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We introduce avoidable fixed costs into the capacity and entry model of Dixit (1980) to
produce a coordination problem among multiple postentry equilibria. Elimination of weakly
dominated strategies makes it possible for the entrant to play a knockout strategy, consisting of
a large capacity commitment which selects the entrant’s preferred postentry equilibrium and
drives the incumbent from the market. The incumbent must respond to the knockout threat by
using judo tactics, involving a reduction in its capacity commitment. In subgame perfect
equilibria which are robust to elimination of weakly dominated strategies, the incumbent must
accept a market share smaller than the entrant's if avoidable fixed costs are sufficiently high, or
cede the market to the entrant if avoidable fixed costs are higher still.

1. Introduction
The nature of strategic rivalry between incumbent firms and potential entrants

depends heavily upon the conjectures which firms hold about the reactions of their rivals. In
the early limit pricing models proposed by Bain (1956), Modigliani (1958) and Sylos-Labini
(1962), prospective entrants believe that incumbent output will be maintained in the event of
entry. Later analysts questioned the credibility of output maintenance as a threat against
potential entrants, and focused instead on irreversible investments through which incumbents
could make binding commitments. The work of Dixit (1980) exemplifies this view: he
assumes that an incumbent can manipulate postentry conditions through capacity investment.

After observing the capacity investment, the entrant correctly anticipates the output level that
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maximizes the incumbent's profits in the event of entry. In essence, the entrant solves the
postentry game and then, inducting backwards, decides whether to enter.

The key conclusion of this literature is that the ability to make sunk investments
conveys a strategic advantage to first movers, allowing them to maintain favorable market
positions and perhaps to deter entry entirely. This remains true even if second movers are
also allowed to make strategic commitments, as in Ware (1984). In this paper we take a
closer look at this conclusion. In particular, we ask whether first mover advantages persist
when there are significant fixed costs which may be avoided by shutting down. The presence
of avoidable fixed costs leads to a coordination problem in choosing postentry outputs:
alongside the equilibria in which the firms share the market there may exist "natural
monopoly” equilibria in which one firm produces output so large that the other responds
optimally by shutting down.

The existence of this coordination problem dramatically alters the strategic balance
between first and second mover. Consider the situation facing the incumbent and entrant
after the incumbent has made its capacity commitment. Suppose the entrant responds with a
very large capacity investment. The incumbent must then ask itself, what does this mean
about postentry competition? If the entrant could not recoup its capacity investment with its
postentry market-sharing quantity, the incumbent can only infer that the entrant will respond
with a larger output, near its natural monopoly level, as only such quantities could possibly
justify the entrant's capacity choice. More specifically, the incumbent observes the entrant's
capacity choice, eliminates capacity and quantity combinations which represent weakly
dominated strategies for the entrant, and thereby inducts forward to deduce the entrant's
possible postentry quantity.1 Given this inference, the incumbent responds optimally to the
large entrant capacity by shutting down.

Thus, the combination of avoidable fixed costs and the entrant’s ability to make sunk

investments allows the entrant to play a knockout strategy involving high capacity



investment. Credibility of the knockout strategy follows from the fact that the incumbent
uses forward induction to form strategic inferences, and thus it cannot escape the logic which
leads to the entrant's natural monopoly equilibrium.

If avoidable fixed costs are sufficiently high, there is no response available to the
incumbent which allows it to escape the knockout strategy, and the incumbent's only recourse
is to cede the market to the entrant by choosing zero capacity. For smaller levels of
avoidable fixed cost, however, the incumbent can avoid being knocked out by reducing its
initial capacity investment, in order to lower its endogenous avoidable fixed costs as well as
to make the market-sharing equilibrium more attractive for the entrant; thus, the incumbent
uses judo tactics to defend itself against the knockout strategy. Interestingly, the incumbent's
commitment to the market is maintained only by taking actions which restrict its market
share. Moreover, market share must be restricted by a greater amount as avoidable fixed
costs rise. This stands in contrast to the usual first-mover tactics of strengthening
commitment to the market by preemption of the entrant's market share, being more
reminiscent of the behavior of the entrant in Gelman and Salop's (1983) model.

Our work has been inspired by the recent game-theoretic papers of Ben-Porath and
Dekel (1987) and van Damme (1989), which resolve the problem of coordination among
multiple Nash equilibria by allowing players to engage in "public money burning.” Both
papers employ stronger notions of forward induction than that used here: Ben-Porath and
Dekel apply multiple rounds of elimination of weakly dominated strategies, while van
Damme develops his own concept of forward induction. These authors give examples which
show that the last player to burn money is able to select his preferred equilibrium, i.e.
strategic communication conveys second mover advantages. Our model adds the feature that
the first mover can use his precommitment ability to offset the communication power of the
second mover, by using the judo tactics described above. This effect arises from the fact that

precommitment alters the set of postentry equilibria and the second mover's payoffs in these



equilibria.

The next section reviews the model of capacity and entry originated by Dixit and
amended by Ware, and section three introduces our assumptions as to avoidable fixed costs.
In sections four and five we develop the knockout strategy, and section six explains the
incumbent's inability to use such a strategy. Section seven demonstrates the incumbent's judo
tactics. A parameterized example is analyzed in section eight, and connections with the
extended literature are discussed in section nine. Section ten concludes the text. The
appendix describes more formally the reduced game obtained by elimination of weakly

dominated strategies, and discusses the existence of subgame perfect equilibria of that game.

2. Dixit's Model and Ware's Critique

Dixit (1980) introduced the following model of large-scale entry. There are two
firms, an incumbent and an entrant. These are referred to as Firm 1 and Firm 2, respectively.
The model has two stages. In the first stage Firm 1 chooses its capacity kl' In the second
stage Firm 1 choooses a quantity of output q;» and it may expand its capacity.
Simultaneously, Firm 2 chooses capacity and quantity, k2 and Q5. Inverse demand is given

byp=a- b(q1 + q2). For Firm 1, stage two production costs are:

cqy q; <k

Cl(qllkl) =
cqy + r(ql - kl)’ q; > kl

As long as output is below the precommitted capacity, Firm 1 pays only the variable cost c.
For larger output, however, Firm 1 must pay an additional r per unit to expand capacity. For

Firm 2, combined production and entry costs are:
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ChlgHn) =
272 (c+r)q2+f, q2>0

where f represents the fixed component of sunk entry costs.2
(Figure 1 here)

Stage two reaction functions for the firms, conditional on kl’ are shown in
Figure 1. The vertical kink in Firm 1's reaction function represents the fact that its variable
costs rise discretely if it must expand capacity.

Decisions in this model are presumed to be consistent with the notion of backward
induction rationality, which is roughly defined as follows: when forecasting future behavior,
the firms anticipate that behavior will be rational in any subgame that may arise.3 In
essence, the game is analyzed from back to front by inductively solving for Nash equilibria
of subgames. Here, the subgames correspond to choices of k1 which initialize the second
stage, and based on backward induction rationality the firms anticipate Nash equilibria of the
second stage, given by intersection of the reaction functions, for any choice of kl‘

Thus, by manipulating k1 in the first stage, Firm 1 may affect the stage two outcome
by shifting the Nash equilibrium. It will clearly be in Firm 1's interest to expand capacity
beyond the symmetric Cournot quantity. It may allow entry and act as a Stackelberg leader,
or deter entry entirely by choosing k1 = qllj. Of course, Firm 1's strategic leadership depends
on the sunkness of capacity investment, since its reaction function actually shifts only to the

extent that the capacity investment is unrecoverable.

(Figure 2 here)



Ware (1984) has proposed an extension of Dixit's model wherein Firm 2 is allowed to
make a sunk capacity investment after Firm 1 does, but prior to the choice of outputs in stage
two. Figure 2 illustrates a situation in which Firm 1 has opted to attempt entry deterrence by
choosing k1 = qu). By making a sunk investment of k2, Firm 2 introduces a horizontal kink
in its own reaction function, and it may thereby select as the Nash equilibrium any point
between A and B on Firm 1's reaction function. An isoprofit curve for Firm 2 is also
illustrated in the figure, and in this case Firm 2's preferred post-entry equilibrium isat A. It
follows that, based on backward induction rationality, Firm 1 will anticipate Firm 2's optimal
capacity choice and adjust its choice of k1 accordingly. Firm 1's strategic advantage is

reduced, but certainly not eliminated, when commitment power is given to Firm 2.

