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Abstract

We study the dynamics of growth and investment in a continuous time model with
vintage capital. Vintage capital models may be characterized by non-
exponential rates of depreciation and technical change and can incorporate
"gestation lags" as well as "learning by doing". We investigate the effect of
such features on the dynamics of investment and growth and show how they can

contribute to explain the volatile nature of investment time—series.
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1. Introduction.

In models of vintage capital, equipments of different vintage may
differ in their productivity due to technical progress or due to the effects
of variable depreciation rates. 1In particular, such models allow for the
possibility of non—uniform or non-exponential rates of depreciation and
technical progress. Indeed, in certain certain plausible situations,
equipment may, because of "learning by doing", become progressively more
productive during an initial phase of its lifetime before it depreciates later
on. Alternatively, there may be cases involving "gestation lags", where
initially, new equipment is totally unproductive. In this paper we analyze
the implications of non-exponential depreciation, and of "learning by doing",
on the dynamics of investment in an optimal growth model with vintage capital.
Essentially, in such a model one must keep track of equipments of different
vintages to describe the investment dynamics. As we show below, non-—
exponential depreciation structures, with or without "learning by doing", may
help explain the highly volatile nature of investment time-series. (For an
empirical investigation in a discrete—time model, see also Benhabib and
Rustichini [1989].) To introduce the discussion, it may be helpful to begin
with the classical view of capital.

[f we denote with K(t) the capital stock at time t, and by k(t) the

investment (according to a notation which will be consistently used in the






rest of this paper) then the standard model of exponential depreciation.

K(t) = k(t) - yK(t) 1.1

has a solution (provided K(t)e ™™™ -+ 0 as t » =) given by:

t
K(t) = fk<s>e-v<t-s>ds, for £ > 0. (1.2)

Note that in this formulation the efficiency of an investment good of vintage
t has its efficiency reduced by a factor e 7.

The dynamics of the optimal path in the exponential depreciation case
are well known. We can take the case of a linear utility as an easy
reference. It is known that if the initial capital stock is lower than the
steady state value, then investment grows (with the optimal level of
consumption equal to zero) until the steady state is reached. After that,
both the capital stock and investment are constant. One of the points that we
shall argue in this paper is that the assumption of exponential depreciation
suffers by the virtue of its own simplicity (that is, by dramatically reducing

the possible dynamics that an optimal growth model can describe).
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In section 2 we provide a single discrete—time example to illustrate
some of our main points. Section 3 sets out some notation and definitions.
Section 4 describes our model of vintage capital and some properties of its
solution. Section 5 contains a few technical results that characterize the
solutions to the problems posed in section 4. Section 6, which contains the
main results, describes the different investment dynamics that emerge under
various assumptions on depreciation schemes, including those with "learning by
doing" and "gestation lags". The standard "exponential depreciation” case
turns out to be a particularly special case. Finally, section 7 shows how
persistent and robust oscillations in investment can obtain in a model with

"learning by doing" and with a strictly concave utility function.

2. A Simple Example.

The analysis of a simple example can probably be useful to clarify some
of the issues we are going to discuss. Consider an economy where each
investment good, once produced, lasts for only two periods, and then becomes
completely useless. We also allow the relative efficiency of the investment
good to change over its 1ife span. The productive technology is given by a
neoclassical production function where the quantity produced depends on a
linear combination of the investment goods which are active at the time. The
evaluation function is linear.

Formally, we are considering the problem:



su + 0
{kt}il T 6t £(ak,.,+bk, ;) - k]
= twl
(2.1)
subject to f(ak, ,+bk, ;) -k, =0 k=0 t=1,2,...,
where k_.,, k; are given. Here, a,b = 0. For concreteness, we shall set
f(x) =x%, for a €(0,1). To a given point (k,_;, k,), we associate the quantity
K, = ak,_; + bk, which we call the "capital stock".
Let us first consider the case where a = b = 1. The Euler equation for an
interior solution is
“1 o+ §aK® 4 §20K%I1R0 t=l, 2, .... (2.2)
which gives the steady state value for the capital stock, K, as
- 1 (2.3)

K = [ab(1+8)] 1=

Consider now the curves: { (k_, k. ;) k., + (k +k )% = K} C and

{(ky, k)0 k, + ko, = K}Y=J in the state space (k,, k.4;). Their relative

position is as in Figure 2.1A, if a < [6(1+§)]17%; and as in Figure 2.1B



otherwise.

t+1 kt+1
T 0
AN
C C\
T
kt kt
(&) (B)
Figure 2.1

Let us consider case A first, and define the region

{(ky, Kuuy): kyo Keyp 20, keyy + K¥,>K}Y=F.

