Chapter V

Informational Efficiency of Mechanisms

An important motivation for developing the
(r,d)-network model of computing is to use it to
analyze the computational tasks carried out by economic
mechanisms. In particular we wish to study the
tradeoffs, if any, between the communications
requirements and the computational requirements of
achieving a given economic performance by a
decentralized mechanism. There are, of course many
different mechanisms and for each many computational
tasks that could be studied. A particular case is
that of a static decentralized mechanism that realizes
the Walrasian performance function. In Chapter VII we
apply the (r,d)-network model to analyze an example of
this kind, a two person two good exchange economy. 1In
this chapter we provide background for the analysis
carried out in Chapter VII, and define some concepts
needed in order to make the model applicable to that
and similar examples.

The general set-up studied is as follows. There
are n agents, 1,...,n. Each agent has environmental
characteristics denoted el; the set of possible
environments for agent i is El. The joint environment

e = (el,...,en), is by assumption an element of
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E = Elx...xEM. It is also assumed that agent i

initially knows his characteristic el, and that is all

he/she knows directly about the joint environment e.
Let A denote the space of joint actions or
outcomes. In the case of an exchange environment these
are trades or allocations. There is a function
F:E --> A which expresses the goals of economic
activity. 1In our example F( e ) is the (unique)
Walrasian trade when the environment is e€E.
We consider mechanisms
7=(@,M,h)
where
u:E-——>M
is a privacy preserving correspondence, called the

message correspondence, M is the message space of the

mechanism, and

h:M --> A
is a function with the property that h is constant on
the sets u( e ) for all e in E. The function h is the
outcome function of the mechanism. The mechanism 7
realizes F on E if for all e€E

h( u( e ) )=F( e ).

The message correspondence u is privacy preserving

if for each i=1,...,n, there exist correspondences
pl:El --> M

such that
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i e ) = ny ple el .
The requirement that u preserve privacy is that the
message of an agent can depend only on that agent’s
environmental component and on the messages received
from other agents.

Such a mechanism 7 can be given directly, or can
be regarded as the equilibrium form of a dynamic
message exchange process in which the agents exchange
messages taken from the space

M=Mlx...xM"
according to prescribed rules

fi:M X Ei——>Mi,

where,

i m( vy, ety = mi( tr1 )y,
for i=1,...,n and t=1,2,...,. The initial message
m{ O ) is given.
(Here privacy preserving is a property of the functions
£1,)

The stationary messages defined by this system of
difference equations are given by

0 = gi( m,ei ) = fi( m,ei ) - mi.
for all i=1,...,n.
We define
ul( el y=tmeM| gl( m,el )=0}.
We shall focus attention on mechanisms in

equilibrium form. Even abstracting from the dynamics
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of message exchange several different computational
tasks can be distinguished. One interpretation of
decentralized mechanisms in equilibrium form is the

verification scenario. In this scenario, a candidate

equilibrium message meéM is ’‘posted’, and seen by each
agent. Each agent i separately checks the message to
see whether it satisfies his equilibrium condition. If
it does, agent i says "Yes", if not, he says "No". If
all agents say "Yes" to a given message, then it is

verified to be an equilibrium message. That is, there

are individual verifier functions, V1, for i=1,...,n
, _ 1 if g*( m,el )=0
vi( m,et ) =
0 otherwise,
and a verification function
vV : {0, 1} -=> [0,1]
given by
V( x )=(1/n) T x*,
where
x1 =vi( met ), for i =1, ..., n, and
x=(x1, ..., xM.

The computational tasks involved in this are:
(i) to determine whether gi( m,ei y=0, for each
i, given m,
(ii) to evaluate V, and

(iii) to evaluate h.

Presumably the virs are computed by the individual
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agents, and the function V by some institution, perhaps
personified by an additional agent. In this scenario
the origin of the ‘posted’ message is not considered,
nor are the verifying messages, (the values of Vi)
counted in the message space.

Another interpretation is that each agent i
transmits the subset ui( el ) to a central institution
that finds the equilibrium, e.g., clears the market.
Finding equilibrium is most naturally addressed in a
dynamic setting, but since much of the research on
message space size has been done in the context of
equilibrium mechanisms, and since it is our objective
to illustrate the application of the (r,d)-network
model to mechanisms, it is not unnatural to begin by
studying tradeoffs between communication and
computational complexity in that setting. Thus, we
adopt the second interpretation of the equilibrium
model, one in which the equilibrium is computed from
the individual message correspondences. This may be
thought of as an iterative dynamic process that finds
the equilibrium in one step.

In this interpretation, the computational task is
to compute the set u( e ) from the sets Ei, and to
evaluate the outcome function h. If we are to model
this computation by (r,d)-networks, we must confront

the fact that inputs to such a network must be
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d-dimensional Euclidean vectors. In Chapter IV we have
given the definition of a network that computes an
encoded version of a function. The computational task
is then to compute an encoded version of the set

u( e ) and to compute an encoded version of the
function h.

Assumption 5.1.

The set M is a manifold of dimension p, and the
sets El are manifolds of dimension qi, so that E is a
manifold of dimension q = X qi.

The computation of the equilibrium
message correspondence and of the outcome function are
related. By changing coordinates in the message space
it is possible to shift the burden of computation
between them. We make the following simplifying
assumption on the mechanisms considered, in effect

combining these two tasks.

Assumption 5.2

(i) The message correspondence m is privacy
preserving and single valued.
(ii) There is a p, dimensional submanifold M,

of M, such that h is a projection onto M.

We restrict attention to mechanisms satisfying

Assumptions 5.1 and 5.2. Given a goal or performance
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standard F:E-->A, we may consider the class of
mechanisms that realize F. For each such mechanism
there are two indicators or measures of informational
requirements, namely, the dimension, m, of the message
space M of the mechanism, and the time, t, required to
compute the equilibrium message u( e ) in M. By
Assumption 5.2 the time to compute the outcome function
is already incorporated in the computation of u( e ).
Thus, each mechanism realizing F and satisfying
Assumptions 5.1 and 5.2 has assoclated to it a point,

(m,t), (with integer coordinates) in RZ. We may refer

to the set of points so defined as the informational
image of the set of mechanisms realizing F and
satisfying Assumptions 5.1 and 5.2. The efficient
frontier of this informational image describes the
available tradeoffs between communication and
computation in the realization of F. 1In Chapters VII
and VIII we apply the (r,d)-network model, with r=2 and
d=1, and with the modules reguired to be analytic, to
find the efficient frontier of the class of mechanisms
that realize the Walrasian performance standard on the
class of two person two good exchange environments

presented there.
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Chapter VI
Essential Revelation Mechanisms, Differentiably
Separable Functions and the Theorems of Leontief and

Abelson

In this chapter we discuss the relation
between a generalization, due to Abelson [1], of a
result of Leontief [15] and a type of mechanism called
an adequate revelation mechanism. Suppose that a
network computes an encoded version of a function G,
where the encoding of the range of G is given by
functions {hj:lsjst}. Suppose that S(i:;j) is an
LE-i-separator set for the jth output vertex of the

th

network where the j output vertex is associated to

the function hj. The concept of LE-i-separator set was
introduced in Chapter IV. When the spaces (Xi/hj-G)
are Hausdorff, around each point s in S(i:Jj) there is a
neighborhood Ug such that the restriction of g; to Ug
is a homeomorphism from Ug to a subspace V(US) of
(Xi/hj-G). If the spaces (Xi/hj-G) are manifolds, then
this gives an upper bound on the dimension of separator
sets. 1In the first section of this chapter we give
conditions on a real valued function F that guarantee

that if the quotient space (X;/F) is Hausdorff, then

(X4/F) has the structure of a topological manifold.
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The conditions are rank conditions on a submatrix of
the Hessian of F. These rank conditions are used by
Leontief [15] to study production functions and by
Abelson [{1] to study the minimum communication
requirements of a distributed computation. In the
second section we discuss the concept of adeguate
revelation mechanism and its relation to the (Xi/F).
When the spaces (Xi/F) are manifolds then, under
suitable global conditions, it is possible to
characterize the space (Xl/F)x...X(Xn/F) as a
"smallest" message space for a mechanism whose message
space is a product of individual messages spaces, one
space for each agent. More precisely, for each
mechanism whose message space is a product of

individual message spaces Mix...xM with a message

n
correspondence
ulx...xunlex...xXn-——>M1x...an,
there is a function gX...Xg,, such that gi-ui= d; -
where qy is the quotient map from X; to (Xy/F).
Loosely speaking, the quotient map 4; Squeezes out as

many variables as possible.

Section I.
The Theorems of Leontief and of Abelson
In this section we introduce the notation and

the results needed to explain the relation between a
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more general form of Leontief’s theorem and adequate
revelation mechanisms. A relation between these two
concepts involves the concept of differentiable
separability. Differentiable separability also plays
an important role in Chapter X, where we analyze the
relation between the Dimension Based Lower Bound on the
time required to compute an encoded version of a
function F and a bound on the time required for finite
networks to compute approximations to the function F.

Suppose that F( Xqpeee Xy ) is a function of N
variables. If a=(a(l),...,a(N)) is a sequence of
nonnegative integers, denote by |a| the sum
a(l)+...+a(N). If F has continuous partial derivatives
to order d>a, then dencte by

D(xla(l)....xNa(N):F)
the derivative

6|a|F/8xla(l)...axNa(N).

Suppose that El,...,En, are Euclidean spaces of
dimensions d(1),...,d(n), respectively. We suppose
that the space Ei, 1<i<n has coordinates
Xi= X s 0Xy§ d(i)}' Assume that (pl,...,pn) is a
point of Elx...xEn, and assume that Uj is an open
neighborhood of the point p; for 1<i<n. Suppose that F
is a real valued C2-function defined on U;x...xU0,. We

introduce two matrices in (I) and {II), below.
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(I): The matrix

BH(F:Xi l,...,Xi d(i):xl 1,...,Xi_l d(i—l)’
'Xig1 1700 %n d(n))7
BH(F:xi:x<_i>)

is a matrix that has rows indexed by

Xi 1r-0%1 d4(i)
and columns indexed by

FuXq qreeorX¥io) @(i-1)%i+1 177" *n d(n)"
The entry in the X u)th row and in the F column is
D(x

:F)=6F/axi The entry in row x; and in

iu u’
column Xj w 1S
ey 2
D(Xi u Xj w:F)—a F/aXi u an w*

The matrix BH(F:xi;x<_i>) is a type of bordered
Hessian because it consists of a matrix of second
derivatives bordered by collection of columns of first
derivatives.

(II):

The matrix

H(F:xi:x<_i>)
is the submatrix of BH(F:xi:x<_i>) that consists of the

ceolumns indexed by x ue{l,...,i-1,i+1,...,n} and

u v’
1<v<d(u). In other words, we derive H from BH by
eliminating the column indexed by the function F.

In case that the number of FEuclidean spaces is

two, so that F:El x EZ --->R, we use a slightly less
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cumbersome notation. Suppose that E! has coordinates

{xl,...,x } and E? has coordinates {yl,...,yq}, then we

P
use as row indices for BH(F:xl,...,xp:ylf...,yq) the
variables X110 ¥g and as column indices F, Yyre-o1¥ge
The (xi,F)th entry 1in BH(F:xl,..,xp;yl,...,yq) is

aF/aXi=D(Xi;F)
th :
and the (xi,yﬁ) entry 1s

D(Xi

yj:F)=62/8xi ayj.

