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We provide a comparison of the location equilibria in a duopoly model under
three alternative solution concepts. The first one is a simultaneous price and
location game, the second {s a two-stage location-then-price game. Third, we
introduce a new solution concept, a two-stage price-then-location game. It is
well known that no (pure strategy) equilibrium usually exists under the first
two solution concepts when products are homogeneous. We show this is also true
for the third concept. However, introducing sufficient product heterogeneity in
a specific manner restores the existence of equilibrium in each case. We argue
that, under certain "regularity" conditions, equilibrium locations are farther
apart under the location-then-price game than in the simultaneous game. We
provide simulation results for a specific functional form (the logit model)
which illustrates this result, and show that locations in the
price-then-location game may be either closer or farther from the center than
the simultaneous game. Another contribution of the paper is to introduce a

no-purchase option into the logit model of spatial competition.



I. Introduction

The objective of this paper is to compare equilibria for a duopoly
competing over mill-prices and product locations. We consider three alternative
equilibrium concepts. Under the first one, a one-stage game, prices and
locations can be viewed as being simultaneously determined by firms. Under the
second (a two-stage game), these are viewed as sequential decisions: locations
are chosen bearing in mind the subsequent price equilibrium. The third
equilibrium concept, which has not so far been considered in the context of
spatial competition, reverses the order of the standard two-stage game. That
is, prices are chosen first, and these are predicated on the known outcome of
the ensuing location equilibrium.

The appropriateness of a particular game structure (simultaneous,
location-then-price and price-then-location in the present case) is a matter of
considerable debate. Different assumptions at this level yield different
results. It has been suggested that the degree of flexibility of a given
strategic variable (price and location here) should determine the "order of
play".! From this viewpoint, if prices are less costly to adjust than locations,
then a two-stage location-then-price equilibrium whereby locations are
determined "prior" to prices is deemed the relevant equilibrium concept. If we
use the relative flexibility criterion to determine the appropriate solution
concept, then we can envisage situations where any one of our game structures is

the pertinent one.

! See Friedman (1983) for a similar discussion as to whether prices or
quantities (i.e., Bertrand vs. Cournot competition) comnstitute the relevant
decision variables.



For many location problems, such as store and product locations, prices are
naturally viewed as more flexible than locations. Hence the preponderance of
the location-then-price equilibrium in literature. On the other hand, when
there are significant menu costs, or when prices are widely advertised, whersas
locations are relatively easily changed, then the price-then-location
equilibrium is perhaps the most apt. Somewhat ironically, the oft-cited example
of ice-cream sellers on a beach may correspond more to the latter situation.
Lastly, when both decisions entail broadly similar adjustment costs, then the
simultaneous price-and-location equilibrium comes into play.

The above justification for the location-then-price equilibrium is often
given. Yet we are aware of no explicit game-theoretical justification for such
an argument. Perhaps indeed the relevant equilibrium concept can be determined
endogenously from structural data.? Our purpose here is simply to compare the
alternative solutions. That is, we do not necessarily condone the flexibilicy
argument. Rather, at this stage, we wish to explore the implications of the
alternatives.

In the next section of the paper we define the various equilibrium concepts
and describe the model of duopoly competition under mill-pricing. Previous
results on the (non-)existence of equilibrium are given for the simultaneous and
location-then-price games when products sold are homogeneous. We then show
there is no equilibrium (in pure strategies) in this context under the
price-then-location game. In Section 3 we relax the assumption of product

homogeneity. We prove that when a symmetric equilibrium exists it is

2 See Thisse and Vives (1988) for a model of endogenous determination of
spatial price policies in this vein.



necessarily at the center for b&th the simultaneous and price-then-location
games. We then compute the equilibrium for the location-then-price game and
find that firms may be dispersed. In order to broaden the basis of our
comparison we extend the model in Section 4 to a situation where consumers can
choose between the goods sold by the two firms and an outside option.
Equilibrium locations and profits are computed and compared for the three games.

