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Abstract

In major cities parking costs typically axceed automobile running
costs, while the time to find a parking spot and walk to work can be
comparable to driving time. Yet models of urban commuting have ignored
parking completely. The purpose of this paper is to examine the effects
of parking on morning rush hour congestion and to assess the relative
merits of road tolls and parking fees as tools for congestion relief.

The paper extends Vickrey’'s (1969) bottleneck road congestion model
by assuming on-street parking is located along commuting routes radiating
from the CBD. Absent pricing, drivers occupy parking spots in order of
increasing distance from the CBD.

Three pricing schemes are considered: 1) an optimal time-varying road
toll, 2) competitively set parking fees, and 3) optimal location-dependent
parking fees. The optimal road toll is shown to eliminate queueing, but
does not affect the order in which parking spots are occupied. 1In
contrast, competitive parking fees do nothing to reduce queueing, but
induce drivers to park in order of decreasing distance from the CBD, so
that in the aggregate commuters arrive at work closer to their preferred
time. Optimal parking fees reduce queueing in addition to supporting the
efficient order of parking.

For reasonable parameter values competitively set parking fees are
found to be relatively inefficient -- indeed potentially welfare-reducing.
Optimal parking fee;, however, are generally superior to a road toll. In
light of the logistical drawbacks of tolls and political opposition that
road pricing has met, this suggests that parking fees deserve more

attention than they have received in the literature.



Notational Glossary

(in alphabetic order)

Greek characters

a Unit cost of in-vehicle travel time

B Unit cost of arriving at work early

¥ Unit cost of arriving at work late

6 Bv/(B+7)

A Unit cost of walking time

r(t) Road toll at time t

o (n) Parking fee at parking location n

é Parking fee at most distant parking location under

competitive pricing

English characters

c(t) Driver’s trip cost when traversing bottleneck at time t

D(t) Length of queue at time ¢

E' Efficiency of pricing regime i

N Number of commuters

n Parking location

n’ Parking location at and beyond which drivers experience no queue

A under optimal location-dependent parking fee.

n Parking location of individual who arrives at work on time

r Departure rate from residential area

s Capacity of bottleneck

SDC Aggregate schedule delav cost

t Time

td Departure time

t Desired arrival time at work

t; Earliest departure time in pricing regime i

t; Latest departure time in pricing regime i

t Departure time for which individual arrives on time in pricing
regime i

T° Travel time in absence of queue.

TC Aggregate trip costs

TTC Aggregate travel time cost

w Time to walk past one parking spot

WIC Aggregate walking time cost

Superscripts for Pricing Regimes

Free: No toll or parking fee
Optimal road toll

Optimal road toll and parking fees
Optimal parking fees

Competitive parking fees

0O Y O Moty



1. Introduction

In recent years significant progress has been made in modeling the
dynamics of the morning rush hour. Commuters are assumed to choose
departure times for work that minimize the sum of their individual costs
of in-vehicle travel time and schedule delay (the cost of arriving either
before or after their preferred or official starting time at work). 1In
equilibrium no individual can reduce trip costs by departing at a
different time. Those traveling at the peak of the rush hour arrive close
to their preferred time, but suffer the greatest congestion delays. Those
traveling on the tails have quicker trips, but incur substantial schedule
delays.

This work is a substantial improvement over earlier static analyses,
in that individuals'’ travel time and route choice decisions, and the
evolution of congestion are endogenous. However, it neglects an important
aspect of the urban commute: parking. In major urban areas, the time to
find a parking spot and walk to work can be an appreciable fraction of
total travel time. Parking fees, moreover, often exceed vehicle operating
costs (Gillen [1977b!). 1In addition to when they travel, commuters may
thus have a preference where they park. This additional margin of
adjustment can affect the efficiency gains from road-pricing and other
policies for congestion relief.

Various aspects of parking have been considered in the literature.
Descriptions of parking patterns, the effects of on-street parking on
traffic circulation, and the technology of off-street parking are found
(e.g. Institute of Traffic Engineers [1976]) as well as discussions of
parking policy (e.g. Adiv and Wang [1987], Miller and Everett [1982], Shoup

(1982}, U.S. DOT [1982]). Some empirical work has been done identifying



the determinants of modal choice and parking location (e.g. Gillen
(1977a,b, 1978), Hunt [1988]). But no model has been developed that
incorporates parking as a determinant of commuters’ travel time decisions,
or considers analytically the interaction of parking and traffic flow
congestion.

Such a model could be used to address several important issues.
First, what is the impact of the search time for parking and subsequent
walking time to work on drivers’ departure time decisions and the level of
traffic congestion? Second, what is the effect of the monetary cost of
parking, and how effective can parking fees be in alleviating congestion?l
Third, how well could a comprehensive parking fee policy serve as a
supplement to or substitute for road pricing?

The purpose of this paper is to take a first step toward an
analytical treatment of parking and congestion by adding a simple parking
module to the generic rush-hour traffic model. Parking either on-street
or in off-street parking lots is assumed available along commuting routes
radiating out from the CBD, which is treated as a point in space. All
commuters are employed in the CBD, to which they must walk from where they
park. Travel modes other than automobile are ignored. The model is thus
very simple, and ignores some important features of parking in the real
world, such as the large amount of employer-provided parking in many
cities. Search time for parking is also not considered. But the model
does incorporate in a tractable manner the time and money costs of parking
in commuters’ travel decisions.

The model is specified in Section 2. Derivation of the equilibrium

departure time distribution and parking location choice of commuters absent



road tolls or parking fees is carried out in Section 3. Equilibrium with
an optimal time-varying toll is considered in Section 4, and with an
optimal combined time-varying road toll and location-dependent parking fee
in Section 5. In section 6 parking fees are considered in isolation.
Competitive pricing of parking is analyzed in Section 7. Aggregate trip
costs in the five road toll/parking fee regimes are compared in Section 8.
Section 9 concludes with a brief summary and discussion of possible

extensions.

2. The Model

‘The rush-hour congestion model on which this paper builds was
developed by Vickrey (1969), and extended by Hendrickson and Kocur (1981),
Fargier (1983), Cohen (1987) and Arnott et al. (1985) inter alios. The
precise assumptions and notation employed here follow Arnott et al. N
identical commuters travel each morning, one per car, from their homes in
the suburbs to work downtown. Travel is uncongested except at a single
bottleneck with a maximum flow capacity of s cars per unit t:ime.2 If the
arrival rate at the bottleneck exceeds s, a queue develops.