The matrices BH(F:xi;x<_i>) and H(F:xi;x<_i>) are
matrices of functions in the coordinates X, ,...,Xp of
Elx...xED. The conditions we place on the matrices BH
and H require that some, but not all, of the variables
are to be evaluated at a point. When that partial
evaluation takes place we indicate this by adding an
asterisk to the H or BH. Specifically,

(II1): The matrix

BH*(F:x;iXo_35)0 X3/ Peoi> |
is the matrix that results from evaluating the
variables

Xq e Xjo10¥4477 %
of the entries of BH(F:xi;x<_i>)
at the point p<—i>=(p1'""pi—l'pi+1""'pn)'

The matrix BH*(F:xi,x<_i>)[ Xj:Pei> ] is a function of
the variables %j q,...,%j a(i) alone. Similarly, the

matrix

H*(F:xi;x<_i>)[ Xirp<_i> ]
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is the submatrix of BH*(F:xi;x<_i>)[ Xi1Pcoi> | derived
by deleting the column indexed by F.

If a continuous (r,1)-network can compute a
function F( Xy ,...,Xpi¥y,+-+:¥p ) in two units of time
then, as we have seen in Chapter III, the function F
can be written as a superposition C(A,B) where each of
A and B is a function of at most r variables. Lemna
6.1 establishes a criterion to decide if F can be
computed by an (r,1l)-network when F is sufficiently
differentiable. The criterion is given in terms of the

matrix BH(F:x:y).

Lemma 6.1. Suppose that

(1) F( Yy reee e ¥piXgreo-1Xy )=
C( Yi r---:¥p :Al,...,Ar Y.
where C is a function of m+r variables with
continuous ath gerivatives a2,

(ii) each Ay is a function of n variables
{xj:lsjsn} that has continuous ath

derivatives.

Then, BH(F:x:y) has rank less than or equal to r.
Proof. The Chain Rule shows that
D(xi:F)=Zk D(Ak;C) D(xi;Ak),

and therefore
D(xiyj;F)=2 X D(Akyj:c)D(xi:Ak).

The matrix BH is the product of the matrix
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( D(Aij

;C) ), which has at most r linearly independent

columns, and the matrix ( D(xi;Ak) ). Therefore, BH

has rank at most r.#

More generally the following statement is easy to

prove.

Theorem 6.1. Suppose that F is a function of N=

d(1)+...+d(r) real variables

X) qrees

P X1 (1) X2 1o ¥p 1o Xe A

where d(i)=1 for each 1<£i<r.

(1)

Denote by TBH; (E:x{ix ) the infinite

<=1>
matrix that has rows indexed by the variables
Xi 1 ,..-,Xi d(i)’

and columns indexed by F and the

moncmials
X, la(l l)"'xj—l d(i—l)a(i-l) d(i_l))xi+lla(i+ll)"'
er(r)oz(rd(r))

(that is, the exponents are

a(l 1),...,a(r d(r)) with

a(j,k)=0, 1<k=d(3]) ),

such that D(xj k;F) is in the (%3 k,F)th

(2)

position and D(x;

i kM;F) is the entry in the

position with row index x; ; and column
index the monomial M,

If x* is an N dimensional vector of real
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Then

functions

numbers, denote by TBHi(F)*( x* ) the
matrix TBH; (F) with each entry evaluated at
the vector x*.

a necessary condition that there are

Ay (%) 0040 %1 q(1) )
""Ar( Xp g7 1%y d(r) )
and

CU Yyreen oYy )y

where

(a) each Aj is defined in
a neighborhood U of x%*,

(b) € is defined in a neighborhood V of
(Al( X * ),...,Ar( x* )) that
contains the set

(A X ),...,Ar( x )), for xeU, and

1 (

is such that

F( x )=C( Ap( X ), eenrBp( X)),

is that for each 1<i<r, the rank of TBHi(F)*(x*) is at

most one.

In [1], Abelson states a generalization of the

theorem of Leontief [15] that is the converse of Lemma

6.1. A proof of the assertion of Leontief and the of

the generalization due to Abelson can be found in

Appendix B.

101



Theorem 6.2.(Leontief and Abelson). Suppose that

F( x,y ) is a Ck+1—function, k>1, in the variables

x=(xl,...

(1)

(i1)

Ixm) and (yl!"‘fyD)'

A necessary condition that there exist
functions &( u,v ), A( x ), and B( y ) such
that

F( %,y )=¢( A( x },B( ¥y ) )
is that the matrices BH(F:x;y) and BH(F:y:Xx)
each have rank at most one.
If for some 1<j<m and some 1<k<n, and some
point (xXg,¥p)€X x ¥
D(xj;F( X,¥Yq 1) =#0
and
D(yiF( X,y ))*0 ,
then the matrix rank conditions of (i) are
also sufficient for the existence of
ck-functions &, A, and B satisfying the
relation F=#( A,B ) in a neighborhood of
(Xg:¥g) -

Section II

Differentiable Separability

Lemma 4.1 can be used to characterize a special

type of mechanism in which the message spaces are

products.

The most elementary form of a mechanism in

which each agent has his own message space is one in

which each agent reveals his parameters. A mechanism
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of this kind allows for the possibility that not all
the individuals parameters are revealed. Because these
mechanisms have message spaces that are not of minimum
dimension, they are not interesting for the study of
communication. They do play a significant role in
establishing lower bounds for computation time. We

give the following definition.

Definition 6.1. Suppose that X; ,1<i<n, and Z are

sets and suppose that F:Xlx...xxn——->z is a function.

An adequate revelation mechanism realizing F is a

triple (glx...xgn,Mlx...an,h) that consists of:

(i) a product of sets Mlx...an,
(ii) a collection of functions gi:Xi———>Mi,
1<i<n,

(iii) a function h:Mlx...an-—->Z ,
such that for each (yl,...,yn)exlx...xxn,

F( Yyrev-r¥qy )=00 970 ¥y YVseeees9nl Yp ) ).

Using the notation of Chapter 1V, Lemma 4.1, the
triple (qlx...an,(xl/F)x...X(Xn/F),F*) is an adequate

revelation mechanism called the essential revelation

mechanism.
In case that (glx...xgn,Mlx...an,h) is an
adequate revelation mechanism, then M X. . XM is an

adequate revelation message space. The map g;X...Xdp
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is the message function of the adequate revelation
mechanism.

The following theorem is a restatement of Lemma
4.1 in terms of adequate revelation mechanisms. It
establishes the sense in which the essential revelation
mechanism is the smallest adequate revelation

mechanism.

Theorem 6.3. Suppose that X, ,1<i<n, and Z are

nonempty sets and suppose that F:Xlx...xxn—-—->z is a
function.
(1) The triple
(qlx...an,(Xl/F)x...X(Xn/F),F*)
is an adequate revelation mechanism that
realizes F.
(ii) The message function for any other adequate
revelation mechanism factors through
(X, /F)X...X(X,/F) .
(iii) The set (Xl/F)x...x(Xn/F) is the smallest
set in cardinality that can be used as an
adequate revelation message space for a
mechanism that realizes F.
(iv) Finally, the essential revelation mechanism
is the unique adequate revelation mechanism
through which factor all adequate revelation

mechanisms that realize F.
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Section III

As we remarked in the introduction to this
chapter, when the sets (Xi/F) are Hausdorff there are
conditions that make (X;/F) into topological manifolds,
i.e. c9-manifolds. In general (X;/F) is not such a
manifold. When (X;/F) is a topological manifold, the
essential revelation mechanism can be used to establish
a lower bound for computation time. In this section we
introduce the concept of differentiable separability
and explore some of its consequences. When
differentiable separability can be established it is
possible to place simple global conditions on a
function F to ensure that the essential revelation
mechanism can be given a topological structure in which
the sets (Xi/F) are topclogical manifolds. 1In order
that (Xi/F) have the appropriate topological structure
we start with a function defined on a differentiable
manifold. Therefore, we give some concepts from

differential geometry (c.f.[71).

Definition 6.2. Let X and Y be differentiable

manifolds. Let #:X--->Y be a differentiable mapping.
If at a point peX the mapping ¢ has maximum rank, and
if dim X>dim Y, then & is said to be a submersion at p.
If & is a submersion at each point of X, then ¢ is a

submersion.
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If a map g:X--->Y is a submersion, then it is
known(c.f. [7, p-21) that the map can be linearized
(rectified). That is, if dim(X)=n, dim Y=m, and if
peX, we can choose coordinates Xqreoe ¥y at p in a
neighborhood U of p, and coordinates yq,.-.-,¥q: in a

neighborhood of g(p) so that for each gq € U,

gl g I1=(x1( g ),---rXgCa )

Definition 6.3. Suppose that X;,...,X, are
differentiable manifolds, where for each 1<i<n, X; has
dimension d(i). Suppose that p;€X;, 1<i<n and suppose
that for each i,

©ij 10---+%i da(i)
ie a coordinate system in an open neighborhood Uj; of
Py - Suppose that F:Hln Xi-——>R is a c2-function.
Assume that for 1<i<n, wi=H@i j maps Uj into an open
neighborhood V; of the origin 0; of a Euclidean space
Ei=Rd(i] and that ¢; carries p; to 0. We assume that

i : .
E* has coordinates X; q1,----:Xj g(i)"* The function F

is said to be differentiably separable of rank

L;l,....rni at the point Lpl,...,pn] in the coordinate

system ©1 q.....9p a(n) if for each 1<i<n, the matrices

BH(F'( H(pt )-.1:Xi l,..-,Xi d(l) 7X<_i>)
and
H*(Fo( H(pt )—l:Xi 1,...,Xi d(i);x<—i>)[ Xi,0<_i> ]

have rank rj in a neighborhood of (Ol,...,on). If F is
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differentiably separable of rank (rl,...,rn) at
(pl,...,pn), and if ri=dim Xy for each 1<i<n, then we

will say that F is differentiably separable_at

(DyaeeeaBp)

The following lemma notes that the ranks of the
Hessians used in the previous definition are unchanged
by coordinate changes. The proof is a simple

computation.

Lemma 6.2. Suppose that for 1<i<n, Xy and Y; are
c2-manifolds and suppose that hy:Y -—-->Xy is a
c?-diffeomorphism. Assume that g:HlnYi———>R and
F:[],"X,--->R are c? -functions such that g=[fh;F.
Suppose that (ql,...,qn)GHYi and let h;( gq; )=(pj)-:

If F is differentiably separable of rank (rl,...,rn) at

(pl,...,pn), then g is differentiably separable of rank

(ry,-+-,Tp) at (dy,---/dp) -
We can now define the term differentiably
separable for a function defined on a differentiable

manifold.

Definition 6.4. If Xi,lsisn, are C?-manifolds, the

function F:Xlx...xxn——->R igs differentiably separable

of rank (ry,..., r) at the point (Dl,....pn_l if there

is a coordinate system {¢,4 i } at the point (pl,...,pn)
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such that F is differentiably separable of rank

(rl,...,rn) at the point (pl,...,pn) in the coordinate

system @, 1,.--,9p a(n)*

If F:Xyx...xX ——->R is differentiably separable of
rank (r(l),...,r(n)) at a point (pl,...,pn), then it is
possible to write F as a function of variables
{yl gre-1¥Yy r(l)""yn 1re=-1¥n r(n)}' This
assertion, Lemma 6.3, 1is a restatement of Theorem B.4.

The proof of Theorem B.4 can be found in Appendix B

together with an example of the construction.

Lemma 6.3. Suppose that for 1<i<n, X5 is a
ck+tl_panifold, k>2. Assune,

(1) F:Xlx...xxn———>R is a ck*tl-function,

(ii) (pl,...,pn) is a point on Xlx...xXn.