Proposition 1: For (k,, k) € F, the value function of problem (2.1) is

given by

Vik,. k.,q) = (1+8) "k ; + K&,y + D (2.4)

s



with D= §(1-6)-1K* - (1-62)"1K.

The optimal policy is given by

) 0 if (k,, k.)€ Fe{J
C(kt; kt¢1> = . N
Kig +keyp - K otherwise.

(2.5)

where F° is the complement of F.

The proof is a standard computation.

The dynamics of the capital string (k., k¢+) along the optimal path are
easily described. Any point (k., k¢;) in the region RX\F is mapped into

(kesp, (ke + keyy)®); any point in the region F is mapped into (kg4y, K — k) €

J. Notice that the set J is an attracting invariant set. Once on J, the
dynamics are purely oscillatory. So, in this simple case, the dynamics can be

decomposed into convergence to J (when out of J), and then oscillations inside

The situation is more complicated in case B. 1In this case only the
component J E{(kt,Khl)Ej: k., +K& = K} is an attracting and invariant set.
The component J\J is unstable: capital strings in it cannot sustain the
capital stock K (the "old" capital stock is relatively too high).
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We may now consider the case where a and b are not equal to 1. Now

1

J =1 (k,, keuy): ke, Keyy 20, ak, + bk, =K} where K = [ab(b+as)]T% ; the

analogues of Figure 1 for cases A and B hold if « z [§(b+ad)] ! respectively.

The set F is defined in an analogous way to the case where a = b = 1.

Now two distinct possibilities arise. We consider here case A for

simplicity. If 0 < a < b, then the optimal consumption policy is given by

0 if (k. k,.p)eFel|]J
1 (t t01) U (26)

é(kt, ki) = .
K¥, + 2k -K otherwise.
t+l B t+l

The set J is an attractor and invariant set. The dynamics on J are now

different, and are described by

(2.7)

k,.,, =Kb-1 - ab-lk,

so that 1imk, = k® = K(a+b)-! along the optimal path.

L=+

Let us now consider the case where 0 < b < a. This corresponds to a

situation in which the investment goods, once installed, become more efficient



before the final decay. This may be considered a form of learning by doing.
Here the set J is no longer an attractor. It is also not invariant, except
for the point (k"*, k™), where k" = K(a+b) ! as before. In fact, the difference
equation kg4 = Kb'! — ab !k, is unstable.

Note that in this case it is no longer an optimal policy to set
consumption equal to zero in order to reach the steady state value K of
capital stock. Indeed, the policy of reaching K as soon as possible would
lead to overinvestment. As the old capital becomes more efficient the
effective capital stock K, would overshoot ﬁ, making necessary a negative
investment in the following period in order to restore the value K. But in
the model that we are considering once a factory is built, it cannot be used
for consumption, and negative investment is impossible.

One final remark: it is easy to show, by analyzing the Kuhn-Tucker
conditions, that in case A the optimal policy for a state in the region below
the curve C, is to set consumption in each period equal to zero, until the
first time in which the capital profile exits such region.

There are further cases that may be analyzed in the simple context of
the above example. The case of a one—period gestation lag corresponds to
setting O = b < a. Maintenance costs during the gestation period may be
included by allowing negative values for b. Finally, the example may be
modified to incorporate secondary markets for old capital goods. Old capital

could either be sold on the secondary market at some price, or it could be



consumed directly. Such a setup would require an additional decision variable
to determine the quantity of the old capital to be carried over. A class of
forestry models which allow old capital to be consumed has been studied by
Mitra and Wan [1985, 1986].

3. Notation and Definitions.

Let R, (R_, respectively) denote [0, +4+») ((-~, 0]) respectively. We let
D be the family of positive finite measures on (R_, B(R.)); for g, v € D we
say p= v if p(A) = vy(A) for A€ B(R.).

The cone D* C D of measure of increasing depreciation is the set of
measures which satisfy the condition that for every § > 0, the function

t = u([t, t+§)) , defined on (—», —§] is increasing. To any pu € D, we

associate the measure p" € D" defined by up*([a,b)) = sup u([t, t+b-a)).
t<a

M defines the space of (Lebesque) measurable functions defined on (-,
0]; M the analogous space defined over R. M" and M* denote the positive cones
of these spaces.

For a function k: (-, t] - R, with t >0, with t > 0, we denote with
k.(s) = k(t+s) the function k,: (-», 0] = R. Also, for any interval [a, b] the

function ki, ,; denotes the restriction to [a, b].

i

t
To every k € M, we associate the quantity K(t) J k(s)du(s-t).



