Discussion Paper No. 890

A Model of Computing With Human Agents
by

Kenneth R. Mount™) and Stanley Reiter**)

Northwestern University

June, 1990

*) Department of Mathematics, Northwestern University.

**x) Department of Economics and Kellogg Graduate Schoel of
Management, Northwestern University. We have benefitted from
comments from L. Hurwicz and R. Radner who cannot be held
responsible for the use or lack of use of these remarks.

This research was supported by Naticnal Science Foundation

Grants No. SES-7715793, IST-8314504, and IST-8509678.

1 Introduction

In this paper we present a model of computation
intended to apply to human agents and computers. This
model should permit us to express formally limitations
on the information processing capacity of human agents.
The broad aim of our research is to analyze the
information processing task involved in operating an
economic system. The focus is on the system of
organization rather than on any particular set of
activities, such as consumption or production.
Economic theory has concentrated on the perfectly
competitive market organization. The organization is
thought of as a variable with several possible values.
In that model, and more generally, economic theory has
almost exclusively relied on optimization models
(optimization is to be understood in a broad sense to
include the kind of behavior dealt with in game
theory.) The behavior of economic units, including
individuals, households, and firms, is modeled as
optimizing behavior. This has been the target of much
criticism. We note specifically the criticism of
Herbert Simon, who emphasized that optimizing models as
they have usually appeared in economics pay nho
attention to the limited capacities of human beings to
absorb, process and communicate information, and

therefore often require agents to perform superhuman

feats of ratiocination. As a result, an econonic
system discussed without regard to information
processing limitations can be utopian in the sense that
the performance predicted by theory diverges greatly
from actual performance. Simon pointed out that the
behavior of economic agents in fact exhibits ‘bounded
rationality’, and therefore differs in general from the
behavior predicted by models that ignore those
limitations. Simon‘’s ideas about bounded rationality
generated important work in several fields, including
the behavioral theory of the firm in economics. But
this approach has not had the degree of influence on
economic theory that might have been expected from the
introduction of an idea so evidently relevant and
important. The reason for this, we think, is that the
work built on it, for instance, in the behavioral
theory of the firm, has for most economists an ad hoc
character. It is often the case that there are several
different heuristics that are equally plausible, that
lead to different results, but the approach seems not
to offer principles to justify choice among them.
Furthermore, the approach does not generally yield
behavior that is precisely specified. For instance, the
notion that a manager of a firm tries to maximize
profit is rejected, because to do so in a conmplex

environment would exceed his powers of thought.

Instead the manager seeks to do acceptably well, (to
rsatisfice’), but this does not in general lead to a
guantitative prescription of the actions he will take.

what is needed is a model in which limitations on
the capacities of humans, (individually, or in groups,
operating with or without the aid of computers and
communications devices), to acquire, process and
transmit information can be expressed analytically, and
in which the implications of such restrictions for
individual behavior and the functioning of
organizations can be studied. As a first step in this
direction we aim to provide a model of computation,
applicable to systems involving human agents as
component elements, in which limitations on the ability
of agents to compute can be expressed, and the
consequences of those limitations derived. 1In this our
purpose is limited. We do not seek to model thought,
or creative activity, or, at this stage, even learning.
We focus on the kind of calculation that is typically
found in economic models, mathematical calculations
susceptible to an algorithmic treatment.

To motivate our model, consider the following
thought experiment. Imagine that we are in a room
containing a large, heavy table. We want this table
moved into the next room through a doorway narrower

than the width of the table. The protagonists in this

experiment are referred to as ‘I’ and ‘he’, and
sometimes collectively as ‘we’, or ‘us’. 1I see that
the table is too big and heavy for me to move by
myself. He will help me. Between us we should be able
to move it. Before going further, notice that there is
a problem of incentives here. We may have private
objectives or concerns that diverge from or are even in
conflict with the stated objective, to move the table
into the other room. These issues, referred to as
incentive problems, are the subject matter of a great
deal of work in economics using games of incomplete
information as the basic model. For the purposes of
this experiment, we may abstract from incentive
considerations. If we do so, what problem, if any,
remains? It is clear that he and I must coordinate our
actions in order to do the job.

Consider two cases.

First, suppose that he and I are the creatures
envisaged in the optimization models, who are without
information processing limitations. Each of us looks
at the table and the doorway. We each apprehend all
the aspects of the situation, including the size of the
table in relation to the doorway and to our individual
and collective strengths, and immediately figure out
the optimal way to move the table, (assuming it is

unique). Each of us would also know that the other has

the same data, and the same intellectual powers, and
has therefore figured out the solution, including our
proper individual roles. (If there were a sufficiently
high degree of symmetry in the situation, such as each
of us being equidistant from each of the lifting
positions, we might have to agree about who would do
what.) Each of us would therefore know his proper
role, and we would do it.

Second, suppose he and I are mere mortals. We do
not each immediately apprehend everything relevant to
the problem, but rather see only some limited amount of
the relevant information. Nor are we each able to
deduce immediately the implications of what we observe.
At some point, either after abortive attempts to move
the table, or more likely on the basis of similar
disillusioning experiences in the past, we realize that
coordination will be needed and that it is not
altogether obvious what to do. So, before doing
anything more in the physical realm, we hold a
conversation about how we are going to move the table.
This problem may be a simple one relative to what one
or both of us knows, or it may be complex. We might
need to use information that is distributed between us,
we might also have to divide the work of figuring out
what to do. For instance I might take measurements of

the door opening through which the table must pass, and

he might at the same time measure the table.

Even in the bhest of circumstances it may take us
some time to figure out what to do. This can reduce
the value of the answer we arrive at and of the actions
we carry out.

What is clear is that the physical problem of
moving the table has given rise to a symbolic problen
of acquiring and communicating information and planning
how to move the table. Limitations of physical
capacities make it necessary to have two people
involved; limitations of informational capacities can
make it necessary to have both people involved in the
information processing.

If, instead he and I were experienced moving men,
it might well be obvious to us what to do. Our model
should allow this possibility. This suggests that what
we regard as elementary computational steps should not
be absolute, but something we choose depending on the
situation to be analyzed and the agents doing the
analysis. Complexity of an information processing
task--a computation-- would not be measured in absolute
terms, but measured relative to the computational
capabilities regarded as elementary for the situation
at hand.

In our table-moving experiment the language that

he and I use to analyze the problem might include for

example, real numbers, and smooth functions on them.

We might want to apply calculus to this problen, which
is, after all, one of mechanics. A model that
formulates computing as a discrete process would not be
directly applicable to such a formulation of the
problem. In economic problems, including those of
economic organization, the models usually are in terms
of continua. In the simplest economic situations, such
as trade between two people in two goods, the standard
model, the Edgeworth Box, is stated in terms of real
variables and continuous or smooth functions. A model
of computing, or information processing, should be
conveniently applicable to such situations. This might
be done with a discrete model, i.e., a model with a
discrete alphabet, but that would inveolve
approximations. This would raise a question as to what
extent any result depends on the approximation as
opposed to the given data of the problem.

To play my part in moving the table I must
internally coordinate the actions of various parts of
nyself. For some purposes 1t is attractive to think of
a single model applicable to both the coordination
internal to an agent and the coordination of several
agents. Indeed, Marvin Minsky [20] might model the
internal processes of a single person in terms of the

interactions of several internal "agents". But it

seems likely that the level of resolution needed to
model brain functioning, or intelligence in general,
would require that problems of coordination and
information processing that are relevant for economic
organization be reduced to such terms as to make their
analysis infeasible or useless for economics. This
suggest that the coarseness of resclution of the model
not be prescribed once and for all.

Finally, the process of computing, or reasoning
proceeds by way of a limited class of elementary steps
each of which takes a significant amount of time.

These considerations led us to a model in which,
among other things, the elementary computational
operations are primitive elements, and therefore are
capable of being given different interpretations in
different cases. In one important example evaluating
function of continuous variables is a primitive, or
elementary, operation. While this makes the model
applicable to economic examples without necessitating
approximations, it raises questions about the
relationship of this model, and particularly the
measures of complexity coming from it, to analogous
measures in the accepted models of computing, such as
the finite state automaton, which typically involve
only functions on discrete or finite alphabets. These

relationships are clarified via limit theorems that

relate complexity measures and bounds on them for
finite approximations to the analogous measures and
bounds in the continuous model. The situation is
analogous to that of measurement, say, of some linear
dimension like length, where actual measurements can be
at best rational numbers, but for analytical purposes
the real numbers are used. This idealization is
justified by a limit theorem.

The model of computation we present permits the
formal expression of limitations on computational
capacities. This is done by restricting the class of
elementary operations.

Oour model, which is presented in detail in Chapter
III, is a continuous analog of the finite neural
network model of McCulloch-Pitts [18], a model
equivalent to the finite state automaton, or sequential
machine. Such models are usually interpreted as models
of electronic computers, which typically have fixed,
though expandable, memories and which are made of
devices that operate on finite alphabets. These models
are not readily applicable to standard economic models,
because economic models typically involve continua,
while the finite state automaton is discrete.

Motivated in part by the use to which we intend to put
our model, we construct an idealized continuous model

of computing, called the (r,d)-network. We do not

attempt to Jjustify this model by pointing to physical
devicesl), but rather by showing that the continuous
model is a limit, in several different senses, of
finite state models, and that the indicator of
complexity derived from our model is the limit of
similar indicators in a sequence of approximating
finite state models. This procedure has the advantage
of making our model directly applicable to standard
economic models without having to deal explicitly with
approximations in each case. Another advantage of
using a continuous model of computing is that it brings
the subject intc the domain of classical mathematics,
and thereby opens the possibility of using the tools
and methods of classical analysis.

Oour continuous model is equivalent to the
presentation of functions as superpositions(c.f.
Lorentz [7]). This exposes a connection between our
model and a literature in mathematics beginning with
Hilbert’s 13th problem, a problem that includes some
aspects of the theory of approximation. Vituskin,
Henkin, Lorentz and others [8,15] have used the
concepts of entropy and capacity for compact subsets of

normed spaces to investigate the possibility of

1) One might interpret an (r,d)-network as
modelling a device similar to an analog computer.
However, such a device is not formally an analog computer
unless the elementary functions are from a specific class
(c.f. [24]).