A necessary condition that F can be written in the
form

GO ¥y pre--s-¥1 r(1)r - " ¥n 1700 ¥n r(n) )
where {y; 1/---:Y§ d(i)} is a coordinate system on Xy,
is that F is differentiably separable at (pl,...,pn) of
rank (s(l1),...,s(n)) where for each 1<j<n, s(3)<r(3).

Conditions (i) and (1i) are also sufficient for F
to be written in the form

G( yq 17-++0-¥1 r(l)l"“IYn 1r-+++¥n r(n) )

for a cK-function G in a neighborhood of a point
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(pl,...,pn), if F is differentiably separable of rank

exactly (r(l),...,r(n)) at (pl,...,pn).

Lemma 6.3 suggests that in the case of a
differentiable function F satisfying the rank
conditions stated in the lemma, it is possible to
construct an essential revelation mechanism whose
message space is a topological manifold. We now carry
out the construction suggested by the lemma. The main

result is given in Theorem 6.5 and in Corollary 6.5.1.

Definition 6.5. Suppose that X;, 1<i<n and Z are
cX-manifolds and suppose that F:Xlx...xxn———>z is a

differentiable function. The triple

(gl,...,gn,Mlx...an,h)
that consists of spaces Mlx...an, maps gqs---:9n:
gj:X{———>M; ,1<i<n, and function h:Mlx...an———>Z is

an adegquate cKk—revelation mechanism that realizes F if;

(1) each of the spaces M; is a ck-manifold,

(ii) each of the functions g; ,1<i<n, and h is a
cKk_qifferentiable function,

(iii) each gj, 1<i<n, has a local thread at each

point of M.

Definition 6.6. Suppose that F:Xlx...xxn—-—>Z is

a differentiable map from a product of differentiable
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manifolds Xl,...,Xn to a differentiable manifold Y.

The function F_factors through a product

of manifolds le...xzn if there are submersions

gy :X;===>2, and a differentiable mapping
h:Zix...x2,--—>Y such that the diagram in Figure 6.1

commutes.

F
X: Xo..X X ———=> ¥
1 -
| " /
|9y lo, / b
1 1 /
Zl X...X Zn

Figure 6.1.

It has not been established that the essential
revelation mechanism is an adequate cKk-revelation
mechanism, because the construction given in Theorem
6.3 ignores all topological and differentiable
structure. The topological structure required on the

spaces (X;/F) is inherited from separator sets for F.
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We begin the discussion of the topological properties
of essential revelation mechanisms by studying
separator sets in a special case.6)

If F:Xlx...xXn———->R is a differentiably separable
function, then the function F has X; itself as a
separator set in X;. The proof follows as a corollary
to the following result. In this theorem, and the
corollary that follows, the function F is assumed to be

differentiably separable at every point in an open set

le...xUn in Xlx...xxn.

Theorem 6.4. Suppose that X, 1<i<n, is a
Euclidean space of dimension d(i)zl. Suppose that for
each 1<i<N, U; is an open neighborhood of the origin 0;
of X; and suppose that F is a C>-function
differentiably separable at each point
(pl,...,pn)Ele...xUn. There is an open neighborhood U
of p; such that for each pair of points x and x’ in U,
x#x’, then there is a point weU__;, such that
F( x,w )=F( x’,w }.

Proof. The matrix H(F:x,y)[ 0,0 ] has rank d(i),

by assumption. Set X=X,, set X _i>=Y, set dim(X__

6) In the case that F is a function from a product
X;x...xX, to a manifold Y, then the study of essent@al
revelation mechanisms requires a more elaborate notation
and a slightly more general version of Lemma 6.3. The
more general version of Lemma 6.3 is given 1in Theorem
B.4.
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i>):N, and set m=d(i). We can change coordinates in X
and Y separately to coordinates z in X and w in Y so
that the new matrix H{F:z:;w)[ 0,0 ] has a 1 in the zy X
W position, 1<j<m, and zero in all the other
positions.
The Taylor series expansion for
F( 2Zy,eeeiZpqrWyse-- Wy ) then has the form

F( z,w )=

F( 0,0 )+u-z+v’-w+w-z+zTQz+wTQ’w+P( z*,wx Y[ z,w ]
where Q0 and Q' are square matrices, u and v’ are
vectors in R™ and RN respectively, v’-w denotes inner
preduct, zT denotes the transpose of the column vector
z, and where P( z*,w* )[ z,w ] is a cubic polynomial in
the variables (zl,...,zm,wl,...,wN) with coefficients
that are continuous functions on U x V evaluated at
some point z*eU and w*ecV. These coefficients are
bounded on a ball that is a compact neighborhood of
(0,0) € U/ x V/, U'cU and V'cV. Then for z,z’ €U’ and
wev’,

|F( z,w )-F( z',w )|=

|u.(z—z')+w.(z-z’)+zTQz-z’TQz' +

P( z'*,w'* Y[ z’,w 1+P( z*,w* )[ z,w ]]|.
The vector (z-z’)=#0 and the w is to be chosen in the
set V’. Set z’TQz'-zTQz=K, set u.v=L, and set (z-z')=V.
To ccomplete the proof, it will suffice to show that the

function
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Wev+P( zf*,w'*x Y[ z’,w ]+P( z*,w* )[ z,W 1+K+L
is not constant on the ball V’. For this it will
suffice to show that the function

O=w.v+P( 2z'*,w'* )[ z’/,w ]+P( z2*,w*x )[ 2,wWw ]
is not constant on the ball V’. The function

P( z’/*,w’* )] 27, w J+P( z* ,w*x )[ 2,W ]
is a homogeneous cubic Z a, p z% wP in the variables
Wygees Wy with coefficients

{a, gl z,2",w,w’ ))
that are functions bounded on U’ x V’.

Set w=tv. The powers of the constants Zireeer2p
can be combined with the coefficients
a, p and therefore

o=t|v|? +a( t ) t3,
where the a(t) is also bounded as a function of t.

If a(t)=0 identically in t, then because v=0,
different values of t produce different values of Q.

If a(t)#0, and

ivl2 +a( t )t?=c (a constant),
then

a( t )=(c-|v|?)/t?,
and therefore a(t) is not bounded as t approaches O.

Therefore Q is not a constant.%

We now give conditions on a function F that is

so that

differentiably separable of rank (rl,...,rn),
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the sets (Xi/F), with the quotient topology, have the
structure of a cP-manifold of dimension r;. Under
these conditions the set theoretic essential revelation
mechanism is a topological essential revelation
mechanism.

Definition 6.7. If X 1<i<n, are topological

ir
spaces, then a real valued function

F:Xlx....x Xn -—=->R

induces strong equivalence on X;, if the following

condition is satisfied for each x ,x'€Xy, such that
x#X";
(i) if there is an open neighborhood U of a point
ge€X _;-, such that F{ xjiu y=F{( x’jiu )y for

each ueU, then F( xjiz Y=F( x’fiz ) for all

<=1i>"

It is relatively easy to find classes of functions
that induce strong eguivalence. Suppose the X, are
Euclidean spaces with coordinates xj g 1<ign,
1<j<d(i). If for each 1<i<n, B(1)=(B(i 1),...,B(1
d(i))) is a sequence of nonnegative integers, denote by

xiB(i) the monomial

¥

B(1 1)
11

B(i dfi
ce X5 a(i) (i da(1)),

and denote by
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.x. B(n)

B(1}
L ST

the product of the monomials xiB(i). Write

F( Xq,..-,%y )=

B(2) B(n)
ZB(1),...,5(n) Bar1y...e(n) ¢ X1 ) %2 ( oo Xp '
where the AB( Xq ) are polynomials in Xq - Then for x,,
x’; in Xy,

F( Xq,Xeqs )SF0 X7, % g5 )

for x in an open set in X__;., if and only if

<=1>
z [agl x; )-apgl x7y )1x,B(2) L x BN =0

for the x,,...,x, chosen arbitrarily in an open set in

n
X,%...XX, . However, a polynomial vanishes in an open
set if and only if each of its coefficients is zero.
Therefore if

F( %) Xeogs I7F0 %70 %X g5 )
for the x__,, chosen in some open set, it follows that
for each B,

Ap( xq )-Ag( x'; )=0.

That is, F induces a strong eguivalence relation on X,.

Theorem 6.5. Suppose that X, 1<i<n are c4
manifolds of dimensions d(l),...,d(n), respectively.
Suppose that F:X;x...xXX =--=>R is a ¢? function that is
differentiably separable on X;x...xX, of rank
(r(1),...,r(n)) where each ri21. Assume that F induces
strong equivalence in X; for each i. If

(i) the spaces (X;/F) are all Hausdorff,
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(ii1) quotient map qjiXy—=-- >(X;/F) is open for
each 1£i<n,
then, for each 1<£i<n, the space (Xi/F) (with quotient
topology) is a topological manifold (i.e. a

Co—manifold). Furthermore, the quotient map

has a local thread in the neighborhood of each point.

Proof. Suppose that pi*e(xi/F), 1<i<n. Choose a
point p;€X;, 1l<i<n, such that g;( p; )=p;*. Because
the function F is differentiably separable of rank
(r(l1),...,r(n)) at the point (Pyre--sPp)s it follows
from Lemma 6.3 that for 1<i<n, there is an open

neighborhood U; of p__;, in X a coordinate system

<=ix>1
Xi=(xi l,---.,Xi d(i)) in Xi such that
Xi( j<f )=(0,...,0) and a c3-function G defined in a

neighborhood of the origin, such that

FO X),0ee, Xy )=G( (%5 1 reev Xy r(i))Jiz )

for each z€U_ _{.-
Denote by S*; the set of elements

(X4 qreeerXy r(i),o, .,0) that lie in Uj . Choose in
S*, a compact neighborhood S; of (0,...,0) (in the
induced topology on S*,.) The map gj carries the set
U; to an open set of (Xi/F) because we have assumed
that qj is an open map. We have assumed that the

equivalence relation induced on X__ by F is strong,

i>

therefore the equality
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FO X3 1r---0% p(i)P1eeePaciy-r(i) 321> 07

F( Xy 7000 0%§ r(i),o,...,o)jiz<_i> )
implies that

(%5 qreeeeXgaei) 07950 X4 are e ¥i r(d) )
for each (X jp/s---,%§ d(i)) in U; - Therefore,

gi( U; )=aq;( S*; ).

The set S*; was constructed so that qj is
cne-to-one on S*,. By assumption, the space (Xi/F) is
Hausdorff, therefore the restriction of g; to S is a
homeomorphism from S; to a neighborhood Ny of p*;.
Denote by s; the inverse of qj in N, . It follows that
the point p*.€X; has a neighborhood N; that is
homeomorphic to a neighborhood of the origin of the
space Rr(i). Furthermore, the function sj is a thread
of g; on the set N; &

The following corollary states that the essential
revelation mechanism is a cV-essential revelation
mechanism. In this case, under the assumptions placed
on F, each C0~adequate revelation mechanism factors

through the cO-essential revelation mechanism.

Corollary 6.5.1. Suppose that X;, 1<i<n are

c4-manifolds and that X; has dimension d(i). Assume
that F:Xlx...xxn———->R is a real valued function on F
that satisfies the following conditions:

(i) there are integers (r(1),...,r(n)),

117



(ii)

1<r(i)<d(i), such that at each point
(Ppre«-sPp)€ X Xo. XXy, F is differentiably
separable of rank (r(l),...,r(n)),

for each i, the map qi:Xi———>(Xi/F) is open

and (Xi/F) is Hausdorff,

(iii) for each i, F induces a strong equivalence

relation on Xi.