3. Avoidable Fixed Costs

While sunk costs are evidently important in many industries, it is often true that a
significant portion of fixed costs are recoverable if a firm chooses to shut down operations;
these are called avoidable fixed costs. To consider the role of avoidable fixed costs, we
propose to alter the framework of the preceding section as follows. First, we assume there is
a nonnegligible avoidable fixed cost which is independent of capacity. For notational ease,
we will let the sunk cost f now represent this avoidable fixed cost; while this distinction 18
immaterial from the entrant's point of view, it has an important effect on the incentives of the
incumbent. We will assume throughout that f is sufficiently small to make monopoly
viable.4 Second, we suppose that part of capacity investment may be avoided by shutting
down. In particular, either firm may recover proportion & of its capacity investment by
choosing to produce no output in the second stage.

The latter assumption is justified to the extent that capacity investment has a
"putty-clay" character: when a firm increases capacity, it may plan its investment to acheive

any desired output level, but once the investment is in place costs may be recovered only by



shutting down capacity in discrete lumps. Maintenence and heating costs, for example, are
variable at the capacity planning stage, but may turn into lumpy fixed costs once operations
commence. This principle also applies to resale of capacity. For example, a firm may shop
for a piece of real estate which exactly fits its needs, but once purchased the real estate may
be resalable only in parcels of some minimum size. For simplicity we assume the most basic

form of lumpy recoverability, i.e. costs are recoverable only by shutting down completely.
(Figure 3 here)

Figure 3 illustrates the new second-stage reaction function of Firm 1, when it has
chosen capacity ki in stage one. If o = 1, Firm 1 may recover all of its capacity investment
by shutting down, and this is indeed the optimal decision whenever g, 2 qé. For smaller
values of ¢, the exit-inducing level of 95 is larger.5 It should be noted that capacity
investment still allows Firm 1 to commit to a tougher response for any situation in which it

remains in the market.
(Figure 4 here)

Suppose now that Firm 1 chooses k1 = qllj, and Firm 2 responds with k2 = ké which
is so large that Firm 1 would prefer to shut down if Firm 2 were to operate at full capacity.
We then have the situation depicted in Figure 4. There are now two postentry equilibria:
one market-sharing equilibrium at point A, and one natural monopoly equilibrium at B, in
which Firm 1 opts to cede the market to Firm 2. This introduces a coordination problem in
determining the postentry outputs: Firm 1 would prefer to play according to equilibrium A,
whereas equilibrium B is better for Firm 2. Of course, backward induction rationality gives

no basis for favoring one equilibrium over another, and either may serve as the anticipated



postentry outcome. If the firms anticipate that equilibrium A will obtain, then ké will
certainly be a suboptimal strategy for Firm 2; in fact, if avoidable fixed costs are low enough
so that market sharing gives a postentry equilibrium when k1 = qll) and k2 = ké (as depicted
in Figure 4), then the outcome predicted by Ware will result. Thus, first-mover advantages
are consistent with backward induction rationality, even in the presence of avoidable fixed

COosts.

4. Elimination of Dominated Strategies

Suppose, however, that the firms think a little harder about the implications of their
rival's behavior. Since each knows that the other is a rational profit-maximizer, it should not
be believed that the rival firm takes actions which are manifestly unprofitable. In particular,
a firm should never conjecture that the rival operates according to a weakly dominated, or
inadmissible, strategy, that is, a strategy which is unambiguously inferior to some other
stratcgy.6

To discuss weakly dominated strategies, we must introduce notation to represent the

firms' strategies. For Firm 1, strategies are denoted by:
51 = (kl’ql(kz))
where the dependence of q, on k2 indicates the fact that the firms choose outputs after

capacities are determined. Let S1 be the set of all strategies available to Firm 1. Similarly,

Firm 2's strategies are of the form:
32 = (kz(kl)’q2(k1))

and 82 gives Firm 2's strategy set. Finally, payoffs for the firms are:
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[ @ - b (k) + aytk) - Oy (ky) - T max(apky) - £ qpky) >0
HI(SI’SZ) = 4

(1 - o)rky, qy(ky) =0
(2 - b(qy (ky) + aytk)) - O)aylky) - T max(ayky) - £ aylky) >0

I1,(s,,54) = 1
27121 - ik, qy(k;) =0

where we have suppressed the dependence of k2 on k1.7

A strategy sy € Syis weakly dominated by si €Sy if, for all s, € S5

HI(SI’SZ) > HI(SI’S?_)
and there exists sé € 52 such that:
Hl(si,sé) > Hl(sl,sé)

Thus, Firm 1 should not select s,, as si gives superior profitability over the entire range of
possible Firm 2 strategies. We will henceforth refer to a weakly dominated strategy simply
as dominated. s, is called undominated if it is not dominated by any si. We let SllJ denote

the set of undominated strategies for Firm 1. SlzJ is defined analogously for Firm 2.

5. The Knockout Strategy

It is possible to give a precise characterization of the sets of undominated strategies,

U
1

very important implication of the elimination of dominated strategies: by choosing a

ST and Sg, and we do this in the appendix. Our purpose in this section is to illustrate one
sufficiently large capacity level, the entrant can force the incumbent to accept the entrant's

natural monopoly outcome and exit the market, despite the existence of other outcomes
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which the incumbent prefers. This in turn implies that when avoidable fixed costs are
present, the entry-deterrence equilibrium identified by Dixit may fail to be consistent with
forward induction rationality. We assume until the end of the section that & < 1. Let gM =
(a - ¢ - 1)/2b denote the monopoly output when capacity costs are included, and c_lM =(a-
¢)/2b the analogous output when capacity costs are ignored.

First, it is relatively simple to show that strategies which specify extremely large
capacity levels must be dominated. In particular, consider the set of capacity choices k2
which are so large that Firm 2 could not possibly recoup its capacity costs, even if Firm 1
were to cede the market by choosing q; = 0; such capacity choices guarantee that Firm 2
earns nonpositive profits no matter what Firm 1's strategy is. Note that k2 > qM for every
element in this set, as we have assumed that the firms would earn strictly positive profits as
monopolists. For given k2 > gM, consider the quantity which maximizes Firm 2's profit
when Firm 1 chooses q = 0. If q, = 0 is the maximizer, then maximized profits are
-(1- a)rkz, which is strictly negative. Suppose g, = 0 is not the maximizer. If k2 < c'lM,
then q, = k2 is Firm 2's best quantity choice, since once k2 > gM it does not pay to expand
capacity; if k2 > QM, then the best quantity for Firm 2 is q, = c'lM, as this would be optimal
even if capacity were infinite. It follows that qQy = min{kz,qM} is Firm 2's best response to

qq = 0, and thus Firm 2 obtains nonpositive maximized profits if:
1) (a - b min{ky, @™} - Ominfly,g") - tky - ££0

Since Firm 2's maximized profits can only be lower if q > 0, it follows that k2 is in
the set of capacity choices which guarantee nonpositive profits for Firm 2 if and only if k2

satisfies (1). The smallest element in the set, denoted Rz, is defined by:

(a - bmin(&,,d ™)) - Omin{k, g™} - 1k, - £=0
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and it is easy to see that (1) holds for every k, 2 R2.

