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ABSTRACT

This paper develops a stochastic theory of distribution by introducing a
class of dynamic models focusing on the role of incomplete markets in
generating inequality. Without complete markets, there is no possibility of
perfect insurance against risk; variability in income is therefore
attributable to the nature of available contracts rather than to differences
in preferences or endowments. Unlike that of previous models, this approach
takes explicit account of the reason for market incompleteness in modeling
agents’ behavior; in particular, the amount of risk borne by agents is
endogenous.

The framework we adopt modifies the standard model of growth with
altruism: bequests are composed of a safe asset and a risky investment
project requiring unobservable effort. Agents are risk-averse and partially
insure by issuing equity contracts in their "firms"; incentive compatibility
requires that they retain a portion of the equity in their own firms. Lineage
wealth follows a Markov chain displaying global convergence to an ergodic
distribution which also represents the long-run distribution of wealth for the
population.

The paper helps to illuminate the role of particular assumptions (such as
availability of production loans and unboundedness of utility) in generating
the qualitative properties of the distribution of wealth, the choice of
"occupation," and the prevention of poverty traps. The analysis is
complicated by the nonconvexities and nonoptimalities introduced by incentive
constraints.

JEL classification nos. 022, 026, 111
Keywords: income distribution, growth, incentives, Markov chains, ergodicity









RISK-BEARING AND THE THEORY
OF INCOME DISTRIBUTION

1., Introduction

Does a market economy exacerbate the level of inequality in wealth and
income, or does it merely reproduce variation in individual attributes?
Indeed, under certain circumstances might it even attenuate those differences?
One way to approach these questions is to consider a dynamic economy and to
ask what relation the long-run distribution of wealth has to the initial
distribution of endowments and the idiosyncratic risks that individuals
encounter over time.

It turns out, of course, that the answers one obtains will depend on just
what one means by a market economy. Under the complete markets of Arrow and
Debreu, there are essentially two sources of variation in income, namely
differences in preferences and differences in endowments:1 variations in the
outcomes of risky prospects play no role, since agents will insure themselves
perfectly.2 Identical agents would remain identical through time, and under
standard assumptions about preferences, the ranking of individuals would be
preserved.

This is unsatisfactory for several reasons. It is empirically absurd to
rule out social mobility and to claim that people do not bear idiosyncratic

risks against which they would like to insure. It is also empirically very

1 s
State-dependent preferences could be another source of variation but they are
somewhat beyond the framework of the standard model.

2Note that this does not say that risk is eliminated entirely, only that
everyone's fortunes will be perfectly correlated. The economy as a whole may
follow a stochastic process; this is one interpretation of the model in Brock
and Mirman (1972). 1In particular, the time average for one agent of a
function of income need bear no resemblance to its average across all agents
at a given time.



well established that to the extent such things can be measured, differences
in abilities explain only a small part of the differences in earnings. What
is more, as Becker and Tomes (1979, 1986), for example, argue, in a
complete-markets world, it should be possible for parents to insure against
uncertainty about the abilities of their children, and therefore variations in
endowments cannot be taken as purely exogenous. In any case, it is logically
incomplete to try to explain the wealth distribution entirely in terms of
exogenous differences in tastes and endowments without first asking what the
long run distribution would look like in a world of identical agents who start
their lives with the same endowment.

One answer to this last question was given a long time ago by
Champernowne (1953). He started with a population of identical agents and
showed that if each agent bore an idiosyncratic risk proportional to its
wealth, then the long-run income distribution would approximate a Paretian
distribution.

The problem with this style of analysis is that there is no explanation
of why the agents bear this (or any other) kind of uninsured risk. The
possibilities of choosing how much risk to bear and obtaining insurance to
cover the rest are not considered at all, and as result the structure of the
economy (i.e. which markets, what kind of technology and what kind of
information are available) plays no role in determining the nature of the
wealth distribution.

Thus, this approach suffers from a shortcoming similar to that of the
complete-markets approach: it takes the entire question of distribution
outside the scope of economic analysis. 1In fact, it is precisely the relation
between what we just described as the structure of the economy and the long
run wealth distribution which is the central concern of this paper.

To analyze this question, we develop a model which essentially combines
two existing strands of analysis in the broad Arrow-Debreu framework; the
theory of incomplete markets and insurance and the neoclassical theory of
growth with altruism.3 This formulation is not entirely novel. Loury (1981)

and Eckstein et al. (1985) acknowledge the role of incomplete markets in

3. .
This latter element enables us to focus on the role of savings and bequests
in the wealth dynamics.



generating the long run income distribution but do not attempt to take
explicit account of the source of market incompleteness in modeling agents’
behavior. Galor and Zeira (1988) provides an example of a model which
emphasizes the role of imperfect loan markets in analyzing the shape of
distributions in general and poverty traps in particular.

While we also look at the role of imperfect loan markets, the key element
in our paper, by contrast, is a model of incomplete (rather than absent)
insurance due to moral hazard in production. In this sense, our approach
resembles that of the simulation study by Phelan and Townsend (1988), which
considers moral hazard with an infinite horizon. Green (1987) is another
recent attempt to study the stochastic process of consumption, although there
the source of imperfect insurance is adverse selection. We have chosen to
examine the moral hazard introduced by imperfect monitoring not only for its
importance in a production economy, but also for its modeling simplicity.

The general framework we adopt is a modification of the standard theory of
growth under altruism as expounded, for instance, in Bernheim and Ray (1987)
and Kohlberg (1974). Agents are risk-averse and have identical preferences
and labor endowments,a deriving utility from consumption and from a bequest
which becomes the entire nonlabor endowment ("wealth") of their offspring.

We introduce risk into the model by assuming that there are two primary
assets available, one safe and one risky but paying a higher expected rate of
return.5 The risky asset takes the form of an investment project which pays
the high stochastic return only if one puts a certain amount of unobservable
effort into it. Once the project has been set up, one can sell shares in it,

thereby insuring oneself. We assume that there are a very large number of

aThe assumption of identical preferences and labor endowments is not just a
modeling simplification: 1in order to study the contribution of particular
market conditions to generating differences across agents, it is best not to
confound issues by starting out with variations among agents.

5Our attitude toward the source of the risk is agnostic. The obvious
interpretation is that it is "pure luck” in some production process, but if
one prefers one can think of it as a difference in ability which one is not
aware of ex ante. This reinterpretation allows us to use our framework to ask
questions like the old one of what is the relation between the distribution of
abilities and the distribution of wealth in the long run.



agents so that potentially one could insure away all risk. However, the
market will never provide such insurance because agents would lose the
incentive to put in the requisite amount of effort. Each entrepreneur6 will
have to hold at least a fraction B of the shares of its own project for its
equity contracts to be incentive compatible.7
In addition to this imperfection, we will also assume that there is an
elastic supply of production loans available but no market for consumption
loans. In the penultimate section we informally consider the implications of
making the supply of production loans endogenous; an earlier version of the
present paper (Banerjee and Newman, 1989) considers the implications of
allowing consumption loans.
Under the assumptions mentioned above and some strong but relatively

standard assumptions on the utility function we can show that

1) There is a unique, positive level of wealth below which everybody
would undertake a project. Above this level people will become rentiers,
investing in the safe asset only; their children will be poorer than them.