The bottleneck is taken to be far enough from the CBD that all drivers
park beyond it.3 Since employer-provided parking is assumed unavailable,
commuters must use either on-street parking or off-street parking lots.

It is assumed that the number of parking spaces as a function of distance
from the CBD is predetermined; the most straightforward interpretation of
this assumption is that the government determines the amount of on- and

off-street parking. Furthermore, to simplify the algebra, it is assumed

that the number of parking spaces per unit distance from the CBD is
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constant. Parking spots, which are treated as a continuous variable, are
indexed by n in order of increasing distance from the CBD. Walking time
to the centre from location n is taken to be wn, where w depends on the
spatial concentration of parking, walking speed, delays at intersections
etc.

In-vehicle travel time consists of free-flow travel time to the
parking spot, TO, plus queueing time at the bottleneck. Driving speed is
assumed to be much greater than walking speed, so that in-vehicle travel
time within the parking area can be ignored. Without loss of generality we
set T = 0; drivers thus reach the tail of the queue at the bottleneck as
soon as they leave home, and reach the parking area immediately after
exiting the bottleneck. A driver traversing the bottleneck at time t
experiences a travel time D(t)/s, where D(t) is the length of the queue.

Individuals are assumed to have a common preferred arrival time at
work (e.g. their official starting time), t'. The cost of arriving early
is taken to be 4 per unit of time early, and the cost of arriving late «¥
per unit of time late. The unit cost of in-vehicle travel time (including
vehicle operating costs and the opportunity cost of time) is @, and the
unit cost of walking time A. The trip cost of a commuter traversing the
bottleneck at t and parking at n is

D(t)
C(t) = a <

+ Awn + B(time early) + y(time late),
-
where for individuals arriving at work before t , time late = 0, and for
*
those arriving after t , time early = 0. To assure existence of a
R s 1 4 .
deterministic equilibrium we assume a > 8, and A > 8. Empirical
evidence, considered in Section 8, supports these assumptions. The latter

guarantees that commuters destined to arrive at work early do not dawdle
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or choose a roundabout walking route from where they park.

3. Equilibrium with no Tolls or Parking Fees (regime f)

To derive the equilibrium without pricing (road use and parking are
both free) we first consider the trip cost of an individual traversing the

bottleneck at t who arrives at work early:

+ Awn + B(t -t-wn), ti)S t=t

(1) ¢*(t) = a :

D(t)

s
where the superscript ¢ denotes equilibrium with roads and parking free.

£, . . . X
to is the time at which the first driver departs (and traverses the

Teo, . . s .
bottleneck) and t  is the traversal time at which an individual arrives on
L 4
time at t . Since dCf(t)/dn = (A-B)w > 0, parking spots are occupied in
strict order of increasing n. On the assumption that the bottleneck
operates at capacity throughout the rush hour the parking location of an
individual who travels at t is:
4
(2) n(t) = s(t - to).

P s . . . £ . -
In equilibrium all drivers incur the same trip cost, C . Substituting

(2) into (1) and rearranging, queue length is found to bpe

D(t) = 2 [cF - A(tT-e) - (A-Aws(e-tD)], g, sese
Queue length changes at a rate
D(E) = 2 [B - (A-pIws], e ==’

which is positive provided:

B(1l+ws) > Aws,
a condition which is hereafter assumed to hold. To interpret this
condition note that, given parking in order of increasing distance, ws is
the rate at which walking time increases with t. A(l+ws) is the rate at

which the cost of arriving early decreases with t, and Aws the rate at



Page 6

which walking time cost increases. Delaying departure is desirable (thus
leading to a growing queue) if the former exceeds the latter.
A further condition for equilibrium is that the departure rate from

home be finite. With td as departure time we have

€, =t - D(t)/s,

dtd/dt -1 - D/s.
The departure rate is

r(t) = s + D(t) dt/de_

as

T a8 + (A-B)ws’

which is indeed finite and positive given the assumptions a > 8, X > 8.

The departure rate is greater the larger is 8, i.e. the more desirable

on-time arrival, and the smaller is @, i.e. the lower the time cost of

queueing. The departure rate is lower the greater A and w, i.e. the

greater the penalty in increased walking time from delaying departure.
Turning to individuals who arrive late we have

D(t . "t £
i ) + Awn + y(t+wn-t ), t < t«x tl,

(3) ¢X(t) = a
where ti is the time at which the last driver traverses the bottleneck.
Since dCr(t)/dn = (AMy)w > 0, equation (2) continues to hold. Substituting
(2) into (3) and differentiating with respect to t one obtains

"¢ 3
t <t

IA
ot

D(£) = - 2 [y + (+ypws] < 0,
The queue thus dissipates over time. The departure rate, which can

be derived as earlier, is

A
a £ £
t =t=<-¢t,
a+ v + (A+y)ws, 1

r(t) =
which is still positive. Drivers are willing to delay departure despite

their increasing lateness because of decreasing travel time. The last



individual departs just as the queue reaches zero. He thus departs at ti
and immediately traverses the bottleneck. Were the last individual to
depart before the queue reaches zero he would be delayed at the bottleneck
without arriving at work any earlier. Were he to depart later he would
arrive later without any reduction in travel time. The last driver thus
escapes queueing, as of course does the first because there is no earlier
traffic.

The timing of the rush hour is determined as follows. Since the
bottleneck operates at capacity throughout the interval [tg,ti],
(4) ci - c; - N/s.
Trip costs of the first and last individuals are respectively
() c(e) = BCe" - ),
(6) C°(£)) = AN + y(t +wN-t).
Equating (5) and (6) and using (4) one cbtains

b4 -_7+(,\+7)ws§

(7) t0 -t By .
£ * B - (A+y)ws N
(8) tl =t + ——’5*_7— g

Departures begin and end earlier the larger is w. Since in equilibrium
trip costs are the same for all drivers, aggregate trip costs are simply

TCc = N-c‘(c;), or given (5) and (7)

2
£ Bw 2 N
(9) TC = By N° + 6(1+ws)§ ,

where § = Bv/(8+7).