10

expressing a function of n variables as the
superposition of functions of a smaller number of
variables. In our model the question of computability
is the question of whether a given function can be
expressed as a superposition of functions from a
specified class.

For a person equipped with a personal computer and
appropriate software, to find the roots of a polynomial
of given degree may well be regarded as an elementary
operation, while the same person equipped only with
pencil and paper, or even with the same computer but
without the software, would find that task more
difficult and complex. Furthermore, what constitutes a
solution can vary with circumstances. A differential
equation may be considered to be solved when we have an
integral, but sometimes that same equation is not
considered solved until we have a numerically specified
solution path. To insist always on the latter concept
of solution can render the model less useful especially
in the context of theoretical analysis. Such
considerations seem to us to point to the value of
allowing the class of functions to be a primitive of
the model, whose interpretation in a particular
application expresses limitations on the computing
power of the agents being modelled and through which

the model can be connected to reality.

11

In our model of computation, as in the
McCulloch-Pitts model, the primitive element is a
module. Mathematically, a module is just a function.
It can be visualized as a ‘box’ into which inputs (the
values of the arguments of the function) flow and out
of which outputs (the value of the function) flow some
time later. Such boxes are wired together to form
networks that perform computations. Limitations on the
abilities of human beings to compute can be expressed
in this model by the class of functions that are
allowed to be modules. For example, psychologists tell
us that the number of variables that a person can
attend to simultaneously is small, about seven to
eleven [19]. In our model we take the modules to be
functions that have a limited number of arguments
chosen from a given class, such as polynomials, vector
valued functions of class C%, or real analytic
functions. The resulting modules are called
(r,d)-modules, r being the number of variables
permitted, each variable taking its values in a
d-dimensional vector space; the value of the function
is also a d-dimensional vector. We assume that a
module takes one unit of time to compute a value. The
measure of complexity of a computation is the least
time it takes an (r,d)-network to carry it out. Thus,

complexity of a computation is relative to the class of

12

functions taken to be elementary.

To illustrate the use of the model we apply it in
this paper to analyze computational tasks involved in
resource allocation, especially by means of a
decentralized allocation mechanism. While this
analysis may be more naturally carried out in a dynamic
resource allocation process, the most extensively
studied decentralized mechanisms are equilibrium
models. We have taken equilibrium models as our
example to illustrate the analysis. We study the
trade-offs, if any, between communication and
complexity in decentralized mechanisms. Is it possible
to achieve a specified performance in different ways,
some of which involve more communication and less
complexity than others? 1In this paper we apply the
model of computation to two familiar economic examples.
This serves both as an illustration of the application
of the model of computing, and as a first step toward a
general analysis we are interested in.

We consider resource allocation mechanisms in
their equilibrium form, as shown in the following

diagram.

13

Figure 1.1

Figure 1.1

14

The set E=Elx ... xE" is the set of economic
environments, where Ei is the space of characteristics
of agent i, A is the set of available actions and P is
the mapping which associates to each environment a
desired social action or outcome in A. Though P is
often a correspondence, we assume here that it is a
(single-valued) function. A mechanism w7=(g,M,h)
consists of a message space M, an equilibrium message
correspondence p, which associates to each environment
e€eE a subset u(e) of messages, and an outcome
function h, which translates those equilibrium nmessages
into an outcome in A. The mechanism 7 is decentralized
if the correspondence u is privacy preserving. That is,
each agent has a message correspondence,

1 n) —

ui(el):E{--->M and u(e x...xe i (i).

n u e
The mechanism 7 is said to realize the performance
function P if P = h+u, i.e., if for each environment
the outcome specified by P is the same as the one
resulting from #. In the examples that we study, the
spaces E, M, and A are Euclidean and the function P is
smooth.

An approach of computer science to the measure of
the computational complexity of a function is to assign
to a Turing machine computable function a time

complexity that indicates the asymptotic character of

the computation as the size of the input increases

15

(c.f.[9]). The measure derived using this theory is
not sufficiently fine for the study of allocation
mechanisms, but we recognize that using time as a
measure of complexity is a standard approach. If we
describe complexity by a cost function, then in our
model the cost would depend on the number and capacity
of modules, as well as time and other factors. such a
model could be used to analyze tradeoffs among these
variables. In the interest of simplicity, we postpone
such an analysis by restricting the measure of
complexity to time. Note that because general
(r,d)-networks can be reduced to equivalent loop free
networks (Theorem C.1) a bound on the time required for
a network to compute a function gives some information
about the number of modules required to carry out a
computation.z)

Given the performance function P there are
generally several decentralized mechanisnms that realize
P. We focus here on two informational properties, the
amount of communication required by the mechanism, and
the amount of computing. The communication is measured
by the dimension, m, of the message space M.
computation we suppose to be measured by a positive

integer, t (time), defined in this paper, indicating

2) Roy Radner has studied some cases in which both
the number of processors and time have entered the cost
function [25].

16

computational complexity. Thus, each mechanism 7 would
have associated with it a pair of integers (m,t)(m)

called the information-image of 7, and representing the

informational properties on which we focus, and the set
of decentralized mechanism realizing P is mapped into a
subset of the two-dimensional space whose coordinates

are m and t (integer valued), called the information

image of that set of mechanisms. This set represents
the menu of mechanisms (insofar as information is
concerned) from which a designer can choose. The lower
boundary of the set is, of course, of particular
interest because the efficient combinations of
communication and computation are on that boundary.

Figure 1.2 shows some possibilities.

17

|

m

Figure 1.2

El

Figure 1.2

18

In Figure 1.2, the integer m is the lower bound on
the dimension of the message space for the set of
mechanisms realizing P. The point a corresponds to a
mechanism whose message space is the one with minimum
dimension m, and whose measure of complexity t is the
minimum over the set of mechanisms realizing P with a
message space of dimension m.

Two alternative types of lower boundary are
indicated in Fiqure 1.2, one labelled A and the other
B. 1If the lower boundary is like A, then there is a
trade-off of computational complexity for
communication, less complexity can be achieved by going
to a bigger message space. This possibility exists
over some range indicated by the point b = (m*, t*) in
Figure 1.2. From there on further increases in message
space size do not result in a reduction in computation.
If the lower boundary is like B then the points
b = (m*, t*) and a=(m,t) coincide.

Two examples are analyzed using this model in
Chapter VII. One of them, representing competitive
allocations in classical environments, is an Edgeworth
Box exchange economy, with two goods and two agents,
each with a quadratic utility function involving two
parameters. The performance function in this example
is the Walrasian one. The other, representing

nonclassical problems, has the same space of

19

environments, but the performance function is the inner
product of the parameter vectors of the two agents.

The amount of computing required depends on the
interpretation of the mechanism. In Chapter V, two
interpretations are considered. First, the mechanism

can be regarded as a one step iteration. Second, the

mechanism is interpreted via the verification scenario.
According to the verification scenario, the center
‘posts’ a candidate equilibrium message, and each agent
determines whether or not that message satisfies his
equilibrium condition, i.e., is an element of his
message correspondence for the given environment. The
efficient frontier of the information image is analyzed
for each interpretation in Section II of Chapter VII.
The model of computation is the (r,d)-network whose
modules are real analytic functions of at most two real
variables, i.e., r=2, and d=1. Such networks can
accept as inputs at most two real numbers per input
module. In the one step interpretation, each agent’s
message is a subset of the message space. Chapter V,
contains an exposition of the computations regquired in
the one step iteration process. It also contains a
formal version of the computations required by the
verification scenario, and the formal construction of
the information image and its efficient frontier.

The efficient frontier in the first example, when

20

the equilibrium is calculated, is like A in Figure 1.2.
For the verification scenario, it is like B, and for
the inner product performance function it is like B.
In Chapter VIII the effect of analytic coordinate
changes in the parameter spaces of the agents and in
the message space 1s discussed (Theorem 8.1 and Lemma
8.2). It is also shown that, at least locally, there
is only one mechanism with a message space of minimum
dimension that realizes the Walrasian function (Lemma
8.1).

It is possible to understand the model presented
in this paper, and in particular, follow the discussion
of the examples in Chapter VII, by reading Chapters II-
VII. Chapter VIII studies the effect that analytic
changes of coordinates in the parameter spaces of
agents has on computing time. The remaining chapters
address general questions on the computation of
approximations of continuous functions by networks the
use finite alphabets.

The paper is divided into two Parts and three
appendices. Part I consists of Chapters II through
VII.

In Chapter II the finite McCulloch-Pitts model is
briefly summarized and a lower bound for computation
time, due to Arbib and Spira [2], and involving the

concept of (finite) separator set for an output line

21

(Theorem 2.2) is presented. Separator set is an
important concept for expressing the essential
information needed to compute a function.

Chapter III presents an informal discussion of our
model of continuous computation based on
McCulloch-Pitts networks. The model is formulated
using graph theory. The necessary definitions and
results abocut graphs and directed graphs and the formal
model are presented in Appendix C. The (r,d)-network
is defined formally (Definition C.12), as is what it
means for such a network to compute a function in time
t (Definition C.13). It is shown that an (r,d)-network
that computes a function in time t can be replaced by
an (r,d)-network, with the same class of modules, that
is free of loops (Theorem C.l) and also computes the
function in time t. An example of such a computation
is presented in Chapter III.

Chapter IV deals with the extension of the concept
of separator set (Definitions 4.1 and 4.5) to
continuous functions. The definition of computing an
encoded version of a function is given (Definition 4.3)
and a lower bound on the time needed to compute a
function by (r,d)-networks is established(Theorem 4.1-
The Dimension Based Lower Bound). The formula giving
the lower bound is analogous to that of Arbib and

Spira, except that in the formula, cardinalities of

22

separator sets are replaced by dimensions of separator
sets. It is shown that computation time depends on the
various encodings involved. The problem of finding
minimizing encodings for linear functions between
linear vector spaces is analyzed (Lemma 4.3). An
example is given.