Now, suppose the Firm 2 strategy Sy = (kz(kl)’qz(kl)) has kz(ki) 2 k2 for some ki;
that is, when Firm 2 plays S5 it responds to ki by choosing k2 2 fcz. By (1), S5 would yield
nonpositive profits if Firm 1 were to play any 51 with k1 = ki, and profits would be strictly

negative if 5 also specified ql(kZ(ki)) > 0. We can construct a strategy sé which dominates

S5, a3 follows:

(ky (kay (k) kg # k]

(070), k1=k1

2) sé =

L.e. sé gives the same responses as does S5 if k1 # ki, but puts k2 =q, = 0 in response to k1
= ki. It follows that H2(51’52) = Hz(sl,sé) as long as 59 has k1 # ki, while Hz(sl,sz) <
H?_(sl,sé) =0 for s, with k, = ki, with strict inequality if ql(kZ(ki)) > 0. si therefore
dominates by S5- Thus, if S5 is undominated, then it must specify capacity responses strictly
less than f(z, for every k.

Second, while all strategies with k2 2 I'<2 are dominated, it is also true that for every
k2 < R2 there is some undominated strategy which specifies that k2. In particular, consider
strategies in which k2 is slightly below RZ, with q, again set to maximize profits given the
choice of k2 and q; = 0; we may define such a strategy S5 by k2(k1) = Rz—e and qz(kl) =
min{kz-e,c]M} for every kl’ for some small € > 0. Since (1) does not hold for k2 < R2, Firm
2's profits will be strictly positive under S5 if Firm 1 responds to Rz-e by choosing q; = 0.

Note that s, cannot be weakly dominated by any sé, for suppose sé specifies ké(ki) # Rz—e or

qé(ki) # min{kz-e,c'lM} (or both) for some ki. Let 59 be given by k1 = ki and:

q, k,<k,¢€
q(ky) = ! 22
0, k22k2-e



where qi is very large. It is easy to see that when Firm 1 plays $1> 9 gives strictly greater
profits to Firm 2 than does sé. It follows that sé cannot dominate S5 and since this argument
applies for any sé # S, WE have Sy € Slzj. This establishes that for any kl’ there exists an
undominated strategy in which k,(k) = kz-e.

Third, undominated strategies which set k2(k1) = k2—£ are not at the same time free to
specify the output level arbitrarily, for negative profits would be guaranteed if q2(k1) were
far from the profit-maximizing monopoly quantity. More specifically, suppose s, sets k2(ki)
= f(z—e for some ki, but also fixes qz(ki) so far from min{kz-e,dM}, which is the best
response to q; = 0, that profits would be negative even if q; = 0. As above, S5 will be
dominated by sé which sets k2 =q, = 0 in response to ki, but otherwise agrees with S5
Thus, for S € Sg with k2(k1) = Rz—e, it is necessary that qz(kl) not lie too far from
min{kz—e,qM}. In other words, once we rule out the possibility that Firm 2 plays dominated
strategies, then the only quantities which can be associated with the capacity R2-£ are those
which fall near min{kz—e,(iM}. It is easy to see, moreover, that the distance between qz(kl)

and min{kz-e,qM} must approach zero as € approaches zer0.8
(Figure 5 here)

Let us now consider the situation shown in Figure 5.9 Firm 1 chooses k1 = qu) where
q]? € (qM,c_lM), indicating that entry deterrence is a possible equilibrium, but one which
requires capacity to be set above the full-cost monopoly output, gM. Firm 2 would cede the
market to Firm 1 if postentry equilibrium A were anticipated; in this case we have the
entry-deterrence egilibrium identified by Dixit, in which Firm 1 earns strictly positive profits.
Firm 1 would exit, however, if Firm 2 output were in excess of qlg. Observe that any
strategies giving rise to postentry outcome A must have k1 = ql(O) = qll) and kz(qllj) =

D
Q2(q1) = 0.
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We now consider whether A might still arise as the outcome of a subgame perfect
equilibrium of the new, reduced game obtained by elimination of dominated strategies. In
the reduced game the original strategy sets are replaced by the sets SIIJ and Sg. Suppose
Firm 2 deviates to kz—s after observing k1 = q?. Such a deviation is possible in the reduced
game, as the second point above shows that Sg contains at least one s, with k2(qu)) = Rz-e.
Further, since Firm 2's strategy must now be an element of Sg, the third point indicates that
the deviant strategy sé necessarily sets qé(q?) close to dM, and qé(qu)) > qlg is implied for
small enough & Thus, Firm 1 must anticipate that Firm 2's quantity will exceed qg in the
subgame of the reduced game initialized by k1 = qllj, k2 = R2-8, and Firm 1 necessarily
responds with ql(kz-e) = 0 in any subgame perfect equilibrium.

But with this restriction, the entry-deterrence outcome A is no longer a subgame
perfect equilibrium: Firm 2 earns zero profits in the equilibrium, but by the definition of R2
it would obtain strictly positive profits by deviating to a strategy sé which sets ké(qllj) = k2—£
and qé(qllj) = E{M.lo It follows that Firm 1's preferred equilibrium is no longer viable when
strategies are required to be undominated. The elimination of dominated strategies forces
Firm 1 to conclude that a large capacity commitment by Firm 2 must be accompanied by a
Jarge quantity of output, for otherwise the capacity commitment would be irrational. Firm 1
would then prefer to exit the market to recover its fixed costs. Since Firm 2 is aware of this
calculation, it can be assured of knocking the incumbent out of the market by choosing large
capacity, and it will prefer to do so if the incumbent attempts to deter entry. Hence, the
presence of avoidable fixed costs allows the entrant to play a knockout strategy, by making a
large capacity commitment.11

It is clear that the knockout strategy will be successful for a range of k2 below fczz as
k2 declines, the set of Py which could possibly give positive profits, and thus could appear as
part of an undominated strategy, expands in a continuous way around (iM (this is explained

further in the appendix). The optimal knockout strategy from the entrant's point of view
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involves the smallest capacity level which would still guarantee that only quantities q, > qg
could possibly give positive profits in conjunction with the capacity choice k2. The
minimum over this set of capacities, which we denote by k?, is defined by:

(a-bqD - )5 - k5 - £=0

Any s, with k2(k1) = k(?? and qZ(kl) < q12) is dominated. Thus, observing k(z) convinces the
incumbent that q, > qlzj, and the incumbent exits. If the incumbent observes k2 < kg,
however, then it could still infer that q, < qI,? even after dominated strategies are removed,

and knockout would not be successful.
(Figure 6 here)

Figure 6 depicts the possibilities for knockout strategies under a particular
parameterization of a, b, ¢ and r. It is presumed that the incumbent attempts entry deterrence
by choosing k; = qu) or, if entry is blockaded, k1 = qM, and that the knockout strategy has

the entrant choosing k2 = kg.

In Region 1, the value of f is so small that q11) exceeds the
monopoly output which Firm 1 would choose if it ignored capacity costs (i.e., q11) > QM). In
this case, entry deterrence is nonviable in Dixit's original model, as the incumbent has no
incentive to actually produce the entry-deterring quantity. A similar effect arises in Region
2: avoidable fixed costs are so low that QM would not serve to knock out the incumbent, and
consequently there is no knockout strategy available to the entrant. Thus, the preemptive and
knockout strategies share the feature that capacity investment is a credible threat only when it
is fully utilized.

In the remainder of the diagram the knockout strategy is viable, and it gives strictly

higher profits to the entrant than would any other postentry outcome.12 Here, avoidable
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fixed costs are high and the traditional entry-deterring strategy is inconsistent with
elimination of dominated strategies. In Region 3 the entrant knocks out the incumbent by
expanding capacity beyond its monopoly level gM, but in Region 4 knockout is
accomplished by simply choosing the monopoly capacity gM; in the latter case, avoidable
fixed costs are so high that the incumbent is knocked out by a very low level of output.

Figure 6 suggests a reinterpretation of Bain's classification of entry-deterring
strategies: for low avoidable fixed costs, capacity commitment implies an "ineffective
knockout," and the entrant must accept the incumbent's presence in the market. Larger
avoidable fixed costs place us in the region of "effective knockout," where the entrant must
expand capacity to drive out the incumbent. Finally, when avoidable fixed costs are very
high, the entrant can ignore the incumbent's presence and still drive it out; the incumbency
position is "blockaded.”