Equilibrium is depicted in Figure l.5 Arrivals at the CBD are spread over

a period of length N/s + wN.
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4. A Time-varying Road Tolls (regime r)
Suppose that a time-varying road toll can be charged to drivers while
they are in transit.6 If a toll r(t) is levied at the bottleneck the cost

of a trip becomes

(10) C°(t) = a 9§> + r(t) + Awn + B(time early) + y(time late),
where the superscript r indicates equilibrium with a road toll.

Since the toll varies with time, but not parking location, drivers
continue to park in order of increasing n. However, the toll can be
adjusted to eliminate queueing, which is pure deadweight loss. Setting
D(t) = 0 in (10) and differentiating with respect to t one obtains as
conditions for equilibrium without queueing
(1) }(c) - B - (A-B)ws, t: <t< E‘,
(12) 7(t) = -y - (A+y)ws, Cat< €
with t: , ti and ;: defined analogously to their counterparts in Section
3. The toll increases while drivers are arriving early, and decreases
while they are arriving late.

Now aggregate walking time is independent of when the rush hour begins
and ends. With zero queueing time the optimal timing of the rush hour is
determined by minimizing aggregate schedule delay costs. Since commuters
pass through the bottleneck at rate s and park in order of increasing n
they reach the CBD at the rate s/(l+ws) over the period [t;, tz+wN], which
is of length N/s + wN as is the case without tolling. Given the uniform
arrival rate, schedule delay costs are minimized by equating the schedule
delay costs of the first and last commuters:

(13) B(t - €) = (el + W - e’y

Combining (13) with the conditicn tf -t = N/s one obtains

[SI)
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v(1l+ws) N

r *
(14) tO -t - ﬁ+7 S’

r * B-vws N
(15) t1 t + revalied

Comparing (14) and (15) with (7) and (8) it is clear that with w>0
the rush hour begins later than without tolling. Competition between
drivers for convenient parking spaces in the no-toll regime induces them to
leave too early, just as the desire to arrive at work close to t induces
drivers to bunch departure times.

The departure (= bottleneck transit) time of the driver who arrives
at work on time, ;r, is determined by the condition

t d
tf 4 ws(t" - c;)-c.

Substituting for c: with (14)

(1l6) ¢ t - EI‘_Y- wN.

Since the level of the toll does not affect equilibrium we can set

r(ti) = 0. Given (1l1) and (12) the optimal time-varying toll is

AwN + [B-(A-Bws](t - c;), t: <ts<c

P(8) = 1 AN+ (B-Qepus] (€T - £ - [ye(ipws] (o), Cseosc
0 t =t

1

with t;, ti and ;r given by (14), (15) and (16) respectively. The
toll outside [t;, t;] should be big enough to dissuade drivers from
departing then.

Since the toll eliminates queueing time and is a transfer with no
social cost, aggregate trip costs are the sum of walking time and schedule
delay costs. Walking time costs are simply

A

(17) Wrc® = 3 wNZ .

Since drivers arrive at work at a uniform rate throughout the rush
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hour, and since the first and last drivers incur the same schedule
delay costs, average schedule delay cost is half that of the first
driver, and aggregate schedule delay cost N times this:

2

r 1 * T § N
(18) SDC™ = 'z—ﬂ(t - CO)N - E(l+ws);.

Summing (17) and (18) we have

2

SN® & 2 (Lews).

r
(19) TC™ = 5

The optimal time-varying toll yields a cost saving (neglecting collection
costs) equal to the difference between (19) and (9). These benefits are

considered along with those of other tolling schemes in Section 8.

5. A Time-Varying Road Toll and Parking Fees (regime o)

Road tolls affect the travel time decisions of commuters, but not
where they park. Early and late drivers alike prefer to park as close to
the centre as possible. Parking spaces are occupied in strict order of
increasing distance, which is inefficient because arrival times are spread
over a period of duration N/s+wN = (l+ws)N/s. Were drivers to park in
order of decreasing n, the arrival period could be compressed to N/s-wN =
(1-ws)N/s, with a corresponding reduction in aggregate schedule delay, as
shown in Figure 2.7 (The arrows in the figure are considered below.)

Parking in strict sequence of decreasing n is in fact sufficient but
not necessary to minimize schedule delay costs. This is shown in Figure
3, where the cumulative number of drivers is graphed against parking
location rather than time. Drivers parking to the left of the 'on-time
locus’ arrive early. To the right they are late. Drivers departing
before N' in the order are early no matter where they park. After N" they

are invariably late.
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If two early drivers switch parking places, and both still arrive
early, schedule delay is unaffected. This is shown by the arrows labelled
'1' in Figure 3. The earlier individual is assumed to park closer to the
CBD than with parking in strict sequence. The previous occupant moves to
the earlier driver’'s former spot. Figure 2 shows the effect of the switch
on arrival time.

If two late drivers switch places and both still arrive late, as
shown by the arrows labelled ‘2’ in Figures 2 and 3, schedule delay is
again unaffected. But if, say, two early drivers switch and one now
arrives late (’'3'), or if an early and a late driver switch ('4'),
schedule delay increases. Schedule delay costs are minimized if and only
if no early driver parks closer to the centre than any late driver.

The optimal timing of the rush hour is determined, as in Section 4,
by equalizing the schedule delay costs of the first and last drivers:

(20) B(E - € - wN) = (e} - &),
where the superscript ° denotes the fully optimal equilibrium. Given the
condition c‘: - c: - N/s, (20) yields:

° * y+8ws g
(21) t, t - By s

0 * B(l-ws)N

The rush hour begins later than if there is only a road toll if t: <

t:, or (given (21) and (14)) if v > 8. Since late arrival at work is
generally more costly than early arrival this is probable. The rush hour
begins later than in the no-toll equilibrium if t: > c;, or (given (21)

and (7)) if A+vy > B, which is true since A > 8 by assumption.
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»
The departure (= bottleneck transit) time for arrival at t is defined

by the condition

t° + ws(t‘l’ - %) -t
or using (22)

(23) £° = ¢t - BN

In addition
2
) 1 - o 1 N
SDC™ = —2' ,B(t - tO + WN) = —z-(l-ws)—s- y
2
WTC® = Aw

LS 14

2

o A2 § N
(24) TC = EWN + i(l—ws)g—.

Given (24) and (19), TC® < TC® if and only if w>0: confirmation that
compressing work arrival times reduces aggregate costs (the arrival
rate of individuals at work is s/(l-ws) > s).