Separator sets play an important role in
Chapters IX and X in showing that certain lower bounds
for the time needed to compute smooth functions with
(r,d)-networks are limits of the lower bounds obtained
for computing finite approximations to those functions
using finite McCulloch-Pitts networks (Theorem 9.1 and
Theorem 10.2). In Theorem 10.2 certain rank conditions
on matrices of second derivatives of the function to be
computed emerge. These are related to conditions in a
theorem of Abelson [1] having to do with the
communication necessary to evaluate a smooth function
by a distributed computation. Abelson’s theorem is a
generalization of a theorem of Leontief [15]. Leontief
used the result to study the independence of variables
in a production function, or consumption function. The
relations between separator sets and these various
results and conditions are explored in detail in
Chapter VI. In preparation for that certain
equivalence relations are analyzed in Chapter IV

(Definition 4.1 and Lemma 4.1).

23

In Chapter VI, concepts of adequate revelation and

essential revelation mechanisms are introduced both

for set functions and for topological functions, and
certain universality properties established for
functions satisfying a condition of differentiable
separability (Definition 6.1, 6.3, and Theorem 6.3). A
relation between essential revelation and the theorems
of Abelson and Leontief is established in Theorem 6.5.

Chapter VI, as was noted above, deals with the
relationships among the concepts of separator sets for
smooth and finite functions, certain conditions, used
in Chapters IX and X, on the derivatives of the
function to be computed, and the theorems of Abelson
and Leontief referred to above.

In Part II, Chapters IX to XI, limits of finite
approximations are analyzed. In Chapter IX a fixed
finite alphabet is used to compute finite
approximations of a real valued function using
approximating functions defined on lattices. 1In order
to allow refinements of the approximation, the finite
networks are allowed increasingly large numbers of
output vertices. Under a condition of gradient

separability (Definition 9.6) it is shown that locally,

and in the limit, the Arbib and Spira lower bounds for
the lattice approximations converge to the Dimension

Based Lower Bound of Theorem 4.1. In Chapter X,

24

lattice approximations are again studied, only in this
case the number of output vertices for the finite
networks is fixed. To allow for refinements of
approximation the alphabet is allowed to increase in
cardinality. Again, convergence of Arbib and Spira
lower bounds for finite local approximations to the
Dimension Based Lower bound is established for a class
of functions. The condition required on the functions
to be approximated is differentiable separability
(Definition 6.3 of Chapter VI). When a function is
differentiably separated, separable sets can be studied
using the concept of separator functions (Definition
10.1 and Definition 10.2). When a function

F:X;X...XX --—>R has separator functions, lattice
approximations to F have readily constructed separator
sets of cardinality related to the dimension of
separable sub-manifolds in the X;. From this one
proves that the Dimension Based Lower Bound is a limit
of Arbib and Spira lower bounds (Theorem 10.2).

In Chapter XI lattice approximations are computed
by finite networks where the number of output vertices
remains fixed, but the modules of the networks that
compute the approximations are restricted to be of a
specified class indexed by an integer (e.g.,
polynomials in a given number of variables indexed by

degree), and the integer is allowed to grow. The

25

theorem of Chapter XI shows that the minimum
computation time obtained from the (r,d)-network model
is the limit of analogous computation times for the
sequence of finite approximations. Thus, while the
results in Chapters IX and X are for a lower bound,
here the result is for the minimum computation time
directly.

The three appendices present several
technicalities. Appendix A discusses the concept of
privacy preserving correspondence in the context of
finite sets together with some examples. In Appendix A
the definition of isomorphism of privacy preserving
correspondence is introduced (Definition A2.3), and the
relation isomorphism has to privacy preserving
correspondences built from rectangular covers is
analyzed (Theorem A3.1.) Appendix A ends with some
lower bound results on the cardinality of message
spaces for a function that is a characteristic function
for a subset of a product X x Y. Appendix B is a
discussion of the theorems of Abelson and Leontief.

The results are used in Chapters VI, VII and VIII.
Appendix C presents the formalities on graphs and
networks, and is the formal presentation of the model

of computing we use.

26

Chapter I1

Finite Computation

We take as a point of departure a model called

"modular network" introduced by McCulloch and Pitts

[18]. That model was presented as a highly simplified
representation of a network of neurons. It is also a
model of the finite state automaton, or the finite
state sequential machine. In this Chapter we present
the McCulloch and Pitts model informally, following
Arbib [3, pp 66 ff]. In Chapter III we present in a
more formal way a more general version of the model
that includes continuous computation. Before
describing the McCulloch and Pitts model in more
detail, it may be useful to clarify its relationship to
automata and to the Turing Machine, perhaps the
fundamental model of computing. A reader already
acquainted with finite automata and Turing machines may
wish to skip to the section on McCulloch and Pitts
networks.

A sequential machine is characterized by three

sets and two functions. There is a set X that is a
finite set of inputs to the machine, a set Y that is a
finite set of outputs from the machine, and a set Q

that is the set of internal states of the machine. The

27

two functions are §:Q x X ---> Q, which is the next

state function, and the function A:Q x X ---> Y, which

is the next output function. The machine processes

finite sequences of elements from X,
(the set of such finite sequences is denoted by X*),
and produces elements of Y* (finite sequences of
elements of Y). This processing is carried out in the
following manner. Once an initial state g, for the
machine is chosen, then a sequence (xl,...,xt) is fed
to the machine, proceeding along the sequence from left
to right. At the ith stage of the process when the
state of the machine is dj.-7+ the machine changes to
state q;=6(g;_1,%x;) and it prints the element y,=
AC gy q.xq)3,

If the set Q is finite, then the sequential

machine is called a finite state seguential machine, or

a finite automaton. It is important to note that the
th

i output of an automaton fed a string of t elements
of X is determined by the first i elements of the input
string and the initial state of the machine.

A Turing Machine is a computing device that
consists of a tape (possibly infinitely long) that is

divided into squares, a Head through which the tape is

3), This is the definition of a Mealy machine.
There 1is another formulation that makes the output a
function of the state alone. In that case the automaton
is called a Moore machine. These two types of machine are
equivalent. See [3, or 8].

28

fed, together with a Control Box that controls the

action of the Head. (c.f. Figure 2.1).

CONTROL BOX

HEAD

T
TAPE

Figure 2.1

A finite alphabet A is given, that includes as an
element "blank". Set X = A-{blank}. The Head can read
elements of the alphabet from squares on the tape and
communicate what it reads to the Control Box. The Head
can also write on the tape:; that is, it can rOxlace an
alphabet entry on a square. Furthermore the Head can
move one sguare at a time to the left, to the right, or
it can hold its position. In one unit of time the Head
reads a character on a square, communicates this to the
Control Box, receives a command in response from the
control Box, writes something on the square it has just
read, and then moves left or moves right or does not
move. The Control Box, which determines the actions of
‘read, ‘write’, and ‘move’ carried out by the Head, is
a finite state sequential machine. That is, the
Control Box consists of a finite set Q of states that

includes a state "Halt", together with a function Prog

29

that maps the product Q0 x A to the product

A x {Left,Stay,Right}) x Q. At time t the Head

reads an alphabet element from a square and
communicates this to the Control Box. If the Control
Box is in a state g, then the Box evaluates the
function Prog(gq,a¢) = (B,M,q’). The Head is then
instructed to write B on the square that the Head has
just read, and then carry out the move M. The Control
Box then changes to state gq’. If g’ is not the state
'Halt’ the cycle is repeated. If g’ is ‘Halt’, then
the process stops. If, as before, X* denotes the set
of finite sequences of elements of X, then the way a
Turing Machine with an initial state qj computes a
function F from a subset S of X* to X* is as follows.
If s is an element of S, then s is written in
consecutive squares on an otherwise blank tape, the
Head is moved to the left most non-blank entry and the
Turing Machine is started in state g,. The Turing
Machine has computed F(s) if it halts after a finite
number of operations with an element of X* on an
otherwise blank tape, and that element 1s F(s).

The McCulloch and Pitts model is a model of the
internal controls of a Turing Machine, that is, of the
control Box. It can be thought of, perhaps a bit
fancifully, as a model of the brain of the Turing

Machine.

30

II. McCulloch and Pitts Networks

The McCulloch and Pitts model has a finite

alphabet A consisting of d elements, and a collection

of functions, f(.), of t variables, 1<t<r, where

£(Xqg-oaXg YeA for each t-tuple (xl,...,xt) of
elements of A4). Such functions are called
(r,d)-modules. It is convenient to think of the module

f as a device capable of computing the value f(

89,008) once the values a,,...,3ag have been
assigned to the variables XppeeerXgo I1f values
(al,...,at) are assigned to the variables (xl,...,xt)

in the module f, then f produces the value f(a;,...,3¢
) one unit of time later. The module is represented by

the diagram in Figure 2.2.

I

One thinks of the variables X; as carried on
input lines or wires into the "black box", £, and f has
an output line, or wire, that carries the value of the

function.

4) In the original McCulloch and Pitts model, the
number of inputs r, though finite, was not restricted a
priori.

31

In the terminologv of automata theory, an
(r,d)-module f is an automaton whose input set is the
collection of t-tuples (%X,,....%X¢, X; €A and t<r, whose
output set is A, and whose set of internal states is A.
The next state function is given by
§(g,x)=f(x) and the output function is given by
Al g,x)=f(x).

An (r,d)-network is a finite collection
of (r,d)-modules together with a rule for
interconnection. Each module has each input line
connected to either a module output line or an input
line from outside the network. The connection can be
thought of as made by a delayless wire. Those input
lines that are not output lines from other modules are

called network input lines. The output lines of some

modules lead outside the network and are called network

output lines. A typical diagram for a (3,d)-network is
shown in Figure 2.3. Note that the output line of a
module can be split and connected to several input

lines or lead outside the network.

32

Figure 2.3

33

A connection such as that shown in Figure 2.4 is

not allowed.

Figure 2.4.