2) B is nondecreasing as a function of wealth and so in this sense
the poor will bear less absolute risk (though possibly more relative risk).

3) There is a level of wealth below which people’s wealth will
increase from the present to the future generation irrespective of the
realization of the uncertainty. 1In fact these low levels of wealth will not
persist in the long run. Extreme poverty therefore is a transient phenomenon
in this model.

4) A unique ergodic distribution exists for this model of the
evolution of lineage income;8 it is supported on a compact interval.

Moreover, any initial distribution of income will converge to the ergodic

This term is used loosely — it is possible that what we call an entrepreneur
is someone who simply invests in her children’s education.

7For analysis of the firm along these lines see for example Jensen and
Meckling (1976).

The idea of modeling the distribution across agents by seeking an ergodic
distribution for a single agent goes back at least to Champernowne (1953) and
is used more explicitly in Loury (1981).



distribution.

5) Simulations for a range of parameter values suggest that the
long-run distribution of income generated by this model is single-peaked and
skewed toward low wealth levels, like most empirical distributions.9 See
Appendix C for an example.

None of these results, of course, guarantee that the distribution the
model generates is empirically reasonable. Nevertheless, the fact that the
distribution is on a connected interval and that there is only one switch
point between being an entrepreneur and being a rentier is reassuring,
particularly since the presence of the incentive constraint introduces
nonconvexities which are a common source of perverse results. The heavy
concentration of agents towards the bottom end of the distribution in our
simulations is also reassuring since our model is undeniably biased in the
direction of making upward mobility easy.

Consequently we feel justified in thinking of the basic model we present
in this paper as a "benchmark" for comparison with other models with more
complex structures. In particular, we cannot relax the key assumptions of
this model without losing some of the "nice" properties we list above.

For example, eliminating the market for production loans may create a
poverty trap since the poor will only be able to earn a low return on their
assets and as a result may accumulate very little. The assumptions about the
utility function, particularly that it is unbounded below also play an
important role: with a lower bound on utility, it may be impossible to
satisfy incentive compatibility, especially at low levels of wealth, and this
would tend to restrict mobility, possibly leading to a poverty trap. Another

assumption (assumption (2.2) below) which puts a bound on the strength of the

There are two reasons for this: first, as wealth increases, the relative
share of the safe asset in the agent’'s portfolio increases; since holding the
safe asset tends to cause wealth to decrease (see Proposition (5.5) below),
the expected increment in wealth tends to decline as wealth rises. In
addition, the amount of risk borne also increases with wealth, so that even
without the first effect, there would be some "stretching" of the tail at high
wealth levels.

OIn particular, the assumption that the poor can easily get production loans
is clearly empirically dubious.



bequest motive is also crucial in ensuring that an ergodic distribution
exists.

However, as we show in the earlier version of this paper, it is also true
(and this is reassuring) that the assumption about the absence of a market for
consumption loans turns out to be the least crucial. The properties of the
long-run wealth distribution listed above remain true even if we drop this
assumption, except in certain perverse cases.

The earlier version of this paper also obtains reasonably strong
steady-state convergence properties for a complete-markets (perfect insurance)
rendering of the model.11 This underscores our contention that completeness of
markets cannot yield an adequate explanation of distribution, and also that
our results concerning the existence of a nondegenerate limiting distribution
do not depend on peculiar assumptions about technology or preferences, but
rather on the "institutional" assumptions about market structure.

The inclusion of endogenous levels of risk-bearing in an otherwise
standard growth model is of some independent interest. There is definitely a
view in the theory of development, for which Schumpeter is one source but
which almost certainly predates him, which draws a strong connection between
growth and risk-bearing. By making the extent of risk-bearing endogenous, we
open the way for examining questions concerning the distribution of
risk-bearing and the effects of policies which influence incentives on the
pattern of growth.

To this end we say a few things about the comparative statics of the
limiting distribution. In particular, if we measure inequality by the range
statistic, some types of productivity growth can be shown to increase
inequality while other types will reduce it. A linear profits tax with
complete loss offset is shown to be fully neutral. Apart from being of some
independent interest, this result shows that making risk-bearing endogenous
changes things considerably: in a model in which the degree of risk was taken
as given, this policy would have significant effects. Finally, for

sufficiently high levels of labor productivity, the rentier class will be

11 X .
An exception is the presence of a cycle rather than a stable steady state for

one version of the model; from the point of view of distribution theory,
however, this is no more adequate than steady-state convergence.



eliminated.

The technique we use to demonstrate convergence also has some independent
interest, albeit from a purely technical point of view. Because the Markov
chain describing the evolution of lineage wealth turns out to be neither
continuous nor monotonic, we cannot employ standard convergence theorems.
Instead we first prove existence of an invariant measure using a theorem due
to Duffie et al. (1988) and then invoke a theorem due to Doob which provides
conditions for convergence once an invariant measure is in hand (specifically,
indecomposability of the state space under all iterates; and absolute
continuity of the process with respect to the invariant measure). So far as
we know, this represents the first application of the Doob theorem in the
economics literature.

We consider this essay as a preliminary exercise in the development of a
theory of growth and distribution. Its contribution, as we see it, is not so
much that it predicts results that we did not expect but that it tells us what
is involved in modeling these issues. Specifically, this is a model which
cannot be transformed in to a single-agent dynamic optimization problem.
Further, the dynamics are stochastic. The analytical tools we need are
therefore somewhat different from those customarily used in dynamic
macroeconomics. However, despite the problems created by nonconvexities
introduced by the incentive constraints, it turns out to be relatively easy to
characterize the transition equations, and we can therefore say something

about the long-run behavior of the model.

2. Demographics, Preferences and Technology

The economy consists of a large number of agents with identical
preferences who are active for one period. Each agent reproduces asexually
one agent identical to itself, so the economy is always the same size. An
agent’s endowment consists of a bequest inherited from its parent. The agent
consumes some of the endowment and invests the remainder. The return on the
investment becomes the bequest to the agent’s offspring.

An agent’s preferences are described by the following von Neumann-
Morgenstern utility function:

E{u(e)) + v(b) - e},

where E is the expectation operator, c, is the consumption of an agent who



lives in period t, bt is the bequest it leaves to its offspring and e is the
level of entrepreneurial effort the agent expends on its investment project,
should it undertake one. Both u(:) and v(:), defined on the positive reals,
are increasing, strictly concave,12 smooth and satisfy

u’ (X) = AV’ (x), where A > 1. (2.1)
We further assume they are bounded above and unbounded below. Finally,
we allow effort to take on only two values, namely 0 and e.