Finally, x, denotes the characteristic function of the set A:

X, (£) = {1 if teA, 0 if tea).

4. An Optimal Growth Model with Vintages.

The technology in our economy is given by a neoclassical production
function of the capital stock K(t) and labor (which is normalized to 1).
There is a exogenous deterministic technical progress of the labor augmenting

type, with rate of growth x > 0.

Let F: Rg—»R.be a neoclassical production function, i.e.,

(i) F is concave, C? in the interior of RE;

(ii) F is homogeneous of degree one; (4.1)
s 1im ar

(iii) Xo o Iy (x, v) =0 for every y.

We denote f(x) = F(x, 1).
To a given k € M (the initial capital profile), we associate the set of

admissible capital and consumption paths A(k), namely the set of pairs (¢, k)
€ M*xM* which satisfy (€ is some positive constant):
(1) ko = kK,

(4.2) (ii) F ( J‘ kis)du(s-t), e’ ) - c(t) = k(t) (Lebesque)-a.e.t

~10-



(iii) T= c(t) =20, k(t) =0

The optimal growth problem is then defined by:

e

FBen [ e vt ©
0

In the following we shall consider a special form of the above problem.

More precisely, if (4.2.ii) is replaced by

£( J k(s)du(s-t) ) - c(t) =k(t) Lebesque-a.e.t (4.2.11")

then the optimal growth problem G is said to be in the standard form. We can
now show that this does not imply a loss of generality.
If U(c) = c%, a € (0, 1], and da—y < 0, then the optimal growth problem

can always be reduced to the standard form. This follows immediately from the

homogeneity of F; it is enough to define the new quantities:
K(t) = e k(t): dp(t) =e du(t),

Before discussing the characterization of the optimal path, we establish
its existence in Lemmas 4.1 and 4.2. The conditions on F give, for every ¢ >

11—



0, a real number A, such that f(x) <A, + ex. Then we have

LEMMA 4.1 The path of maximal accumulation, defined by:

t

k(t) = £( j k(s)du(s-t))

'~ ®

satisfies the inequality:
Ae € -
(RITPey I = C Tt | ko1, 01 l T—

where C denotes a positive constant.

Proof: The existence of such path is given by a standard contraction
argument. By replacing p by u" if necessary we may assume that up € D*. Then
for any h € [0, 1], and t = O:

k(t+h) <A, + ek(€) + Ce ke oy llo = A, + ek(E) + Celkpe cunylla,

and therefore

}m 1—_—6 '1_—6‘ Ilk[t-l,t]Hm

—-12—



which implies the result. 4]

Now it is easy to prove:

LEMMA 4.2 The optimal growth problem has a solution for any k, € M;.

Proof Since the problem is concave, this follows immediately, by

standard arguments, from the estimate in Lemma 4.1, il

We can now proceed to characterize the optimal path. We first need some
conditions on the measure p. More specifically, the following assumption (Al)

will be standing for the remainder of the paper:

(1) dp(s) =m(s)d(s), me LYR_; [0, 1])
(ii) m(0) = 0 .

(AL)

We shall see that optimal interior paths satisfy an integral equation

which we immediately introduce:

0
fk(t+s)d,u(s) ~C , ko =¢ (1)

where the constant, dependent only on p and f, is given by:

~13-



0 -1
C=C(p,f) = £/ j ersdpu(s)

-

(4.3)

We say that a measurable function k: R -+ R which satisfies (4.2) for every
t > 0 is a solution of the integral equation.

If, in addition:

0
T>f Jk(t+s)dp(s) - k(t) =0 (4.4)

-

and k(t) = 0, then the solution is said to be feasible; it is said to be
interior if the inequalities hold strictly. We now discuss the relationship
between the solutions of the optimal growth problem and the solutions of the

integral equation.

Theorem 4.1 Let Al be satisifed. Then an interior optimal solution to the

growth problem (G) satisifies the integral equation (I).
Proof See Appendix.

Remark In the case where the utility functicn is not linear we can derive

the first order (Euler) equation:

— 14—



+@

f e‘“U/(c(s))f’(K(s))m(t—s)ds - U/(c(t))e"rt =0 for every t =0,

which we shall use later.

5. The Dynamics of Stocks and Flows.

Theorem 4.1 showed the connection between interior optimal paths and
solutions to the integral equation (I). In this section, we will establish
conditions under which a unique solution to the integral equation (I) exists
and provide a characterization of the solution (see Lemma 5.3 below). The
characterization of the solution of the integral equation will allow us in
section 6 to study the dynamics of the optimal investment path under different
assumptions of schedules for depreciation and under "learning by doing". For

the most part the results of this section are technical and may be skipped.