One determines the state of a network by
determining the state of each module in the network. A
network with s input lines acts on each s-tuple of
elements of A that is placed on the input lines of the
network. The network starts with an initial state
assigned to each of the modules of the network. One
thinks of the actions of the network as occurring in
discrete units of time. At a given time t-1 each
module starts computing the value of its function using
as inputs the values on its input lines at time t-1.
The computation lasts one unit of time. At time t each
module has completed its computation and that value
computed becomes the state of the module at time t and
the value is assigned to the module’s output lines. The
network is said to compute the function F in time 7
from the initial state g, if for each sequence of
values (al,...,as), aj€a, and assigned constantly to
the input lines of the network for 7 units of time,

34

then the value on the output lines of the network at

time 7 is the function value F(a;,...,a A given

s)-
network can compute many different functions depending
on the length of time the values on the input lines of

the network remain unchanged. Consider, for example,

the network represented by Figure 2.5.

r—l X 1 Yy Z
t 1 ! 1 1 I—-«—
| | | | 1

1
Figure 2.5

Assume that the alphabet used by the network is
the set that consists of the symbols T(rue) and
F(alse). Designate the input lines to each of the
modules A, B, ¢, and D as Left or Right. We suppose
that the module A computes (Left and Right), that B
computes (Left or Right), C computes (Left implies
Right), and D computes ((Left or Right)and not(Left
and Right)); i.e. the module D computes "exclusive or".
The output line of the module D is the single output
line of the network. Table 2.1 catalogues the values
on the input and output lines of the network and the
states of the modules as a function of time 7 during

35

which the network inputs %, y, and z on the network
input lines remain constant. The last column lists
the values on the network output line. We assume that
the initial value assigned to each of the modules at
time 7=0 is T. In the Table 2.1, denote (x or y) by
xvy, (x and y) by x&y, (x implies y) by x->V,
(exclusive or) by x#y, and (not x) by ~X. In this
example, each of the modules has two input lines and
the network is a (2,2)-network. It is a matter of
convenience that none of the modules have single input
lines, in a (2,2)-network, each module must have at
most 2 input lines, but a module can have less than two
input lines. Table 2.1 shows the changes of state of
each of the modules as a function of time 7. The first
column indicates the time, 7. The columns x, V¥, 2
indicate that each of the input lines to the network,
labelled x, y, and z, is to receive a constant value
during the computation. The columns labelled A, B, C,
and D indicate the states of the modules at the various
times. For example, the entry in the row

labelled 7=2 and in the column labelled B indicates

that the state of the module B at time 7=2 is the value

(XVy) .

36

ni

N e
o
B WM RO

etc.

X \' z A B C D Output
X v z T T T T T
X Yy z X T T F F
X Yy z ¥ XVYy ~2Z F F
X Yy z x XVy ~2Z (XVy)®~2Z(XVy)ae~2
X vy z X XVy Z—> (XVy)o~2 (xvy)e~2
[(xvy)@0~2z]
Table 2.1

If a network can compute a function F, then the
time required for the computation is an indicator of
the computational complexity of the function F in
relation to the network. Fix positive integers r and
d. We will treat as an indicator of the complexity of
a function F with respect to (r,d)-networks, the
minimum time required to compute F by where the minimum
time is taken over all (r,d)-networks that can compute
F. 1In the next chapter, we formalize this model in a
way that allows us to replace the modules by functions
on infinite alphabets. The motivation for this
generalization is discussed in Chapter I.

We note two theorems, to be found in [3] that
establish an equivalence between the modular network
and the finite state sequential machine as models of

computation.

Theorem 2.1 [3, p. 68) Any modular network is

37

describable as a state-output finite automaton(Moore
machine).

The definitions of state-output finite automaton
and a finite automaton(sequential machine) can be found

in [37].

Theorem 2.2 [3, Theorem 7 p. 69] For every finite

automaton M there is a modular network that simulates

M.

Consider a function f: [[;"X;--->Y. Here, the sets
X; and Y are given finite sets, not to be considered as
the input sets or the output sets of an automaton. In
order to compute the function f using an (r,d)-network
we must represent, or encode, the domain and range of
the function f in terms of inputs and outputs of the
network. An enceding of Xj is a map gi:Xi-——>Hlm(i) A,

where A is the alphabet accepted by the network.

Similarly an encoding of Y, the range of f, is a

one-to-one function h=(h1,...,hm):Y———>HlmA. If there
exist encodings gy,...,9, b and a network C that

computes a function F such that

F(gy(Xy)reeerOn(Xg))= hO £ Xq,0neiXg))

we say that C computes an encoded version of the

function f.

The time C required to compute the function F

38

depends on the modules available for use in the network
and the on the number of input lines to the network.
Arbib and Spira have obtained a lower bound on the
number of input lines for encoding the sets X;. For
networks restrticted to consist of (r,d)-modules, for
fixed r and 4, this lower bound was used to obtain an
lower bound on the time required to compute F.

The bound given in [3] is based on two
observations. The first observation is exemplified in
Figure 2.6. In Figure 2.6 we see that if in a
(2,d)-network an output line depends on 8 input lines,

then it must take at least 3 units of time for the

network to produce its corresponding output.

Figure 2.6

The second observation is that the time required

39

to compute an encoded version of a function
£iX, X...X% Xp~——>Y depends on the number of copies of
the alphabet A required to encode X;. This in turn can
depend on the encoding of Y.

The first observation is formalized by the

following lemma.

Lemma 2.1. The output at time t on a given output
line of an (r,d)-network can depend on the input wvalues

of at most rt network input lines.

Let INT[x] be the smallest integer greater than
or equal to x. Another way of stating Lemma 2.1 is to
say that if the output of a network depends on n
preceding values, then the time required to compute the
output is at least INT] 1ogr(n) 1.

For an (r,d)-network C that computes an encoded
version of a function £, hj(v) is the value on the
jth output line when the output of the network is
h(vy)=Hj hj(v o). A set ScX_ is called an
gj—separator set for C in the mth argument of f if for

Sy, S,€8 with 817%S, there exists

Xyseoor¥p e Xpyqre e+ ¥p with x;eXy such that
hj[f(Xl""'Xm-l'sl'xm+1""'xn) 1=
hj[f(Xl""'xm-l'SZ'Xm+l'“"Xn) J.

.—separator

Arbib and Spira noted that if S is an hj

40

set in Xn,+ then in order to compute an encoded version
of f with Y encoded by h, the encoding g, must be
one-to-one on S. Let |S| denote the cardinality of S,
and recall that |A|{=d. Then at least Int[logyS]
copies of A are required in the range of g, . The

formal statement is given in Theorem 2.2.

Theorem 2.2.(Arbib and Spira) Let

f:1X) x...% X ———>Y. Let C be an (r,d)-network (r>1,
d>1) that computes £ in time t. Then
t>

max 4 [1og.(INT[logg([SqC 3)]) 1 +... +

INT[logg([SpC 3)1) 1} 1]

where Si(j) is an h.-separator set for C in the ith

J
argument of f.

41

Computational Complexity of Mechanisms
Chapter III
Graphs and Networks

In this chapter we present a version of the
McCulloch and Pitts model for computing that allows
continuous functions as modules. The general idea is
to replace the finite alphabet used in the informal
discussion of Chapter II by an open neighborhood of the
origin in a Real vector space of finite dimension. The
replacement is a fairly simple matter, but because we
wish to relate this model to the representation of
functions by superpositions, some of the details are
notationally cumbersome (for a discussion of
superpositions see [16]). We make no claim of
originality. The move to (r,d)-networks using vector
valued functions is certainly a natural one. We
represent networks by directed graphs. The use of
directed graphs is common in autcmata theory (c.f. [3],
or [9]). However, we have been unable to find a
reference that carries out the construction we use. We
give an informal discussion of the model in this
chapter and relegate the formalities to Appendix C.

In Chapter II there is an informal presentation of
the development of the McCulloch and Pitts model (([31].)

In that presentation, if A is a set of cardinality 4,

42

then an (r,d)-module is a function

£:]];° A--->A, 1<s<r, from the s-fold product of A to A.
One can think of the function f as a computing device,
or a finite state automaton. The alphabet for this
computing device consists of the seguences (al,...,as),
aj;€A, and the output set of the device is the set A.
This automaton has A as set of states. If the function
is in state g at time t, and f accepts a sequence of
elements (al,...,as) at time t it outputs f(al,...,as)
one unit of time later. It is convenient to think of
the module f as a pair ((1,...,s),f) where,

(1) (1,...,s8) is the sequence of indices for the
variables of f, i.e. indices for the coordinates of the
domain of f,

(2) f names the function,

(3) every function f:HlnA-——>A, can be a module.
Although a module is a pair ((1,...,s),f) it is
sometimes convenient to denote the pair by f.

An (r.d)-network is a finite collection of such

(r,d)-modules together with a rule of interconnection
that describes how outputs from modules in the
collection are distributed among the inputs of the
collection. This rule of interconnection is itself a

function. The domain of the interconnection function

is a subset of the collection of all pairs [],f], where

i is an index for a variable of the module f£. The

43

range of the interconnection function is the set of
modules of the network. Because the interconnection
rule is a function, if a pair [J,f] is in the domain of
the interconnection rule, then the rule assigns to that
pair exactly one module, say ((1,...,s’),9). We think
of the jth variable of f as connected to the output set
of the module ((1,...,s8'),9) by a delayless wire, or
line. When the module g computes a value, that value
is instantly relayed to the jth variable of the
function f. Some of the pairs [j,f] can be outside the
domain of the interconnection rule. Such a pair is a

network input line. It is thought of as a wire running

from a point outside the network to [],f]. Some

modules are designated as output modules. A wire runs

from an output module to a point outside of the
network. The output modules are where the results of a
computation are read. Sometimes an output module is

called an output vertex.

Because the interconnection rule is a function
from the finite set of pairs [J,f], to the finite set
of modules of the network, the interconnection rule can
be represented by a directed graph, or digraph, that
has as vertices the modules of the network. If the
interconnection rule assigns a module (¢(1,...,s"),9) to
the jtM variable of a module ((1,...,s),f), then the

graph has an edge that starts at the vertex

44

g=((1,...,8),9) and ends at vertex f=((1,..,s),f).
That edge from g to f is then indexed by j, to show
that the edge ends at the jth variable of f.