Then the triple

{qlx' . ‘anl (Xl/F)X’ - 'X(Xn/F) IF*)

where;

(1) each (X;/F) is given the guotient topology,

(2) the maps qi:Xi—-—>(Xi/F) is the guotient map,

(3)

F*:(Xl/F)x...x(Xn/F)———>R is the function

such that

F*( gp( X9 )y.-.,9u0 X4 ) )=

F( Xppeee Xy )

for each (xl,...,xn)exlx...xxn,

is an adequate cO-revelation mechanism that realizes F.

The space (Xi/F) has dimension r(i). Furthermore, if

triple

(glx...xgn,zlx...xzn,G)

is such that

gi:Xi———>Zi,

G:le...xZn———>R,

a

and the triple is an adequate revelation mechanism that

realizes F, then there are continuous maps
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g*i:Zi———>(Xi/F)

such that the diagram in Figure 6.2 commutes.
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{
Xl qn/ ¥
gn

(X1 /F}x ... x Xp/F) —?—R

F
Y 8% g;\

Z L,

o

Figure 6.2
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Proof. We have already shown in Thecorem 6.5 that
the triple (qlx...an,(Xl/F)x...x(Xn/F),F*), is an
adequate revelation mechanism that realizes F. Suppose
that z*iGZi. Denote

(gl( w )!"'!gi_l( w )rgi+l( w )I"'Ign( w ))
by g<_i>( w ), for each weX__j.- Choose an element
x*; €X4 such that

gyl X*y )=z*;.

Suppose that x’ xX*;€Xy, such that

1!
g;( x*; )=g( x74 )=z%, .

Then for each wWeX_ _;..
F( X*ijiw )=G( gy x*; )] Femisl W) )=
G gyl x'5 ) 9eojsl W) )=
F( x/;f;w ).

Therefore
q;{ x*y )=q;( x'; ).
Set
gx ( 2z%; )=gi( xX*; ).
Because the map g;:X;-——>Z4 has a thread in the
neighborhood of each point, there is a neighborhood N
of the point 2z*; and a thread sj:N--->X; such that
gy sy z* ) )=g;( z* )
for each z*¢N.
Then
g*;( z* )=q;( s;( z* ) ).
Because both a4 and s; are continuous, it folle - that
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the map g*; is continuous.§

Theorem 6.5 and Corollary 6.5.1 immediately give a
lower bound on the time required for the computation of
a C3-function that is differentiably separable. Each
(Xi/F) in the cP-essential revelation mechanism has
dimension r;. If pe(X;/F) there is a local thread, s,
from (X;/F) into Xy defined on a neighborhood of p. If
U; is a compact neighborhood of p on which s is
defined, then the image of U; under s is a locally
Euclidean subspace of X that is a separator set of F
in X;. The image of U; has the same dimension as Uj.
Therefore, the minimum time required to compute an
encoded version of F is, by the Dimension Based Lower
Bound Theorem, X r;.

When F satisfies the conditions given in the
statement of Corollary 6.5.1, ry is the largest
dimension of locally Euclidean separator sets in X;.
Indeed, if S is a separator set in X;, and if p is a
point in S, then the quotient map g; carries S into Xj.
Suppose that gq;( p )=p*. The map q; is one-to-one on
S, because S is a separator set. Assume that U is a
compact neighborhocd of p. If U* is the image under qj
of U in (Xi/F), then the subspace U* is Hausdorff

because (Xi/F) is assumed to be Hausdorff. Therefore

the restriction of g; to U is a homeomorphism. But U*
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is a subspace of a topological space of dimension r;.
therefore U* has dimension at most r; (c.f. [107,
Thecrem III.1 p. 26). It is also clear that if F
satisfies the conditions of Corollary 6.4.1, and if the
adequate revelation mechanism

(gl,...,gn,le...xZn,h),
where

gi:X{--->Z; ,1<i<n,
and

h:le...xZn———>R,
realizes F, then the minimum computing time required
for h is at least = r;. This follows from the fact
that the map h must factor through (Xl/F)x...x(Xn/F)
where the factorization is given by maps

hi:Zi———>(Xi/F)

(c.f. Figure 6.2) and the fact that the maps h, are
locally threaded.

The dimension of the message space of the
essential revelation mechanism is also an upper bound
on the dimension of the minimal message space, but it
is not as good as the bound given by parameter
transfer. The dimension of the essential revelation
mechanism, when the essential revelation mechanism

exists, is best viewed as a lower bound on computation.
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Chapter VII
Computational Complexity of an Edgeworth Box
Economy with a

Walrasian Performance Standard

In this chapter we study the efficient frontier,
introduced in Chapter Vv, for a particular performance
function. We consider the case of two agents, each
with a two dimensional parameter space (environment)
with, say, coordinates (x,2) for agent 1 and {(x’',2’)

for agent 2. The (real-valued) performance function is

given by

of x,z,%x" 2" )=(z-2")/(x-x")7)

7) The performance standard o( x,z,x',2" )=
(z-2')/(x-x") is a Walrasian one for the case of two
agents trading two goods. Let (Y,Z) denote the heldings
of the two goods. We assume utilities to be
guadratic in Y and linear in 2. The initial endowments
of the two goods are

i i L
wWE X)) and w (Y)* i=1,2
ul( x,z )=atyl + 1/2 pl(ylye + zt i=1, 2
yi =yl - wi(Y) = net trade of ith agent:
yl + y2 =0.
Equilibrium conditions:
1 - il i i1 i 2 i
= + + +
u a-(y- + W (Y)) 1/2 B (y w (Y)) -,
i=1, 2,

dui = ozfL + Bi(yi + wi(Y))=p (the price) , i=1, 2

dyi

124



In Section I, we ask how long it takes to
compute the equilibrium message u( x,z,x"',z* ) of a
privacy preserving mechanism realizing Q at an

arbitrary parameter point (x,z,x’,z’) using an analytic

(2,1)-network? The gquestion arises from the

interpretation of a decentralized mechanism in

Let
yt=y, y2= -y
al + Bl(y + WZ(Y))=p
a? + B2(-y + Wl y))=p
Let

yi = ol + pl wi(Y) i=1, 2.

Then the equilibrium conditions are written

vt + Bly=p
v? - By=p.
Let
(x,2)=(-81,yH)
(x',2')=(82,y2).
Then
z=-xy=2'-x"y
or

y=(z-2')/(x-x"),
which is our performance standard. Hurwicz presented
essentially the same derivation of this performance
standard, except for changes in sign, in [11].
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equilibrium form as a one step iterative process in
which the outcome function is assumed to be a
projection (c.f. Assumption 5.2 in chapter 5 and the
discussion that precedes it.) 1In Section I, no
coordinate changes are allowed either in the message
space or in the agents’ parameter spaces. This
restriction makes the analysis of the computation
particularly easy. In Section III, we use the results
of Section I to analyze the efficient frontier for the
function Q.

In Section II of this chapter we suppose that each
agent may independently make a real linear
transformation of his parameter space corresponding to
different encodings of his parameters. As we have seen
in Section III of Chapter 1V, computation time may well
depend on the particular coordinate systems used in
each of the three spaces involved in the problen,
namely, the parameter spaces of the agents and the
message space. But these coordinate systems are not
necessarily intrinsic. In the case of the message
space, the designer of the mechanism is free to specify
the coordinate system. In the case of the parameter
space of an agent, the agent’s perception or experience
of his environment e.g., his preferences, is presumably
what is intrinsic. The particular choice of

coordinates is an artifact of modelling. Therefore, we
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introduce into the problem the possibility of different
coordinate systems separately in each space. In this
chapter we also consider coordinate changes in the
message space that are linear. In Chapter VIII we
consider coordinate changes in the agents’ parameter
spaces and in the message space that are real analytic
transformations.
Section I.
Complexity of Computing the Walrasian Equilibrium

In this section we study the mechanism that has as

its message correspondence

u( x,z,x",2" y=( z=2’ , Xz'-x'z ).
X=X’ Xx-x'

it is clear that the computation of u

can be done in three units of time by analytic
(2.1)-networks. Namely, the network shown in Figure
7.1 computes Q in 2 units of time, while the network

shown in Figure 7.2 computes P in 3 units of time.
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Figure 7.2
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So, the question of the time required to compute u
is reduced to whether there is a (2,1)-network N that
computes u in two units of time, allowing for linear
coordinate transformations of the message space and the
two parameter spaces. Such a network N would be
of the form displayed in Figure 7.3, where A, B, C, D,
E, and F are real analytic functions and x, y, z, and w

are real variables.

130



Figure 7.3
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Theorem 6.1 in Chapter VI states necessary
conditions that an analytic function F( x,y,z,w )} can
be written in the form

F( x,y,z,w Y=C( A( x,y ),B( z,wW ) ).

We use those conditions to prove that no (2,1)-network
with real analytic modules can compute both components

of u in two units of time.

Notation. If T=(fij( XpreeorXp )) is a matrix of
functions of the real variables (xl,...,xn), and if
az(al,...,an) is an n-tuple of real numbers, then T(a)

denotes the matrix with entries (fij( a ).

Theorem 7.1 states that the time required to
compute an encoded version of the message
u( x,z,x*,2’ ) is at least 3 units of time. Definition
4.3 of Chapter IV, defines the concept of a network
computing an encoded version of a function
F:Xlx...xxn—-—>Y. In Theorem 7.1, Xl:X2=R2, and
Y=M=R2. We suppose that the encoding functions for the
network are

gl:r2--->r2, i-1, 2,
where each gi is the identity function. We suppose
that M is encoded by functions

(kq . ky) :RZ-=->R?,
where

1 1

2y _
kl(m , M<Y=m
and
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kz(ml,m2)=m2.

Theorem 7.1. Suppose that X, and X, are
Euclidean spaces of dimension 2 with coordinates (x,2)
and (x’,z'), respectively. Suppose that Q is the

performance function

o( x,z,x’",z" )=(z-2") .
(x-x")
Suppose that

P( %x,2,x’,z!' )=(x2'-x'2),

(x-x")
suppose that M is the Euclidean space R? with

coerdinates ml, mz, and suppose that h is the

projectionB)
h( ml,m2 )=ml.
Assume that Q is realized by a mechanism (4,M,h) where
u( x,z,x’,z' }=(Q,P).
if N is an analytic (2,1)-network that computes an
encoded version of u, where the encodings gl:Xl———>R2
and g2:X2———>R2 are the identity functions, then
network N requires 3 units of time for the computation.
Proof. A coordinate change in the X, that is a
translation does not effect computing time. Indeed,
suppose that the original network computes a function
in time t, and that the computation is represented by a

directed graph that is a tree. Suppose a pair of input

vertices have associated variables r and s, and these

8) see Assumption 5.2, Chapter V.
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variables are connected by edges e; and e,.
respectively, to a module g( eq,€, y. If the variables
r and s are translated to r’=r+a and s’=gs+pb, then we
construct a new network, using the same tree as the
original, and replace the module g( e;,e, } by the
module G( eq,e, Y=g( el—a,ez—b y. If all the modules
in the tree other than those connected to input
vertices are unchanged, the new network computes the
same function as the original network and the new
network carries out the computation in the same time as
the original using the translated coordinates.