Conclusions are discussed in Section 5.

II. Non-)Existence of Equilibrium for the Three Games: The Case of

Homogeneous Products.

To begin with, we cast our analysis (and illustrate thé problem of
existence of equilibrium) in the standard Hotelling (1929) model of horizontal
product differentiation. As we shall show, there is no equilibrium (in pure
strategies) for each of the three solution concepts considered under the
original Hotelling specification of the primitives of the model.

The location space is a unit segment [0,1] over which consumers are located

with unit density. There are two firms located at x Xy € [0,1]. Each firm

1
sets a mill price, 12 and Py respectively, and each consumer will buy one unit
of the product - which is homogeneous apart from its location - from one or the
other firm. Consumers bear the cost of transporting the product and this
transport cost is a linear function of the distance between consumer and firm.
Hence the model can be thought of as one of shopping behavior. It can also be
interpreted as a product selection problem where consumers have different

preferences over the characteristics of products. We shall assume there are no

production costs.



- 4 -

Given the assumptions above, consumers purchase from the firm quoting the
lower full price, defined as mill price plus transport cost, i.e., a consumer at
x € [0,1] will buy from Firm 1 if

P, + t]x - xll <p,+ tx - x2| (L

where t is the transport cost rate. Firm l's demand for x, < X, is then given

1=
by
(
0 if Py = Py, + t(x2 - xl)
Pp 7P Xt X
D, = 1 TR 3 if p, - e(x, - x;) < Pp < Py * E(x, - %))
1 if Py P, - t(x2 - xl)

and D, = 1 - D,.

Note the demand discontinuities at the critical prices where Firm 1
undercuts Firm 2’'s mill price and where Firm 1's mill price is undercut by

Firm 2. Firm 1’'s profit is then

I (2)

1" P10

and similarly for Firm 2.

a) Simultaneous Price and location Equilibrium

Perhaps the most obvious equilibrium to consider is a standard Nash

equilibrium whereby each firm simultaneously chooses its price and location.



Formally, a simultaneous (one-stage) price and location equilibrium is defined
* * * *
by a quadruple (pl, Py Xq, x2) satisfying

H * * * * > I.I * * 3
l(Pl, on xlr x2) = 1 (plv pz» xlt xz) ( )

for all xq € [0,1] and for all Py 2 0; and similarly for Firm 2.

A little reflection shows this game has no (pure strategy) equilibrium when
products are homogeneous. The argument is as follows. Suppose we have a
candidate equilibrium where the firms charge different prices and both have
positive market share (note each firm can always ensure a positive market
share). Then the firm charging the lower price necessarily can increase profit
by locating next to its rival and capturing the whole market. Now, if both
firms charge the same positive price, one can locate next to the other and
undercut its price by an infinitesimal amount and again gain the whole markert.
Hence there can be no equilibrium. (This result applies to more general

situations than the model considered here - see Novshek (1980)).

b) Sequential location-Then-Price Equilibrium

The original solution concept envisioned by Hotelling was a two-stage
process whereby locations are chosen in full anticipation of the ensuing price
equilibrium. The solution is defined recursively. In the second stage, for
given locations (il, iz), a price equilibrium is defined by a pair (51, 52) such

that

= iy . - - = . - - \
Hl(plr pz: xl; xz) 2 Hl(plv pzr xly xz) for all Pl = 0. (l‘/



and similarly for Firm 2. Given the solution to this problem, the first-stage

profit functions are written as

A

I (xy, %)) = I (B (Ry, %y)0 Py, X)) & %y, Xy)

and likewise for Firm 2 so that equilibrium to the first-stage location game is

* %
characterized by a pair (x 2) which satisfies

10 X

A

I x;) > 10 (x,, x3) for all x, € [0,1] (5)

*
x 2) 1

1( 1’

and similarly for Firm 2. The full equilibrium to this game is therefore a
* k% % * o~ ok % * .k ok
quadruple (pl, Py, Xy, xz) with Py - pl(xl, xz) and P, = pz(xl, xz).