0
Definition J=434eM: j $(s)du(s) =C

-

We now define the family of operators T,: M-+ M for every t =0, and

T,: M>M for every t = 0 is the optimal solution operator;

S.: J-J for every t > 0 is the integral equation operator.

~15-



We assume for the moment that {S,)} is well defined, i.e., for every ¢ eJ

0
there exists a k & M such that I k. (s) du(s) = 0. We shall discuss later the

-0

conditions which insure that {S.} is well defined for every t. Note that
T, is well defined because a solution to the optimization problem exists and
is unique if f is strictly concave (which we assume).

Theorem 4.1 established that an interior optimal solution solves the
integral equation (I). Lemma 5 1 will establish that a solution to the
integral equation (I) along which consumption and (gross) investment remains

non—negative is an optimal solution.

0
Lemma 5.1 If S.¢ satisfies (8.4)(0) = 0 and £ J St¢(s)dp(s) - 5,.¢4(0) = 0

for t >0, then T, = S, for every t=0.

Proof Immediate from Theorem &4.1. il

I1f k is the optimal path with initial condition ¢, then we define
T,¢ =k,. Note that since the problem is stationary, T is a semigroup, that

is: T (T.¥) =T, % for every t, s > 0. Also note that T is continuous in the

-16—



L, norm. Analogous statements hold for S§.. We now introduce a subset of J:

Definition R -
J={ypeJ: Syp=THp Vt=0}

Note that J is non—empty because the constant function C (rescaled by a

scalar) is in it. Note J i J (indeed J - (C)} is a possibility, as we shall

see in the "learning by doing" example 6 of section 6. In the discrete time
formulation, we have already seen this in the example of section 2, when 0 < b
< a).

The existence of (continuous) solutions to the integral equation is easy

to derive if we assume:

m(s) is an absolutely continuous function. (A2)
Define now the problem D by
0
K(t) = m(0)-! J k(t+s)m/ (s)ds , t =0 (D1)
k, =¢ €M . (D2)

17—



Note that the function k| [ .oy which satisfies the condition D1 is

automatically continuous.

Lemma 5.2 Assume Al and A2. Then a function k € M which solves D with

0
f $(s)du(s) = C, also solves the integral equation (I).

-0

Proof See Appendix.

The system D in fact characterizes the solution of the integral

equation, when m’ is bounded. In fact:

Lemma 5.3 Let k € M, let k, € L°(R.) satisfy I for every t, and let

m’ € L°(R_). Then for every t> 0, Dl and D2 hold. Also, if

¢(s) =0 for s = -T, T < +o then k is continuous at any t = 0.

Proof From the integral equation, for any t > 0 and h > 0, we have:

t+h 0

J k(s)m(s-t-h)ds - fk(s)[m(s—t) ~m(s-t-h)]ds = 0.

The first statement now follows from the Lebesque differentiation theorem and

the dominated convergence theorem. The continuity of k now follows from the

—18—



fact that k satisfies D, and continuity in IP. I

Lemma 5.4 Assume Al, A2, m’ € L°(R.). Then S_: J+J is well defined, i.e.,
for any ¢ € M there exists a solution of the integral equation. Furthermore,

S.#l (0, ¢ is a continuous function.

Proof From the equivalence condition of the Lemma, it suffices to prove
that there is a unique solution, continuous on [0, +«) to (D). The proof is
now a standard application of a contraction mapping argument on the space of

continuous functions on R,.

In the rest of the paper we shall sometimes be interested in examples
where the condition A2 is not satisfied. It is interesting therefore to
record results similar to Lemmata 5.2 and 5.3 above in a somewhat weaker
situation.

Define the (A2’) condition on M as:

m is piecewise absolutely continuous, i.e.
mo= Y mox e o, tjg <t; ... <tg=0, where (A27)
I+l

m; is absolutely continuous on [ty )

~19-



Then define:

k(t) =m(0)"! 2: k(t+tj.1[nwﬁl(tj.1—)—mj(tj.1+)] +
J

0
~k(t+t dm (t +) - Ik(t+s)m’(s)ds

(D'1)

where the arguments t+ (t-) denote as usual limit from the right (left), and

0

j $(s)du(s) =C. (D'2)

The analogues of Lemmata 5.2 and 5.3 hold:
Lemma 5.2' Let Al, A2' hold. Then a solution of D’ is a solution of I.
Lemma 5.3' A solution of D' exists for an initial condition $p € C((-=,0], R).
Remark A solution of the integral equation is not continuous, even for
positive times, as the example m(s) -X(_LO](S>, k(s) ={s-n: for s € [n,n+l)}
shows.