Decentralization

To support both the optimal departure rate and parking location choice
a location-dependent parking fee is required as well as a time-varying road
toll. Let ¢(n) be the parking fee at location n. Assuming as in Section &4
that queueing is eliminated the trip cost for an early driver is
° o

co(t) = r°(t) + ¢°(n) + Awn + B(t - t - wn), tOSts;.

Differentiating with respect to t and imposing the condition

n(t)-N-s(t-t:), CZSCSCO,
we have
(25) #°(t) - ¢°s = B + (A-B)ws, c: <t =<t
n

where ¢° = d¢°(n)/dn.
n
Now schedule delay + walking costs increase with n at rate (A-8)w.

To induce early drivers to park in reverse order the parking fee
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gradient must satisfy:

A

(26) ¢° = -(A-p)w, n<a<N,

A

where n is the parking location of the individual who arrives on time.

For late drivers

c®(t) = r°(t) + ¢°(n) + Awn + y(t +wn - t'), e stesel
Differentiating with respect to t one obtains
(27) #°(t) - @’s = -7 + (47w, Cststd
To induce drivers to park in reverse order
(28) ¢: < -(A+y)w, 0<nc< ;.
If the parking fee gradient is chosen to satisfy (26) and (28) with
equality,8 (25) and (27) dictate that the toll satisfy

) B t? <t < ;°
(29) 7°(t) - ’
-y ;° <t< t:.

A

Using (29), the formulae for t:, :? and t° given by (21), (22) and
(23), and imposing the (arbitrary) boundary conditions r(t;)-O and

$(N)=0 the road toll and parking fee are found to be those shown in

Figure 4. Toll revenue is

[ 8]

(30) TR® = %ﬂs(to - c§)2+ %s(t? -t -

N| o
U)lZ

The parking fee (weakly) induces drivers to park in order of decreasing n,
thereby minimizing aggregate schedule delay costs. The road toll
eliminates queueing.9 The two pricing instruments are targetted
independently on the two margins of adjustment: the toll on departure time,
the parking fee on parking location.

The toll and fee shown in Figure 4 are not unique in supporting the

optimum; any combination satisfying (25)-(28) works. Moreover, if parking
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fees could be made time- as well as location-dependent it would be possible
in principle to support both the efficient departure rate and parking
location without a road toll.

While time-varying parking fees are not a practical policy it is
instructive to see how they would operate. The parking fee actually paid
by drivers would have to follow the solid curve in Figure 5, with a
location gradient determined by setting ;°(t)-0 in (25) and (27).

However, the parking fee schedule in effect when a driver arrived could
not remain fixed throughout the rush hour. The first driver would park at

n=N as long as the fee schedule lay everywhere on or above the locus

min

labelled ¢ (N) with slope -(A-8)w, which it does. But the driver

A

supposed to park at n would prefer to park closer unless the fee schedule

min(n). Similarly, the driver supposed to park at n

lay on or above ¢
would pay up to (A+7)w(ﬁ-ﬁ) to move from n to n (the location from where
he would arrive on time) and up to (A-B)w per unit distance between n=n
and n=0, as shown by the locus ¢min(ﬁ). The parking fee at closer

locations would thus have to be steadily reduced during the later stages

of the rush hour. This would appear administratively very difficult, and

is unlikely to be implemented in the foreseeable future.

6. Location-dependent Parking Fees but no Road Toll (regime p)

The two previous sections concerned road tolls, either as the only
pricing instrument, or in conjunction with parking fees. Tolls, however,
have disadvantages. Toll booths force drivers to slow down or stop, with

expenditure of time and fuel, and may create the very queues they are

supposed to alleviate.lo Tolls may divert traffic to untolled routes,
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Figure 5

Optimal Time-Varving and Location

Dependent Parking Fee Schedule
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thereby relocating rather than reducing congestion, and possibly
increasing travel times. Road pricing has also met political opposition,
which raises the question whether it would be implemented even if it
passed a cost-benefit test on economic criteria.

Parking fees suffer neither of the technological disadvantages of
road pricing mentioned above. Moreover, parking fees are almost
ubiquitous in large cities, suggesting that a comprehensive system of fees
varying with location would be more likely to be acceptable politically
than road pricing. The purpose of this section is to consider parking
fees as the sole pricing instrument available and examine how they fare
vis a vis tolls on efficiency grounds. It is assumed that fees can be
location- but not time-dependent.

Before deriving the optimal location-dependent parking fee schedule
it is helpful to consider the two (nonoptimal) schedules in Figure 6. The
one in panel (a) is that used in combination with the road toll in Section
5 (see Figure 4). Aggregate schedule delay costs are minimized because the
fee supports both the optimal departure time interval and parking in order
of decreasing n. The drawback is that queueing is not prevented; indeed
aggregate travel time is the same as in the no-toll equilibrium without
parking.

The schedule in panel (b) of Figure 6 does eliminate queueing, and
also induces drivers to park in the correct order, but at the cost of
having everyone arrive early. To see this, note that the trip cost of an

early driver is

D(t)
]

A

(31) CP(t) = a + é(n) + Awn + A(t - t - wn), e << e,

where the superscript p denotes the parking fee regime. With parking in
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reverse order

(32) n(t) = N - s(t - t).

Substituting (32) into (31), differentiating with respect to t and setting
ép(t) = 0, one obtains

D(t) = S (45 + B+ (A-Byus],
which is zero if
33 8= -2+ -pyw)
as it is in Figure 6. No driver is willing to arrive late because it would
only increase his schedule delay with no offsetting reduction in either
walking or queueing time.

To sum up: The first parking fee schedule in Figure 6 minimizes
schedule delay costs, but does nothing about queueing. The second schedule
eliminates queueing but induces drivers to travel too early. As we now
show, the optimal location-dependent schedule is a hybrid of these two
schedules.ll
Early drivers

Consider first the trip cost of an early driver, given in equation

(31). To induce drivers to park in order of decreasing n it is necessary

to have

(36) $_< -(A-p)v, 0<n<n,
where ; is the parking spot of the driver who arrives on time.12 In
equilibrium

(35) C7(t) = C7(tD) = (M) + AN + B(t" - €& - wN).
Without loss of generality let ¢(N)=0. Equating the right-hand sides of

(35) and (31) and rearranging:

A
(a3
IA
>

(36) D(t) = 2 [B(t-t]) - $(n) + (A-Hu(N-n)], €
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Now setting the parking fee above the level that would drive the queue
to zero would interrupt flow through the bottleneck, which is obviously
inefficient.13 We thus impose the condition D(t)=0 on (36), which yields

é#(n) < B(t - c§> + (X-B)w(N-n), c§ <ts ;p.