Note finally that the knockout strategy is not successful if & = 1, since the incumbent
may then conjecture q, = 0 even when k, is large. It follows that knockout requires at least

some degree of sunkness on the part of the capacity investment.

6. Strategic Ambiguity of Precommitment

In using the knockout strategy, the entrant employs its capacity commitment to
unambiguously communicate its intent to pursue a high-output strategy. One might wonder
whether the incumbent can make similar use of its capacity precommitment. The important
point is that incumbent capacity choices do not have the same communicative power as do
those of the entrant, as the strategic position of the incumbent is more ambiguous: the
strategic implications of a given capacity precommitment depend on the entry response
which the incumbent expects, and this dependence on expectations makes it harder to draw
clear inferences as to the incumbent's rational output choice.

Consider the set of undominated strategies for Firm 1 under the assumption & < 1. Of
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course, strategies with very large k1 are eliminated; if f(l is defined in a manner analogous to
kz, it follows that no 5y € SllI has kl > kl. For every k1 < Rl, however, we will show that
there is an undominated Sy in which k1 is chosen, and in which the incumbent responds to
entry by shutting down. Henceforth, let qg(kl) denote the minimum level of 9, which

makes exit an optimal response by Firm 1:

max
q1>0

[(a - b(a; + a5k - ey - T max{gp k)] - = -(1 - ek,
On the left-hand side we have the highest profits which Firm 1 could obtain by choosing
positive output, given its previous choice of kl’ i.e. this is the profit it would obtain if there
were no avoidable fixed costs. The right-hand side gives the profits Firm 1 obtains by
shutting down. Since equality holds at q, = qlzj(kl), it follows that Firm 1 would prefer
positive output if g5 < qlz)(kl), and shutdown would be preferred if q, > qg(kl). Note that
in Figure 5, qg would now be denoted by qg(qllj).

Consider the strategy s, defined by k1 < Rl and:

max{qM,min{kl,ElM}}, ky =
0, k, >0

Thus, s, specifies a positive output response if and only if Firm 2 chooses k2 =0. ql(O) =
max{gM,min{kl,ElM}} gives Firm 1's profit-maximizing output under the chosen level of kl’
when Firm 2 produces q5 = 0. To see why this is true, note that if k1 > QM, then marginal
cost is simply ¢ over the relevant range, and so E{M is optimal. If instead k1 < gM, then
capacity must be expanded, making marginal cost equal to ¢ +1; the optimal quantity is now
gM. Finally, if k1 € [gM,(jM], then capacity will not be expanded (kl > qM) nor will output
be reduced below k1 (k1 < c'lM), and so optimal quantity is kl‘
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We now demonstrate that 51 is undominated. No si which sets ki = k1 and qi(ké) >
0 for some ké > 0 will dominate s, since 51 gives strictly greater profit when Firm 2's
strategy specifies k,(k,) = ké and q,(k;) > qrz)(kl). Further, si also fails to dominate s,
when ki = k1 and qi(O) # max{qM,min{kl,ElM} }, since 51 is strictly better against S5 with
ky(ky) = qy(ky) = 0. Finally, if si specifies ki #k,, then s, is strictly better when Firm 2's
strategy has qz(kl) =0 and q2(ki) > qlz)(kl). We conclude that Sy € Sllj. Thus, even after
dominated strategies are eliminated, there is no capacity precommitment which allows the
incumbent to communicate that it will respond to entry with large (or even positive) output.

The incumbent is unable to communicate its intent because the profitability of its
capacity precommitment depends on its conjecture of the entry response, and there is no
mechanism which allows the incumbent to communicate its conjecture. Thus, when the
entrant observes large kl’ it can think to itself, "This is a profitable strategy for the
incumbent because it expects me to choose zero capacity. But I will instead choose positive
capacity, and the incumbent will shut down.” Eliminating dominated strategies does not
prevent the entrant from drawing such an inference.13 Capacity choices by the entrant do
have communicative power, however, precisely because their implications for rational output

choice are quite clear.

7. Judo Tactics

From the preceding discussion, it is evident that establishing commitment to the
market may be rather difficult for the incumbent, since it must contend with the prospect of
being knocked out. We have seen that expanding capacity investment does not allow the
incumbent to signal that it will choose a large output level in postentry competition. In fact,

we will show that capacity expansion actually places the incumbent in a worse situation.

(Figure 7 here)
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Consider Figure 7, in which Firm 1 chooses ki > qllj. Since avoidable fixed costs rise
by a(ki - qll)), Firm 2 can knock out the incumbent with the lower output level qé = q]g(ki).
This makes the knockout strategy more profitable for Firm 2, as q is moved closer to qM.
Further, the larger level of k1 reduces the attractiveness of market sharing for Firm 2: when
k1 = qll), Firm 2 can induce a market sharing postentry equilibrium anywhere along ABC;
however, with the larger ki equilibria along BC are removed and replaced by equilibria in
which q; is larger. Thus, once k1 is raised, the entrant's profits in postentry market sh;ﬁng
equilibria can only be lower. This makes the knockout strategy even more attractive. It
follows that larger k1 makes the knockout strategy easier to implement and relatively more

profitable for the entrant.

The incumbent will be able to remain in the market only if it reduces its capacity

investment from the entry-deterring level, which serves to degrade the feasibility and
attractiveness of the knockout strategy and thereby to encourage the entrant to choose a
market sharing strategy. Such judo tactics take two forms. First, it is easy to see that the
incumbent's position will be safe if qlg(kl) > min{kz,dM}, so that the knockout strategy is
either dominated or fails to be credible. One can show that qlz)(kl) decreases in k1 if k1 1s
not too sma.ll.14 By reducing k,, Firm 1 may be able to drive qlz)(kl) above min{l'(z,c'lM},
thereby neutralizing the knockout threat. We can call this the neutralization tactic.

Alternatively, capacity reduction may make market sharing sufficiently profitable to the

entrant that it prefers sharing to knockout; this we call the accommodation tactic.

(Figure 8 here)

Figure 8 illustrates these two kinds of tactics. First, choosing k1 slightly below ki
neutralizes the knockout strategy if qg(ki) = ElM, and ki is the supremum over the capacity

choices which do this. If however we have qg(ki) = qé (e.g., o is a bit larger), then capacity
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levels close to ki would be too large for neutralization to be successful, and further
reductions would be required. In general, if the maximum of qrz)(kl) lies below min{f(2,c'1M},
then there is no capacity reduction large enough to neutralize the knockout threat.

Second, suppose now that qé gives the minimum level of k2 at which the knockout
strategy is successful when the incumbent's capacity is ki (ie., kg fork, = ki). Since
qé € (gM,c_lM), qé also gives the optimal quantity for the entrant when the incumbent is
knocked out. In Figure 8, the isoprofit curve through the point qq = 0, qy = qé gives the set
of outcomes in which q, = k2 and in which the entrant's the profits are the same as in the
knockout outcome at point A. Note that the entrant is indifferent between the profits from
knockout and its preferred market-sharing outcome at point B; further, any capacity level
larger than ki would induce the entrant to play knockout, as long as qg(kl) is a decreasing
function at k1 = ki.ls This makes ki the incumbent's optimal accommodation tactic.

Of course, it may be that under no circumstances will the entrant choose to
accommodate the incumbent. As an illustration of this, assume that ki ” in Figure 8 gives the
unique value of k, which maximizes qlz)(kl) (as explained in note 14), and suppose qé’
gives the minimum k2 which induces knockout when k1 = ki ’; thus any k2 > qé' induces
knockout for all kl‘ As depicted in Figure 8, the entrant's profits from knockout exceed
those available in the entrant's best possible sharing equilibrium, which is at point C (in
which Firm 2 acts as Stackelberg leader). It follows that the entrant will respond to any k, >
0 by inducing knockout, and so the best the incumbent can do is to cede the market to the
entrant.