Without loss of generality we use the
coordinates R=x-1, T=x’+1, S=z, and U=z’. In these
coordinates

Q= (S=U)
(2+R-T)

and

P=(S+U+RU-ST)
{2+R-T)

The network in Figure 7.1 computes Q in time 2 and the
network in Figure 7.4 computes Q in time 2 using the

inputs R, S, T, and U.
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In order for a network to compute P in time 2, we must
be able to write

P( R,S,T,U )=C’( A’( S,T ),B’( R,U) )
or

P( R,S,T,U )=C"( A"( R,T ),B"( S,U ) ),

where A, A", B’, B", C’, C" are real analytic functions

in the neighborhood of the origin of R, Theorem 6.1

states that in order for A‘, B’, and C’' to exist the

matrix
W,(0,0)= ! ) a%p 3%p_ |(0,0)
| 3s 9RIS 3sdu
‘ aP a°p 3°p
oT GRAT auar |

must have rank at most 1.
But

P=( S+U+RU-TS) ( Ejzow(-l)j(l/2)j+1(T—R)j)=

(1/2)[(S+U+RU—TS)+(S+U)(T—R)/2]+ 0,
where O is a sum of monomials in R,S,T,U of degree at
least 3. But then
W,(0,0)= 1/2 -1/4 0

0 0 1/4

has rank 2. Thus the necessary condition of Theorem
6.1 that W,(0,0) have rank at most one if P is to be
computed in two units of time by an analytic
(2,1)-network is not satisfied. If P can be computed
in time 2 by an analytic (2,1)-network it must be the
case that
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P( R,S,T,U )=C"( A"( R,T ),B"( S,U ) ).
But in this case, again by Theorem 6.1, the matrix

ap  3°%p 3%p (0,0)

W2(010)= g
a8 JR 85 4s aT

\ ap 3% _a%
Ju dR JU aT Jdu
can have rank at most 1. But

W,(0,0)= I 1/2 -1/4 -1/4 |
1/2 1/4 1/4

has rank 2. Therefore, P cannot be computed in less
than 3 units of time. The network given in Figure 7.5
computes P in 3 units of time from the inputs R, S, T,

U.E
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Section II,

variables X, 2, x', and 2’. In this Ssection we first

€xamine the task of Computing the function

Changes. ag in Section I, the outcome function

hiM--->R jg 4 projection.

Performance function
O( X,2,x7,2¢ )=(z-z’)/(x-x’).
Suppose that
P( X,2,x%,7" )=(xz’~x’z)/(x—x').
Suppose that M is the Euclidean space R< with

coordinates pl and m? and assumed that ¢ jg realized by

[TA X,2,%7, 77 )=(Q,aP+bQ)
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where a,beR and a=0. If N/ is an analytic
(2,1)—network that computes an encoded version of u’,

where the encodings gi

:X-l-——->R2 are identity functions,
then the network N’ requires at least three units of
time for the computation.

proof. Return to the notation used in the proof
of Theorem 7.1. in order for the network N7 to compute
p’=0+aP in two units of time, it must be possible to
write

p’( R,S,T,U y=C’ ( Af( s,T y,B’( R,U Y )
or

p’( R,S,T,U )=C"{ a"( R,T ),B"( S,U Yy ),
where A’,A“,B’,B",C’,C" are real analytic functions in

a neighborhood of the origin of R2. Again refer to

Theorem 6.1. Set

v = spr  3%mr 2R
as JdRAS asa

ap” 9%p’ 3%p’

aT JRAT oTaU

If
P’ ( RIS!TIU ):cl( A’ ( s,T )FB’( R,U ) ),

then Y, must have rank at most one in a neighborhood of

the origin. However,

(a2p’_ ) (3%EL y-(32pr (3% R =
JdRAS 3Tou JRAT asdu

(a+aR—b)(—a—b+aT)/(2+R—T)2.

Because az#0, this expression does not vanish
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identically in the neighborhood of the origin.
therefore, pr#C’( A'( s,T y,B’( R,U ) ). 1f P’ can be
computed in two units of time, then
p'( R,S,T,U y=c"( A"( R,T y,B"( S,U ) ).
Set
¥,= \ sp. e 9% |
as gr 8s ds dT
\ sp  o%p 9%
| du R AU 9T dU
If P/ ( R,S,T,U y=C" ( a"( R,T y,B"( 5,0 ) }y, then the
determinant formed by the 1ast two columns of Y, nust
be zero. However, Wwe have already seen, in the
discussion of Yqo that the determinant in not zero.
Therefore, it follows that no linear change of
coordinates in the messade gpace M can reduce the time
required +o compute i to two units of time.%
1f the agents are allowed to make linear changes
of coordinates in their parameter spaces, the problem
is considerably more complicated. Assume that the
encoding functions g'l are, as in Theorem 7.1, identity
functions. Thus a network that computes P and Q nust
carry out the computation using the coordinates that
are passed by the agents. Assume that the first agent,
whose coordinates are R and 3, introduces new

coordinates Al=(r,s) given by the linear transformation
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(Al): R=ar + bs
S=cr + ds.
Suppose that the second agent uses new coordinates
A2=(t,u) given by
(AZ): T=et + fu
U=gt + hu
The elements a,b,c,d,e,f,qg, and h are to be real
numbers and the determinants

Det \ a b | and Det e f

] C d g h
are both nonzero. The following lemma uses this
notation and shows that the new coordinates A, and A,
cannot be chosen to decrease the time require to

compute p. The function Q plays no role in this

result.

Lemma 7.2 There is no choice of coordinates A,
and A, for the parameter spaces X, and X, from which P
can be computed in less that 3 units of time if the
encoding functions used to compute an encoded version
of P are identity functions.

proof. If P can be ccmputed in time 2 using as
inputs the coordinate sets Ay, then either

(1) P{ R,S,T,U )=C( A( r,t ),B( s,u) )
or

(I1) P( R,S,T,U )=C’( A'( r,u ),B/( s,t) ).
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Note also, that because the coordinate changes A&, and
A, are general linear changes of coordinates, 1f we
show that no choice of a,b,c,d,e,f,g,h can be made soO
that

P{ R,S,T,U )=C( A( r,t ),B( s,u ) )
then no choice of a,b,c,d,e,f,g,h can be made so that

P(R,T,S,U)=C’( A’( r,u ),B'( s,t) ).

Theorem 6.1 gives the criterion we use to examine
the possibility that (I} can to be satisfied. If (I)
can be solved for the functions A, B, and C, then the
matrix

W(r,t,s,u)= P P P

r rs ru

Pt Pst Ptu

has rank at most one in a neighborhood of the origin,
and the matrix

W(s,u,r,t)=| P P Po¢

S rs

P

a Prt  PFtu

must have rank at most 1 in the neighborhood of the
origin. For the analysis of these conditions, we need

the following list of derivatives.
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{1+R)

Ppo=(

Oy=-1/(2+R-T); Qg=1/(2+R-T);

Og=-(8-U)/(2+R-T)%; QT=(S-U)/(2+R—T)2;
PR=(T~1)(S-U)/(2+R-T)2: Pg=(1-T)/(2+R-T):
PT=—(1+R)(S—U)/(2+R-T)2; Py=(1+R)/(2+R-T):
QRS=-1/(2+R-T)2: QRU=1/(2+R—T)2;
QST=1/(2+R—T)2: QTU=—1/(2+R—T)2:
Ogy=0+ QRT=—2(S—U}/(2+R-T)3:
PRS=(—1+T)/(2+R-T)2: PRU=(T—1)/(2+R—T)2: Pgr=-
/(2+R-T)?%; Ppy=(1+R)/(2+R-T)%;
R+T) (S-U)/(2+R-T)>; Pay=0-
Prp=(-2(-1 + T)(S - U))/(2 + R - T)? ; Pgg=0
Popp=(-2(1 + R)(S = U))/(2 + R - Ty3; Pyy=0
Opg=(2(8 = U))/(2 + R = T)° ; Qgg=0
Opp=(2(S - U))/(2 + R = T)° ;' Quy=O°
Table 7.1
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Then
Pr=aPR+CPS, PS=bPR+dPS
P, =ePy+gPy, P, =fPp+hPy.
Prs=abPRR+(ad+bc)PRS+chSS
Prt=aePRT+agPRU+cePST+chSU
Pru=afPRT+ahPRU+cfPST+ahPSU
PSt=bePRT+bgPRu+dePST+ngSU
Psu=bfPRT+thRU+dfPST+thSU
Py ~efPppt (eh+gf) PpytghPyy
Set
x=(2+R-T); n=s5-U; {=1+R
w=1-T.
The functions x, m, and { are independent, and x=(t+w.

It is easy to compute each of the expressions

szr,...,xZPu,x3PrS,...,x3Ptu, using Table 7.1. Denote

by W(r,t,s,u)[i,)] the determinant formed by the ith
and jth columns of the matrix W(r,t,s,u). It focllows
that
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¥SW(r, t,s,0)[1,2]=
-(adgx3) + a{de + bg)xzn - abexn2 +
d(-ce + ag)x?{ + b(ce - ag)xn{
XSW(r,t,s,u)[l,3]=
aghy3 + a(-(fg) - eh)x®n + aefxn® +
h(ce - ag)x2({ + f(-(ce) + ag)xnl

+®W(r,t,s,u)[(2,3]=
-(abghy%) + ab(fg + eh)x>n - abefy?n? +

(ag(bh-df)+bh(-ce + ag))x3¢ +

(bcef + adef - abfg - abeh)y?nl +

(ce—ag) (bh-df)yx2¢?2

XSW(s,u,r,t)[l,2]=

~(bchy3) + b(cf + ah)x?n - abfyn? +

c(-(df) + bh)x2¢ + a(df - bh)yxn

X5W(s,u,r,t)[l,3]:

bghy3 -b(fg+eh)yxZn + befxn? +

g(df - bh)x2( + e(-(df) + bh)xnl.

Table 7.2

Because the 2 x 2 subdeterminants of W(r,t,s,u) and
W(s,u,r,t) must vanish identically on a neighborhood of
the origin in R x R2, each coefficient of a monomial
in the variables xg),n,c that appears in Table 7.2

must be zero. Also note, that if a,B,e, and y are

9) This rescaling of the variables may involve
rescaling the radius of convergence of the mecdules in the
network.
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nonzero real numbers, then

P( R,S,T,U )=C( A( r,t ),B( s,u ) )
if and only if

P( aR,BS,eT,yU )=C"( A"( r,t ),B"( s,u ) )
for some C",A", and B". This implies that one can,
without loss of generality, multiply the rows of the

change of coordinate matrices

by nonzero constants when it is convenient to do so.

We are now in a position to analyze the
derivatives in Table 7.2.

The coefficient of x3 in the expression
xSW(r,t,s,u)[l,Z] is -adg. Similarly, each of the
determinants that appears in Table 7.2 has a monomial
in %,n,{,0 that is a monomial in a,b,c,d,e,f,g, and h.
Collect the monomial expressions into the following
sets of equations. Each line in Table 7.3 corresponds

to an equation in Table 7.2.

adg=0

agh=0 aef=0

abgh=0 abe=0

bch=0 abf=0

bgh=0 bef=0.
Table 7.3
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If a=0, because | a

|

b
c d ‘

must have nonzero determinant, we can assume that b and
c are not zero. Divide the first row by b and the
second row by c. Therefore, suppose that b=c=1. But
bch=0, therefore h=0. Thus, dividing the first row of

s

g h

by f and the second row by g, we can suppose that
f=g=1. But bef=0, therefore e=0. The coefficient of
the monomial x2n in x5W(s,u,r,t)[l,2] is
b(cf + ah). But ah=0, therefore bcf=0. However, this
contradicts the equation f=1. Therefore a=0.