Under our present (Hotelling) assumptions there is no (pure strategy)
equilibrium. The argument is given in d’Aspremont et al. (1979). The problem
is that an equilibrium in the second stage of the game (the price stage) does
not exist when firms are close to each other and, furthermore, when_a second
stage price equilibrium does exist, firms wish to move closer. Hence they are
drawn exonerably closer to the region of non-existence of a second-stage
solution and so do not know the payoffs for certain feasible locations. The
profit functions therefore cannot be defined for all relevant locations so that
no equilibrium can be said to exist.

We should note that equilibrium does exist for this game when transport
costs are quadratic in distance.3 However, it is still true that it fails to

exist for the other two equilibrium concepts we consider.

3 See d'Aspremont et al (1979) for this result. Note however that
non-existence prevails for the "linear-quadratic" class of transport cost

functions 7(d) = ad + bd2 for a, b > 0 where d is the distance between firm
and consumer - see Anderson (1988) for further details.



c) Sequential Price-Then-Location Equilibrium
Given the two solution concepts discussed above, it is a natural idea
to look at the two stage game with the reverse ordering of stages. That is, we
suppose now that prices are determined in the first stage and locations in the
second - the first-stage price choices take into account the subsequent location
equilibrium. In the second stage, for given prices (ﬁl, ﬁz), a location

equilibrium {s defined by a pair <§1, 22) such that
I xys %55 Py py) = I (e, %5 Py, Py) for all x, € (0,1] (6)

and similarly for Firm 2. Evaluating the first-stage profit functions at this

solution gives reduced forms
ey pp) = T (X (P, Py)s Xy(Pys PY)i Bys By)

and likewise for Firm 2. The equilibrium to the first stage price game is a

* *
pair (pl, pz) such that
~ * * A *
0y, py) = I (p;, py) for all p, =0 (7)

and similarly for Firm 2. The full equilibrium to this game is a quadruple

* * * * h * ~ * * d * - * *
(pl, Py Xq, "2) where x, = xl(pl. Pz) and x, = xz(pl, pz).

We now show there is no pure strategy equilibrium to this game. Consider
the second-stage location game. If 51 - 52, the only equilibrium at this stage
is X "X, = 1/2. For Py Z P, + t/2, an equilibrium is Xy = 1/2 with Xy

anywhere in [0,1!: Firm 1 can earn no profit wherever it locates. On the



other hand, if ﬁl < 52 - t/2, an equilibrium is il - 1/2 with iz anywhere in
(0,1] and here Firm 2 can earn no profit. Finally, if ]pl - p2| < t/2 with
Py * P, there can be no location equilibrium because the lower price firm can
always usurp the whole market by locating adjacently to the higher price firm.
The latter would then move to a position far away which guarantees a positive
market share and the lower price firm would again gain by adjacent location.
This last case shows why there is no equilibrium to the full game. For any
price set by Firm 2 say, there is always a set of prices Firm 1 could charge for
which it cannot know its payoffs as there is no equilibrium to the second-stage
location game. Again the full game cannot be well defined and no equilibrium

can exist.
I1I. Candidate uili um with oduct Heterogenei and No Qutside Good.

One reason for non-existence of equilibrium in the spatial model is the
assumption that products are homogeneous and hence perfect substitutes - the
demonstrations of non-existence relied on undercutting arguments that one firm
can act (either by price or location or both) so as to cut its rival completely
from the market. If however the products sold by firms are heterogeneous, they
are imperfect substitutes and this will tend to smooth out profit functions and
complete undercutting will be more difficult if not impossible.