This analysis calls into question the commonly-held view concerning the role of
capacity investment in establishing commitment to the market, which states that expansion of
capacity strengthens commitment by increasing the incentive to produce large amounts of
output. In the presence of avoidable fixed costs, capacity investment may turn into a liability

if it makes shutdown even more attractive than large output. As demonstrated above, the
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focus must then fall on strategies which establish commitment via reduction of investment,
which seek to discourage rivals from exploiting the avoidable fixed cost liability.

Our prediction that the incumbent might be forced to cede the market to the entrant
raises the question of whether our model deals adequately with the underlying factors that
determine strategic advantage. While it may be true in some cases that the timing of
investment decisions is beyond the firms' control, under most circumstances it seems
plausible that timing would be influenced by firms' decisions; in particular, a firm with an
opportunity to move first may be able to surrender its position by delaying its investment (as
considered by Mailath (1988), for example). With high avoidable fixed costs, our results
suggest that when the timing of moves is endogenized, the firms would compete to obtain the
more desireable second position, and entry into the market would take the form of a waiting

game.

8. Parameterized Example

In this section we study the set of subgame perfect equilibria which arise after weakly
dominated strategies are removed, for a particular parameterization of the model. First,
though, it is necessary to establish that subgame perfect equilibria exist in the first place; this
is accomplished in the appendix, under the condition that Firm 2's strategy set Sg 1s
expanded slightly to allow it to choose strategies which give zero profit in response to Firm 1
strategies which specify shutdown. The appendix demonstrates existence by constructing the
equilibrium which maximizes the incumbent's profits over the set of subgame perfect
equilibria (including equilibria which involve mixed strategies), and it is this equilibrium

which we consider here.

(Figure 9 here)
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Figure 9 summarizes the equilibrium outcomes as functions of ¢ and f, for given
values of the other parameters. For low o and f, the outcome lies in Region 1, in which the
incumbent's optimal capacity choice involves the neutralization tactic. In this case, the tactic

M. In subregion la

takes the form of rendering the knockout threat incredible, i.e. qg(kl) >q
this is automatically accomplished at the Stackelberg leader capacity, and the entrant
responds optimally by choosing the Stackelberg follower capacity. In subregion 1b, however,
the incumbent must reduce capacity from this level in order to neutralize the knockout threat:
larger o and f make qg(kl) smaller for every level of kl’ so that neutralization becomes
more difficult.

In Region 2 the incumbent's optimal capacity choice involves the accommodation
tactic: knockout is feasible, but the entrant prefers the market sharing outcome. In subregion
2a knockout is so costly that the entrant prefers the Stackelberg follower outcome to
knockout, but in the rest of Region 2 the incumbent must reduce capacity from the
Stackelberg leader level in order to accommodate the entrant. In subregion 2b these
reductions still leave the incumbent with larger postentry market share, but in subregion 2c
the incumbent must choose capacity so small that the entrant has larger postentry market
share; accommodation forces the incumbent to accept an inferior market position.

Finally, for larger o and f we enter Region 3, in which the incumbent can neither
neutralize the knockout strategy, nor accommodate the entrant. The incumbent's optimal
strategy is then simply to cede the market to the entrant. We see that the benefits of
choosing capacity first are linked to the extent and nature of avoidable fixed costs. In
general, as these costs rise, the incumbent must reduce its capacity commitment in order to

protect itself from knockout. When avoidable fixed costs are sufficiently high, the incumbent

is forced to cede the market even in its preferred equilibrium.
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9. Related Literature

This paper builds on a large literature which studies strategic investment by
incumbent firms. Two strands of work relate most closely to our analysis. First, the role of
avoidable fixed costs in creating coordination problems has been recognized by Dixit (1979)
and Arvan (1986). Arvan argues that reputation plays a role in the equilibrium selection
process, and he shows that the incumbent may gain the advantage in equilibrium selection by
exploiting private information about its costs. Second, Schmalensee (1983) and Fudenberg
and Tirole (1984) discuss circumstances under which exercising strategic power may lead an
incumbent to choose a less aggressive strategy, in order to exploit strategic complementarity
(the "puppy dog ploy"). Our accommodation tactic is related to this notion in that in both
instances, a reduction in the incumbent's aggressiveness makes it more profitable for the
entrant to play a strategy which is beneficial to the incumbent.

Our paper contributes to a growing body of work which analyzes the strategic power
which accrues to second movers. This research is conveniently divided into three categories.
First, second movers may be able to capture the market through displacement of first movers,
due to the presence of avoidable fixed costs. Eaton and Lipsey (1980) give a very clear
illustration of this principle. In their model, the incumbent's capital is indivisible and must
be replaced after a certain interval of time. As time passes, the sunk cost of capital
investment turns gradually into the avoidable cost of capital replacement. The incumbent
maintains its commitment to the market by keeping its avoidable fixed cost below a certain
level, which is accomplished by early replacement of its capital. In a similar vein, the
literature on contestable markets (e.g., Baumol and Willig (1981)) emphasizes that
incumbency advantages arise only to the extent that fixed costs are sunk as opposed to
avoidable.

More recent literature makes a similar point. In a dynamic game of exit, Ghemawat

and Nalebuff (1985) show that firms having larger avoidable fixed costs exit first. Judd
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(1985) argues that a multiproduct firm selling substitute products can be displaced from one
of its markets by an entrant, provided exit costs (e.g., severance pay) are not too high. Ina
sense, the low prices that entry induces upon the incumbent's product line act like a fixed
cost, which can be avoided if the incumbent exits the entered market. Maskin and Tirole
(1988) consider a model in which short-term commitments to output are used to deter entry.
If output is too small, the entrant knocks out the incumbent. This accumulation of research
points to a basic dichotomy: sunk costs convey strategic power 1o first movers, while
avoidable costs convey strategic power to second movers.

Second, a literature has developed that illustrates second mover advantages in
environments with learning gxternalities. Ramey (1988) shows that a "wait and see”
approach to product innovation can be preferred if the probability of successful innovation is
correlated across firms. Jovanovic and Lach (1989) argue that late entrants benefit from
free-riding off of the learning-by-doing of early entrants. First mover disadvantages are
shown by Gal-Or (1987) to occur if the existence of private information gives rise to
signaling distortions; Mailath (1988) demonstrates that such distortions may induce the first
mover to voluntarily give up its first mover status.

Third, a firm may prefer second mover status in markets with strategic

complementarities. For example, Gal-Or (1985) observes that second mover profits are

higher than first mover profits in a Stackelberg game of price competition. Here, the first
mover adopts a less aggressive price than the second mover in order to reduce rivalry. Of
course, a first mover advantage remains to the extent that both firms do better in the
Stackelberg game than in a simultaneous move game. In total, this research demonstrates
that whether the first or second mover possesses the strategic edge may hinge on many

aspects of the economic environment.



10. Conclusion

In the past twenty years, the merger of Industrial Organization and Game Theory has
produced a plethora of theories but few broad conclusions. One conclusion which has been
robust to a variety of models, however, is that there is a preemptive advantage t0 moving
first when costs are sunk. This conclusion is well illustrated by Dixit's model of entry
deterrence, wherein the sunk nature of capital expenditures enables an incumbent firm to
commit to an aggressive postentry posture. Extensions of this line of reasoning have led to
completely new theories of the evolution of market structure (Eaton and Ware (1987),
McLean and Riordan (1989)).

Our fundamental point in this paper is that the first mover advantages associated with
incumbency fail to hold - and indeed may be reversed - when there are multiple equilibria in
the postentry game. In our model, the fact that the entrant chooses capacity second, after the
incumbent, affords the entrant a tremendous advantage. The incumbent may be forced to
acquiesce to the entrant by choosing zero capacity, or practice judo economics by selecting a
nonthreatening, small capacity. The former possibility is more likely the higher are
avoidable fixed costs.