In the model we consider, the alphabet A is
replaced by a subset of a finite dimensional real
vector space of dimension d. The modules of an
(r,d)-network are function chosen from a restricted
class ¥. The class J is a primitive of the model.
Examples in the case of (r,d)-networks would be the
class of analytic functions of s-tuples of
d-dimensional Real vectors,l<s<r, and that have
d-dimensional vector values,or, d-dimensional vector
valued continuous functions that have as variables
d-dimensional Real vectors.

The diagram in Figure 3.1 represents a
(2,1)-network C. The class J of functions used in the
network consists of three functions of the two
variables A and B. The class JI={(A+B, A*B, A/B}. Each
vertex of the digraph that represents C is
denoted by a box with a label that represents the
function assigned to that vertex. Each edge of the
digraph is labelled by a letter. We use the same
labelling for a variable and for the edge that
indicates the assignment made by the interconnection

rule. The vertices labelled L, and L, are the input

45

vertices of the (2,1)-network, while the output vertex

of the (2,1)-network is Fiy.

Figure 3.1

46

As in the discussion in Chapter II, the state of
an (r,d)-network is an array whose entries are the
state of each of the modules of the network in some
prescribed order. We assume that the network 1is
initially in some fixed state o. A network with s-
input lines and that is in a state o', acts on each
s-tuple that is placed on its input lines. If an
s-tuple of values is placed on the network input lines,
the network will undergo a sequence of changes of state
over time. When the s-tuple of values placed on the
input lines of the network is changed, we assume that
the network returns to the fixed initial state o from
which state the new computation statrs. At the end of
each interval of time, as long as the s-tuple placed on
the input line remains unchanged, the values produced
by the network at the network output modules are
functions of the s-tuple of values placed on the
network input lines.

As an example, we return to the diagram in Figure
3.1. Assume that in the initial state ¢ vertices L,
Ly, Fy. Foy, and Fq have values 0,0,0,1,0,
respectively. We represent the initial state by the

row matrix:

47

(0) L

Table 3.1 shows the sequence of changes of state over
time as the network C computes. Table 3.1 can be read
as follows. The entry 0 in the column labelled F,, and
the row 0 represents the state of vertex F,4 at the
initial state. The second row of the table indicates
the new state of each of the modules of the network at
time 7=0. At time 7=0 the input lines of the network
are changed to the state in which the input vertex L,
has state x and the input vertex L, has state y. During
the period from 7=0 to 7=1 the state of C changes
to a new state in which the state of F, is the value of
Fl(A,B)=A*B, whe A has the value x and B has the
value that is the initial state of the vertex F,.
Therefore, F, changes to the state x. At the time 7=4
which is the end of 4 units of time starting when the
values x and y are placed on the network input

lines, the line G carries the value x(l+xX+y)
(1+x) (1+y)

48

Ll L2 Fl F2 F3
g 0 O 1 0 0
T
0 X v 0 1 0
1 X Yy X 1+y 0
2 X x(1+y) (1+x+y) X/ (1+y)

Y
3 0x vy X(1+X+y) (1+%) (1+y) x(1+V)

(1+x+y)
4 X Y X(1+x)* (1+y+ X(1+xX+Vy)
(1+y) X(1+x+y)) (14+%x) (1+y)

Table 3.1
Just as in the discussion of Chapter II, the

network is said to compute the function F in time 7
from the initial state o if for each sequence of values
(al,...,as) chosen from A and assigned constantly to
the input lines of the network for 7 units of time then
the value on the output lines of the network is the
function value F(a,,...,ag) at time r. The network

given in Figure 3.1 computes the function

h(x,y)= x{1l+x+ty)
(1+%) (1+y)

in time 4, but it computes the function x(14y)/(1+x+y)
in time 3. A given network can compute many different
functions depending on the length of time the values on
the input lines of the network remain unchanged. The
number of functions computed by a given network can be
arbitrarily large as time is allowed to increase.

49

Suppose that C is an (r,d)-network with digraph G
that computes a function F in time t. Suppose that the
value of F is a d-dimensional vector. 1In that case,
the network C has one output line. For simplicity, we
fix d to be 1. Consider the special case in which the
network G is a connected tree T with a single root to
which each vertex can be connected by a sequence of
directed edges. By a tree we mean that even when the
direction of edges is ignored, there are no loops. By
a sequence of edges we suppose that the beginning point
of an edge in the sequence is the endpoint of the
preceding edge in the sequence. 1In the parlance of
graph theory, each vertex of the tree can be connected

to the root by a directed walk. Each segquence of

edges required to connect a vertex to the root has as a
length the number of edges in the sequence. The
maximum of the lengths of sequences connecting vertices

of the tree to the root is the length of the tree. A

network that is represented by such a tree computes

functions that are superpositions of the functions that

are the modules of the network. The depth of the

superposition, i.e. the number of levels of functions
used, is less than or equal to the length of the same
tree. Furthermore, when the time is larger than the
length of the tree, the network continues to compute

the same value of the function, and the depth of

50

superposition is the length of the tree. A classical
problem in mathematics is to decide whether a given
function F of n variables can be written as the
superposition of functions of a fewer number of
variables. This is the substance of Hilbert'’s

Thirteenth Problem(c.f. [8,16,17]1). It is implicit in

the literature that the depth of the superposition
expresses an intuitive notion of computing complexity.
When the functions in the superposition are only
restricted to be continuous and have fewer variables
than F, Arncld and Kolomogorov have shown (c.f.
[16,17]) that F can always be written as a
superposition of continuous functions of fewer
variables. However, if the functions used in the
superposition are also required to have the same degree
of smoothness as the function F, then it is known that
in general such a superposition representation is
impossible(c.f. [16,17,27]).

In the case that a function is computed in time 7
by an (r,d)-network C that is not represented by a
tree, one can replace the network C by a network C’
that is represented by a tree T of length 7. The
network C’ can be constructed out of the same modules
(but with an increase in the number of modules) as the
network C with the possible addition of identity

functions as modules. This remark is the substance of

51

Corollary C.l. The replacement procedure deloops C.

The (2,1)-network shown in Figure 3.1 has a
digraph that is not a tree. As we have seen, this
(2,1)-network computes the function

h(x,y)=x(14+x+y)/(1+x)(1+y)
in four units of time. We use the procedure of
Appendix C, Corollary C.1 to construct a (2,1)-network
T that has a tree as digraph, that computes the
function h(x,y) in time four, and has as the functions
associated to the vertices of T the same functions
associated to the vertices of C.

At time t=4 the output vertex F, has as its state
the value x(1+x+y)/(1+x)(1+y).

At time t=3 the edges E and F correspond to
variables that have values x(l+x+y) and (1+y) (1+x)
respectively. We construct two (2,1)-networks C(1) and
c(2), each with a digraph that is a tree, so that in
time t=3 the network C(l) computes x(l+x+y) and c(2)
computes (l+x)(l+y). Assign the output of C(1l) to E
and the output of C(2) to F with the output vertex of
the tree assigned the function E/F. At time t=3 the
variable E (that is the function Fl) has the value
%x(1l+x+y) and the variable F (i.e., the function F,) has
the value (l+x)(1l+y). The function Fl has value
x(1+x+y) at time t=3, because at time t=2 variable A

carries the value x and variable B (assigned to the

52

function F,) has value (l+x+y). Next we need two
(2,1)-networks C(1,1) and C(1,2) that in time t=2
compute the values x and (1+X+y), respectively.
Similarly we require two (2,1)-networks c(2,1) and
C(2,2) that compute y and x(1+y), in time t=2. Connect
c(1,1) and C(1,2) to A and B (respectively) of Fl and
connect C(2,1), C{2,2) to C and D, respectively. This

produces the following diagram.

C(1,1) c(1,2) c(2,1) c(2,2)
Fq F
l | _]
|
Fq
Figure 3.2

53

At time t=2, variable A carries x and variable
B (function F,) carries 1l+x+y while variable D
carries y and variable E (function Fl) carries x(1l+y).
Extend Figure 3.2 to Figure 3.3 where H and K are
functions that are to produce X and y respectively in

time t=2.

c D A B
Jﬁl r——] 7\—i l—__)

F, K Fy

|

| —

¥y Fa
\ o]
Fj

54

At time t=1, A and B are to have values x and 1l+tvy,

while ¢ and D are to have the values y and X

respectively. Extend Figure 3.2 to a Figure 3.3 as
follows.
r 1 1
Id Id Fq 1d } Id F,
Id F2 Id Fl

l:_ﬁ | —

% 1 F,

L_ﬂ_T___

LI
Fy

Figure 3.3
Finally, we may read off the required inputs from

o and the input vertices of C. The result is

55

pe | Y X [1 v X (ﬁy 0
1J | i LE_] 7
Id Id Fl Id Id F2
g — 5 A
I4d F2 Id Fl
Fq |F2

—
»

Figure 3.4

The function computed in time 4 by the
(2,1)-network in Figure 3.4 has the following
expression as a superposition,

F3(Fl(Xer(YrFl(x,1))), Fz(YrFl(Xer(Y:O)))=

F X, Fol v.F(%1 Y)Y = XF,(v, F,(x,1)) =
Fz(YfFl(XIF2(y,0))) 1 Y+Fl(X:Fz(y,0))
x(1+v+Fl(x,1)) = x(1l+y+x) = x{1+x+y)

1 + x +x*F,(v,0) 1+y+x(1+y) (1+x) (1+y)

Table 3.1 shows the changes of state of
the(2,1)-network of Figure 3.1 that correspond to the

successive intervals of time.