It may be of interest to note that, due to the linearity of the problem,

the sets J and J have a very simple form. We can describe it in the following

—20-



lemma.

Lemma 5.5 1. j, J are convex sets;

2. The restrictions of T, to J satisfies:
T 0%, + (1-60)9,} = T %, + (1-6)T ¥,

(and therefore so does S., by the lemma.)
Proof If p,€J, i = 1, 2, then by definition of J,
0
£ J.Ttl/)i(s)dp(s) - T, (0) =0, i =1, 2, t20, and so
T ¢, = (1L-6)T ., also satisfies the above inequality for every t. It follows

that ﬁTt¢l+-(l—6)Tt¢2€.j. By the uniqueness of the solution of the integral

equation I, the claim follows. O

6. The Dynamic Implications of the Depreciation Profile.
In view of section 4 and 5, we can now use the integral equation 1 to

describe the solutions to the optimal investment problem (G) in section 4. We

associate with the integral equation (I) the characteristic equation

21—



0
fe"dp(s) - 0. (6.1)

Note that the left hand side of the equation is the Laplace transform of the
function s »m(-s), denoted m(-+) (z). When m has compact support, m(-+) is an
analytic function defined on € , otherwise it is defined on a proper subset
of C.

The spectrum associated with the characteristic equation (6.1) is the

set

S ={ze C: m(-+)(z) = 0} |] {0} (6.2)

Any linear combination of the set of eigenvalues of the form:

k(t) =% Ae™", withzy =0, Ay = C, AjeC
J

satisfies the integral equation (I).
The analysis of the asymptotic distribution of the elements of the
spectrum can be reduced to the analysis of the distribution diagram of the

pairs (p;, m;) of the exponential polynomial of the form

~00_



p(z) = Xnipjz“’ie‘”‘uw(z)) (6.3)
j =0

where O = pg < p;y < ... < p,, and the my’s are non—negative integers and ¢ is a
continuous function of z such that e(z) + 0 as z > «, We refer the reader to
Bellman and Cooke [1963], section 12.3, for an analysis of the distribution
diagram.

As is well known, the set S prescribes the asymptotic behavior of the
solutions of the integral equation. For those solutions which are feasible,
they also describe the dynamics, as t tends to +w», in the manifold J.

The examples below describe the investment dynamics for a variety of
depreciation and learning by doing schedules. Note that Example 3, a special
case, corresponds to the standard case of smooth exponential depreciation.
Also note that for all examples other than Example 3, the spectrum S has
complex elements and therefore that the dynamics of investment are necessarily

oscillatory.

Example 1. Let

m(s) = max{l+n%, 0}, where T > 0. (6.4)

This case corresponds to a linear depreciation schedule, where the lifetime of

a machine 1s T, as illustrated in the Figure 6.1 below.

—23—



Figure 6.1

The characteristic equation is

2T +eT -1 =0 (6.5)
Proposition 6.1 Any element in the spectrum associated with m in (6.4) has
non-positive real parts. The only element with zero real part is zp; = 0.

Consequently for any initial capital profile ¢, the solution k?: R—+ R of the

integral equation satisfies lim k®(t) = C.
£t 4+

Proof From the characteristic equation (6.5) and Hayes theorem (Bellman

and Cooke [1963], p. &444), if z € §, then Re z =< 0.

A similar situation arises in the following case with an exponential

04—



depreciation schedule where a machine still lasts T periods. Note, however,

that there is a discontinuity at time T, as illustrated in Figure 6.2 below.

Example 2 Let

m(s) =e"x(qg 0, ¥v>0, T>O0. (6.7)

Figure 6.2

The characteristic equation is

] - e-(1+2)T 2 0, (6.8)
and therefore, S = {0} | {-y+(27ri)kT1 | k =0,%1, ... } .  The non-zero elements
of the spectrum have negative real parts and the eigenfunctions have
arbitrarily small periods. The solution from any initial condition converges

to the constant solution at exponential rate 7.

—25—



This last fact is also immediate from the fact that any solution of the

integral equation satisfies k(t) = vC + k(t-T)e ™, and therefore
n
k(t+nT) = yCY e T + ¢(c-T)e ™™™, te [0,T) (6.9)
J

and so k(t) - A uniformly as t =+ +w,

-rt

As T » +o in Example 2, we get to the classical case of exponential
decay, which we discuss next.

Example 3 Let

m(s) =e”’, seR_. (6.10)

Indeed this cooresponds to the classical case: if we define an aggregative

0
jelly capital as K(t) = '[ k(s+t)e’s ds, differentiating K(t) we obtain

0
K(t) = J‘ k(s+t)e?s ds. Integrating the latter by parts we obtain the

standard accumulation equation for aggregate capital, given by

K(t) = k(t) - yK(t). Figure 6.3 below illustrates the standard case.