To model product demand in this section we use the approach introduced by
Anderson and de Palma (1988). At each point in space, a fraction of the
consumers patronize each firm; this fraction depends on the difference in full
prices. At any point x ¢ [0,1], the fraction of individuals purchasing from
Firm i is F, = F(p, + t|x - xi] - p. - tlx - xj|), i,j=1,2, i = j, so that the

J
fraction purchasing from Firm 2 is F2 -1 - Fl(‘). We assume F(-) € Cl,



F(:) >0 and F (-) < 0. Note that we are assuming symmetric demand functions

and that F(0) = 1/2,

For these individual demands, the total demand for Firm 1l’s product is

1
D, - fo F(py + t]x - xll - P, - t]x - le)dx (8)

which is a continuous function of P;-

We now show that the only possible symmetric equilibria for both the

simultaneous and the price-then-location games involve x, = x, = 1/2. To do

1 2

this it is sufficient to show that if Py = Py» and X, = 1l - X, < 1/2, then l's

profit rises by moving toward the center. For the simultaneous game this
property clearly implies there can be no symmetric equilibrium other than the
center. For the price-then-location game it implies that if both firms set the
same price then both cannot anticipate a second-stage location equilibrium other
than at the center - again the center is the only possible candidate for the

full game.

JD
. 1
Given IIl - plDl’ we need only look at the sign of B;I-evaluated at

X, = 1 - X, and Py = Py- We can write (8), with Py = P,, as

X X

1 2 1
D, - fo F(e[x; - x,])dx + f; F(e[2x - x; - x,])dx + J F(t{x, - x;])dx

1 *2
or, integrating the first and last expressions and using symmetry of F(:.),

X

Dy =1 - xy + [x; +x, - 1]F(t[x; - x,]) + f 2?(:[2x - X - %]
X
1

1 2 1 2 Yax  (9)
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The derivative, with respect to Xq is

a, , X,
3"_1-- (x; +x, - 1]F (e[x; - x,]) - fxlp (e[2x - x; - x,])dx

If we evaluate this derivative at x1 -1 - Xy, e obtain

301 X, ,
- - f F (t{2x - 1])dx > 0 (10)
1 xl-l-x2 xl

which is the result we wished to prove.

The above argument shows the only candidate symmetric equilibrium for these
two games is at the center. (For the other game, lccation-then-price, this
argument does not hold and firms will not necessarily locate at the center, as
we show below.) Let us now provide an example where this is indeed the full
equilibrium to both these games. The example is the logit model taken from de

Palma et al. (1985). For this model, for i, j=1,2,ixj,

exp([-pi - tIX - xil]/,u)
F(p; + t|x - xi| TPy t]x - le) - (11)
L exp([-p - tlx - x [1/m)
k=1,2

where [ is interpreted as a measure of product heterogeneity. For g - 0, the
model reverts to the homogeneous products case of Section II. On the other
hand, when 4 becomes large, F(-) tends to one half. Note that (11) satisfies
the properties of F(:) given at the start of the section. Under this demand
specification, the profit function for Firm 1, Hl' can be integrated explicitly

to obtain (see de Palma et al. (1985))
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x, 1-x
1 1 + K) 2
M, = ———+1 .x, -x. -8 14 [ + (12a)
1 1+ He? 1 2 2c 1 + H) 1+ Ke”
where
T= (pl - pz)/p, H = exp{-t(1l - Xy - xz)/p] and K = 1/H (12b)

De Palma et al. (1985) consider the simultaneous equilibrium and show that there
exists a symmetric equilibrium at the center providing 4 = t. The proof used
there was to take the price equilibrium when both firms are centrally located
with (p1 - p2 = 24), and show that if Firm 1 locates at 1/2 and charges 24, then
if 2 is located at any other point with any other price, its profit is increased
if it moves toward the center (for 4 = t). Once at the center, its preferred
- x

price is 24 since this is the price equilibrium for x - 1/2.