56

Computational Complexity of Mechanisms
Chapter IV
Computing Encoded Functions and the Dimension Based

Lower Bound on Computing Time

In the finite McCulloch and Pitts model of
computing, a lower bound for the time needed to compute
a given finite function by an (r,d)-network is given by
the formula of Arbib and Spira [3]. This bound depends
on the cardinality of certain separator sets associated
with the function. There is an analogous concept of
separator set for continuous functions. 1In this
chapter we give a lower bound for the time needed to
compute a given continuous function by continuous
(r,d)-networks. This bound is given by an expression
much like that of the Arbib and Spira lower bound,
except that the size of separator sets is measured by
(topological)dimension instead of cardinality. In
Section I we discuss an equivalence relation, called
F-equivalence, that a function defined on a product
Xlx...xxn induces on each of the components X, . The
separator sets of Arbib and Spira are convenient
representations of this equivalence relation. 1In
Section II we introduce the concept of separator set
for continuous functions and establish the relation

between separator set and F-equivalence. The section

57

ends with the statement and proof of the Dimension
Based Lower Bound on computing time. In Section III we
use the results of section II to analyze the

computation of linear functions.

Section I.
F-Equivalence

Suppose that F:X--->Y is a non-constant function,
from a finite set X to a finite set Y. The function F
defines an equivalence relation on X where points x and
X’ in X are equivalent if F(x)=F(x’). The guotient
set (X/F) is the collection of equivalence classes of
that equivalence relation. Denote by q:X--->(X/F) the
function that carries a point x€X into the eqguivalence
class of X. The set (X/F) is in one-to-one
correspondence with the image of F. One can factor F
through the set (X/F): that is, there is a (unique)
function F*:(X/F)=--->Y such that F=F*.q. Furthermcre,
(X/F) is the smallest set in cardinality through which
F can be factored.

Suppose that an (r,d)-network C is to compute an
encoded version of F(c.f. Chapter II) and assume that C
uses an alphabet A (of cardinality |[A|=d) that is at
least as large as the cardinality of the image of F.
One can encode the image of F, or rather encode the

guotient (X/F), by a map g: (X/F)-—--> A.

58

Encode the image of F by the same map g, and encode the
domain of F by g-qg. The network C computes an encoded
version of F in one unit of time by setting x=x. The
quotient map g and the inverse of g carry the burden of
the computation. No network can decrease the computing
time. Further, each network that computes F must have
as input set a set of cardinality at least |A], because
the network C computes a function that has as image a
set that contains a copy of the image of F. Each copy
of A can be considered as the domain of a single
variable. We conclude that in the case of a function
with values in A, only one variable is required to
compute the function.

Now consider the case of a function G:Xlxxz———>A
defined on a product X,xX, with values in A where each
X3 is a nonempty finite set. Assume that a network C’
is to compute an encoded version of G. We attempt to
follow the pattern established for the function F
defined on the space X. The problem is complicated by
the definition of computing an encoded version of G,
because in the definition given in Chapter II, each of
the spaces X;j is to be encoded separately by a function
g;- The set A is certainly the choice for the encoding
of the range of G. We require two functions
g;:Xi——=>P;., each P; a product of copies of A, and a

function g: P XP,-—=>A that ¢’ is to compute, such that

59

for each xlexl and xzexz,

G(Xl,Xz 1Y=ag{ gl(X1);gz(X5)).
Each function gj determines an equivalence relation =y

on Xj - For x, Y€X;, X=iY if gi(X)=gi(y). Note

also that if x=,y in X,, then for each z€X,,

G(x,2)=g{ g4(x),g, (2))=

g(a;(vy), 950 2))=G(v,z).
A similar remark applies to g, and X,. The coarsest
relation, that is a relation with largest eguivalence
classes, we can apply to X; that yields an encoding
g;iX;j-——>P; is given as follows. Define elements x and
y in X, to be G equivalent if G(%,z)=G(Y,2) for all
z in X,. similarly we say that for z and w in X5, 2
and w are G eguivalent if G(a,z y=G(a,w) for all
aeX,. To see that this is the coarsest relation that
we can use to give encodings of the X;, note that we
have already seen that each pair of maps qi:Xi———>Pi
used as encodings of the domain of G to compute an
encoded version of G determine equivalence relations on
the Xj in which points that are G equivalent are
equivalent. Denote by (Xi/G) the quotient set of Xj
determined by G equivalence on X;. We can conclude,
that the set of smallest cardinality we can use for the
set P; is a product of copies of A just large enough to
contain a one-to-one copy of (Xi/G). The number of

copies of A required for an embedding of (Xi/G) is

60

INT[logg ([(Xi/G)|) 1. If we think of each copy of
A as the domain of a variable to be used by C’ to
compute an encoded version of G, then we need at least
INT[logg(|(Xi/G)\) 1 to encode each Xj.

Denote by q; the quotient map from X; to (Xi/G).
For Arbib and Spira, a set S in Xj is a separator set
for G if qj is one-to-one on S. The use of the
alphabet A to encode the sets X; and Y in cases in
which the cardinality of A is smaller than the
cardinality of Y is accomplished by using sufficiently
large products of copies of A.

We now carry out the construction of the sets
(Xi/F) to be used in the case of a function defined on
a product [[;"X; and investigate some of the formal
properties of the quotient. In particular we discuss
in what sense the (Xi/F) are the smallest sets that
must be embedded in a product of copies of A in order
to compute an encoded version of F.

Notation. If Xj, 1<j<n, are sets, then X<—j>
denotes the set

Xl X...X X-_l X Xj+1 X ...X Xn.

3
If xexj and if z=(zl,...,zj_l, zj+1""'zn)ex<—j>' then
x[iz denotes the element
(zl""'Zj-lfx'zj+l""zn) of X X...X xn.

Definition 4.1: Suppose that X, 1<i<n, and Y are

61

sets, suppose that F:]}

[," Xy--->Y is a function, and

suppose that 1<js<n. Two points x and x’ in Xj are

F-equivalent in X if for each zeX

<=3>!

F(xsz Y=F(x’jjz).

It is elementary that F-equivalence in Xj is an
equivalence relation on points of Xj'

Denote by széﬁl the collection of F-equivalence
classes of X. . Set 95 equal to the guotient map from

]

]

The following lemma establishes the sense in which
the set (Xl/F)x...x(Xn/F) is the smallest product set
through which F factors.

Lemma 4.1: Suppose that Xl""'xn' and Y are sets
and suppose that F:Xlx...xxn———>Y is a function. There
is a unigque function F*:(Xl/F)x...x(Xn/F)———>Y that
makes the Diagram 4.2 commute. Furthermore, if

Z1s++42, are sets, and if there are functions

n

>4

i 1sisn,

gi:Xi
and a function

>Y

G:le...xZn
that makes Diagram 4.3 commute, then there are uniquely
determined maps g*;,...,9%,, g*i:Zi——->(Xi/F),

that make Diagram 4.4 commute.

62

F F
Xl X X Xn > Xl X xxn -> Y
dq | da, | / dq gn | /
1 " / F | "l e
L ! / i i
(Xl/F) XeooX (Xn/F) Zl X X Zrl
Diagram 4.2 Diagram 4.3
X, X X X
|
I 2N
\ d4 q, / i \ F
g1 \ 7 |9 N\
(Xq/F)%.. x(X,/F) > Y
/ S L OFx
/ g* g*o \ E / G
V/ . n N b/
le .. X Zn
Diagram 4.4
proof. If z€Z;, choose x, x'€Xj such that
gi(x’)=gi(x)=z. If weX__js» set g(w)=
(ql(wl)I"'fgi—l(wi—l)'gi+l(Wi+1)r°--rgn(wn))-
Then

F(x [; w)=G(g;(x)f; g w))=

G(gi(x')Ji g(w))ZF(X'Ii w).

Therefore qi(x)=qi(x’). Set g*i(z)=gi(x).

that Diagram 4.4 commutes.

It is clear

As for uniqueness of the maps g¥*,, note that if

gk*.:Z.—>(X: /F), 1<i<n, are maps that make Diagram
171 1

4.4 commute when used in place of the maps g*;, then

for each ze€Z; and each x€X; so that gi(x)=z, it follows

that

g% (2)=g%; (g3 (x))=qy (X)=g**; (g; (x))=g**; (2) &

63

Section II
The Computation of an Encoded Version of a Function F

and the Dimension Based Lower Bound on Computing Time

Arbib and Spira studied, in effect, the spaces
(X4/F). They did so by investigating subsets of Xy,
called separator sets, on which the maps ¢; are
one-to-one. When the spaces Xi are topological spaces
and the maps involved are continuous, working with such
subsets has some advantages over working directly with
the quotient space, because the quotient maps g; can be

badly behaved. This leads to the following definition.

Definition 4.1: Suppose that X;,...,Xpn, Y are

sets and suppose that F:Xlx...xxn———>Y is a function.

A subset S of the set Xj is said to be an i-separator

set for the function F if for each x, x’, x=*x’, in S

there is z€X such that

<-i>
F(x[;z)#*F(x'[iz).
If x and x’ are elements of X; that form an i-separator

set for the function F, then x and x’ are said to be

separated by F.

It is easy to see that q; is one-to-one on
each i-separator set S. 1In the situations represented

by Diagram 4.3, a more general assertion about

64

separator sets 1is true.

Assume that S is an i-separator set for F and
suppose that there is a function

G:Z1 XeooX Zn——->Y
and for each 1<j<n, there is a function

gj:Xj-—->Zj
that makes Diagram 4.3 commute. If s and s’ are
elements of S that satisfy the equality gi(s)=gi(s’),
then for each weX__,..

F(sfyw)=G(g5 s)[;(90 wy),enerpl Wy)))=

G(gi(87 V130970 Wy Ve Gy Wy)))=

F(s/[;w).

Therefore, qi(s)=qi(s’). Because the map q;
is one-to-one on S, s=s’. It follows that the maps gj
are one-to one on i-separator sets. Furthermore, the
set gi(S) is an i-separator set for G, because if
F(sfiw y#F(s’jiw), then g;(s)#g;(s’). The
property of being an i-separator set is inherited by
the image under g, of an i-separator set. Furthermore,
the image gi(S) has the same cardinality as the
original set S.

The result of Arbib and Spira relating the
cardinality of separator sets and the minimum time
required to compute an encoded version of a function

was stated in Chapter II. There is an analogous lower

pound result for computing an encoded version of a

65

continuous function. We begin the discussion of that

analogous result with the following definition.