—26—



Figure 6.3

Now m(-+) is only defined on {z: Rez > -y}, and in this region the

characteristic equation is (z+7v) ! = 0, so that S = {0}.

Any solution of the integral equation is characterized as the solution

0
of k(t) -« f k(t+s)du(s) = 0, so k(t) =yC. In other words, as soon as the

-

set J is reached the investment becomes a constant. This of course is as
expected, since it is the standard situation corresponding to an optimal
growth model with a linear utility function. The following proposition sums

this up:

27—



Proposition 6.2 Any optimal path k¢ satisfies the equality

k®(t) = ~C for any t = 0 such that kf cJ.

In the examples we have seen so far, the dynamics of the optimal path

are of the form described in Figure 6.4.

Figure 6.4

In particular the dynamics on J result in convergence to the unique constant
steady state function with constant value ~C.
We also know that the convergence to the steady state value is

exponentially fast: indeed the convergence is estimated by the eigenvalue with

the largest (negative) real part. This is the picture of a classical turnpike
theorem. As we shall see in a moment, however, this is not the only possible
case.



Example 4. (one—hoss shay) Let

m(s) b X[-T,O](S> , T>0 . (611)

As illustrated in Fgure 6.5 below, in this case a machine does not depreciate

but has a lifetime of T.

Figure 6.5

The characteristic equation is 1-e7?T =0, and therefore

s ={0} |/ {2rik: k = +1,42, ...} . All the eigenfunctions are purely periodic:
there is no dampening of an initial perturbation. In fact, any solution of
the integral equation satisfies k(t) = k(t-T); so it is periodic with period
T, and not necessarily continuous.

—2G—



Proposition 6.3 Any feasible solution of the integral equation, with

kf € J satisfies kf(s) = kf(S-FT) for any s > 0.

The above case of one-hoss shay is an extreme example. To get a better
understanding of its dynamic behavior it may be useful to consider it as a
limit situation. In the following example, depreciation takes place at a more
regular pace, and has the one-hoss shay case as its limit, as illustrated in

figure 6.6.

Example 5 Let

m(s) =m(l-4) + m,(8 +s) se[-6,0
(s) 1€ ) 2( [ ] (6.12)
m(s) =m(l+s) se[-1,-6].
where 6 € [0,1], m;(1-6) +mpf =1. We are mostly interested in the case
m; >m, = 0.
m(s)
1
_—Nm
2
//‘ '
/
~.
K \ :
.m,
- e I
s -1 -0 0
Figure 6.6
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The characteristic equation is:

-ze? + mye? —m; + (m; - m,)e?1-% =0, (6.13)

Proposition 6.4 The spectrum associated with (6.13) is asymptotically

distributed in the strip {t: |Re(z+logz)| < C,;} for some positive constant C,
so the real part of the eigenvalues is eventually negative. As

m, >0, m;y > +o, § + 1, the spectrum tends pointwise on compact subsets of the
complex plane to the spectrum associated with the case of "one—hoss shay"

(6.11).

Proof This is a consequence of theorem 12.9, Bellman and Cooke [1963].

Note that setting m; and m, equal to 1, (6.13) reduces to (6.5), the case of
Example 1.

We also remark that the characteristic equation given by (6.13) for m; <
0 corresponds to the case for which the efficiency of the investment goods
increases over an initial period. Let us now consider the possibility that
new investment goods do not reach the peak of their efficiency when they are
introduced, but actually see their efficiency increase with time, at least for

some time corresponds to "learning by doing”. We shall first consider a
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simple example.

Example 6 Let

m(s) = (a+bs)x;.;0; 5 a>0, b<a.

m(s) is illustrated in Figure 6.7 for different values of b.

b <0=b <b
3 2 1

Figure 6.7

Then the characteristic equation is
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2, (b-a)®Z_ b ,be® o
z z 22 ZZ

By theorem 12.3 of Bellman and Cooke [1963], the spectrum associated
with this characteristic equation is that of an equation of neutral type, that
is with a spectrum asymptotically distributed on a strip in the complex plane
of the form {z : | Rez | < C;} for some constant C,. Indeed, integration by

parts gives that differentiable solutions of the integral equation are

solutions of the equation of the neutral type:

ak(t) = - b(k(£) - k(t-1)) + (a-b)k(t-1) . (6.14)

The zeros of the characteristic equation are asymptotically distributed like

the zeros of the equation

e? [1_3]-0 (6.15)
a

so that asymptotically the real parts of the roots of (6.14) have

Re z = log[#.g] and so have positive (or negative) real parts if b < 0 (b >

0, respectively). 1In other words, if the relative efficiency of investment
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increases with time, the steady state J becomes unstable. Intuitively,
current investment decreases the incentive to invest in the nearby future not
only because of dimishing returns, but also becasuse the stock of aggregate
capital tends to "increase" simply with the passage of time.