Substituting out for t using (32) this becomes

5 >
1A
3
1A
2z

N-
(37) ¢(n) 5 f== + (A-Aw(¥-n),
Late drivers
For late drivers, trip costs are
D(t)
s

(38) CP(t) = + ¢(n) + Awn + y(t + wn -t ).

To induce drivers to park in reverse order

1A
3
IA
s>

(39) ¢ = -(4m)w, 0
In equilibrium,
(40) CP(£) = CT(ED) = 4(0) + 7(cF - D).
Equating the right-hand sides of (40) and (38), rearranging and using
the relation
ti 5t
one obtains
(41) D(t) = 5 (4( + T - &) - Quy)vm + $(0) - 4],
which yields a condition analogous to (37):

(42) () = v 2 - Oy)wn + ¢(0), 0<ns<a.

[CR e}

Conditions (34), (37), (39) and (42) restrict the optimal parking fee
as shown in Figure 7. (The general level of the toll is fixed by the
condition #(N)=0. ¢(0) is treated as a given for the moment.) Conditions
(42) and (37) impose upper bounds on the toll over the ranges 0 < n < ;

and n < n £ N respectively. Conditions (39) and (34) impose an upper

bound on the parking fee gradient over the same respective ranges (the
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particular loci shown in Figure 7 are representative only). It is clear
from the slopes of the constraints that the nonnegative queue constraint
will never be binding over the range 0 < n < n. A feasible parking fee

schedule is shown by the wiggly line.
The value of n can be derived from (32) and the definition of t:

A
*

t + w[N - s(t - tg)] -t

which yields

* P
A t - w(N + sto]

t = and
l-ws '

w

t - wN - ti

(43) n =N - s Tus

t§ is solved by equating the trip costs of the first and last drivers:
* P p N *
st - t:o - wN) + AwN = -y(t:0 + 3 t) + ¢(0), whence

- —=——=, and
B+

(w4) & = 4 A-BIwN

v N $(0)
B+ B+y s

A

_ 1B+ -pusIN - s4(0)
(43) n (T-ws) (B+Y) '

The timing of the rush hour, and schedule delay costs, are thus determined
by choice of ¢(0).

Now aggregate travel time costs are
P

t
1
TTC = as f Dit) dt,
P
0
which can be written

A

n

(46) TTC = f [y

n=0

- (A+y)wn + 4(0) - 4(n)]dn

0|3
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N
+ [ 1852+ -pruin) - pn)ldn.

n=n
In light of (37) and (42) TTC is thus the area in Figure 7 between ¢(n)
and the nonnegative queueing constraint.

For given ¢(0), which determines schedule delay, it is thus optimal to
choose ¢(n) as large as possible, as shown by the bold curve in Figure 8.
Queueing is eliminated for drivers parking in the most distant spots n ¢
[n' ,N]. Over this range the fee schedule matches that in panel (b) of
Figure 6.14 The fee for the remaining spots falls with distance, just
quickly enough to induce parking in order of decreasing n. Over this range
it has the same shape as the fee schedule in panel (a) of Figure 6. It
follows immediately from Figure 8 and Figure 6 that

(47) ¢(0) = [g + (A-BW](N - n') + Awn’' = [g + (A-B)W]N - g (l-ws)n’.

Substituting (47) into (44) and (45) one has

Poc N LB 1usy B
(48) t:0 t 5 + e (l-ws) S

- B,
(49) n = EI; n'.

Aggregate costs are now easily determined. As always,
(50) WIC = § wN”.

Aggregate travel time costs are from Figure 8 and (49)

N

A A - Z
ly 2 I RN N 61))
(51) TIC = 7 = n" + 7 = (n n) 5 2

2

N

Schedule delay costs are (counting drivers as they arrive at work)

- S (Bl 27 p N
SDC Tws {2 (t to wN)™ + 3 (t:3 + S t )1,
or, given (48),
1l-ws B i\ 2 3° LL 2
(52) SDC = 7s [ﬂ(N - E:; n ) + Y (5+7)2(n )

Adding (50), (51) and (52)
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2 2 ,
(53) TCP= B+ (A-B)ws N° 8 (1-ws) gﬂ

2 s B+y

l-ws B° By (n’)?

I T 17

Finally, the optimal fee schedule is obtained by choosing n’ to

minimize TC. The solution can be readily shown to be

B(1l-ws)

GO = e &

B(ws)? N
(B+r) (+B(L-ws)) ' 5 -

Savings in costs from the optimal location-dependent toll are the

(55) TC® = %wNz +ﬂ(1é—“‘) (1 -

difference between (55) and (9). The savings will be compared with those

of the other toll regimes in Section 8.

7. Competitive Pricing of Parking (regime ¢)

In many cities parking is operated by the private rather than public
sector. In this section we investigate how parking will be priced in such
an environment. For simplicity the market is assumed to be perfectly
competitive in that each parking spot is owned by a different operator.
Because locations close to the CBD are most convenient, however, they
command a differential Ricardian rent over locations further away.

To derive the competitive equilibrium we begin with the observation
that, since the demand for a given parking location is all-or-nothing
(either some driver will occupy it or it will remain vacant) the
profit-maximizing parking fee is the reservation price of drivers. 1In
equilibrium the parking fee schedule is such that no owner éan raise his
parking fee without losing custom. Owners are assumed to take the fees
set by other owners as given, but to perceive correctly drivers’ parking

decisions.
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The main features of the equilibrium are given in the following
two propositions.
Proposition 1 All drivers arriving strictly early at work park in
locations n € (;c, N], for some ;° to be determined. All drivers arriving

strictly late park in the interval [O, nc).

Proof See Appendix 1.