Definition 4.3: Suppose that F:X x...xXXp=--->Y is
a continuous function from a product of topological
spaces Xj to a topological space Y. Suppose V=Rx...XR
is a d-fold direct product of the Real numbers. We say

that an (r,d)-network C computes an encoded version of

F in time t if
(a) there are Euclidean spaces E; (E; a w;-fold

direct product of copies of V) and continuous

functions g;:X;--->Ey, 1<1<n,
and
(b) there are continucus functions hl""'hb
where
h.:Y >V
j r

such that the following conditions are
satisfied:

(i) h=(hl,...,hb) is a bi-continuous
one-to-one map to a topological
subspace of Vx...xV (h is an
embedding),

(ii) there is a function
D=(Dy,...,Dp): HlnEi ——=>VX...XV

from (Ewi)-fold tuples of d-vectors

to b-fold tuples of d-vectors that

66

C computes in time t,

(iii) the following diagram

commutes,
F
X, x.‘.x X, —TTTTT > T
‘ ll; 93 h=(hy, ..., hy)
: I
E1 XeooX En ————— > VX...%xXV
D=
(Dy s« /sDp)

Diagram 4.5

The maps g; encode the domain of F and the map h
encodes the range of F. If v is an input vertex of C
with domain vectors from E;, we call v an input vertex

for Xi'

Definition 4.4: Suppose that C is an
(r,d)-network represented by a digraph G. A vertex v
is connected to a vertex w if there is a walk from v to
w in G. If C computes an encoded version of a function
F and W is a walk from an input vertex v whose states
are the inputs from a component of Ej, then W is a line
from Ej.

Note: Each vector from Ej must be a possible

67

input to C through an input vertex. It follows that if

then dim E: < dp.

€)r-++18p are the inputs from Ej, 3

Definition 4.5: Suppose that F:X;x...xXy --->Y is
a continuous function, and as in Definition 4.4,
suppose that C is an (r,d)-network that computes an
encoded version of F with

h=(h; ,...,hy): Y——->HiV
the encecding of the space Y. Let G be the digraph
associated with C, and let the output vertices of G be
Vi 1<j<w. For each fixed j, a subset S = X; is said

to be an i-separator set for the jth output vertex if S

is an i-separator set for the function hj-F.
If S is locally Euclidean, then S will be called an

LE-i-separator set for the jth output vertex.

We can now state the lower bound assertion.

Theorem 4.1 (Dimension Based Lower Bound): Let

F:X{X...xX --=>Y be a continuous function. Assume that
V is a d-fold direct product Rx...xR. Let C be an
(r,d)-network that computes an encoded version D of F
in time t where

gzﬂigilex...xxn———>HiEi
is the encoding of the domain of F and

h=(hl,...,hw):Y—-—>Hiw \Y

68

is the encoding of the range of F. Suppose further
that for each 1<i<n, a set S(i:j)SXi is an
LE-i-separator set for the jth output vertex. Then
tz

max4{ INT[logp! INT[dim S(1:7j)/d 1+...+

INT[dim S(n;3j)/d 1 } 1 }.

Proof: We first show that the jth output vertex
(which corresponds to hj) must be connected to at least
INT[dim S(i;j)/d] input vertices that have inputs
that are vectors in the image of g;. Suppose not, and
suppose that the jth line is connected to only ¢ inputs
from E; where

g < INT[dim S(i:j)/d 1.

Assume that E; is the sum of q input spaces V. Then,
as we have remarked in the note following Definition
4.4,

dim E; < g.d <INT[dim S(i:j)/4 1.d.

Set s = dim S(i:;j) and write
s =ad +m, 0 £m < d. Thus
f; if m = O
INT[dim S(i;3)/d 1=]
Li+l if m > O.
Since q < INT[dim S(i;3j)/d 1, there are two cases:

Case (1)

m=0; then g = a - P with P 2 1.
In this case
dg = da - dP < da = s.

69

Case (ii)
m > 0; theng=a-?P+ 1, P > 1.
In this case
dg = da + @ - dP = (da + m) + (d-m) - dP = s + 4d(1-P) -
m< s.

In either case dim E; < s.
The map gj;:¥X{-==> E; carries S(i:;j) into E;. The
space S(i:j) is locally Euclidean and hence Ss(i:j) 1is
locally compact. Because S(i;j) has dimension s, there
exists a compact set K with a nonempty open interior U
contained in S(i:;j) that has dimension s. The map g;
is continuous on Xj. If g5 is one-to-one on S(i:Jj),
then g; is one-to-one on K, and, because K is compact,
the restriction of g; to K is a homeomorphism of the
interior of K into E;. Thus dim E; < s = dim U. This
is impossible (See [10], p. 26). Therefore, the
restriction of gy to S(i;j) cannot be one-to-one.
Because the restriction of g; to S(i:3j) is not one-to-
one, there are two points s and s’ in S(i:;j) such that
s#s’ and g;(s)=g; (s!). Because S(i:]j) was assumed

to be an i-separator set for hj there is an element X

in X__5 such that
hj[F(xl,...,xi_l,s,xi+l,...,xn) 1#
hj[F(Xl,...,Xi_l,S’,Xi+l,..-,Xn) 1.

By hypothesis C computes the encoded version D of F in

time t. Therefore,at time t, D- Higi = h.F. Then at

70

time t

DI JI391(XqreeerXio1,8 X417 r¥p) 1%

D[Higi(Xqreor X208 Xjqq0e0 00Xy)y].
This is clearly impossible. Therefore the assumption
g < INT[dim S(i:j)/4a] contradicts the assumption that
S(i;j) is a separator set for the jth output vertex.
Hence the jth output vertex is connected to at least
INT[dim S(i;j)/d] outputs from E,.
It follows that the jth output vertex is connected to
at least

INT[dim S(1:j)/d 1 +...+ INT[dim S(n:;j)/d4 1]
vertices.

If we prove that when D is computed in time t the

th output vertex is at most rt,

number of lines to the j
it will follow that
rt > INT[dim S(1:3j)/d 1 +...+ INT[dim S(n:j)/d]
and therefore

t > log,.(INT[dim S(i;j)/d] +...+

INT[dim S(n:;j)/d 1).
We proceed by induction on t.

First suppose that t=1. 1In this case a line from
E; to V can pass through at most one vertex that is
not an output vertex, because if it passed through more
than one vertex, the delay would be at least 2.

Furthermore there must be at least one vertex in the

network, since the time is t=1. Because each vertex 1in

71

an (r,d)-network can have at most r input lines the
number of input vertices whose inputs consist of
variables from Ej and that are connected to a single
vertex is at most r. Thus

r=rt < {the number of inputs from E;!}.

Assume that the delay is t, and assume that for
each function that is computed in time t-1, the number
of input vertices connected to the jth output vertex is

at most rlt-1),

Consider the jth output vertex of C.
There are at most r edges with that vertex as endpoint.
Consider an initial vertex v of an arbitrary such edge.
For each i, the lines from Ei to v can have length at
most t-1, otherwise the output at the jth output vertex
would take longer than t units of time. By the
inductive assumption, the number of lines to v is at
t-1

most r Since there are at most r ways of choosing

v, the number of lines to the jth output vertex 1is at
most r.r(t-1) = rt.ﬁ

The Dimension Based Lower Bound also can be
interpreted in terms of the sets (X5/ hj-F), when the
quotient map gq; from X; to (X;/ hjoF) is sufficiently
well behaved. Suppose that
FiXX.. . XX ———>Y is a continuous function as in the
statement of Theorem 4.1, Assume, as in the statement

of the theorem, that S(i:Jj) is an LE-i-separator set

72

for the jth output vertex of an (r,d)-network that
computes an encoded version of F. If the set (Xi/hj-F)
is given the guotient topology, then the map
qi:Xi--—>(Xi/hj-F) is continuous. Suppose that the
space (X;/ hj-F) is Hausdorff. Choose a point
seS(i;3). Because S(i;j) is a locally Euclidean space,
there is a compact neighborhood U of s. The continuous
e F).

J

The function di is one-to-one on U because S(i:j) is a

map d; carries U to a compact subset V of (Xi/ h

j-F (c.f. Definition 4.2). Because V

is a subspace of a Hausdorff space, it is Hausdorff.

separator set for h

Therefore, the restriction of g; to U is a one-to-one
and continuous map from a compact space to a Hausdorff
space. It is, therefore, a homeomorphism. It follows
that the map q; has a continuous inverse Qi:V——->U.
The neighborhood U of the point s can be considered as
the image of a local threads) Q4 of hj-F defined on a
subset of (X;/ hj-F). In particular, if the sets

(Xi/ hj-F) are themselves locally Euclidean, then the
dimension of the separator set S(i;Jj) is bounded above

by the dimension of (Xi/hj-F).

5) see [21] for the concept of a locally threaded
function.

73

Section III

Computation of Linear Functions

Suppoese F= Flx...x K is a product of maps
plipi-——> vi. oThus, F:E! x...x ED--->ylx...x ¥P=v.
One can pose the gquestion of computing an encoded
version of F in at least two different ways. Each of
these ways addresses a different encoding of the range
space of F. 1In one case, wWe can consider F to be a
product. In that case one can allow coordinate changes
in the E! and in the yi separately, but coordinate
changes in Y that are not products of coordinate
changes in the components Yi are not allowed. In the
second case, one can ignore the product structure on F
and allow coordinate changes in Y that ignore the
product structure on Y. Therefore, automorphisms of
the range of F can be used to shorten the computation
time. 1In order to clarify these distinctions we
consider linear (homogeneous) functions between vector
spaces that consist of n-tuples of Real numbers. We
also restrict the modules to be linear homogeneous
functions. The set R"' can be given many different
vector space structures which depend on the definition

of the addition given between n-tuples. Perhaps the

74

most familiar is the one in which n-tuples are added by
adding the component Real numbers. In order to specify
that the component addition is the one giving the
vector space structure, we use the notation R&...®R
(n-times) for R, The vector space Ra&...®R (n-times)
has a basis that consists of the elements
(6,...,0,1,0,...,0) (where the 1 is in the jth

position), called the standard basis.

Consider the following example.