The form of the bequest preference is peculiar in two respects. First,
we assume that the preference is for the bequest itself, not for the
offspring's consumption or utility; it may be supposed that agents desire to
adhere to some tradition for bequest-giving. It is not clear to us which
formulation is most "realistic," and ours does have the virtue of greater
simplicity to recommend it. Second, we have assumed that the bequest utility
is unbounded below. While this is hardly tenable for a serious understanding
of bequest motives, it turns out to be the easiest model to deal with: it
helps to guarantee that the incentive compatibility constraint can be
satisfied. We have already suggested some of the difficulties that will be
encountered when this assumption is relaxed, but a full treatment awaits
further research.

After choosing its consumption level, an agent will wish to invest the
remainder of its endowment so as to maximize the expected utility of the
bequest. It has three options available. First, it can invest in a safe,
perfectly divisible physical asset which yields the gross return ;.13 This
return may exceed unity, but is strictly less than the constant A referred to
above. Thus, the following relation holds between the marginal utility of

consumption and that of bequest-giving:

2One may be tempted to interpret v(-) as the dynamic-programming value
function for an infinite-horizon version of the model. The problem with this
formulation, however, is that v(-) would not satisfy concavity — even for a
continuous-effort version of the model — because of the incentive
compatibility constraint which we introduce below.

13Alternatively, one might think of this safe return as a prevailing world

gross interest rate which our economy takes as given.

141f v(:) = su(-), then this relation assumes the standard form 6; < 1.



w(x) > v (X)T. (2.2)
The second choice available to the agent is to invest in financial assets of
two types: loans of "start-up capital" to other agents and equity shares in
other agents’ projects (recall there are no consumption loans). In the next
section we argue that both assets are safe and therefore yield return r.
Finally, the agent may invest in its own risky investment project.

The project requires a fixed amount I of capital and, in general, is
financed jointly by many agents. It yields a risky gross return r with high
expected value if the agent puts forth a unit of entrepreneurial effort;
should the agent shirk, however, a low return is yielded with certainty. The
random variable r has distribution F(r) which is supported on the interval
[ro,rl] and is mutually absolutely continuous with Lebesgue measure there; we
assume that the worst return r, is the same as the return from shirking. In
our notation:

e

0

<re [ro,rl] with probability F(r), if e

I
I

r with probability 1, if e

In order to avoid trivialities, the following relations hold:

r <r<r,

0

where

T = J rdF(r)
(integration is understood to be over [ro,rl] unless otherwise indicated).
Obviously r < r.

A crucial assumption which will underlie most of our results is that the

returns on the project are independent across agents and over time.

3. Finance

Each agent who undertakes a project may be thought of as an owner-manager
of a firm, & la Jensen and Meckling (1976). Agents will have two incentives
for seeking outside finance for their projects: first, since they are
risk-averse, they prefer to share risk with other agents by issuing equity;
second, through borrowing, poor agents are able to afford to undertake
projects, even if their wealth w is small compared to I.

We assume that agents issue linear equity shares in their project. After

choosing its consumption, an agent selects a fraction 8 of the project for



which it is liable.15 It commits this portion BI to the project (this
commitment is observable to other agents) and then goes to the equity market
with its shares (1-8)I, which are sold at a price P. The agent then uses part
of the proceeds of equity sales for financing the remaining (1-B8)I of the
project (again, all commitments of capital are observable). In the following
period, the agent'’s offspring pays dividends of (1-B8)Ir, where r is the
realized value of the random return r, to the offspring of the equity holders.

The remainder of the agent’s saving is invested in either the safe asset
or the equity of other agent’s firms. Observe that all existing firms are
essentially alike: they have identical distributions of returns, provided
their owner-managers work. Clearly, an agent will wish to hold an equal share
of his invested wealth in each of the firms in the economy, at least in those
in which the manager'’s promise to work is credible. We can imagine that there
is a mutual fund which buys all issued equity and then resells shares of
itself to the agents. A share of the mutual fund costs P, the same as a share
of equity in a typical firm. By the law of large numbers, the mutual fund's
dividend is exactly the expected project return ;.16 Thus, a share of the
mutual fund is a safe asset yielding gross return r/P . If the asset market
is to be in equilibrium, then, we must have

% =r, or P =

R

Thus, the agent is indifferent between holding the safe asset or investing in
the rest of the economy. This arbitrage condition greatly simplifies the
analysis, because it says that the return to holding and issuing equity is
independent of distribution (as long as a positive measure of the agents are

undertaking projects).

5We recognize that such contracts are not optimal, but they are realistic.
Moreover, even the optimal contract will still require that agents bear some
risk (if shirking yields a noisy rather than a certain return), so the general
flavor of our results would not be greatly affected by respecifying the equity
contract,

6Strictly speaking, we must require that at any time enough agents are taking
the project (for example, a positive measure of a continuum) in order that the
law of large numbers apply. This turns out to be true because of Proposition
(7.4) below, which implies that once a positive measure of agents takes the
project, there will always be a positive measure of project-takers.

10



We can now write the equation for the bequest in terms of wealth and the

choice variables ¢, B and e. If an agent does not start a firm, it invests in

A

the safe asset and the stock market, earning the return r. Thus,
bt o (wt - ct)r, if e = 0. (3.1)

If the agent does start a firm and conscientiously sets e = e, then after

consuming c, and laying I into the project, it has uk-ct-I+(l-ﬂt)I z remaining

=

to invest at the safe return r. The agent’'s offspring collects Irt from the
project and pays out (l-ﬂt)Irt to its shareholders, so that the bequest is

bt = (wt - c, - IDr + (1 - ﬂt)Ir + ﬂtIrt, if e = e. (3.2)
Note that if the agent borrows for production, it has additional assets Z on

which the safe return is earned, but also a liability of Z;, so that the

equation is valid whether the agent borrows or not. And, since W~ bt

these equations also describe the evolution of a lineage’s wealth.

Because of the importance of the bequest in studying the dynamics of
wealth, we introduce some notation, writing the realized value of the bequest
in state r when the project is taken as a function of wealth, consumption and
equity holdings:

B (0,¢,8) = (w-c)r + I(r-r) + If(x-T),
which is essentially a rearrangement of (3.2). The cases corresponding to r,
and r are written B0 and Bl. Similarly, we write

Bs(w,c) = (w—c)£
for the case in which the safe strategy is followed. Sometimes the arguments

of the functions B and B will be dropped.
r S

4, Incentive Compatibility

Since effort is not observable, or at least not enforceable, an agent has
an incentive to issue equity, for which it earns a fairly high return, and
shirk, thereby saving itself the disutility of effort, even while it accepts
the low return r, for its offspring. Thus, not any choice of B will do to
convince potential buyers of the firm’s equity that the manager will work:
indeed, it will do so only if the agent has enough of a stake in its own firm.

Formally, the utility of working must exceed that obtained from
pretending to undertake the project and then shirking:

V(B )dF(r) - e = v(B) (1c)

(As consumption is committed in advance, the utility of consumption does not

11



enter here; equivalently, the condition may be regarded as following from
dynamic consistency.) Note that for a given B, this inequality will hold for
some wealth levels, but not others. 1In order that the inequality be operative
as an incentive compatibility constraint, therefore, it is necessary to assume
that an agent's inherited wealth,17 as well as the contribution BI, is
observable.