Proposition 2 In equilibrium the parking fee schedule is of the form

+ (A-f)w(N-n°) + (A+y)w(n‘-n), 0<n

O

A

(56) ¢(n) =

o IS

-

+ (A-B)w(N-n),

1A
o]
IA

N,

where ¢ is some value, determined outside the model, which does not affect
the results. If t° is the time after which drivers occupy parking spots n

e [0, nc), then

¢ *

(57) €% +wn® =t .

Proof See Appendix 2.

To solve for n° observe that since locations n € [nc,N] are occupied
during the period [t:, t°],

(58) N-n° = s(t° - ¢

c

o)'
Combining (58) with (57)
~ N - s(t - €)
(59) n = Tws

Now since the first and the last drivers, who escape queueing, are as
well off parking at n=N and n=0 respectively, equality of trip costs

dictates
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(60) & + XN + (" - € - wN) = $(0) + (£ + g -y,
From (56) we have
(61) $(0) = ¢ + (A-B)wN + (B+y)wn®.

Solving (59), (60) and (61l) simultaneously one has

c *  ytfws N
(62) g, t By s

3

(63) t =t - m wN,

(64) n° = Eé; N.

Since (62) matches (21), (63) matches (23) and the parking fee schedule
(56) matches that in Figure 4, the timing of the rush hour and schedule
delay costs are identical to that in the full optimum. In the absence of a
road toll, however, departure time slots must be rationed by queueing.

Travel time costs in the competitive pricing equilibrium thus equal toll

revenue in the full optimum, given by equation (30):

2
(65) TTC® = TR°=

N o
mlz

Total social costs in the competitive equilibrium are

2

0l

(66) TC® = TC° + TTC® = % wN? + % [2-ws]
with TC® given by (24).

The parking fee schedules under competition and social management are
congruent because in both cases location rents are expropriated from
commuters: under competition because of profit maximization, and under
management to delay start of the rush hour.

Congruence of the competitive and optimal parking fee schedules
might lead one to expect that the competitive pricing regime is

unambiguously superior to the equilibrium with no pricing considered in

Section 3. But subtracting (66) from (9) one obtains:
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Proposition 3

TC® < TC® if and only if either y < S or vy > 8 and ) < Eél.
y v-B

We thus have the perhaps surprising finding that competitive pricing can
be welfare-reducing relative to no pricing at all. (This happens if
travel time costs rise by more than schedule delay costs fall.) This.
result provides a motivation beyond the logistical and political drawbacks
of road tolls for investigating optimal parking fee schemes as practical
measures for urban congestion relief.

As a final observation, note that the full optimum can be supported
by the time-varying toll of Figure 4, since the competitive parking fee is
invariant to whether departure time slots are rationed by queueing or by a

toll.

8. Comparison of the Various Road Toll and Parking Fee Regimes

Total social costs in the regimes considered in Sections 3-7 are

listed in Table 1. It is straightforward to establish

Proposition 4

[

TC® < Min(TC", TC?), and Max(TC®, TCP)} < Min(TC®, TC°).
However, the rankings of TC® and TCp, of TC£ and TC® and the relative
efficiency of the regimes are parameter-dependent. A natural measure of
efficiency of a regime is the reduction in aggregate trip costs from the
no-toll equilibrium achieved as a proportion of the savings in the full
social optimum. For regime 1i:

i _ 1¢t - 1ct

E —_—
< - 18

, 1=1r, p, c.
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TABLE 1

Aggregate Social Costs for Various Toll

and Parking Fee Regimes

Regime Total Costs
B 2 N°
(f) Free: No toll or parking fee A EI; wN™ + 6(l+ws)§—
A 2 6 N’
(r) Optimal road toll 7 wN™ + 5 (l+ws)§—
A 2 ) N2
(o) Optimal road toll and parking fees 5 wN™ + 7 (l-ws);—
A 2z B(l-ws) g4 (1-ws)? N°
(p) Optimal parking fees 3 wN™ + — (1 - (ﬂ+7)(7+ﬁ(l-ws))]§_

2
(c) Competitive parking fees % wN2 + % (2-ws)§—
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To compute the Ei, parameter values must be chosen. Since total costs
in all regimes are proportional to Nz/s no value for N need be specified.
The parameters w and s enter only as the product ws. Now ws = wN/(N/s) is
the ratio of maximum walking time to the duration of vehicular flow through
the bottleneck. 1In a city with a 2 hour rush hour flow a reasonable value
for wN might be 12 minutes. As a benchmark value we thus choose ws = 0.1,
and use 0.25 as a high value and 0 as a low value.1

Empirical evidence (Quarmby (1967), Lee and Dalvi (1969), Beesley
(1973), Domencich and McFadden (1975), inter alios) indicates that walking
and waiting time savings are valued between 1 and 3 times as much as
in-vehicle travel time savings. We thus take 2a as a benchmark value for
A, and a and 3a as low and high values. For a, 8 and vy we use Small’'s
(1982) estimates: a = $6.40/hr., 8 = $3.90/hr., v = $15.21/hr. (X thus
takes values 6.40, 12.80 and 19.20.) The resulting values of the E' are
given in Table 2, part (a).

With ws = 0, competitive parking fees confer no cost savings because
differential Ricardian location rents are zero. A road toll is fully
efficient since the order of parking is irrelevant. Perhaps surprisingly,
the optimal location-dependent parking fee schedule achieves nearly 80%
efficiency. With w = 0 this would entail charging different rates at
different parking spots, despite them being equally attractive, a priori.

With ws = 0.1, optimal parking fees are marginally superior to a road
toll. Competitive parking fees result in a small efficiency gain with X =
a, but a loss with A\ = 3a. Finally, with ws = 0.25 parking fees are much

superior to a road toll.
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Efficiency of Toll and Parking Fee Regimes relative to Social Optimum

0.25

6.4

* Benchmark parameters

(a) a=$6.40/hr., B=$3.90/hr., y=$15.21/hr.

A/a

1

2

15.

15.

15.

Irrelevant

21

21

21

.80

.61

15.

30.

4o

21

42

Optimal
Road Toll

(r)

.0000
.8302
.8106
.7859
.6540
.5614

.4011

Optimal
Road Toll

(r)
.8263

.8106
.7823
.8471
.8246
.8106
.8027

.7942

Optimal
Parking Fees

0

0

0.

(b) p=$3.90/hr., ws =

(p)
.7959

.8408
8224
.7992
.8884
.8585

.8068

0.1,

Optimal

(p)

0.8371

0.8224

0.7959

0.6331

0.7230

0.8224

0.8980

1.0000

A=2a.