Example 1. F: X, X Xy ===> E where X, = R x R ¥ R,
X, =R X R X R, and E is a 4-dimensional Fuclidean
space. Assume that Xl has the basis e, ey, €3y X2
has the basis £, £, £33, and E has the standard
pasis. Assume that F has, with respect to these bases,

the matrix

1 0 0 1 0 0
0 i 0 0 1 0
0 0] 1 0 0] 1
1 2 3 1 5 6

In terms of coordinates x,y,z in X, and u,v,w in

X, F=(F1, Fy, Fq. F4)T, where the superscript T,

2

denotes transpose and

75

If

Fl’lll

u,
v,
v,
2y + 3z + u + 5v + 6w.

F, are all to be computed

that accepts 3 coordinates from Xl and 3

from X,, then with the given bases it is

can be computed in time 3 by the network

by a network
coordinates
clear that F4

represented by

Diagram 4.6 that has input vertices x, y, 2, u, v, and

w

76

X + 2y 3z + 5v + 6w
A B C
A+ B
S —
D+ C

Diagram 4.6

It is easy to see that no network of delay two can
carry out this computation. Because we can replace a
network that computes a function in time t by a network
without loops that computes the same function in time

t, we need only consider networks of delay two that

have the form of Diagram 4.7.

Af B c’ D’

l
S
1

J

Diagram 4.7

Because J is linear, J = aH + bI for a and b real
numbers. Since H and J are each functions of two
variables, the value of J can only depend on 4
variables. Each of F;,...,F, can be computed in time 1

77

since each is a function of two variables. If changes
of basis are allowed separately in X; and X,, then for
change of basis matrices M and N (each a 3 X 3
invertible matrix), the matrix of F in the new bases 1is
M N

(1,2,3)M (1,5,6)N
where (1,2,3,1,5,6) is the last row of the matrix of
F. With a suitable choice of M and N it is possible to

produce the matrix M(F) as the matrix of the function

F.
1 -2 0] 1 -5 0
M(F)= 0 1 0 0 1 0
0 0 1 0 0 1
1 0 3 1 0 6

once the coordinate changes are made to produce
the matrix M(F), then all of the functions Fi can be
computed in time 2 by the network in Diagram 4.8. The
network in Diagram 4.8 has input vertices along the top

row labelled x’, y’, z', u’, v/, and w’.

78

—
!xl Ilyl ul vl vl yl zf wl Xl zl ul wl

x'=-2y’ u’-sv’ vy’ +v’ Id Ia Xx'+3z’ u’+ew’
All Bll Cl! l' Dll G" HII
All_+_ BIT Id Cl|+D|l GII+HII
Fy Fy Fy Fy

Diagram 4.8

Somewhat less obvious is the fact that no
coordinate change in X; and X, (again with matrices P
and O, respectively) can decrease the computing time
below 2. In order that a computation of F;,...,F,
require computing time less than 2, each row of the
matrix representation of F can have at most two nonzero
entries (because the network consists of linear
(2,1)-modules). Because each of the functions Fy
involves variables from X; and X,, it follows that, to

within a permutation of columns, the matrix of P must

be
a 0 0]
0 b 0
0 0 c

79

while the matrix for O must also be diagonal with the
diagonal entries e,f,g. But then (1,0,3)P = (a,0,3c)
and (1,0,6)0 = (e,0,69). Thus F, is computable in no
less than 2 units of time.

If we now allow coordinate changes in the
Euclidean 4-space E, row operations in the matrices for

F are permitted. Starting again with the matrix

1 0 0 1 0 0]
0 1 C 0 1 0
0 0 1 0 0 1
1 2 3 1 5 6

we may change this to

1 0 0 1 0 0
c 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 3 3

(subtract row 1 from row 4, subtract twice row 2 from

row 4, etc.). If we multiply the last row by 1/3 this

becomes
1 0 0 1 0 0
0 i 0 0 1 0
0] 0 1 §] 0 1
0 0 0 0 i 1

The resulting set of functions can be computed in
one unit of time, because the computation of each

function requires a single addition.

80

We have, of course, not computed the original
functions Fl,...,F4. We can recover them, but only at
the cost of more computing.

Suppose the encoding functions gi:Xi-—~>Ei can map
X into a Euclidean space E; of dimension greater than
the dimension of the space X;. Consider the case in

which the encoding functions g; carry Xj to Euclidean

4-space. Choose as the matrix for the function gy

1 0 0
M= 0 1 0
0 0 1
1 2 3

and choose for the matrix of g,

1 0] 0
My= 0 1 0
0 0 1
1 5 6

With this encoding, the matrix of the function

(Fy, Fy, Fy, FT
is the product of the matrix (Ml’MZ) with the matrix
(I,I) where I is an identity matrix of order 3.

In this case a network need only compute the
linear functions given by the rows of (I,I). This
requires only one unit of time. Notice that no
computation involving the g,;’s is counted.

Theorem 4.1 and the remarks on its relation to the

81

sets (X;/ hj-F) still leave open the gquestion of
finding the highest dimensional separator sets for a
given function. This is an issue because in the
statement of the theorem the functions h; are given.
If these encoding functions are allowed to vary, then
the size of the separator sets may also vary. We
consider the problem of finding minimizing encodings
for functions F: X; X...X Xn———>Y where X, and Y are
linear spaces and where F, all g; and h; are linear
transformations.

The most elementary case is the one in which Y 1is

one-dimensional.

Lemma 4.2: If F(X;3,...,Xp) = Xyt Xp, where
the x; are Real numbers, then there exists a
(2,1)-network with n input spaces, each R, that
computes F in time INT[logz(n) J.

Proof: We proceed by induction on n. If n < 2,
then the assertion is trivial. Thus suppose that the
assertion has been demonstrated for n-1 where nz23.

If n = 23, write

F{(Xyreoo X

n)=
[xl + Xq ...t x2j—l] + [xX5 + Xy +...+ X2j1'
By the inductive assumption, the function

X F Xy he.ot Xosg

can be computed in time INT[log,(j)], and the same

82

time is sufficient for the computation of
Xy T Xy Teeet Xoy.

Thus F(X;.,...,Xq) can be computed in time
INT[log,(3) 1 + 1.

However

INT[log,(i) 1 + 1=INT[log,(n) 1.
Suppose that n is odd. If n is odd and

29" < n < 29, then INT[log,(n)] = d.
Furthermore, n < 29 -1 and hence

291 <« n+1 < 29

Thus INT[log2(n+l) 1 = d.

We can now reduce the case where n is odd to that in
which n is even. To do this replace F by

F(x X) + X

1r--+1%p and compute this replacement only

n+i

when x,,,=0. &

Lemma 4.2 can be applied to the function F of
Example 1. The lemma is applicable to the case in
which no coordinate changes are allowed in either the
domain or the range of F. We apply Lemma 4.2
separately to each of the functions F;. For 1<i<3 the
function F; has two arguments (the value of n in the
lemma is 2). The function F, has 6 arguments. Each of
the functions F; must be computed by a (2,1)-network.
It follows from Lemma 4.2 that each of the functions

F.

T i £ 3, requires 1 = INT[log,(2)] units of

83

time, while F, requires INT] log,(6) 1 =3 units of
time. The next lemma, which is also a corollary of
Lemma 4.2, is applicable to the case in which an
encoded version of a linear (Real-valued) function is
computed where the encoding functions may be chosen to

make the computing time a minimum.

Lemma 4.3: Suppose that for 1 < 1 < n, X; is a

Real vector space of dimension n;, and suppose

F: X; X...x X, --=-> R is a linear function. Denote by
[F|Xi] the restriction of F to the subspace X;. The
minimum delay in computing F with a (2,1)-network is
INT[log,(SL;)]
where

L, =—0 if (F!Xi]EO

1 otherwise.
L

Furthermore the lower bound on the computing time given
by Theorem 4.2 is attained.

Proof: For each i with rank [lei]¢0, choose a
vector vy SO that [FIXi](vy J#0. It is easy to see

that the linear space spanned by vy is a separator set
in X; for the output vertex of the network that
computes F, because [lei] is 1-1 on the space spanned
by v;. Lemma 4.2 shows that the delay is at least

INTJ logz(ZiLi) 1. For each Vi we choose a basis for
X; that contains v; as one of the basis elements.

84

Further, without loss of generality, we can assume that

[F|Xi}(v;)=1. For each 1<i<n, let

{e(i’j):lSani} be a basis for X; with e(i,1) = Vi if
[F!Xi]¢0. Then we see that if x€X; X...X X, .

F(x) =F(Eixie(i’l)+si),

where F(S)=0.

Thus

F(%)zxi(1)+"'+xi(r)

where the indices i(1),...,i(r) are exactly those i’s

for which [F[X;1#0. Then, Lj 4y = 1 for 1 £ 3 £ r, and
r =% rank [FlXi]. To complete the proof in the case
of no encoding, apply the Lemma 4.1.

We turn to the encoded case. Assunme that
gy:Xy ——-? E; are a collection of linear maps that
encode the domain of F and suppose that h:iR---> R is an
encoding of the range of F. Because h must be one-to-
one, it is still true that the one-dimensional spaces
spanned by the v, are separator sets (in each Xi) for
the output vertex of the network whose states are in
the range of h. The lower pound given by Lemma 4.2
applies. Thus encoding cannot decrease the computing

time in this case. &

With Lemma 4.3 in hand, let us return to Example
1. The lower bound on the minimum computing time for a

(2,1)-network to compute F (with no coordinate changes

85

allowed in the range of F) is the maximum over i of the
minimum computing times required for the Fj. In the
case of Example 1, the minimum computing time for each
of the functions F,, F,, and F, is 1, while the minimum
computing time for the function F, is INT[log,(2)y]
= 1, since = L;=2. However this lower bound of one
unit of computing time can be achieved only by allowing
separate choices of coordinates in X4 and X, for each
of the functions F;. These coordinate choices are
incompatible and it is for this reason that it is not
possible to compute F in one unit of time even though
each component F. can be computed separately in one
unit of time.

So far the concept of computing an encoded version
of a function (Definition 4.3) allows the freedom to
change coordinates in the range since we are free to
change the hj appropriately. It is easy to think of
instances in which such freedom would not be

appropriate.

86