To summarize, we restate the agent’'s problem as

max E{u(c) + v(b) - e} (4.1)
(c,B,e)
s.t. (3.1), (3.2), (10),

c>0,0=<pB8=<1, ec€ (0,e},

v

w - c=0.

The last constraint reflects the fact that the agent cannot borrow to
finance consumption. We do not allow consumption loans because such contracts
would be unenforceable under the time and information structure of our model:
having already consumed, the agent has nothing to hand over to the creditor
(except its head). Knowing this, no other agent will be willing to lend for
consumption. By contrast, production loans are feasible because the physical
investment is observable, and the assets are physically present to be seized
by a creditor, should the agent attempt to default on the loan (we will show
below [Proposition 5.4] that even under the poorest realization of the
project, the bequest will be nonnegative after repayment of the loan, so that
the argument for enforceability of production loan contracts is justified).
No significant qualitative results depend on our exclusion of consumption
loans; a variation of the model in which they are included is analyzed in

Banerjee and Newman (1989).

5. Behavior of the Agent

As we remarked above, the agent’s problem can be analyzed without
considering the distribution of wealth for the whole economy. Note, however,
that this "representative agent" arises from the linearity of project returns,

and not from any optimality properties of equilibrium. A further departure

7Actually, wealth after consumption, w-c. The point is to avoid the issue of
whether consumption could be a signal of (unobservable) wealth.

12



from the usual macroeconomic framework is the presence of nonconvexities, not
only from the discrete effort choice, but also from the incentive
compatibility constraint.

We approach the study of the agent’'s behavior by breaking the
optimization problem (4.1) into two parts corresponding to taking and
forsaking the project. Each case is treated as a separate problem, and the
optima of the subproblems are compared to yield the global optimum. The
following series of propositions summarizes this analysis. Most of the proofs

are provided in Appendix A.

Proposition 5.1 Whatever the values of w and c, the agent chooses 8 so

that IC’ holds with equality, if it holds at all.

This result is easily understood: increasing B acts as a mean-preserving
spread on the distribution of bequest size; a risk-averse agent should like to
have B as small as possible. On the other hand, if the agent wishes to sell
shares in its firm, it must bear enough risk to induce it to work.
Consequently, an agent will choose B8 so that it is just indifferent between
shirking and working. Note that the left-hand side of (IC’) is less than the
right-hand side for 8 = 0 (the integrand and the right-hand side are equal in
this case), so that the constraint could only be satisfied for positive f. We
will refer to the binding form of the incentive compatibility constraint as

(IC).

Proposition 5.2 B is unique for each value of w-c for which it is

defined.

One can therefore consider B8 as a (differentiable) function of "saving,"

s = w - ¢, (Proposition 5.4 below will guarantee that B exists as long as the
agent desires to undertake the project) and write B8 = B(s). The bequest
functions Br and Bs can be treated similarly.

If the project is chosen, (IC) may be substituted into the agent'’s

problem and we may be rewrite it as

13



max u(w-s) + V(Bo(s)) (5.1)
S - —_ - —
s.t. Bo(s) = sr + I(r-r) + I(ro-r)ﬂ(s),

w =S

s 2 0.
This procedure is analogous to substituting the budget constraint into the
utility function in a standard consumer choice problem. However, unlike that
problem, (5.3) does not necessarily remain concave —— at least we have been
unable to show that it does in the general case.18 This (possible) lack of
concavity does not create particularly severe problems for studying the
agent'’s behavior, but does require us to take a roundabout approach in the
proof of convergence of the stochastic process that it generates.

The first-order necessary condition, which as usual will be an important
source of information concerning the agent’s behavior, is

u (w-s) = v’ (BO)[E F I DB ()] + A, (5.2)
where A is the Lagrange multiplier associated with the constraint s =2 0: A =0
if s > 0. (The constraint w = s never binds, since u’ () becomes arbitrarily
large as its argument approaches zero). Notice we have differentiated g, as
the implicit function theorem permits us to do.19 Explicit calculation which
exploits the concavity of v(-), as in the proof of Proposition 5.2, shows that

(1) B’ (s) > 0; and

(2) the term in brackets is positive and less than ;.
Therefore interior solutions are well-defined. Note that Bo(s) is increasing
since the term in brackets is just B;(s). We shall denote the solution to
(5.1) by s*, often treating it as a function of w and writing s*(w).

Figure 1 illustrates the solution to the incentive compatibility
constraint for B(s). Notice that as s increases, the maximum and minimum
realizations of the bequest must be spread apart (B must increase) so that the
vertical distance between J V(Br(s))dF(r) and v(Bo(s)) remains constant. This

result depends only on the concavity of v(-) and not on any third or

8 . . . . . . . .
Concavity is preserved if, for instance, the distribution of project returns
is supported on the two-point set (ro,rl} and v(+) belongs to the

constant-relative-risk-aversion family of utility functions.

9
1 The partial derivative of the (IC) equation with respect to B can be shown to

be positive for all B and s.

14



higher-order derivative condition.

When the agent follows the safe strategy, it solves:

max u(w-s) + v(sr) (5.3)
S

s.t. w = s

s > 0.

This problem is perfectly standard. Under our assumptions, the solution,
denoted s (with the corresponding function s**(w)), is determined uniquely
by the first-order condition
W (w-s) = v (s )T (5.4)
and is always interior.
As an agent becomes wealthier, it will need to bear more risk (B must be

larger) in order to convince others that it will conscientiously attend to its

project. This result is essentially provided by

Proposition 5.3 (a) s*(w) is nondecreasing; (b) s**(w) is increasing.

An immediate corollary of part (a) is that B is nondecreasing in w, since A(s)

is increasing.

Proposition 5.4 If the agent finds it optimal to choose the project, then

g =< EX (equivalently, I(E-£)+15(r0-¥) > 0).
r_

=
R

=

o}

The proof depends on the observation that choosing the project implies
ue’) + v(B) = ue™) + v(s1) = ue) + v(s'n), (5.5)
where the first inequality relates the maximized value of utility under the

¥

two plans, and the second follows from the fact that cfr maximizes u(c)+v(s£).
Then B: = s*i, yielding the result.

In effect, this proposition states that the agent undertakes the project
only if the profit will surely be nonnegative. There are two important
consequences. First, an agent’'s child will have no problem paying back any
loans that may have been taken, since after repayment the bequest is still
nonnegative, even in the worst state. Second, since the upper bound on

optimal B is less than unity, the agent will always be able to satisfy (IC)

when it wishes to take the project. In other words, no agent will be
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Figure 1. Solution of the incentive compatibility constraint for B(s).



prevented from undertaking a project because it is unable to satisfy incentive
compatibility; rather, it will simply choose not to take the project because
the disutility of effort is not sufficiently compensated by the expected
utility of the (possibly) increased size of the bequest.

Assumption (2.1) makes the plausible claim that an agent values
consumption (uniformly) more highly on the margin than it does bequests. Along

with the assumption that r is not too large as reflected in (2.2), it gives us

ek ~
Proposition 5.5 For all positive wealth, s (w)r < w. Whenever the

. -
project is chosen, s (w)r < w.