1 2
To derive a sufficient condition for existence in the price-then-location

game we show that when 4 is large enough the solution of the price game requires

both firms to be at the center. Given that the candidate Nash equilibrium is

all

. 1
X =%, = 1/2, Py =Py = 2, it suffices to show that B;I%pl, P, = 241, X, ¥y =
éﬁll :
1/2) > 0 for Xy < 1/2 and for all 1 € [0,=[, and ZE:I(pl - 24, Py, Xy, X, =

1/2) > 0 for x, < 1/2 and for all P, € [0,o{. That is, we wish to show that the

1
equilibrium to the location subgame where one firm chooses a price 24 and the
other any arbitrary price is at the center. The inequalities given imply the
firm with the arbitrary price goes to the center 1f the other is at the center
charging 24, and that the firm with price 24 goes to the center if the firm with

the arbitrary price is there. Hence any such subgame leads to a central

equilibrium, and we know that the price equilibrium when both firms are at the
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center involves Py =P, = 24. The first inequality is satisfied for 4 = t (as
discussed above, this condition was used in the proof of the simultaneous game
by de Palma et al. (1985)). The second inequality is proved below. From (12)

we obtain

all 2tx

7 7
sign xi - sign |K - H - le' +H + t(e' + K) ]

Boele 1 pe™®+ 1)

Replacing the term 2x1 by 1 in this expression we obtain the sufficient

a1
condition: Ex_1'> 0 if /5_-[1 +eTm+K) +e27) > [e
1

5 o2 HIIl
2 (1 +e’) ),-3;—-> 0 if y =2 t. To sum up we have:
1

27 . 1]. Thus (given that

1+ e7(H + K) + e2

Proposition. For the spatially extended logit demand model (11), and for u = ¢,
there is an equilibrium for both the simultaneous and the two-stage
= 1/2, with mill prices

price-then-location games at the market center, x, = X

1 2

Py = Py = 24.

Analytic results are difficult for the location-then-price game. Indeed
there are equilibria which are not at the center. The simulation of the
equilibrium locations is given in Figure 1, which is taken from Anderson et al.

(1989).

Insert Figure 1

For low values of p/t there is no equilibrium for reasons similar to those

given in Section II. When equilibrium does exist, initially firms move apart
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with increased y and then start to move together. For intermediate values of
B/t there are two equilibria, one of which is the center, and for high parameter
values there is only the central equilibrium.

The reason why dispersed equilibrium exists in this game but not for the
others is explained by the game structure. In the location-then-price game,
firms account for more intense price competition which they know will result as
they locate closer together. In the simultaneous game, however, the price
implications of a move together are not considered. This suggest that as long
as closer locations entail more competition (lower equilibrium prices) - as is
the case with the logit - the location-then-price game will involve greater
equilibrium separation of firms than the simultaneous game. This intuition is
borne out in the simulations of the next section.

For the price-then-location game, firms internalize the equilibrium
locations conditional on pricé choices. Here however, equilibrium locations are
totally unresponsive to price changes and remain at the center. This means
prices cannot be used to affect one’s rivals location behavior so that the
equilibrium is exactly the same as the simultaneous game.

The result that two of the games give central locations as equilibria can
be ascribed to the assumption that each consumer must buy one unit from one of
the two firms. Introducing a non-purchase option will make firms less inclined
to be at the same location because a move toward the outskirts of the market
will reduce full price there and pick up consumers previously not buying. 1In
such a context price will be expected to have some strategic impact in the sense
that a price change will likely affect equilibrium locations. We should then
expect the price-then-location equilibrium to differ from the simultaneous one.
In the next section we simulate a model which allows for non-purchase by

consumers.
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Iv. uilibria with Qutside tions.