If we assume that a=®0, then we can divide the
expression for R by a and assume that a=1. The
equations in Table 7.3 imply that the following

equations are satisfied

dg=0

gh=0 ef=0

bgh=0 be=0

bch=0 bf=0

bgh=0 bef=0.
Table 7.4

If b=0, then because ‘ a b

l c a
has nonzero determinant, we can assume that a=d=l.
The first entry in Table 7.4 then shows that g=0, and
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therefore we can assume that e=h=1. It follows from
the third line of Table 7.4 that ef=0, therefore £f=0.
The coefficient of xzn in x5W(r,t,s,u)[1,2] is

a(de + bg). Thus O=ade=1.1.1, which is a
contradiction. Therefore we can assume that a=1, b=0.
But the equations on the third and fourth lines of
Table 7.4 are be=0 and bf=0. Then the matrix

e f is singular. This contradicts the

g h

assumption that T=et+fu, U=gt+hu is a change of
coordinates in the second agent’s parameter space.

We have shown that there are no linear coordinate
changes A, and A, that can decrease the time required

to compute P to two units of time.E

There remains the possibility that simultaneous
linear changes of coordinates in the agent’s parameter
spaces and in the message space could reduce the
computing time. This is also not possible. The proof
of this fact introduces nothing new and follows the

pattern of the proof of Lemma 7.2.
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Section III.
The Efficient Frontier

We examine two performance standards and analyze
the efficient frontier for each. The two standards are
each defined on the product of two two-dimensional
Euclidean spaces. One performance standard is the
function 1:RZ2xR%--->R, given by I( u,v )=u-v=
I( (x,2),(x',2") )=x x’+z z’, the inner product. The
second performance standard is the function
0=(z-2')/(x-x’). In the case of the function I, we
show that there is a mechanism with message space of
minimum dimension and with outcome function a
projection that can be computed in minimum time and
that realizes I. In the case of the function Q we show
that if the dimension of the message Space is allowed
to increase, then the time required to compute the
message correspondence i, of Section I, can be reduced
to two units of time. Recall that in this chapter the
coordinate changes allowed are all linear. (In Chapter
VIII we study the effect of analytic coordinate
changes.)

We consider first the function I. It is well
known (c.f. [11]) that the parameter transfer mechanism
(with message space of dimension 3) has a message space

of minimum dimension for mechanisms that realize I.
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Suppose that X=R2, Y=R2, that X has coordinates (x,2),
and that Y has coordinates (x’,z’). Suppose that the
message space R3 has coordinates (A,B,C). Then

I( x,2,x",2’ )= x x'+z2 z7.
A message correspondence for parameter transfer is
given by the function

v( %,2,x',2" )=( %,2,I( x,2:%x’,2’ )). The agent
with parameter space X uses as his message
correspondence

vl( x,z )={ (x,2,C): C€R},
while the agent with parameter space Y uses the
correspondence

v2( x',2' )=( (A,B,C): A,B €R, C=I( A,B, x',2" )}-
A network that computes the correspondence v need only
compute the function I( x,z,x’,z’ ) from the parameters
x, z,x',z'. This function I is a function of four
variables that can be computed in two units of time by
the network given in Figure 7.6. Thus, among
mechanisms that realize I with outcome functions that
are projections, no increase in the size of the message
space will decrease the amount of computing required,
since each such computation of a message correspondence
must also compute I. It follows that the efficient
frontier for the function I is given by the diagram in

Figure 7.7.
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(3.2)

L

Figure 7.6
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Figure 7.7
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We turn now to the discussion of the function
Q. Note that the function Q can be realized by the
parameter transfer mechanism with R3? as the message
space. In that case Agent 1 has as message
correspondence

vi( x,z )={(X,¥,2)|X=x, ¥Y=2)
while Agent 2 uses as message correspondence

vZ3( %727 )={(X,Y,2)|23=(¥-2")/(X-X")}.

The message correspondence for the mechanism is then

v( x,z:x",2’ )=(x,z,(z—z’)/(x—x')).

Computing the function (z-2')/(x-x'}), which is the
only computation needed, requires two units of time
using the network that is given in Figure 7.1.

Thus we see that increasing the dimension of the
message space from 2 to 3 pernits a decrease in the
time required to compute the message correspondence
from 3 units of time to 2 units of time. Because the
minimum message space for Q is 2, the efficient
frontier contains the points a and b shown in Figure

7.8.
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Dimension M

Figure 7.8
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This means that the efficient frontier contains
the points a=(2,3) and b=(3,2) shown in Figure 7.8.
Because the minimum dimension for a message space of a
privacy preserving mechanism that realizes Q is known
to be 2, decreasing the dimension of the message space
below 2 is impossible. Increasing the dimension of the
message space above 3 does not yield any further
decrease in the time required to compute the
equilibrium message, because two units of time are
required to compute Q, and O is the projection of one
of the coordinates of the message space. Therefore,
the efficient freontier is as shown in Figure 7.8.

Remark. If we adopt the verification scenario as
the interpretation of the mechanism, the computational
task is:

(i) each agent computes his verifier function
given a candidate equilibrium message,

(ii) the verification function is computed.
The computing time required for each of the agents to
verify that a pair of values (Q,P) satisfies the
equilibrium conditions

P+x0=z (for Agent 1)
and

p+x’Q=z' (for Agent 2)
is the minimum possible for a function of 4 variables:

that is, each reguires two units of time. The

156



computation of the function (Q,P) requires 3 units of
time. Although the computational burden of computing
the message u( x,z:;x’,z2’ ) is decreased by increasing
the dimension of the message space, this decrease 1is at
the expense of an increased computational burden on the
second agent. To check the equation Z=(z-2')/(x-%x")
the agent must compute the function 72-(z-2')/(x-x"),
and this is a function of 5 variables. The minimum
computing time for such a function is Int[log,(5)]=3.
This increase in computing time for agents is a feature

of all the mechanisms we have examined.
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Chapter VIII
The Effect of Automorphisms on Computational
Complexity of an Edgeworth Box Economy with a Walrasian

Performance Function

In Chapter VII we studied the efficient frontier
for the performance standard

o( x,2,x",2" Y=(z-z')/(x-x").
It was shown that for the mechanism

u( x,z,x',z" y=( z=2’ , x2'-x'2 ),
xX-x"' x=-x7

one cannot decrease the computing time required to
compute the message u( x,2,x’,z’ ) by applying linear
nonhomogeneous coordinate transformations in the spaces
of the agent’s parameters or in the massage space. If
we remove the restriction that the coordinate
transformations must be linear, then the computing time
for the message correspondence might be reduced by
changing the coordinates in the agent’s parameter
spaces and changing the coordinates in the message
space. There is also the possibility that there is a
mechanism that realizes Q, that has a message
correspondence that requires less than three units of
time to compute, and cannot be derived from u by
applying coordinate changes in the message space and in
the agent’s parameter spaces. This second possibility,
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that there is a totally new mechanism, leads to the
concept of isomorphism between mechanisms.

In Appendix A, there is a discussion of the
concept of isomorphism of privacy preserving message
correspondences when no topological conditions are
placed on the functions and correspondences. However,
the development can also be carried out when the
performance standard is a continuous function and the
message correspondence and outcome function are
continucus. One can also consider isomorphisms when
the maps and correspondences are differentiable.
Roughly, two mechanisms are isomorphic if one mechanism
can be transformed into the other by applying
coordinate changes in each of the agent’s parameter
spaces and in the coordinate system chosen for the
message space. In the first section of this chapter we
show that, under some smoothness conditions, each
mechanism that realizes the function

Q( x,z,x",2' )=(z-z')/(x-x")
and that has a two dimensional message space is,
locally, isomorphic to the mechanism given in Chapter
VII. This result is closely related to the theorem of
Jordan[13].

In the second section of this chapter we show that

the time required to compute the message correspondence
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ul x,z,x",2!' )=( z-2% , xz'-x'z ),
X=X X-x’

cannot be reduced below three units of time by an
analytic coordinate change in the message space when
the outcome function is assume to be a projection.
Finally, we show that real analytic coordinate
transformations in the agents’ parameter spaces cannot
reduce the computation time required to compute the
message correspondence for u below three units. We
have seen that Q can be computed in two units of time
with a proper choice of coordinates. Similarly, we
will show that with a proper choice of coordinates P
can be computed in two units of time . However,
different coordinates are required in each case. Thus
three units of computing time are required to compute
both when a single coordinate system is used.
Section I
Local Isomorphism of Mechanisms Realizing Q
In this section we prove that, to within local

isomorphism, there is only one mechanism that realizes
Q using a two dimensional message space and a message
correspondence that is a function. The concept of
isomorphism is the topological version (c.f. Appendix

AL)

Lemma 8.1. Assume that V, and vV, are nconempty

2

open subsets of R? and assume that Q:R2 X R¢ =--->R is
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the function
Q( %x,2,x*,2* Y=(z-2')/(x-x").
Suppose that

A={(x,z,x",2')| (x-x*)=0}.

Assume that m:levz—A --->M is a privacy preserving
correspondence to a Euclidean space M that satisfies
the following conditions:

(i) M is a two dimensional Euclidean space,

(ii) there is a submersion h:M--->R such that the
triple (v,M,h) realizes Q,

(iii) the function v is a differentiable function
that is a submersion on V1XV2—A,

(iv) the coordinate correspondences vi:Vi—-—>M,
i=1,2, are nonsingular correspondences, i.e.
the correspondences (as subsets of Vix M) are
submanifolds, the projection of v; onto M is
a submersion and the sets vn'l( p ) are

1

nonsingular submanifolds of V;xV,-A,
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(v) for each peM, and each i, the set vi_l( p )
is a nonsingular submanifold of leVZ-A of
dimension d; (independent of p).

Suppose my€EM, and suppose an€evq, and a’jevV,. In a
neighborhood of the point mj, there is a coordinate
system (S,T) and a choice of coordinates (&,() in a
neighborhood of a, and a choice of coordinates (yx’,(’)
in a neighborhood of a’; so that the correspondence v

is the function
v x.Cox’ 0 ==, 1 U=xt Q)
xX=x’ x—x’
Proof. Suppose that M has coordinates (M1'M2) and
suppose that (xo,zo)=a0, (x’0,2’0)=a’0. Set
c=h-m( xo,zo,x'o,z’0 ).
Therefore
o xo,zo,x’o,z’0 )=cC
and
Q"L c )=
{(x,z,x",2")|(z=-2")-c(x-x’)=0}n (V, x V,y-4).
Set
v( Xg,2g9, X'g:2"g )=(Py.,Py)-
It follows from condition (ii) that the function
h( M, ,M, y-c is a nonsingular function on M that is
zero at (py,p,). We can find a function h‘:M--->R that
is differentiable on a neighborhood of (p;,p,) SO that

the pair (h-c,h’) is a local coordinate system on M.
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The function H*=( h-c,h’ ) carries a neighborhood of
(P;,P,) to an open neighborhood of the origin of R,.
The function (h-c).v=Q. Set f=h’.v. Replace M by a
neighborhood U of the origin of R, and replace the
function v by the function v*=(Q-c,f). Denote the
coordinates functions on U by X and Y. Set v*;=H*.v..
Because v is a privacy preserving correspondence that
realizes @, it follows that v*_l( 0,0 )} is a rectangle
in v'l( ¢ ) that contains the point (xo,zo; x’o,z’o).
Assumption (ii) implies that the set v*_l( 0,0 ) is a
nonsingular submanifold of the set vV, x V2—A. Because
v 1s privacy preserving, it follows that there are
correspondences v*; and v*, such that

v¥=y*, nv*,. Then v*_l( 0,0 ) is the product C; x C,

where C,=v* _1( 0,0 ) and C

1 =v*2_l( 0,0 ). Each

2
vi'l( 0,0 ) is a nonsingular submanifold of Vy X VZ-A,
by assumption (iv)}. Furthermore, v*_l( 0,0 )=Q'l( c ),
and the set Q_l( c ) is a submanifold of V, X V2—A of
dimension 3. The restriction of v* to the set

v*'l( U )nQ'l( ¢ ) carries v*—l( U )nQ'l( c ) onto the
set Un{(X,Y)|X=0}. The mapping H* is a

homeomorphism on a neighborhood of p, therefore the
restriction to U of the correspondences v*, also have
that are nonsingular submanifolds of RZ x M. Because

v* is a submersion, for each point peM, the dimension

of the submanifold v*_l( p ) is 2. Therefore, the
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dimension of the submanifold v*i_l( p ) is either 0, 1,
or 2.