The main consequence of this result is that wealth cannot expand
indefinitely. In particular, it implies that a lineage of rentiers — those
who do not take projects — will find its wealth declining over time.

We turn now to an analysis of the agent’s behavior at low wealth
levels. Since production loans are available, even a very poor agent can set
up a project and need not supply any start-up capital of its own. By
undertaking a project, an agent can have a strictly positive bequest, even as
it consumes all of its initial wealth. By investing in the safe asset alone,
the agent is only able to consume a fraction of its wealth and leave a bequest
which is also smaller than its wealth. We should expect that agents who are
sufficiently poor will choose the first option, consuming at the corner
solution ¢ = w. The next three propositions verify this intuition.

First define B to be B(0), the equity share retained by an agent which
saves zero, that is

Jv(I(E-i)ub(r-E))dF(r) ; v(I(E-£)+Ib(rO-¥)) - a. (5.6)
Notice that the unboundedness of the utility function v(-) guarantees that é
is well-defined: as g is increased from zero, the difference of the two terms
on the left-hand side of (5.6) increases from zero and becomes arbitrarily
large. If utility is bounded below, solutions to (IC) may not exist,
particularly at low wealth levels; the result may be a "poverty trap" if

agents find undiversifiable projects to be too risky. A full treatment of
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this case20 will have to await further research.
Treating B (:) as a function of s as we did above, we denote B (0) by the
r r

constant é . In particular, we have éo = I(;-r) + Iﬁ(ro-;) > 0.
r

Proposition 5.6 At initial wealth ﬁo the agent strictly prefers the risky

*
strategy to the safe strategy and sets s = 0 there.

From these facts follows

- . " -
Proposition 5.7 There exists w > Bo such that ¢ = w (s = 0) for w < w

and ¢ < w (s* > 0) for w > &.

Agents whose wealth lies in (O,&) and who are taking the project are
necessarily borrowing to finance it and are passing only their projects (no
safe asset earnings) to their children.

Perhaps the most important consequence of Proposition 5.7 is that the
bequest passed on in the worst state (i.e. BO(-) considered as a function of
w) 1s constant on the interval (O,&) and in fact provides a positive lower
bound on the level of wealth that can be sustained in the long run. The

existence of this "safety net" is an immediate implication of

Proposition 5.8 There exists w € (O,&) below which the bequest is always

larger than initial wealth.

This w is of course just ﬁo' The agent chooses the project not only at this
level of wealth but also at all levels below it; the proposition follows from
the fact that the function BO(-) (which is equal to éo on (O,&)) determines
the lowest possible realization of the bequest given that the project is
taken.

Thus, because of the ability to borrow to finance the project and the
unboundedness of the utility function, agents who are sufficiently poor have

both the wherewithal and the desire to insure that their children will be

0 .. . . .
As well as other limitations on downside risk, such as bankruptcy
constraints.
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better off than they are. Moreover, w provides an effective lower bound on
wealth, since an agent with wealth less than w will give its children at least
w, and a lineage with wealth greater than w will never have its wealth fall
below that level.

Having established that very poor agents will undertake the project,
consuming all of their inherited wealth, we now consider the behavior of
wealthier agents. The main result is the existence of a wealth level which

separates the entrepreneurs from the rentiers.

Proposition 5.9 There exists a unique w > w such that the agent takes the

project if w < w and does not if w > w.

We have already indicated that at low wealth levels, agents choose to take the
project; at high levels, however, the utility gain resulting from the
increased bequest associated with the project is small compared to the
disutility incurred, and agents invest all of their savings at the safe
return. Somewhere in between is a "switch point" w, which we show to be
unique.

What emerges is the possibility of the existence of two classes of
agents: those with w > w are rentiers, bearing no risk, and earning their
entire bequests from the safe asset or equity holdings. Everyone else is an
entrepreneur, earning at least part of its bequest from the risky project.
What we have not shown is that there will ever actually be any agent with
wealth exceeding ;, or, more properly, that such wealth levels will persist;
this issue will be discussed below.

One implication of the foregoing concerns the distribution of
risk-bearing. Clearly, the wealthier an (entrepreneurial) agent, the greater
(more properly, the no lesser) the absolute risk it bears. Relative to
initial wealth w, however, risk need not be increasing, and is likely
decreasing. Indeed, since agents with wealth in a neighborhood of w are all
bearing the same absolute risk Ié, relative risk must be declining in this
neighborhood. Thus, our model suggests that there is a positive minimum level
of absolute risk and consequent large relative risk for agents with low
wealth. At the other extreme, of course, the very wealthy rentiers bear no

risk at all.
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6. Dynamics of Lineage Wealth

In this section we begin our analysis of the evolution of a lineage'’s
wealth. Broadly speaking, there are two cases of interest. 1In the first, w,
exceeds w infinitely often; in the second, w > w for only a finite number of
values of t. In the language of the theory of Markov processes, we
distinguish between the case in which a subset of rentier levels of income
{w: w > w) is recurrent and that in which all such subsets are transient.
When time averages of the limiting distribution for one lineage are
reinterpreted as population averages under ergodicity, this classification
corresponds to two rather different pictures of the economy. In the first,
there are two classes of economic agents, the entrepreneurs, who bear risk and
expend effort; and the rentiers, who do neither. In the second, everyone
belongs to the broad middle class of entrepreneurial risk-takers.

The lineage’s wealth follows the Markov process

B;(wt), w < w

Cerr T Bs(wt), w, > w
To define the probability distribution of w ., given w = w, it is enough to
specify it on the intervals; if J is an interval with endpoints w, < @, and

Y(+) is the map sending wealth levels into wealth level distributions, then

Yw)[J] = P(wtﬂe J|wt= w)

w -s ()r-1(T-1) w -s (0)r-1(T-1)
2 = 1 =
F[ " + r ] - F[ " + r ],
I(s (w)) IB(s (w))
since w,, <o if and only if the realization r is less than the argument of
F(-). Because the support of F is [ro,rl], the support of Y(w)[:] is
[Bo(w),Bl(w)] (note that Bo(w) < B (w) < Bl(w) for r € (ro,rl)). 0f course,
r
if w, > w then Y(w)[-] is just defined to be the unit mass at B (w).
S
Much information concerning the long-run behavior of {wt} can be gleaned

1"

from the "stochastic policy correspondence," a generalization of the policy
function of dynamic programming. This correspondence, denoted ¢(-), simply

maps w into the set of possible realizations of W that is, into the

support of Y(w)[-]. Specifically,
[B,(@),B ()], © <o
(@) = { Bs(w) , W > w

By studying the graph of ¢, it is easy to determine the invariant sets of the
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Markov process. The shape of this graph clearly is determined by those of the
functions B (for which it is enough to examine Bo and Bl) and B . The risky
r s

bequests B share the common property given in
I

Proposition 6.1 For all r, B (-) is nondecreasing, and increasing for
r

w > w.