Parking Fees

()
0

.1511

.0530

.0707

.3079

.1227

.1979

Competitive
Parking Fees

Competitive
Parking Fees

(e)

.1314

.0530

.0885

.2357

.1229

.0530

.0137

.0290
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As a further test of sensitivity, different values of a and vy are
considered in part (b) of Table 2. (B is fixed, since only the ratios «/8
and v/B8 affect efficiency.) Neither the efficiency of the road toll or
parking fees varies much with a, but the latter is sensitive to y. In the
limiting case vy » += (no lates at work allowed) optimal parking fees are

fully efficient. Competitive fees, in contrast, are welfare-reducing.

9. Concluding Remarks

Previous theoretical work on the dynamics of rush hour traffic
congestion ignores parking as a facet of the urban commute. In this paper
we take a first step at rectifying this oversight by examining the impact
of time and money costs of parking on morning commuters’ departure time and
parking location decisions. We show that when road use and parking ave
free, drivers occupy parking spots in order of decreasing accessibility.
This prolongs the period during which individuals arrive at work and
increases aggregate schedule delay costs. Competitive pricing of parking
leads to minimization of schedule delay costs, but fails to alleviate
congestion. The welfare gain relative to no pricing is modest, and for
some parameter values negative.

Two types of optimal pricing schemes are considered: time-varying
road tolls and location-dependent parking fees. The road toll can be
designed to eliminate congestion (at least in the pure queueing congestion
model assumed) but does not alter the order in which parking spots are
occupied. The optimal location-dependent parking fee on the other hand
does not eliminate queueing, but does induce commuters to park at the most

remote spots first, thereby considerably reducing schedule delay costs.
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For most reasonable parameter values the parking fee is more efficient
than the road toll. 1In light of the logistical drawbacks of tolls, and
political opposition that road pricing has met, the results of the paper
suggest that parking fees deserve more attention than they have received
so far.

Neglected from this paper are several important features of parking
in the real world that deserve investigation. First, we have assumed that
all parking spots are located along radial commuting routes and do not
require search. Parking in residential and commercial areas, however, is
often not arranged systematically by accessibility; nor are the majority
of drivers commuters who park all day. Search may be required for vacant
spots. Search adds a stochastic element to commuters’ arrival times;
indeed, some commuters may not know whether they will arrive early
or late for work.

Second, there are differences between off-street and on-street
parking that appear to matter to commuters, such as entry and exit delays,
awkward ramp geometry and poor visibility for some off-street stalls (Hunt
(1988)). Users of on-street parking delay traffic while they are entering
or exiting spots, or double-parking. Off-street parkers create congestion
when queues develop outside parking garages. Users of both types of
parking contribute to flow congestion while cruising for parking.

Third, commercial traffic, shoppers and through commuters add to road
congestion and the demand for parking space in urban areas. To discourage
commuters from using on-street parking, and to encourage shopping and
business trips during off-peak hours, time-of-day or length-of-stay

dependent parking fees may be emploved.
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Fourth, a large proportion of commuters in many cities use
employer-provided and/or subsidized parking (Shoup (1982)), a practice
believed to contribute significantly to overall congestion. This could be
examined in an extended version of the present model, as well as
(second-best) pricing of publicly-managed parking.

Fifth, we have treated the number of automobile commuters as fixed.
In practice, some commuters may have access to public transit or a
carpool. Besides affecting travel time and parking location decisions,
road tolls and parking fees would alleviate congestion by reducing the
total amount of traffic.

Finally, the CBD has been treated as a point. More realistic would
be to model it as an area within which employment and parking are
distributed. Depending on where they live, drivers travel varying
distances on downtown streets on their way to work. Within limits, road
tolls can be used to charge drivers on the basis of distance travelled,
while parking fees cannot. This reveals a drawback of parking fees vis a

vis road pricing as an instrument for alleviating congestion.



Page 38&

FOOTNOTES

1Gillen (1978) found empirically that parking fees are not very effective
in reducing auto usage or relocating parking. But he did not consider the
changes they may induce in the departure time distribution.

2 . . .
A bottleneck can be created by a bridge, tunnel, intersection etc. More

than one bottleneck may exist, but with pure queueing congestion only the
smallest bottleneck capacity is consequential. In the absence of any
bottleneck, s is the flow capacity at any point on the road.

In a typical city, several roads link the suburbs with the CBD. N may
be interpreted as the number of commuters using a representative road, and s
the capacity of the road.

3 ] ; :
Pedestrian congestion is assumed away.

aThe case a < 8 is treated for the model without parking in Arnott et. al.
(1985).

5 v st . s . .
The equilibrium is a weak equilibrium with respect to departure time (but
not parking location) in that individual drivers are indifferent as to when

they travel in the interval [t;, t:]. If the daily departure rate were to

deviate from that shown, however, trip costs would no longer be equal and
departure times would adjust. The dynamics of adjustment are not
. considered here.

6Tolls could be imposed at booths, or by a system of electronic road
pricing whereby vehicles fitted with electronic number plates would be
identified by sensor loops under the roadway and charged on, say, a monthly
basis by mail. Electronic road pricing was first proposed by Vickrey
(1963) and the Ministry of Transport (1964) in the U.K., and experimented
with in Hong Kong; see Dawson and Catling (1986) and Pretty (1988).

7 ; : . P . -
To avoid complications it is assumed that ws < 1. This means that if
drivers park in order of decreasing n those who depart later will not
overtake drivers who departed earlier.

8The resulting equilibrium is then a weak equilibrium with respect

to both departure time and parking location. See footnote 5 above. If
(26) and (28) hold as strict inequalities for all n then the equilibrium
is weak with respect to time but strong with respect to location.

9The road toll in Figure 4 decentralizes the optimal departure rate for the
bottleneck model without parking (w=0), as shown by Arnott et. al. (1985)
inter alios.

lOElectronic road pricing would not suffer this disadvantage.
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1 . . -

The parking fee schedule derived below relies critically on two
assertions that we are reasonably confident are correct, but so far have
been unable to prove. The two assertions are noted with footnotes below.

12That the optimum entails parking in reverse order (for early and late

drivers) is the first assertion that remains unproven.

13, . . .
This is the second unproven assertion.