This analysis calls into question the conclusion that first movers must benefit due to
their ability to preempt. Rather, in the context of the capacity-and-entry model, when sunk
costs are large relative to avoidable costs the strategic advantage does lie with the incumbent,
but when the reverse holds the advantage goes to the entrant. This conditional aspect of first
mover advantages may provide some explanation for the poor performance of the received
model in the few empirical studies that have been done. For example, Bulow, Geanakopolos
and Klemperer (1985) have shown that for a variety of demand functions the incumbent in
Dixit's model will choose to hold excess capacity in order to deter entry. Lieberman (1987),
however, finds little evidence of such behavior. Similarly, Smiley (1988) finds excess

capacity to be a relatively unpopular mode of deterrence in his survey of product managers.
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In our model, the incumbent responds to the second mover advantage by reducing
capacity investment, but one can conceive of other strategies which might be available to the
incumbent. First, through choice of technology the incumbent may have some control over
the sunk vs. avoidable components of fixed costs. The incumbent's defensive tactics may
then take the form of a distortion in favor of technologies which are relatively inflexible with
respect to the range of products which can be produced.17 Second, the incumbent might

render the knockout strategy nonviable through choice of organizational form. In particular,

the knockout strategy would fail if the incumbent could commit to choosing quantity prior to
observing the entrant's capacity. Such a commitment may restore first mover advantages
even if the entrant is unable to observe the incumbent's quantity, i.e. the incumbent may gain
from "silent commitment power." Organizational forms which are relatively inflexible and

bureaucratic may be useful for this purpose.



- 26 -
APPENDIX

In this appendix we first characterize the sets SllJ and Slzj, and then discuss the
existence of subgame perfect equilibria of the game in which the strategy sets S1 and 52 are
replaced by Sllj and Sg. The assumption & < 1 is maintained throughout the appendix.

Let qllz(q2 | kl) denote Firm 1's reaction correspondence in the postentry game, when
Firm 1 has chosen capacity kl' We know that qli(qzlkl) is weakly decreasing in 5 and
qlf(qzlkl) gives a continuous function for all q, except q, = qlz)(kl), at which point Firm 1
is indifferent between its positive best response and shutdown. Note further that in postentry
competition the firms will never produce outputs which exceed their best responses when the

rival produces zero quantity. For Firm 1 this upper bound output is given by:
0 M . -M
ql(kl) Emax{q 7m1n{k1,q }}

as was explained in the text. qg(q1 |k2), qllj(kz) and q(z)(kz) are defined analogously; note
that qIID(O) corresponds to the qllj of the text.

Let us now characterize the set Slzj

. Consider first the Firm 2 output choices which
are dominated by virture of guaranteeing nonpositive profits. For any k2 > (0, we can define

qlg(kz) and q%(kz) to be the upper and lower solutions, respectively, to the following:
(3) (a- bq2 - c)q2 -T max{kz,qz} -f=0

Thus, for g, 2 qgl(kz) Or 4y < qlz‘(kz), Firm 2's profits given its choice of k2 are nonpositive

even if qq = 0.
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(Figure 10 here)

qH(k,) and g5 (k) are illustrated in Figure 10. Note that a5 (k) <k and ay(ky) €
(O,E{M] for all k2, where qli(kz) > 0 is a consequence of f > 0.

SlzJ is characterized in the following:

Lemma 1: SlzJ is exactly the set of all Sy = (k2(k1)’q2(kl)) such that, for every klz
(a) k2(k1) < Rz;
(6) (k) € (@5 (k) aa(kylk; )] whenever qyk;) > 0; and
(c) kz(k1) = 0 whenever q2(k1) =0.

Proof: Suppose S € Sg. From the text we know that k2(k1) < k2’ so it remains to verify
that (b) and (c) are satisfied. If there existed ki such that qz(ki) >0 and qz(ki) 3
(q%(kz(ki)),qg(kz(ki))), then 59 would be dominated by sé defined as in (2). Further, if Sy
set qz(ki) > q(z)(k2(ki)), then we could define sé to agree with s, except for putting qé(ki) =
ad(,(k ), and s would dominate s, Since ad(ky) < a5 (k,) for all k, < ky, we have (b).
If S, puts q2(ki) = 0, then Firm 2's profits are -(1 - a)kz(ki) when Firm 1 chooses ki, and S5
would be dominated unless kz(ki) = 0; this gives (c).

Now suppose that SH satisfies (a), (b) and (c), but S, € Sg. Then there must be some
sé which dominates S5, and for some ki we will have (kZ(ki)’q2(ki)) # (ké(ki),qé(ki)).
Suppose first that k2(ki) # ké(ki), and consider 89 which sets k1 = ki and:

0.  ky=kyk))
qky) =17 | 22 1
Q). Ky #ky(k))

: ’ ’ L ’ H ’ - . .
Since ql(k2(k1)) = ( and qz(kl) € (qz(kz(kl)),qz(kz(kl))), 34 gives strictly positive profits



-8 -

as a response to this Sq while sé must yield nonpositive profits if qi is sufficiently large;
thus, HZ(SI’SZ) > H2(sl,sé), and sé cannot dominate S5

Suppose next that k2(ki) = ké(ki), so that qz(ki) # qé(ki). Since qz(ki) €
[O,q(l)(kz(ki))], we can find qi such that when Firm 1 chooses qi, qz(ki) gives strictly higher
profits in postentry competition than does q;(ki)) (for example, we might have
qlz{(qi |k2(ki)) < qz(ki) < qé(ki)). Thus S5 is strictly better than sé against 51 which sets k1
= ki and ql(k?_(kl)) =4y and 3, cannot dominate S5- Q.ED.

(Figure 11 here)

M The

Figure 11 illustrates the sets SIZJ for the possible configurations of R2 and q
shaded areas indicate the values which q2(k1) may assume in an undominated strategy, for
k2 = k2(k1)' As k2 rises, both the upper and lower bounds of possible quantity responses
rise. Moreover, the infimum over allowable positive quantity reponses is not itself allowable.

We next consider SY. Let q'y (k) and q [ (k,) be defined by analogy to a5 (ky) and

qlz‘(kz), and let quI(kl,a) and qlf(kl,a) be the upper and lower solutions, respectively, to:
(a - bq1 - c)q1 -T max{kl,ql} -f=-(1- oz)rk1

This is similar to (3) except that it reflects the fact that Firm 1 no longer has the option of
recovering all fixed costs once k1 is chosen. Thus, Firm 1 is less willing to shut down; we
have qt1(k @) > g’ k;) and q] (k0 < g (k) for all k; > 0. Note that

(lxir? qlf(kl’a) - qlf(kl) and (lxifi‘ qIf(kl,a) =qy ky). SllJ is characterized in:

Lemma 2: SllJ is exactly the set of all S = (kl’ql(k2)) such that:

@) k1 < kl;
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(b) For all k,, q(k,) € (q-(k ;.00 )] whenever q, (k,) > 0; and

(c) There exists k, such that qqky) € (qIf(kl)’q(l)(kl)] whenever k; > 0.

Proof: Suppose 5, € Sllj. We already know that (a) is implied. If ql(k2) € (O,qll‘(kl,a)], then
Firm 1 weakly prefers the response qi(k2) = 0, and strictly prefers it if qz(kl) >0. If ql(k2)
> q(l)(kl)’ then Firm 1 prefers the response qi(kz) = q(l)(kl)' In either case, the preferred
response may be used to construct a strategy si which dominates S5 this gives (b). If k1 >0
and ql(kZ) ¢ (qIf(kl),quI(kl)) for all k2, then the strategy si which sets ki = qi(kz) =0 for
all k2 is weakly preferred for any S5, and strictly so if qz(kl) > 0. Combining this with (b)
gives (c).

Now suppose si dominates 51 which satisfies (a), (b) and (c). First consider kl >0
and k1 # ki. By (c) there exists ké such that ql(ké) € (qlf(kl)’q(l)(kl)]‘ Let S5 satisfy k2(k1)
= ké, q2(k1) = (0, and k2(ki) = qz(ki) > qlzj(ki), in which case Hl(sl’s?_) >02 Hl(si,sz).
Next consider k1 =0 and k1 # ki, and let S5 continue to satisfy the preceding. Using (b) we
have H2(SI’S2) >0 > HZ(Si’SZ)' Finally, for k1 = ki we must have ql(ké) # qi(ké) for some
ké, and since ql(kQ,) < q(l)(kl) we may find qé such that when Firm 2 chooses g, (k) = qé,
ql(ké) gives strictly higher profits in postentry competition than does qi(ké); qé may be used

to specify S5 such that Hl(sl’s2) > Hl(si’SZ)' Q.ED.