Since s* = 0 for w < &, the Br are constant (= ér) there. Notice that due to
the possible nonconcavity of (5.1), Br(w) may have discontinuities (in fact,
at each such discontinuity, s*(-) is multivalued). It is also clear that for
r > r, Bf(w) > Br(w) (their difference is IB(r’-r) > 0).

We observed earlier that BO(-) has a fixed point, namely w = éo' But in

fact a stronger result obtains, namely

Proposition 6.2 w is the unique fixed point of Bo(w).

The proof depends on showing that Bo(w) < w for w > w. As Proposition (5.8)
showed, wealth cannot remain below w under the risky strategy. The result
here helps to imply that arbitrarily small neighborhoods of the form (w,w) are
visited infinitely often.

The next proposition implies that the project is chosen on a
nondegenerate interval and therefore that the dynamics of lineage wealth are
governed at least in part by the stochastic transitions Br(~), even in the

long run.

Proposition 6.3 The switch point exceeds BO(')'S fixed point: o > w.

The result follows from the continuity of the value function and the fact that
the risky strategy is strictly preferred to the safe strategy at w.

We have stated that w provides a lower bound on wealth in the long run.
This depends on more than just Proposition (5.8), however. In principle, some
point below w might be reached from above. This cannot happen if the project
is taken, since Proposition (6.1) guarantees that even the worst realization
of the bequest, Bo(w) is at least w. The other possibility, that points in

(0,w) are reached when the safe strategy is chosen, is precluded by
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Proposition 6.4 At the switch point, we have s**(a)i > Bo(a).

Thus w is indeed a lower bound on long run wealth, and (0,w) is a transient
set. It is in this sense that our model does not exhibit a poverty trap. If
ever an agent has wealth below w, its offspring is guaranteed to have at least
w, and none of its descendants will ever again have less than w.

Note that the availability of production loans is crucial to this result.

If loans were not available at all, then agents with sufficiently little

wealth would be unable to undertake a project; with the safe asset as the only
available alternative, the lineage’s wealth converges to zero. Thus, lack of
availability of production loans is one way to generate a poverty trap.

What about the high end? Are sufficiently large wealth levels also

transient? Indeed, it is easy to see that this is the case:

Proposition 6.5 There exists w > w such that if w, < w then w < w and

if w > w then with probability 1, w < w for all n sufficiently large.

t+n

In other words, there is also an (almost sure) upper bound on long run wealth.
We can now clarify what distinguishes the two cases mentioned above
concerning the persistence of rentier wealth levels. Let w denote the least
of the fixed points of B1(~), assuming it exists. Set w equal to 31(5) if
is less than © (if w does not exist then w equals Bl(a) also); the rentier

levels (;,Z] then recur infinitely often. TIf instead w exceeds w*, then

*
equals w and all rentier wealth levels are transient. Figure 2 illustrates

1Without production loans, agents might finance their projects with equity and
savings alone; this supposition would introduce the additional constraint that
s + I(1-B)x/r = I, which effectively places an upper bound on 8. It is not
obvious that both this constraint and (IC) can be simultaneously satisfied,
nor even that failure to satisfy both only occurs at low wealth levels. But,
supposing that a certain minimum wealth is necessary to finance without loans,
and if this level is above Bo,then since with positive probability every

lineage will eventually find itself too poor to finance a project, the absence
of production loans would lead to complete impoverishment of the entire
population!
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the graph of ¢ for typical representatives of each case.

The specific shape of ¢ is determined in part by the order of the points
&, él, w and w*. However, nothing we have said so far rules out any
particular order of these values. For instance, it is perfectly possible that
él < &, in which case w = w = él; rentier wealth levels will persist if
w < él, but not otherwise. This case may be interpreted as corresponding to a
poor economy in which every project-taker consumes all its inherited wealth;
we shall have more to say about this case below. We do not believe that there
are weak conditions that will rule out one or another of these cases, although
some indication is provided by the comparative statics presented in Section 8.
Our preliminary simulation results do suggest that w < él is more likely,
while it is relatively easy to obtain both the cases ®=w and @ = Bl(a)
by varying the model’s parameters.

Despite our ignorance about the precise shape of the policy
correspondence, we have considerable information concerning the long run
behavior about the sequence of lineage wealth levels {wt}. Anything outside
of the interval [g,;] is transient. Moreover, this interval is nondegenerate:
the minimum value of w is ﬁl, which is greater than w = ﬁo' And, it is easy
to see, any wealth level in between can be reached from any other. Finally,
once in the interval, w, remains there for all time. We take up the issue of

the existence, uniqueness and convergence to an ergodic distribution in the

next section.

7. Toward a Theory of Distribution: Ergodicity

The above discussion suggests that the right place to look for an ergodic
distribution of the Markov process governing lineage wealth is on the interval
[g,z] (hereinafter denoted 2): any probability mass distributed outside of Q

will be carried inside with probability one. Ergodicity has two implications.

22We have drawn the correspondence with B1(~) shown to have single fixed point,

although it appears that it may have many. BO(~) does have a unique fixed

point, however, and as a consequence the support of the limiting distribution
is correctly described here; in particular, the support is always connected.
In Appendix B, where we relax the assumption that there are no consumption
loans, the consequences of nonuniqueness (for both B (-) and B (:)) are
examined further. ° '
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First, over time a lineage will experience all wealth levels23 in the interval:
the descendants of the rich will eventually be poor, and those of the poor
will be rich. This tendency for a lineage’s wealth to travel all over the
interval captures the notion of individual (intergenerational) mobility
usually ascribed to market societies (see for instance Becker and Tomes
[1979]). Second, since all agents in the economy follow the same process
independently of each other, we can reinterpret the long-run time distribution
for a single lineage as the population distribution of wealth at a single
moment of time.

In this section we show that irrespective of the initial distribution,
the process governing lineage wealth converges to a unique ergodic
distribution. This result can be reinterpreted in terms of the distribution
of wealth for the economy: regardless of how wealth is distributed, over time
it will revert to that of the ergodic distribution for our process. This is
the right sort of result to look for, rather than the weaker one (usually
known as the "ergodic theorem") that time averages converge, because of our
interpretation of the ergodic distribution of lineage wealth as identical to
the population distribution of wealth: if, for instance, the process were
cyclic of period two, time averages would still converge, but the wealth
distribution in the economy would be observed to flip back and forth from one
generation to the next!

We are forced to take a somewhat roundabout approach because most of the
available theorems regarding convergence of Markov processes cannot be
directly applied to our model. These theorems tend to depend on

easily-verified conditions such as continuity or monotonicity, neither of

23By which we mean, of course, that all nonnegligible sets are visited with

probability one by the lineage’s trajectory.

24 . . . ]
The large number and independence of agents is also crucial to this

reinterpretation.