Suppose that the dimension of v*l'l( 0,0 ) is 2.
The point (xo,zo;x’o,z’o) is in v*'l( p ). Each point
(x,z:x’o,z’o) must also be in the rectangle v*'l( p ).
for each (x,z)€R2 such that x#x’y. But this implies
that

O( x,z2:%x'*%,z2"'* y=(z~2'4) /{x-x"4)
is independent of x and z. Since this is clearly
impossible, we can assume that the dimension of
v*i_l( p ) is 1 for each peU.

We denote by v*, the restriction of v, to the set
vV, x U (that is v*¥,;=v,n(V;x U)). Then the projection
from vk, to U is a submersion. Furthermore, for each
pEU, the set v*l_l( p ) is a submanifold of vV, of
dimension 1.

If the dimension of v*, is 2, because the
projection pr,; to U is a submersion, the map pr; would
be a bijection [c.f. 7, p. 7], and v*l'l( p ) would be
zero dimensional. This is impossible. Therefore
v*l'l( p ) has dimension greater than 2.

Because the values of Q depend on the parameters
of the first agent, the dimension of v¥, cannot be 4.
Therefore, the dimension of vk, is 3.

We may suppose that v*, has (for a sufficiently

small open set that contains (X5,24510,0)) an equation
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F( x,2:X,Y )Y=0, where G is a c, function. The set in
Vi with eguation F( x%,2:;0,0 )=0 is the submanifold
vl_l( 0,0 ) that has dimension 1. Because vl_l( 0,0 )
is a nonsingular curve in V,, it follows that one of
the partial derivatives J0F/dx or JdF/dz is nonzero at
(XO,ZO;O,O). Furthermore, because dQ/dz#0, we can
assume that J0F/dz+0. In a neighborhood of (xo,zo;0,0)
the solution of the equation F( x,z:;X,Y )=0 is a
function f( x;X,Y ) such that F( x,f( x,X,Y ):X,Y )=0.
For each X and Y in a sufficiently small neighborhood
of (0,0), the function (x,f( x:X,Y )) parameterizes the
curve vl'l( X,Y ). Similarly, we assume that
G( x',z’:;X,Y )=0 is an equation for the correspocndence
v, in a neighborhood of (X’O,z’O:O,O). One of the
derivatives dG/dx’ or dG/dz’ is nonzero at
(x'5:2'5:0,0). Assume that dG/dz' is not zero. Solve
the equation G( x’,z’:X,Y )=0, for z’ in a sufficiently
small neighborhood of the origin. That is, there is a
function g( x/:X,Y ) so that (x',g( x’':X,Y ))
parameterizes the curve m*z_l( X,Y ). It follows that
for each X sufficiently close to 0, the points
(x,f( x:X,Y ),x’,g( x',X,Y )) are in the set
with equation Q( x,z:;x’,z’ )-X=0. Therefore

(f( x:%X,Y )=g( x':X,Y ))/(x-x")=X.
That is,

f( x:X,Y )Y=g( x";X,Y Y=X(x-x'),
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or

(0 x:X,Y )-xX=g( x’';X,Y )-x’X. Because the right
hand side of this equation is independent of x’,
f( x:X,Y )-xX is a function independent of x and x’.
That is

f( x:X,Y Y=xX=K( X,Y ).
The function F( x,z;X,Y ) has partial derivative
dF/0Y#0 in a neighborhood of (0,0), because the
restriction of pry, the projection of Vi x V, x M to
v,, was assumed to be a submersion. But

dF/3Y+(dF/dz) (df/dY)=0.
Therefore Jdf/d¥Y#0 at (0,0) for x sufficiently close to
0. Because

K( X,Y )=f( x,X,Y )-xX,
it follows that JK/dY#0 at (0,0). We introduce as
new coordinates on M, in a neighborhood of the point
(0,0), the pair of functions X and K( X,Y ). The
function Y satisfies a relation Y=K*( X,K ) in a
neighborhood of (0,0). Therefore

f( x,X,Y )=f( x,X,K*( X,K ) ).
For each X and K, the pair (x,f( x,X,K*¥( X,K ) ))
parameterizes the curve v*l_l( X,K¥( X,K ) ). We now
wish to find the expression for the function v* in the
new coordinates for M. For a point (x,z;x’',z’) in
Vl X V2 such that Q( x,z:x’,2’ )=X, suppose that

v( %x,z:x",2*' )=(X,k). Thus (%x,z:x’,2’) lies on the
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product of the curves v*l'l( X,2 ) and v*z_l( X',z ).
Therefore,

f( x,X,K*( X,k ) )=z
and

g( x',X,K*¥( X,k ) )=z"’.
The point (X,k) must be on the intersection of the two
curves in M with equations z-xX=k and z’-x’X=k. That
is, the value for k satisfies the equations k+xX=z and
k+x’X=2'. 1If we solve these equations,
X=(z-2')/(%x-x")
and

k=(2zx’-xz')/(x-x").§

Section II
The Effect of Automorphisms on Computing Time
In this section we show that no automorphism of
the message space RxR can be composed with
b=(Q,P)=((z-2")/(x-x"),(2x’'=-x2')/(x-x")),
and produce a message correspondence that can be

computed in less than 3 units of time.

Theorem 8.1 Suppose

Q=(z-z")/(x-x")
and
P=(xz’'-x'2)/(x-%x').

If F=A( Q,P ) and Q=B( Q,P ) and if the map
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(u,v)--->(A( u,v ),B( u,v )) is a c? automorphism of
RxR, then each circuit that computes both
Q and F requires at least 3 units of computing time.
Proof. We have already noted in the proof of
Theorem 7.1 that coordinate changes that are
translations do not effect computation time.
Therefore, without loss of generality, we
introduce the following changes of coordinates in the
agents parameters;
¥x=R+1, 2=S, z’=U, and x’'=T-1.
In the coordinates R, S, T, and U ,
Q=(S-U)/(2+R~T)
and
P=(U+S+RU-ST) /(2+R-T).
Because the map M( Q,P )=(Q,F)=(Q,A( Q,P )) 1is an
automorphism, Ap # O in a nonempty open set.
The message function (Q,P) composed with M expresses Q
and F as functions of R, S, T, and U. It follows from
the Chain Rule that for X=R, S, T, or U,
FX=AQQX+APPX.
Therefore we have the following expression for the
second derivative in X and Y, when X
and Y are chosen from the set R, S, T, U:
Fxv=Roox Oyt 2poPyOx t2qlxy *24pgRy Px tAppPyPx tApPxy -
Table 7.1 of Chapter VII lists the derivatives of the

functions Q and P. In order that the function F be
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computable in time 2, the matrix

1 R T
(1) S 1 Fg Frs Fgp
U Fy Fru Fry
and the matrix
1 S U
(I1) R ‘ Fg Frg Fry
T ‘ Fp Fop Foy

must have rank at most 1, or the matrices

1 R u
(III) S i Fg Frg Foy
T % Fo FRrT Fry
and
1 5 T
(IV) R Fg Frs Fgyp
u Fy Fsy Fry

both must have rank at most 1. As in Chapter VII, set
x=(2+R-T): n=5-U; {=1+R;
w=1-T. Note, as we did before, that the functions
¥, n, and { are independent and that yx=(+w. Table 8.1
presents a matrix M with rows indexed by products XxY,
where X and Y are chosen from the set (R,S,T,U}. The
columns of M are products of P and Q. The entry in the

row (X x Y) and column (AxB) is the product AyBy

169



expressed in terms of the parameters %, 1., {, and o.
For example the entry in row (SxR) and column PxQ is
Pg Op=[(1-T)/(2+R-T)][-(S-U)/(2+R-T)?]

=[o/x10-n/x%1=—0n/x>.
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P 0 PxP PxQ QOxP OxQ
R ~on /3% /%2 0 0 0 0
S W/ 1/% 0 0 0 0
T Fea/x? hax® Do 0 0 0
U $/x -1/% 0 0 0 0
xR 2on/z3 Pn/x3 JeZn?/xt lendsxt jen?sat im?sxt
Res o/x? F1/x? Fensx Fensx® fensx® nsa’
RxT (= 2/’ [edn®/x —on2/xt [endsat Fndsat
w)n/x
RxU |o/x°  [1/x° ~oln/x3 o/ i/ /xd
sxR o/x2  |-1/x2  lme?syd lensx® fensxd nsxC
SXS |0 0 m/x2 m/x2 m/xz l/x2
sxT |-7/x%  [/x° ~no/x> lon/x® o/ /xC
SsxU |0 0 Tw/x2 —0/%? /x> -1/x2
TxR (- ~onsad fon?sxt len2sxt Fon2/x? a2 /at
wIn/x
Txs |-¢/x%  [L/e? “tno/x3 Fin/x> hese n/x’
oxt -20n/%3 sk e3Pt et ot st
Rl Y L w SR 5l VL S V2 S . Vo
Uxk lo/x2 1/x? Flensxd [Fonsxd lensad el
Uxs [0 0 to/x? t/x® Fe/x® i/t
UxT |7 /%2 ~1/x2 FCn/S e mesx® -n/x°
UxU |0 0 22 /%2 - /% ~L /%2 1/%°
Table 8.1

(FR’FS’FT’FU’FRR’FRS"'

The Chain Rule shows that the vector

- Fopoe

..,FUU)T, where the

superscript T denotes the transpose, is the product

T
M (AP’AQ'APP’APQ’AQP’AQQ) .

the matrices

(1)

and (II1).
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(0/X)BpH(1/x0)Bg  (-0/x*)ap=(1/2%)Ag  (=/xT2)Ap

(L/0)Ap=(1/%)Ag (=0/x%)Ap=(1/x%)Bg (Lzqw/x?)App+(-0) /x2Ap=1/22R0,
and the matrix (II)=

0 (-0/x®)ap-(1/x2)Ay  (-u/x?)Ap +(1/x2)2g

0 (=0/x*)2pH(1/2%)8g  (C/x)ap-(1/42)A,.

If (I) has rank less than 2, then

(mAP+AQ)(m+C)AP=0
and if (II) has rank at most 1, then

((Ap-Ag) (-20Ap)=0.
In the set where v=#0, because AP¢O,

AQ=CAP.
But then,

(w+C)2AP=O. However, this is impossible.

Thus if F can be computed in two units of time,
the matrices (III) and (IV) must have rank at most 1.
It is easy to see that if (III) and (IV) have rank at
most one, then either AQ=-mAP, or CAP=AQ. But then
AQ=O when w=0 or AQ=O if {=0. But AQ#O in a nonempty
open set, therefore (III) and (IV) cannot both have
rank at most 1. It follows that F cannot be computed
in 2 units of time. &
We have shown that no automorphism of the

message space can decrease the computing time below

three units of time when the outcome function is a
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projection. There is still the possibility that
changes in the coordinates of the agent’s parameter
spaces can decrease the time required for the
computation of the message correspondence u.

Lemma 8.2 addresses that possibility.