We also note that the sudden depreciation to zero for s < -1 is not the
cause of the instability. If investment goods are fully efficient for a
period after the time they reach their peak, as in the case of the following

depreciation scheme:

m(s) = (a=-b)x(, .13 + (a+bs)x(.1 0y, (6.16)
the result does not change. 1In fact the characteristic equation is
-2z -Z
(b-a)2 = . 3 _ b, be® (6.17)
zZ Z 2 7 2

which is again of neutral type; the zeros are asymptotically distributed like

_b

a] =0, and the above analysis is unchanged.

the zeros of e?% - P

For a final example, we turn to the case of pure "gestation lags".

Lxample 7.
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We consider the case in which an investment becomes active only after a
getation period T, after which it decays at an exponential rate.

Formally, we define:

m(s) - e'Y(S’T)X(SS_T) (618)

Figure 6.8 below illustrates this case.

m(s)
11
] ——
S -T 0

Figure 6.8

In this case the characteristic equation is given by
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e’ _ ) (6.19)
Z4+y

so that S = {0). The dynamic behavior is therefore very similar to the
exponential decay case. In fact, it is easy to check that the optimal policy

is given as follows. At time O, with capital stock k;, consider the value

0
K(T) = ‘[ ek(s)ds = C; .

0
Let C(u) = J e”du(s). If Cy > C(u), then set c(t) = £(K(t)) for any t=< t,,

-

where t, = inf(t/ =0: k(t/+T) >C(p)), and then for t > t, set

c(t)y =c*, c* +k* = £(C(p)). (We call this the steady state policy.)

If C; < C(p), then set c(t) = 0 until K(t + T) = C(x) and then turn to
the steady state policy. 1In conclusion, the capital stock K(t) converges to
the optimal level with no oscillations. Note also that the above example can
be modified to allow for maintenance costs during the initial unproductive
phase (~T, 0]. In such a case m(s) would be negative during the unproductive
phase.

Oscillations appear, as in the case of no gestations, if there is a

truncation, i.e., if machines disappear after a finite time. In this case we



have

m(s) = e7“’T)Xbe[-n,-n]) (6.20)
with T, > T,. The characteristic equation is
e-ZT\ [l _ e-(Tz-T|)(Z*'7)] (Z+’)’>-1 - 0 (621)
so that S ={0} [J{-y *+ (2nri)ka™ | k=0=%1,... } where & = T; - T,. The

analysis of the dynamic behavior of the equilibrium path is therefore very

similar to the one described in example 2 above.

7. The Non-Linear Utility Case.

An interesting application of the analysis of the linear utility case
developed above can now be given for the case of non~linear utility.

We recall that interior optimal paths are characterized as solutions of

the equation:

e mtu/(c (1)) + J e u/(C(s) ) f/(K(s))m(t-s)ds = O (7.1)

t

where c(s) = f(K(s))-k(s), for s = 0.

We have seen in the analysis of the linear utility case that as the
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slope, b, of the depreciation function m(s) = (a+bs)x[_L0](s) passes from
positive to neagative values, the eigenvalues of the characteristic equation
cross the imaginary axis. The Hopf bifurcation is "critical" and therefore
degenerate because the equation is linear. In this section we shall analyze
this transition in the non-linear model (7.1) above.

We shall first linearize the equation (7.1) at the steady state function
(c*, k), and compute the associated characteristic equation. This is done by
differentiating the first order condition (7.1) above with respect to the
vintage produced at time u, k(u), and then integrating over R the product of
this derivative with the function e?*'. When (as in the case we are
interested) the support of the function m is bounded, all the computations
formally performed are justified. Also, it is clearly enough (by the
stationarity of the problem) to consider the equation (7.1) above at t = 0.