In order to see how one might introduce nom-purchase into the model it is
useful to return to the underpinnings of the logit. The standard derivation of

the logit model (11l) is given from discrete choice theory. Specifically, let
u) (x) = p - ¢t |x - x1| + peg (13)
and
uy(x) = P, - tlx - x2| + pe, (14)

be the utility of a consumer at x ¢ [0,1] conditional on buying from Firms 1 and
2 respectively. The terms € and €, are iid random variables distributed

according to the double exponential, i.e.,
Prob(ci < y) = exp(-exp - y) . (15)

The fraction of individuals at x buying from Firm 1 is then given by Prob[ul(x)
> uz(x)]. McFadden (1973) has shown that under the specification (15), this
fraction is given by (11).

This derivation of the logit model allows us to introduce an outside option
in a straightforward way. We now assume there is a third option (a null option)

for which the conditional utility is

ug(x) = Vo + ey (16)



- 15 -

where 60’ 61 and 62 are 1ii AOuble exponentially distributed according to (15).
This constitutes a useful extension of previous work since now consumers are no
longer obliged to buy from one of the two firms but may instead decide not to
buy. As y - 0, the model reduces to the case of a homogeneous good with
reservation price equal to -Vo.
In this extended model, the fraction of consumers buying from Firm 1 is

Prob[ul(x) > max[uz(x), uo(x)}], and the corresponding multinomial logit

expression is

exp([{-py - tlx - % [1/m
Fl(x) - (17)

exp(V,/B) + ) exp(-p, - tlx - x |]1/m)
A k X

We interpret V_ as the attractiveness of the outside option. It is readily

0

verified that the binomial logit of the previous section is given when VO - -
(see (1ll)) and all consumers buy. The higher is VO, the more likely any given
consumer is to not purchase from one of the two firms.

The model above is very complicated to deal with analytically because the
profit functions are very cumbersome (even though they can be explicitly
integrated). We thus resorted to numerical simulation to find equilibria for

the three games for different values of g4 and V For the simultaneous game the

0
program solved the first-order conditions evaluated at Py = P, and X = 1 - X,
using a Newton-Raphson procedure. Given this candidate solution, it was then
checked by grid methods that one firm does not wish to deviate by choosing a
different price and location. For low 4 values the candidate was always

rejected as firms wish to deviate (similar to the homogeneous case). For large

4 values the candidate equilibrium could not be overturned.
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For the two-stage games, the program started with a symmetric pair of
first-stage variables and calculated the second-stage equilibrium. Then one
firm’s stage value was perturbed away from the symmetric value and a new second-
stage equilibrium and the corresponding profit calculated. If this was higher
than at the symmetric pair, a new pair of symmetric first-stage variables was
selected, etc. Once a first-stage pair was found which was robust to small
deviations of one firm, it was checked with respect to large deviations. Again,

there is no equilibrium for low values of U for both of these games with V.  very

0
small, since the homogeneous goods case is approached for 4 small. However, for

larger values of V, and 4 - 0, we approach the homogeneous gcods case with a

0
reservation price, so equilibrium may exist. The equilibrium locations for the

three games are illustrated in Figure 2.
Insert Figure 2

In panel (a) we see there are dispersed equilibria now as well as
agglomerated ones for the simultaneous game, but for g/t large enough the only
equilibrium is at the center. For VO -+ -o, as proved in Section III, firms
locate together at the center. Also, for given 4 as V0 rises up to -0.25, firms
move farther apart, as is expected because firms become more like local
monopolies and tend toward the quartiles to avoid competition between each
other. Indeed, it can easily be seen that for 4 = 0 and Vo = -0.25 (that is,
the reservation price i{s 1/4) both firms locate at the quartiles and are pure
local monopolies - each firm serves exactly half the market. When VO rises
further (VO > -0.25), firms begin to move back to the center because intra firm

competition becomes a secondary issue and competition with the outside

alternative becomes the most important factor.
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In panel (b) for the location-then-price game we see that as Vo rises there
is a smaller range of 4 values with dispersed equilibria. Moreover, firm

locations tend to the quartiles for V, > -1 as 4 goes to zero.