5Moreover, the observed distributions would depend in an essential way on the
initial distributions. The weaker result is acceptable if it is assumed that
observations occur infrequently relative to the period length, as, for
instance, in statistical mechanics or, closer to home, in finance.
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which is satisfied here.26 Continuity fails because there are jumps in the
stochastic policy function: the map ¥ defined in the previous section is
discontinuous, since the corresponding supports change suddenly with small
changes in w (look again at Figure 2(a) and consider a neighborhood of w, or
w). Monotonicity (that is, the property that w > w implies that y(w’)
stochastically dominates y(w)) fails whenever the switch point w is contained
in[g,;].27

Because of these difficulties, we prove convergence by applying a theorem

of Doob (Breiman, 1968, Theorem 7.18):

Theorem Let n be an invariant distribution on a state space E for a
Markov process w(-). Suppose
(1) E is indecomposable under ﬂt, t=1, 2, 3,
(2) For all ¢ € E, n(€) < 1.

Then for all &€ € E and Borel sets A C E, lim nt(ﬁ)[A] = n(A).

1,0

In order to apply this theorem, we establish the existence of an

; - 28
invariant measure on the state space 2 for the process . Next, we show that

6Futia (1982) provides a survey of limit theorems for continuous (there called
"stable") Markov processes. Hopenhayn and Prescott (1987) concern themselves
with monotone processes.

27 = * = . . .
Observe that for w = w < w, monotonicity does obtain (this follows from

Proposition (6.1)); since their "monotone mixing condition" is also satisfied,
Hopenhayn and Prescott’s (1987) Theorem 2 may be applied to our model to
conclude that there exists a globally stable distribution.

28A measure g on £ is invariant for the process %(-) if up(A) = J Y(w) [Alp(dw)
Q

for all measurable A C 2. A measurable set B C O is p-invariant if for
p-almost every w € B, y(w)[B] = 1. An invariant measure p on  is ergodic if
for any invariant set B, we have p (B) = 0 or pu (B) = 1.

Roughly speaking, an invariant measure is left unchanged by the process and
an invariant set is one which is almost surely mapped into itself. A measure
is ergodic if nonnegligible sets (other than almost the whole space) are sent
at least partly outside themselves: the process "mixes up" the space.

If the invariant measures form a convex set, then the ergodic measures are
the extreme points of this set. If the invariant measure is unique, therefore
(as it must be under global stability), then it is ergodic.
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1 is indecomposable under ¥ and all of its iterates.29 Finally, by showing
that for T large enough, wT(w)[~] is absolutely continuous with respect to the
invariant measure for each w in 2, the Doob theorem enables us to conclude
that the iterates ¥° (w), k = 1, 2, ..., and therefore p"(w), t = 1, 2, ...,
converge to the (unique and therefore ergodic) measure.

To establish existence, we circumvent the continuity problem by
convexifying the process. Note that at any jump point w” of the
correspondence ¢, the agent is indifferent between two (possibly more) choices
(this is true whether w” occurs because of nonconcavity of (5.1) or because w’
is the switch point w). This observation permits us to make y into a
convex-valued correspondence ¥ by setting ¥(w’ ) equal to all convex
combinations of the distributions in y(w’). Since the agent is indifferent
between the extreme points of ¥(w’ ), it is equally happy with any distribution
in ¥(w” ). Note that ¥(-) so constructed has closed graph.

Now observe that any point in @ is sent into a distribution supported on
(a subset of) ; that is, O is "self-justified" in the sense of Duffie et al.

(1988). Applying their Theorem 1 we obtain

Proposition 7.1 An invariant measure p with support in O exists for the

convexified process V.

Their Corollary 1 actually gives us existence of an ergodic measure for ¥, but
this does not help us, since we will get it automatically from Doob’s theorem.
A potential problem with applying Duffie et al.’s theorem is that the

selection from ¥ corresponding to p need not correspond to the action the
agent chooses at a discontinuity. The usual trick of assuming the existence
of some mechanism (e.g. an auctioneer) to insure that, for the sake of
equilibrium, agents choose the "right" mixture of actions among which they are
indifferent, is completely unconvincing in the present context. Fortunately,

we have the following fact:

29 . th . . .
Define the t~ iterate of ¥ in the usual way, viz.,

P (w) [A] = j Y ) (Al (w) [dw’ ].
Q

0 is éndecomposable und%} wt if there do not exist nonempty ansurable sets A
and AC = O\A such that ¢ (w)[A] = 1 for all w € A and ¢t(w)[A ] =1 for all
w € A .
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Lemma 7.1 If p is invariant for the process ¥(-), then it is invariant

for the process ¥’ (-), where ¥ (w) = Y(w) for p-almost every w.

The reason is simple. Denote by %(w)[A] the measure of the Borel set A
according to ¥(w); fixing A, this is a measurable function of w. Then

invariance of g means that for all A C @, p(A) = J Y(w) [A]p(dw). But this
94

expression 1is unaffected by the value of %(-)[A] on a set of measure zero.

In Appendix B we prove:
Proposition 7.2 An invariant measure of ¥ is atomless.

Consequently, the set of discontinuity points has measure zero (since it is

finite), and the choice of action by the agent on that set is irrelevant: the
. . . C . . 30

same distribution is invariant for any selection from V.

One further property our invariant distribution is provided in

Proposition 7.3 Let X denote Lebesgue measure on Q. If g is an invariant

measure on § under ¥, then X < pu.

This result is of more than technical interest, since it says that the
invariant measure has no "holes": every subset of O having positive Lebesgue
measure (in particular, every subinterval) is reached with positive
probability, so each such set of wealth levels will be occupied by a positive
fraction of the population. This seems a desirable property for any
continuous approximation to an empirical income distribution.

To sum up, we have (at least one) invariant measure p on [g,;] for the
process governing lineage wealth. It assigns positive probability to every
(Lebesgue) nonnegligible subset of @. If g happens to be the initial
distribution of wealth in the economy, it will continue to represent the

distribution of wealth for all time.

30 . .

Note that it does not even matter that the agent is supposed to be
indifferent among the mixtures at jump points; thus convexification can be
viewed as a purely technical contrivance with no behavioral implications.
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To establish our stronger result, namely that starting with any
distribution v, we should expect p to be representative of the eventual
distribution of wealth in the economy, we need to show that Q is
indecomposable under all iterates of ¥. The basic idea is the following.
Notice first of all that if w is a point with a stochastic transition, then

all iterates of yP(w) are nicely behaved in the following sense:

Proposition 7.4 Let w < w < w. Define J (w) = [BZ(w),Bi(w)] N Q and let

At be Lebesgue measure on Jt(w). Then wt(w) < > At.