The computations which we have outlined will give a characteristic
equation T(z) = 0, where T is the sum of the different terms T;, T,, Tj

defined below:

Ty(z) = U/ (™) [1-£/ (K)m(=+) (2)]

and

4

T,(z) = U/ (c*) f/(K*) Je<z-r>“[f’<k'>c<u> - m(-u)]du .
0
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The integral in T, will converge on the region {Rez < y}. Since the

asymptotic behavior of the roots of m(-+)(z) satisfies Rez = log[}—zg], this

restriction creates no problems for small enough b. Recall

0
C(p) = J‘ezsm(s)ds. Finally the third term is given by

-0

+Q

T, =m(--) (z) f e(z=Dun(-u) £/ (K*) du.
0

Notice that the first two terms can be made, in compact subsets of the
complex plane, arbitrarily small. The critical Hopf bifurcation in the case
of linear utility becomes a non critical bifurcation here. (For an analysis
of Hopf bifurcation for integral equations, see Dieckmann and van Gils [1984];
see also Rustichini [1989].)

We conclude therefore that persistent oscillations in investment that
are robust can occur with non-linear utility functions when we allow for some
of "learning by doing". Such persistent oscillations in continuous time are
different in nature from the multisector cycles obtained by Benhabib and
Nishimura {1979] which arise from factor intensity relationships in
production. They represent another departure from the classical turnpike

results studied by McKenzie [1986].

~3G-



References

Bellman, R. and Cooke, K. L. [1963], Differential Difference Equations,
Academic Press, New York-London.

Benhabib, J. and A. Rustichini [1989], "A Vintage Capital Model of Investment
and Growth: Theory and Evidence," C.V. Starr Center for Applied
Economics, 89-26, New York University.

Diekmann, O. and van Gils, S. A. [1984], "Invariant Manifolds for Volterra
Integral Equations of Convolution Type," Journal of Differential

Equations, 54, 139-180.

Hale, J. K. [1977], Theory of Functional Differential Equations, Springer
Verlag, New York-Heidelberg—Berlin.

Mitra, T. and H. Wan, Jr. [1985], "Some Theoretical Results on the Economics
of Forestry," Review of Economic Studies, 52, 263-282.

Mitra, T, and H. Wan, Jr. [1986], "™ On the Faustmann Solution to the Forest
Management Problem," Journal of Economic Theory, 40, 229-249.

McKenzie, L. [1986], "Optimal Economic Growth and Turnpike Theorems," Handbook
of Mathematical Economics, 3 , K. Arrow and M. Intrilligator (eds.),
North Holland (New York).

Rustichini, A. [1989], "Hopf Bifurcation for Functional Differential Equations
of the Mixed Type," Journal of Dynamics and Differential Equations, 1.

—4L0O—



Appendix

Proof of Theorem 4.1

Given the assumption of absolute continuity of u (i.e., du(s) =
m(s)d(s)), the proof is immediate by differentiation. More precisely, if we

define ItmklE x[%dhtvh](t) and k,(t) =k(t) + eI%,h as a perturbation of the

optimal path k, and then differentiating with respect to ¢ the function of e

+@ 0

given by j e Ts Y f j k. (s+u)du(u)| -k, (s) (ds, we derive, at ¢ = O:
0

-0

r f et £/(K(s))p(t,h,s)ds — e ™t (e ™ — ™) = 0 (4.5)
0

for every t = 0, where we have defined

0 s < t-h
Y(t,h,s) =] u(-s+[t-h,s]) t-h <s < ts+h
p(-s+[t-h,t+h]) s = t+h

or, after dividing by h and taking the limit as h - 0,

j ers f’(K(s))In(tfs)ds -e™t =0, for every t =0, O

t
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Note that if K(s) = C, a constant, then the above equation is satisfied if and

0

j e™du(s).

0

il

only if C = £F{C(p)"Y) and C(u)

Proof of Lemma 5.2

Let k € M be such that

1. k| (g . 1s continuous

0
2. k(t) =m(0)"! Jk(t+s)m/(s)ds t20: k(0) = C.

-

0
If k(t) = J‘k(t+s)m(s)ds we want to prove K(t) = C for t= 0. Fix any T > 0

ges)

and consider a family {k¢},,, of functions in M such that kg =%, k{p 1 = ko 1

0
Jk‘(t+s)m(s)ds. It

-

uniformly, Kk{y ,.y € C®(R,) . These define Ke¢(t)

suffices to show lim K¢(t) = C for every t € [0, T]. Using condition 2 above,

(g

we have
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0
3. ke(t) = m(0)-! f ke(t+s)m’ (s)ds + Ae, t)

-0

with A(e,+) + 0 as ¢ » 0, uniformly in t € [0, T].

0
(Note A(e,t) =Yke(t)-k(t) + j [k(t+s) -k (t+s) Im/(s)ds {m(0) - satisfies

-0

that condition.) But, integrating by parts we have

0
ditxf(w - k¢-m(0) -1 Lke(us)m/(s)ds =A(e,t), te[O0,T]

and our claim follows. 0