Note that Lemma 2.c captures precisely the strategic ambiguity of precommitment for

the incumbent: when k1 > (, the entrant infers only that ql(k2) > (O for some k2, whereas

Lemma 1.c shows that observing k2 > 0 leads the incumbent to infer qz(kl) > 0 for gvery kl'

(Figure 12 here)

The shaded areas of Figure 12 depict the restrictions on Firm 1 quantity responses
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which must hold for every k2 in an undominated strategy. The figure makes clear the key
difference between SIIJ and Slzj, being that the response q; = 0 is not eliminated no matter
what level of k1 is chosen.

Now that the reduced game has been characterized, we can give conditions needed for
existence of subgame perfect equilibria. There are three kinds of postentry outcomes which
might arise in a subgame initialized by k1 and k2:

1. Preempt Equilibrium - q; > 0, q, = 0. When k2 = 0, this equilibrium exists if and only
if q(l)(kl) 2 qll)(kz). We know from Lemma 1 that this equilibrium is inconsistent with

dominant strategy elimination if k2 > 0.

2. Knockout Equilibrium - q = 0, q, > 0. For any k1 and kz, this kind of equilibrium
exists if and only if q)(ky) > a5 (k).

3 Share Equilibrium - q; > 0, q, > 0. To consider this class of postentry equilibria we need
to look more carefully at the reaction functions in the reduced game. As for Firm 1, it is
easy to see that qll‘(kl,a) < qllz(q2|k1) < q(l)(kl) for any 4y such that q}}(qzlkl) > 0, so we
may simply take the restriction of qlli(qzlkl) to (qg:(kz),qg(kz)]. The same holds true for
Firm 2 if k

R L .
= 0. For k2 > 0, however, we could have q2(q1 |k2) < q2(k2) for some q; (this

2
occurs if Firm 2 would not want to enter expecting the response q, but once it has entered it
would not want to exit). In this case Firm 1's best response in the reduced game might not

be defined.
(Figure 13 here)

The problem is illustrated in Figure 13. The allowable quantity responses for the
subgame initialized by k1 and k2 are given by the shaded area together with the segment AB
along which q, = 0. Forq € [qi,kl] Firm 2's profits continue to increase as g, is reduced

toward qlz“(kz), but the limit is not an allowable response. We remedy this problem by
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expanding set Sg slightly to include responses qlz“(kz); we denote this set by Sg. With this
we can define Firm 2's reaction function for every subgame; in Figure 13, for example, the
segment CD now gives the reactions for q, € [qi,kl]. Note that with this modification the

reaction functions of Firm 2 will always be continuous functions of q; when k, > 0, as no

strategy in Sg allows Firm 2 to jump to g, = 0.

This modification of our reduced game is supportable from two perspectives. First,
we can define our subgame perfect equilibrium as a limit of outcomes which specify
g-equilibria in every subgame as €+ 0. Second, note that when this problem leads to
nonexistence of postentry equilibria for a given pair of capacity choices, we may specify 9
such that Firm 2 would prefer k2 =Qy = 0 over its capacity choice no matter what quantity it
picked in the subgame. Thus the nonexistence problem only arises at irrelevant branches of
the game.

We now let qI;(q1 |k2) denote Firm 2's reaction function in the modified game. In
the k2 > 0 case, a share equilibria of a subgame exist if and only if q%(q1 |k2) intersects
qllz(qzlkl) from below before qlll(q1 |k2) jumps to zero; further, at most one share
equilibrium will exist. We can be sure that a share equilibrium exists if qg(kl) 2 qg(kz), as
in this case both reaction functions may be restricted to strictly positive quantities; this case
is illustrated in Figure 13. It follows that nonexistence of a knockout equilibrium is
sufficient for existence of a share equilibrium. Similar observations apply for k2 = 0, except
that when qlzj(kl) 2 qg(kz) we know there exists either a share equilibrium or a preempt

equilibrium (or both).
(Figure 14 here)

Now suppose qg(kl) < qg(kz), and let qlli(q?(kl)lkl) = {O,qi}, ie. qi is the positive

output level which Firm 1 produces at the point where qlli(q7 ]kl) jumps to zero. Then a
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share equilibrium exists if and only if q%(qi ]kz) < qg(kl), for this is necessary and
sufficient for the reaction functions to Cross at some ¢ > qi. In Figure 14 we have an
instance in which share equilibria do not exist for this reason.

We now construct a subgame perfect equilibrium of the game obtained by replacing

the strategy sets S1 and 82 by Sllj

and SLZI. The idea behind the construction is that for each
subgame initialized by k1 and k2, we will choose as postentry equilibrium the equilibrium
which gives Firm 1 the greatest profit, unless we are forced to do otherwise in order to
ensure that a profit maximizing capacity choice exists for Firm 2.

We first consider the choices of k2 for which share equilibria of the subgame exist.
Note that qlz‘(kz) is a positive constant for k2 < qM; this places a lower bound on Firm 2's
quantity in share equilibria when k, is small. Note further that share equilibrium profits vary
continuously as k2 varies, so long as the share equilibrium continues to exist.

Next consider the k2 which make knockout equilibria the unique equilibria of the
subgame. In this case we have either k2 > 0 and qli(kz) > qlz)(kl), or qg(qi |k2) > ql??(kl)
where qi is the positive best response to qg(kl) (i.e., the situation depicted in Figure 14);
note that Firm 2's profits in the knockout equilibria are continuous in k2 If either condition
holds with equality, then both share and knockout equilibria may exist, but specifying the
share equilibrium may be inconsistent with existence of a profit maximizing choice of k2, as
Firm 2 may be able to induce the knockout equilibrium through a slight increase in k2. If
this is true, we specify the knockout equilibrium. Otherwise we specify the share equilibrium
for every subgame with k2 >0, and if k2 = 0 we specify Firm 1's most preferred equilibrium.
It follows that for every kl’ there exists a capacity choice kI;(kl) which maximizes Firm 2's
proﬁts.18 If Firm 2 is indifferent between two or more values of k,, then it chooses the one
which makes Firm 1's profits the highest.

Now consider Firm 1's profits as a function of kl’ given kg(kl) and the indicated

,.
.

postentry equilibria. There are two reasons why profits may be discontinuous at a point k1
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(1) Firm 2 shifts kl;(kl) discontinuously to move between postentry equilibria, but at ki Firm
2 is indifferent between these equilibria. We have indicated that in this case Firm 2 selects
the equilibrium most preferred by Firm 1. (2) A perturbation of ki eliminates a class of
equilibria for every k2‘ k};(kl) might then shift discontinuously between equilibria among
which Firm 2 is not indifferent at k i If the preempt equilibrium is eliminated, we know that
it still exists at k1 = ki, as a consequence of the fact that the reaction functions haye closed
graphs; thus profits could only jump upward at this point. Similarly, if perturbing kl would
eliminate the share equilibria for every k2 , then one or more share equilibria would exist at
k1 = ki and again only upward jump discontinuities would be possible.

Finally, perturbations from ki will determine the existence of knockout equilibria for
all k2 if and only if qlz)(ki) = min{kz,qM} (this is the neutralization tactic). It is then true
that qlz)(ki) > q(2)(k2) for all k2 < R2 (recall that k2 > gM), and so there exists a share
equilibrium for every k2. Since given ki Firm 2 is unable to induce the knockout
equilibrium, our specification requires the share postentry equilibrium to be played. Thus,
Firm 1's profits can only jump upward at ki.