4 . . .
1 For the parking pattern to be sustainable, drivers must be prevented from
parking within a certain distance beyond n=N,

15 ; . . . .
It is necessary to assume that parking fees are fixed in advance, since

otherwise owners with vacant spaces near the end of the rush hour will be
able to raise their rates and gouge the last drivers.

16With w = 0 all parking is located next to the workplace, which might be

true of a small town.
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APPENDIX 1

Proof of Proposition 1

(By contradiction) Suppose some driver passes the bottleneck at time £
parks at location n, and arrives early at work, while another passes the
bottleneck at tz’ parks at n, > n and arrives late, as shown in

panel (a) of Figure Al. On this assumption we have

Lemma There exists at least one driver who arrives early and one who
arrives late, with the early driver passing the bottleneck sooner and

parking closer than the late driver.

Proof of Lemma Given the situation depicted in Figure Al (a), the proof is
trivial if t1 < tz’ SO assume tl > tz. Then there exist locations n1 and

A A

nz, with n1 < n1 < n2 < n2 as shown in Figure Al (b), such that a driver

>

passing the bottleneck at time t:1 and parking at ;1’ or passing the
bottleneck at L, and parking at ;2 arrives on time. If the lemma were
false then all locations between ;1 and ;2 would have to be occupied
between t2 and tl. (If such a spot were occupied before tz’ the driver,
who would be early, would park sooner and closer than the driver at (tz,
nz). If such a spot were occupied after cl, the driver, who would be late,
would park later and further than the driver at (tl, nl).) There are
(tl-tz)/w such locations. But the maximum number of drivers who can park

between cz and t1 is s(tl-cz). Since ws < 1 by assumption, s(tl-tz) <

(tl-tz)/w, a contradiction. 0O
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Proof of Proposition 1, concluded

Without loss of generality assume the situation in Figure Al (a),
obtains, with t2 > tl. In equilibrium, C(t1’n1) - C(tz,nz) and the driver
at t:1 must be unable to reduce his trip cost by parking at n, instead of

nl. There are two cases to consider.

Case 1: The driver at tlwould still be early parking at o,
For equilibrium,

C(tl,nz) - C(tl,nl) - ¢(n2) - ¢(n1) + (A-ﬂ)w(nz-nl) 2 0.
Since the driver at t, would eliminate some or all of his late time by
parking at n, we have

C<t2’n1) - C(tz’nz) < -[C(cl,nz) - C(t1’n1)] < 0.
The driver at tz would thus prefer to park at n rather than n,. If the
owner at n raised ¢(n1) slightly, the driver at t:l would no longer park
there (otherwise the original fee would not be profit-maximizing). But the
driver at L, would still park at n, so the original fee couldn’t be

profit-maximizing.

Case 2: The driver at t would be late parking at n

A

There exists a location n € (nl,nz) at which the driver at t1 would arrive
on time. For equilibrium:
- - - - - + (+ - > 0.
C(tl,nz) C(tl.nl) ¢(n2) ¢(n1) + (A ;‘J)W(n1 nl) (A '1)'v1(n2 “1) 0
Since the driver at £, would be late parking at n we have again

C(tz,nl) - C(t:z,nz) < ~[C(t1,n2) - C(tl,nl)] < 0.

The proof concludes as for Case 1. O
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APPENDIX 2

Proof of Proposition 2

The proof entails 3 lemmas. The first two establish the slope of the fee
schedule for n > ; and for n < ;. The third establishes equation (57).
Lemma 1 $(n) = § - (A-Bw(n-N), nsnsN.
Proof In equilibrium all parking spots n € [0,N] are occupied. Suppose

é(n') > ¢(n) - (A-B)w(n'-n), for some n, n’; ; <n<n =<N.
The driver parking at n’ would then prefer to park at n. If n were as yet
unoccupied the driver at n’ would relocate, even if ¢(n) were raised
slightly. If n were occupied, the earlier driver would vacate if ¢(n) were
increased (otherwise the original fee would not have been
profit-maximizing). This would free up n for the driver at n’. In either
case, the original ¢(n) would not have been profit-maximizing, in
contradiction to equilibrium.

Suppose now that

< n’ < N.

o S
IA
o]

#(n’') < ¢(n) - (A-B)w(n’-n), for some n, n’;
Then at least one of the following two cases must occur.

Case 1 There exists n € (n,n’) and a neighbourhood v(n) within which d¢/dn

exists and is less than -(A-g)w. Within any interval inside v(n), however
small, some driver must arrive strictly early (since ws < 1). Such a
driver would prefer to park slightly further away, even if the fee there
were raised slightly, contradicting equilibrium.

Case 2 There exists n € [n,n’) at which the fee takes a downward jump. A

driver parking slightly closer than n would prefer to park slightly beyond

n, even if the fee were raised slightly, again a contradiction. This

concludes the proof of Lemma 1. O
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A A

Lemma 2 ¢4(n) = ¢(;) - (A+y)w(n-n), 0 <n

IA

Proof The proof is analogous to that of Lemma 1. Suppose
$(n’') < ¢(n) -(A+y)w(n'-n), for some n, n’; 0 =n<n' <n.
Then the driver parking at n would prefer to park at n’. The same argument

as in the first part of the proof of Lemma 1 establishes a contradiction.

Suppose now that

A
jo IS

¢(n’') > ¢(n) -(A+y)w(n'-n), for some n, n’; 0 < n’'

IA
o]

Then at least one of the following two cases must occur.

Case 1 There exists n € (n,n') and a neighbourhood v(n) within which d¢/dn

exists and is greater than -(A+y)w. Within any interval inside v(n),
however small, some driver must arrive strictly late. Such a driver would
prefer to park slightly closer, even if the fee there were raised slightly,
contradicting equilibrium.

Case 2 There exists n € (n,n’] at which the fee takes an upward jump. The

driver parking at n’ would prefer to park slightly closer, even if the fee
were raised slightly, a contradiction. This proves Lemma 2. O

The final step is to prove

Lemma 3 t + wn = t'.
Proof The proof derives from the observation that for the group of early

drivers

Lim n(t) = n.

ettt

If the limit were n > n then a driver parking just before t at n would be

on time or early, and a driver parking just after t at n < n < n on time

or late, which is impossible. Hence

-
Lim ¢ + wn(t) = ¢t + wn = t . 0

Tt
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