Lemma 8.2. If m:R? x R%®--->R? is the function
given by m( x,z;x',z’ )=(Q,P), if

0=(z-2z")/(x-x")
and

P=(xz’'-x"'2)/(x-x"),
and if coordinate systems in R® are chosen so that one
of the two functions Q or P can be computed in two
units of time using functions of two variables that are
nonsingular, then in those coordinates the other
function requires at least three units of computation
time.

Proof. Suppose that we are using the
representation of the functions @ and P used in Theorem
8.1. In the coordinates R, S, T, U,

Q=(S-U)}/(2+R-T)
and

P=(U+S+RU~ST) /(2+R-T) .

Suppose that Q can be computed in two units of time,
using coordinates (r,s) in the (R,S) space and

coordinates (t,u) in the (T,U) space.
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Notation. Set Xab =82X/8a8b for a function X of
variables a and b.

If

O=C( A( r,t ),B( s,u ) )
and

P=C’( A'( r,t ), B’( s,u) ),
then the criteria given in Theorem 6.1 of Chapter VI
shows that each of the following matrices must have

rank at most 1.
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M1: Q Q]Z'SS Qrsu O—ruu

Qt Qst Qtu Qtss Qtsu Qtuu
N1: Qr Prs Pru Prss Prsu Pruu

Pt Pst Ptu Ptss Ptsu Ptuu

MI: Qs O-rs Qst ers Qrst Qstt

Qu Qru Qtu eru Qrtu Qttu

NI:; P P P

s rs st rrs rst “stt

Pu Pru Ptu Prru Prtu Pttu
Furthermore, the matrices Rr RS and Tt Tu
Sr Ss Ut Uu

must have nonzero determinants D and E, respectively.
Because R and S are assumed to be functions of r and s
alone, while T and U are assumed to be functions of t
and u alone, it is tedious but elementary to show that
the matrices Q1, P1l, QI, and PI each has rank at most
cne only if there are real numbers K, L, M, and N so

that the following conditions are satisfied.
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0l

03
Q4

05
Q6
QI
QII
QITI

QIV

QVI

(1/2) 8, = L{(-1/2) Uy}

3 S ~(1/2)[R,. Sg + S,Rg
R U, = L{-3Ug,}
1(3/2)8 oo —(1/2)[S,Rg

2 Rg Spgl =Li(1/2) Ry U}

R...U

rsPu = LiUgy Rg!

S

1 = L{UtRS}

(1/2) Uyy Ry = L{(=3/2) Ugyy!

(1/2)Sg = Mi(-1/2) Uy}

38, —(1/2)[R.5,+S R 1= M{R, U}

Ry Ug =M{(-3)Utu}

(3/2) Spqq —(1/2)[Sg Rpp
R Uy!

Ryg Up = MiUgy Rp)

Ut Rg = ME(=3/2) Upgy )
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+ 255 Ryg] —(1/2)[Rr Sgg *

= M{(1/2)



Pl : 1/2 S, = N{(-1/2)Uy}

P2 38,4 (1/2) (SLRGFR.S.) = N{-5,U;)
P3 P O3URRy —TySy =N{(=3)U = (1/2)[U T, + Ty U]}
P4 P (3/2)Spgg(1/2) [R.S  +2R .S  ]-

(1/2)[SpRgg+2S Ry o] =
N[-(1/2)S Ty + (3/2)R  Ut]
P5 1 -5, T, + 3R U, = N{3U_ Ry - Ty Sg!

P6 i (3/2)Up Ry=(1/2)T S, = N{(-1/2)[T4U,, +

2 Ty Upyl + (=1/2)[ULT,, + 2U, Tyyl)

PI  : (1/2)Sg = K[(-1/2) U]

PIT : 3 S, -(1/2)[S Ry + SgR.] = K{3 R, Uy - T, S}
PIIT : -TySg = K{(-3/2) Uy, =(1/2)[ Ug T, + Ty U 1}
PIV i (3/2)Sp.pg = (1/2)[RgS,, + 2 RyS.]

(1/2)[Sg Rpp +2 Sy R 1 = K{(-1/2) S, T, +

(3/2) Rr U,!

PV : —SrS Tt + 3 Rrs Ug = K{3 Uy Rr— Ttu Sr}

PVI i (3/2) Ugy Rg = (1/2) Tyy Sg =K{(-3/2)Upyy -

s
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Note that the sixteen equations X1, X2, X3, X5, XI,
XII, XIII, XV, with X equal to Q or P, involve only the

S R

s’ s’ rs'’ S

sixteen variables X, L, M, N, R., S R

r’ rs’

Tt' Ut' T U Ttu' and Utu'

u’ u’

Suppose that L=0. Equation Q1 implies that

But then Pl implies that
NUt=0.
If both L=0 and N=0, then P3 implies that
3Uu Rr = Tu Sr.
Because S =0 and the determinant D#0, it follows that
Rr#O,
from which it follows that
Uu=0.

However, Q0I then implies that

But then D=0, which contradicts the assumption D=0.
Therefore we can assume that
L=0, but N=0.
Then
Ut=0.
Equation Q2 implies that
3S,¢=(1/2) R,.Sg
and QIT implies that

3S,.¢=(1/2)R.S, + M R U,.
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Therefore
M Rr Uu =0.
But if 5,=0 and D=#0, then
R, #0, while if Uy=0, then U,#0.
It follows that M=0. However, QI then implies that
S;=0 which contradicts the assumption that D=0.
We conclude from this that L must be nonzero.

Suppose that Up=0.

Then Q1 shows that

Then Q2 shows that
38,4 =(1/2) R, Sg
while QII shows that
38,4=(1/2)R. S +M(R,. U, }.
Therefore,
M Rr Uu =0.
But Rr¢0 because
S_=0,
and
Uu¢0 because Ut=0.
Therefore M=0.
But then the equation QI shows that
SS=O

which contradicts the assumption that D=0.

Thus we can assume that
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Ug#0 and L=#0.
Now suppose that
M=0.
It follows from QI that
S.=0.
If we substitute 0 for S¢ in Equation PI, it follows
that
K Uu=0.
If we also assume that K=0,
then PII shows that
38,5=(1/2) S, Ry
while Equation Q2 shows that
3 Spg=(1/2)Ry S, +L Uy Rg.
Therefore
L Ut RS=0.
But L#0 and Sg=0 implies that
RS #0.
Therefore Uy=0.
But then Q1 shows that
Sr=0
which contradicts the assumption that D=0.
Therefore if we assume that M=0 we must conclude that
K#0. However, it then follows that
Uu=0.

From QIII it follows that

180



RS Ut =0.
But Ut¢0 because E#0 and
Uu=0
while
RS¢O
because
D#0 and S55=0 by OT.
Thus we can conclude that M=z0.
Suppose that
Uu=0.
Equation QI implies that
SS=O.
It follows from QII that
3 Srs=(l/2) Sr RS
while Q2 implies that

3Srs= (1/2) S, Rg + L{Ut R_.}.

s
Therefore
L Ut Rs =0.
But L#0 from which it follows that either
RS=O or Ut=0.
If RS=O then D=0
and if
Ut=0 then E=0.

Thus we can assume that Uu¢0.

When LMUt Uu#o,
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then 01 and P1 imply that
L=N,

while QI and PI imply that
M=K.

Furthermore, 01 shows that
Sr=—LUt

and QI shows that
SS=—MUu.

The equations Q2 and P2 show that
L RS Ut=LM Uu Ut

from which we can conclude that
RS=M Uu'

Equation Q3 can be solved to yield
Upy=(-1/3L) R, U,

while QIIT shows that

It follows that
L Up Uu=Rr U, and therefore R,=L Ug .

Next we turn to equation Q5. If one substitutes the

value computed for Uiy into this expression we can

conclude that Rrsz(—l/3) IM U U;.

We also find that value of the expression
Rr SS+Sr RS=—2LM Ut Uu'

From QII it follows that

3 SrS=MLUtUu—LMUt Uu=0.
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The eguation QV shows that
(=1/3)U42 U =(-1/3)ML U2 Uy,
and therefore that LM=1.
Substitution of the values we have computed for
Sprg + Rygr and Sy into equation P5 shows that
Ttu=0.
From equation PV we can then conclude that
Tt=Ut.
We can then solve equation P3 for T, to find that
T,=(-5/3) U,.
But then PITI shows that
LMUy Uy=3 LM Up U, -(5/3)Ug Uy,
which is clearly impossible.

We conclude that no analytic coordinate changes

in

the agents parameters can decrease the time required to

compute a realization of Q using a message space of

dimension 2, when the computation of Q as the outcome

function is required. 1In the last paragraph of Chapter

VII we also noted that in the case of the verification

scenario, a central agent can compute in parallel both

the messages that are to be sent to the agents for

verification and the performance standard. It is

conceivable that there is a mechanism realizing Q with

a message space of dimension two that requires only two

units of computation time because the computation of

the outcome function is not required.
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N Computational Complexity of Mechanisms
Chapter IX

Separator Sets for Smooth Functions - I

We investigate the relations between
computations using finite networks processing finite
alphabets and computations using continuous networks as
defined in Chapter III. We seek to clarify the sense
in which the computation of a continuous function by a
continuous network can be considered as a limit of
computations by finite networks computing finite
approximations to the continuous function. Chapters
IX, X and XI deal with different aspects of this issue
in the case of differentiable functions. 1In Chapter IX
the size of the alphabet (finite) remains fixed, but
the number of output vertices of the finite networks
that compute the approximations is allowed to grow.

The additional output vertices accommodates computing
increasingly accurate approximations of the function by
using more digits in a digital expansion. In Chapter X
the number of output vertices remains fixed, but the
size of the alphabet is allowed to grow. In Chapter XI
the size of the alphabet (the alphabet is the real
numbers) is fixed and the number of output vertices is
also fixed, but the modules of the networks that

compute the approximations are restricted to be of a
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specified class indexed by an integer, and the integer
is allowed to grow. An example of such a class is the
collection of polynomials in a fixed number of
variables indexed by the degree of the polynomial. The
results in Chapters IX and x give lower bounds on the
computation time that are independent of the complexity
of the network required to compute the function. The
continuous lower bound result of Chapter IX is rarely
achievable. The actual time required for the
computation of a function by a network is usually much
larger than the lower bound. The result in Chapter XI
is a more accurate assessment because it gives
conditions under which the limit of the times required
for networks to compute approximations of the function
is bounded below by the time required for a network to
compute the function.

We consider finite approximations to a function f
obtained by introducing a discrete lattice into the
domain and defining the approximating function at
lattice points, while the alphabet size for the
networks carrying out the computations remains fixed.
Even if S is a separator set for f, the lattice points
in S corresponding to a given approximation to f may
not be part of a separator set for the approximating
function. Therefore, conditions are needed to ensure

that a sequence of approximations converging to the
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function f vields a corresponding sequence of separator
sets for the finite functions that converge in a
suitable sense to the separator sets for f. 1In this
section we study the first of two conditions that give
this result. We refer to this condition as
gradient-separation (or g-separation). We begin by
defining approximation of a continuous function by a
finite function defined on a lattice. We then study
g-separation. Theorem 9.1 gives the formula for the
lower bound on computing time under the condition of
g-separation. In Chapter X, Theorem 10.1 gives the
same lower bound formula when f is assumed to be

differentiably separable (Definition 6.4).

Definition 9.1.

(i) A rectangular decomposition of R is a
countable collection of half open intervals
[ai'bi) such that R=ui[ai,bi) and so that
[ai,bi)n[aj,bj)=@(the empty set) unless
i=7.

(ii) If V is a Euclidean space with standard
basis {eq r---,€}, then a rectangular

decomposition of V along the basis {fe;} is a

family of n rectangular decompositions

[ak i'bk i), so that
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