From this discussion it follows that Firm 1's profits are uppersemicontinuous in kl’
and by specifying a profit-maximizing choice of k1 we complete the construction. Note that
if we make a different specification of postentry equilibria, then Firm 2's capacity choice is
affected only if it chooses to induce a postentry equilibrium which gives it greater profits.
But this necessarily lower's Firm 1's profits. It follows that the above construction maximizes
Firm 1's equilibrium profits over the set of subgame perfect equilibria of the reduced game.

Finally, there will not be any equilibria with mixed strategies in which the incumbent
earns higher profit. Note first that in the post-entry subgame, neither firm will mix among
positive quantities, as a consequence of the strict concavity of the profit function in own
quantity. Thus, if k2 > ( Firm 2 must choose a pure quantity strategy, and Firm 1 will then

mix only if g, = qlzj(kl); Firm 1 is indifferent among such outcomes. If k2 = (, there are
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two reasons why Firm 2 might mix: (1) q, = qllj(kz). In this case the preempt equilibrium
exists, and it gives Firm 1 greater profits than any of the mixed outcomes. (2) Firm 1 mixes.
In this case Firm 1's expected postentry profits are -(1 - a)rkl, which are no greater than in
the outcome specified above. Thus, replacing the specified postentry outcomes with mixed
outcomes can only reduce Firm 1's profits. Further, mixed choices of k2 will only reduce the
incumbent's profits, as we have specified that if Firm 2 is indifferent, it chooses the capacity

which makes Firm 1's profits the greatest.
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NOTES
1. Throughout this paper our criterion of forward induction requires only the elimination of
weakly dominated strategies. More sophisticated notions of forward induction, such as those

surveyed by Kohlberg (1989), are not required for our analysis.

2. These cost functions incorporate the fact that neither firm will in the second stage expand

capacity beyond the chosen output, which would clearly be a strictly dominated strategy.

3. More specifically, games of this sort have been analyzed using the concept of subgame
perfect equilibrium, developed by Selten (1975). Kreps and Wilson (1982) discuss broader
notions of backward induction rationality.

4. Specifically, we assume f < (a - ¢ - r)2/4b.

5. In Figure 3, the minimum exit-inducing quantity qé satisfies:

max , ’ _
q (@- b(ql + CI2) - C)ql -T max{ql,kl} -f=0

where the the solution satisfies q; < ki since in the figure Firm 1 would not choose to

expand capacity beyond ki for any q,. The minimum q, which induces the response q, = 0

when k1 = 0 is defined by:

mg)l((a-b(ql+q2)—c-r)q1-f=0
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Since for any q, the left-hand side of the latter expression is greater that of the former when
qé is replaced with 95> it follows that the latter minimum exit-inducing quantity is greater
than qé, as shown in Figure 3. Note that these quantities would be the same 1f k1 did not
exceed the monopoly quantity. For a = 0, in contrast, the minimum exit-inducing quantity

when k1 =k’

1 is defined by:

max

Q, (a- b(q1 + q2) - c)q1 -T max{ql,ki} -f= -rk1

and clearly this gives a larger minimum exit-inducing quantity than under k1 =0.

6. This criterion is discussed by Luce and Raiffa (1957) and, more recently, by Kohlberg
and Mertens (1986).

7. For simplicity our model is specified in terms of pure strategies, although our analysis
extends to mixed strategies in a straightforward way. The possibility of mixed strategies is

incorporated into the parameterized example of section eight.
8. See Lemma 1 of the appendix for a detailed demonstration of the latter point.

9. All qualitative properties depicted in Figure 5 and described in the text hold for the

parameterizationa =b =1, ¢ =0,r =0.25,f=0.0325 and o = 0.4.

10. It is important to understand this point. By selecting kz—e, Firm 2 ensures that Firm 1
shuts down precisely because only values of d which exceed q]; can be undominated in
conjunction with the capacity choice Rz-e. One particular quantity of this type is ElM;

furthermore, the choices k- = k,-€, q5 = qn, give strictly positive profits to Firm 2 when
2759 % Am 4
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= 0. Thus, Firm 2 would actually deviate to these choices.

11. While ql(f(z-e) =0 is implied when subgame perfection is imposed following the
elimination of dominated strategies, it is also true that ql(kz-e) = 0 must hold in any Nash
equilibrium which survives two rounds of dominated strategy elimination. Thus our result
may be derived solely from forward induction inference, as is done by Ben-Porath and Dekel

(1987) and van Damme (1989).

12. Recall that different choices of k2 lead to different postentry equilibria based on shifting
the entrant's reaction function. Under the parameterization of Figure 6, the entrant prefers
the knockout strategy to any postentry equilibrium which could be induced by some choice
of k2, and which would involve positive output for Firm 1. Among the equilibria with
positive Firm 1 output, Firm 2 in this example prefers the equilibrium in which it shares the

market with Firm 1.

13. One may wonder whether more rounds of dominated strategy elimination might sharpen
the incumbent's communicative abilities. For example, in Figure 5 it may be that more
rounds discriminate between an "aggressive" strategy, k1 = ql(k2) = qllj for all k2, and a
"bluffing" strategy, k1 = qll) and ql(kz) =0 for all k2 > 0. Indeed this is the case, but it is
the agressive strategy which is removed; to see this, recall from note 11 that two rounds of

dominated strategy elimination ensure ql(kz—e) = 0.

14. This may be seen as follows. Note that when q, = qlzj(kl), Firm 1's reaction
correspondence contains two points, zero quantity and a strictly positive quantity which we
may denote by qi; thus, at qg(kl) Firm 1's best response jumps from qi > (0 to zero. One

can show that there exist capacity levels k% and kb, depending solely on exogeneous
P 1 1 y g
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parameters and satisfying 0 < k? < kli, such that: (1) For k1 > ktl), we have qi < k1 and
qg(kl) is strictly decreasing in kl; in this case, qi lies on the upper negatively sloped
segment of Firm 1's reaction function. (2) For k2 <k

b
strictly decreasing in k1 iff< bk?, and it is strictly increasing if f > bk‘l‘; here qi is on the

b rd D -
1 < kl’ we have q] = kl’ q2(k1) 1S

vertical segment. (3) For k1 < k?, we have qi > k1 and qg(kl) is strictly increasing in kl;
qi is now on the lower negatively sloped segment, corresponding to the full-cost reaction

function. As depicted in Figures 7 and 8, ki > kll) holds, and so any k1 > ki satisfies qlz)(kl)

D,.,
< qz(kl).
15. For this to be true we must have f < bkiz; see note 14.

16. Results from Ramey (1988) may be at once applied to this question. Consider the
following game. In each of the periods t = 1,2,..., two firms decide whether to enter or stay
out. If both stay out, the game starts again in the next period. If only one firm enters, it
observes that the other firm has stayed out and chooses its capacity, while the other firm
observes this capacity choice and chooses its own capacity in the next period; this
corresponds to the game considered in the present paper. If both enter, then they play some
symmetric equilibrium (perhaps in mixed strategies) in which capacities and then quantities
are chosen simultaneously. It follows that in a symmetric entry equilibrium, entry is delayed
if the first mover's profits are positive but lower than the second mover's (in the
parameterized example of section eight, this is Region 2c¢ of Figure 9), and the market fails

completely if the first mover is forced to cede the market (Region 3 of Figure 9).

17. We thank Lanny Arvan for this suggestion. Here we have a variation of the investment
strategy discussed by Eaton and Lipsey (1981): rather than excessive durability, the

incumbent chooses excessive inflexibility.
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18. When a preempt equilibrium is specified for k2 = (), existence of k};(kl) is assured as a
consequence of the behavior of Firm 2's profits in the neighborhood of k2 = 0. For suppose
small upward perturbations of k2 induce share equilibria in which profits are positive; in this
case Firm 2's share profits will be independent of k2 for k2 sufficiently small. If upward
perturbations induce knockout equilibria, then Firm 2's profits will also be independent of k,

for k., sufficiently small. Thus, even though a downward jump discontinuity exists at k2 =0,

2

profits do not continue to rise as k2 is reduced toward zero.
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