0
Panel (c) represents the price-then-location game. As V0 increases, the
solution is qualitatively similar in terms of firm locations to the simultaneous
game in the sense that firms first move apart as V0 rises and then back
together. At approximately V0 > 0.5, the two firms locate at the center for all
values of 4 where equilibrium occurs. Also, the range of non-existence of
equilibria becomes larger as VO increases. Finally, as g increases, the

dispersed equilibria vanish and only clustered equilibria exist.

Insert Figure 3

Figure 3 shows a comparison of the dispersed equilibria for the three games
for Vo - -0.25, Vo = -0.5 and V0 = -0.75. When Vo = -0.25 (panel (a)), the
location of firms in dispersed equilibria are further apart for
price-then-location, then simultaneous, then location-then-price games for any
given value of u. However, for Vo = -0.5 (panel (b)), the order of the
locations for dispersed equilibria changes to simultaneous, then
price-then-location, then location-then-price. Panel (c) represents the case
VO = -0.75. It is difficult to find a full intuition for these results,
however, as we explained intuitively in Section 3, firms are farther apart in
the location-then-price equilibrium locations game than in the simultaneous

game. The price-then-location equilibrium locations may lie either inside or

outside the simultaneous game ones.
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Insert Figure 4

Firm profits are also different for the three games (Figure 4). When V0 -
-0.25 (panel (a)), they are almost identical for the three games. Equilibrium
profit is an increasing (and convex) function of i. We may explain this as
follows: as U4 increases, (A) competition between the two firms is weakened
because products are now more differentiated, and (B) competition between firms
is more intense because firms move toward the center (see Figure 3.a). Here (A)
dominates (B).

When VO = -0.5 (panel (b)), the difference in profit under the three games
becomes pronounced for the range 0.1 < 4 < 0.3. The highest profit is obtained
under the price-then-location game, followed by location-then-price, and then
the simultaneous game. As U4 becomes less than 0.1 or greater than 0.3, the
profit differences vanish. These results are expected because, as shown in
Figure 2, within the range 0.1 < # < 0.3, the locations of dispersed equilibria
are farthest apart. Beyond these ranges of 4 values, the equilibrium locations
tend to the same value and hence to same profit. Note that profit now decreases
with g4, for 0.05 < 4 < 0.18, so that (B) dominates (A) here. Interestingly, for
U4 > 0.25, equilibrium locations for the simultaneous and the price-then-location
games are at the center. This does not imply, as seen in Figure 4(b), that the
price level is necessarily the same for these games. Indeed, the higher profit
for the price-then-location game reflects higher mill prices there than for the
simultaneous game. To explain the price differential, we must return to the
structure of the games. In the price-then-location game each firm realizes that
if it unilaterally raises its price above the simultaneous level of prices then

its rival would move away from the center in the ensuing location game. This

relocation is beneficial to it, so the
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equilibrium price level is higher. Note that this effect only operates for
certain values of 4. When u is large enough a small price change will not
trigger a location change. Indeed, when 4 is large enough both firms locate at
the center and charge the same prices in all three games.

When Vo = -0.75 (panel (c)), the highest profit is now obtained under the
location-then-price game, followed by the simultaneous and the price-then-
location games. But as 4 increases, profit also goes up and the difference
between the firms’ profit in the three games vanishes. The price-then-location
profit is much smaller than the two others because firms are at the center in
this game (see Figure 3(c)). The difference between the three cases V0 = -0.25,
Vo = -0.5 and VO = -0.75 can be (partially) explained as follows: for larger
values of Vo, firms tend to compete less among themselves and more with the
outside alternative. As a result, firms tend to occupy the same location (see
Figure 3(a)), and behave as monopolists facing an elastic demand and therefore

charge similar prices (see figure 4(a)).

v. Conclusions

Two equilibrium concepts have been the focus of analysis in location theory
so far.* Either (following Hotelling (1929)) a two-stage location-then-price
equilibrium is considered, or else (e.g., Eaton and Lipsey (1978), Novshek
(1980)) a simultaneous equilibrium concept is used. We have considered a third

possibility which reverses the stages of the usual two-stage game.

