 11.1

and similarly, for F’j to be

Figure 11.2

We shall write el( x )=rel( x ),2%( x )]
and 22( X )=[23( X ),24( ¥ )] and xl=(xl,x2),
x 2= (x3,x4). Then:

' —p0 1 2
F/5( x )=P°5 [ Pr4( xp ),P5( %5 ) ]
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and

Fj[ 2(x) 1=
0 =1 .+ ,1 2 2
G™50 G674l et x ) 1,64l e x )y 1 1.
Thus,
| FryC x )-Fyl 20 x ) 1 | =
0 1 2, -
le[Pj(Xl)’Pj(X2)]
0 1 1 2 ¢ 2 -
G 4L G j[ £ x ) 1,674l e x ) 1 ]
O. . . - 0. . . <
| P ]( Uy, vy ) G j( W25 )y 1<
G . . - pO0. . .
| P ]( Uy, vy ) P j( W32y ) |+
O . . -— Ol . [}
| PO5C wyizg ) - GOyC wy,zg ) |,
where
. va)=[Pt. 2,
(ujlvj) [P j( Xl )lP J( X2 )]I
and
. N=rel, 1 2, 2 .
. i, ' e o
Since G ok Lj X L3 > L], it follows that
E(Wj,zj) = (wj,zj) € Lj X Lj.
Hence Poj and GOj are defined at (wj,zj). By
hypothesis,

| Poj( Wi, 2y )y - Goj( Wi, 24 ) | <

ej/4 < ej/2
for all j. It remains to show that

! Poj( Uj,Vj ) - Poj( Wj,Zj ) I < €j/4.

Since Poj is uniformly continuous on R, X R., for every

.>0 there exists §:(n:)>0 such that
3 3415
| (Uj;Vj)‘(Wj:Zj) | < 6j(nj)

implies
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0
| PUSC uy,vy

Hence, it suffices to show that

) - Poj( Ws,Zs )

0230 1<y

I (Uj,VJ) - (Wj,Zj) . < 6j(€j/4).
Now,
| (uy,vy) = (wy,zs) |2 =(uymwy) 2 (vymzg)P=

[plj( x ) - Glj( e x ) )12 +

(P50 x )=GP4( &( x ) )%,

It follows from Lemma 11.1 that for k sufficiently

large, Gik is an ej/4—approximation of Pij

for each i, by taking [6j( ej/4 ) })//2] in place of

on Rc b4 RC

(ej/4) in that proof, for all k > K(j).l3)

13) since g 1is finite, a standard argument shows
that there is a value K(j) that works for all i=1,...,q.

. | Pl x -Gl e x ) )| 4(ey/4)//2 for
Hence 5
20 %) l2| Pl x )=l r 20 x ) 1 12 4P ( x% )-GZ(

X <

2
5j(ﬂj) /2 + 6

It follows that

2 _ 2
j(nj) /2 —[5j(ﬂj)] .
l(uk,Vk)—(Wk,Zk)|=

1 1 _~1 1 2 5 5
)2)1/236j(éj;; f xb )=l (et x ) )2 +(P( 22 x )

Thus, it follows that for each j and hence each €;, there
exists an integer K(j)=K(ej) such that k>K(3) iﬂplies

P F/(x )-Fl ¢ x ) ] ]SEj/4
uniformly in x.

2565



Appendix A

Privacy preserving correspondences

Section Al. Privacy Preserving Correspondences

The assumption that a correspondence is
privacy preserving is a very strong condition,
independent of any continuity assumptions. It is the
set theory of privacy preserving correspondences that
we discuss in this appendix. One can find in the paper
[11] a discussion of message spaces and mechanisms that
realize differentiable functions. When mappings and
correspondences are not required to satisfy topological
conditions, some of the discussion becomes more
transparent. We begin by analyzing a simple example.

Suppose that a function F defined on the

product of two sets X; and X5, where each X; consists
of three elements, takes the values 0 and 1. Label the
points of the set X; as a,b,and ¢ and label the points
of the second set as e,f,and g. One can describe the
function F easily using a matrix M=M(F) of 0’s and 1's
with rows indexed by a,b, and ¢ and with columns
labelled e,f, and g. The (x,y)th entry in the matrix M
is the value of the function at the point (x,y)€X,xX,.

For example, the matrix M{(F)=
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a 1 1 0
b 1 1 1
c 0 1 1

represents a function F defined on X,xX,, where
F( a,f )=1, F( c,e )=0, etc. We then ask what
correspondence u from XxX, onto a set M is a privacy
preserving correspondence that can be used to realize

F. The definition of privacy preserving correspondence

(c.f. Def