4 At least, in location theory where decision variables are locations and
prices. Some authors have considered locations and quantities - see for
example Salant (1986) and Hamilton et al. (1989), although here again the
"sequence reversal" - quantity-then-locations - remains a topic for future
research.
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We argued that agglomeration is the only possibility both for the
simultaneous game and for the new concept when consumers must purchase from one
of two firms. However, other possibilities arise once consumers are allowed a
no-purchase option. These results were shown by simulation - analytic results
are very hard to find, even assuming specific functional forms. Using the
simultaneous equilibrium as a benchmark, there are strong reasons to expect the
equilibrium locations under the price-then-location game to be less central:
under the latter equilibrium concept firms rationally anticipate a reduction in
(deleterious) price competition as they move apart and this "strategic”" effect
induces them to move outside the equilibrium locations for the simultaneous
game. However, no such argument is forthcoming for the new game we introduced,
and indeed the simulations showed equilibrium locations could lie either side of

the simultaneous game benchmark.



- 21 -

References

Anderson, Simon P. (1988). "Equilibrium Existence in the Linear Model of
Spatial Competition™, Economjca, 55, 479-491.

Anderson, Simon P., and André de Palma (1988). "Spatial Price Discrimination
with Heterogeneous Products®, Review of Economic Studies, 55, 573-592.
Anderson, Simon P., André de Palma and Jacques-Francois Thisse (1989). "Market
Equilibrium and Optima under Alternmative Spatial Pricing Policies: A

Duopoly Analysis with Endogeneous Firm Locations", Thomas Jefferson Center
Discussion Paper 197, University of Virginia.

d’Aspremont, Claude, Jean Jaskold Gabszewicz and Jacques-Francois Thisse (1979).
"On Hotelling’s ’‘Stability in Competition’", Econometrica, 47, 1145-50.

de Palma, André, Victor A. Ginsburgh, Yorgo Y. Papageorgiou and Jacques-Francois
Thisse. "The Principle of Minimum Differentiation Holds Under Sufficient
Heterogeneity", Econometrica, 53, 767-781.

Eaton, B. Curtis and Richard G. Lipsey (1978). "Freedom of Entry and
the Existence of Pure Profit", The Economic Journal, 88, 455-469.

Friedman, James W. (1983). Qligopoly Theory, Cambridge University Press.

Hamilton, Jonathan H., James F. Klein, Eytan Sheskinski and Steven M. Slutsky
(1989). "Quantity Competition in a Spatial Model", mimeo, University of
Florida, Gainesville.

Hotelling, Harold (1929). "Stability in Competition®, The Economic Journal, 39,
41-57.

McFadden, Daniel (1973). "Conditional Logit Analysis of Qualitative Choice
Behavior", in Frontiers of Econometrics, ed., P. Zarembka, New York,

Academic Press.



- 22 -

Novshek, William (1980). "Equilibrium in Simple Spatial (or Differentiated

Product) Models", Journzl of Economic Theory, 22, 313-326.

Salant, David (1986). "Equilibrium in a Spatial Model of Imperfect Competition
with Sequential Choice of Locations and Quantities”, Canadian Jourmal of
Economics, 19, 685-715.

Thisse, Jacques-Francois and Xavier Vives (1988). "On the Strategic Choice of

Spatial Price Policy", American Economic Review, 78, 122-127.



(921ad-u9yl-uoles0]) SuoiiInios E:ﬁhnuAﬁzvm 't sand1g

T¢°0

-6°0

-4%°0

S0




nN)
[84]

bbb
A8

Figure 2 (a): Equilibrium Solutions (Simultaneous)

Figure 2(b): Equilibrium Solutions (Location-then-price)
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Figue 2 (c): Equilibrium Solutions (Price-then-location)
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