Sketch of Proof To see the first relation, note that %(-) inherits

from the distribution of project returns F(-) the property that if a set A
has Lebesgue measure zero, then ¥(w)[A] = 0. From the definition of an

iterate,

¥ (w) [A] = j Y(w ) [Alp(w) [do' ] =
Q

= f P(w”) [A]Y(w) [do” ] + J Yo" ) [A]Y(w) [dw” .
[@,0] [w,0]
The first integral on the second line vanishes because the integrand is zero,
and the second does likewise because the probability under ¥(w) of being in
B:(A) is zero (Bs(~) is strictly increasing). Now proceed by induction.
The second relation follows from the fact (see Figure 3)31 that Jt(w) is
the support of wt(w). O

Now suppose that @ could be partitioned into nonempty sets A and AS with
T (w)[A] = 1 for all w € A and ¥ (w)[A"] = 1 for all w € A°. In Appendix B we
show (Lemma 7.5) that A must contain a point W < w. But Proposition (7.4)
implies that A-almost every point in Jb(wo) is also in A. Therefore we can
choose from A n Jt(wo) a point wi arbitrarily close to B;(wo) and a point wi
arbitrarily close to the lesser of w and B:(wo). Define Jt(wi) and Jt(wi)
analogously to Jt(wo); almost every w in the union of these three intervals
must be in A. Continue in this way, obtaining a sequence of intervals, almost

every point in which is also in A. It should be easy to see from Figure 3

1. . . .
Figure 3 actually represents the case in which there are consumption loans.
This is the harder case, and our proof is valid for both.
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©
that the union of these intervals, U [Jt(wi) U Jt(wi)], is just Q.
k

Consequently almost every point of Q is in A and A(A) = A (Q2). But exactly the
same construction can be applied to AC, so A(AC) = A(Q). This can only be
true if X(QQ) = 0, a contradiction. We have therefore shown that %(-)
satisfies condition (1) of Doob’s theorem.

The second requirement of Doob’s theorem is that every point in Q be sent
into a measure which is absolutely continuous with respect to the invariant
measure u. Now this clearly is not true for ¥(-), since any point in Q
greater than w is sent into a unit mass, while Proposition (7.2) tells us that
p is atomless. However, it is true that every such point is sent below w in a
finite number of steps, and in fact this number is bounded by the number of
periods it takes w to fall below w under Bs(-). If we define

T = min (t > 1: B:_l(;) < @),
then Proposition (7.4) tells us that for all w € Q, wr(w) < A, since every
iterate of points below w is absolutely continuous with respect to Lebesgue
measure and all points above w pass below w at least once under wr. Now use
Proposition (7.3) to conclude that wT(w) < u.

What we have shown is that while 3 need not satisfy the conditions of
Doob’s theorem, ¢T does. Thus, the iterates of wT converge to u regardless
of the initial distribution v on Q:

lim j ¥ (W) [A]v(dw) = u(A).
Q

k=0

The final step in the proof is to recall the following

Fact If o', t = 1, 2, ... is an iterated map and the subsequence wk{
k=1, 2, ..., T=1, converges globally to a limit #n, then x° also converges

globally to n.

To see this, note that for a given initial point v, there is an integer ko
kT .. .
such that o v is "close™ to n for k > ko; similarly, there are integers kl,
P . 2 T-1 kT .
kz’ ..., k for the initial points mv, mv, ..., ® v so that « v is

close to n for k > k. Letting K = max (k }T-;, any t > KT can be written as
m m m=
m

. t kT . .
kT+m, with k 2 K and 0 < m < T; thenn v =n nv is close to n, as required.

Applying this argument to ¥, we have our desired result, namely

28



“enr -

_— B’(-)

B(+)

S |

U+ -

2
B1(wo>

Figure 3. Construction of intervals Jt(wo) (t = 2 shown).



Proposition 7.6 For any distribution v on @1 and A C Q,

lim J Y (w) [Alv(dw) = u(A).
Q

t,—0

As pointed out in a footnote, the uniqueness implied by this global stability
implies that p is ergodic.

Recall that any wealth level outside of Q is carried into it in finite
time, so the proposition extends to any initial wealth distribution on R4. In
particular, we obtain the nondegenerate distribution g even if all lineages
start out with the same wealth. One-time redistributions have only temporary
effect. It is for good reason that the jubilee (Leviticus 25: 10-16) was to

be repeated every fifty years.

8. Some Rudimentary Comparative Statics

In the previous sections we have established the broad characteristics of
the wealth distribution generated by our model. 1In a sense, the predictions
of our model are rather strong: given any initial distribution of wealth, in
the long run only one particular distribution, having certain broad
characteristics (support on a compact interval, no "spikes", bounded away from
extreme poverty, lineage mobility throughout the interval), will obtain. The
global stability of this distribution provides theoretical justification for
comparative-static analysis: it insures that questions about how the
distribution of wealth responds (after sufficient time) to changes in the
parameters reflecting productivity, project size and the like, or to various
government policies, are well-posed.

Unfortunately, any attempt to generate a closed form characterization of
the stationary distribution appears to be quite hopeless, so we are restricted
in what we can expect to do analytically. For instance, it is difficult to
determine how standard measures of inequality are affected by changes in the
parameters. A more complete analysis — one which takes full advantage of the
ergodicity properties of the limiting distribution — will have to await
future research.

It does turn out to be fairly easy to calculate changes in w (= ﬁo), and
as this is the lowest wealth level in the stationary distribution of w, we can

at least say something about the situation of the poorest people in the
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economy by looking at changes in 9.32

Looking at changes in the highest point in the stationary distribution
is, however, much more complicated since, as we saw above, the equation that
defines this point will be different depending on the order of the points ﬁf
;, w and w . We are able to say something about the comparative statics of
this point in some of these cases and in particular we will focus on how ﬁl
and change as we change the parameters of the problem. For these cases we
can therefore determine changes in inequality as measured by the range, and
although this statistic has well-known defects, it is at least indicative of
the kinds of results that a fuller analysis might obtain.

We shall also be concerned with the institutional interpretations of our
model as changes in parameters cause the economy to move from one of our cases
to another. In particular, we seek conditions guaranteeing the emergence of a
class of rentiers in the stationary distribution. This seems to be of
considerable interest from the point of view of understanding the historical
evolution of market economies.

Most of the proofs are routine, and we omit them. They can be found in

the appendix of Banerjee and Newman (1989).

Changes in e

An increase in e represents a reduction in labor productivity (or an
increase in the disutility of labor). We expect that this will make it more
difficult for incentive compatibility to hold, and in fact it is easy to see
(look at Figure 1) that for a given level of s, an increase in e necessitates
an increase in P(s) if (IC) is to remain satisfied. This is true in
particular if s = 0, from which we conclude that

dw/de I(rO-E)dﬁ/dE <0 and dﬁl/dg - I(rl-E)dﬁ/dE > 0.

As one would expect a decrease in productivity reduces the level of wealth of
the poorest people in the economy. What it does to the richest people depends
on which case we are in.

However, we do know that as e increases, w must decline, since it makes

32 X . . . . - s
If one takes seriously the Rawls criterion (in either its utility or
commodity form) for assessing social welfare, then w provides all the

information one needs.
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taking the project strictly worse while keeping the returns from the
alternative unchanged. In fact we can show that the value of w can be made
arbitrarily close to O by making e large. To see this, note that for any

fixed wealth level, say w’, which can be arbitrarily small, we know that
Jv(Br<s (& ))dF(x) - v(B (s (&)

is bounded, say by M(w’ ). Take e > M(w ). Clearly there is no solution S
less than 1 to (IC”) for this value of e and this value of w’ . Proposition
(5.4) then allows us to conclude that the value of w corresponding to this
value of e must be lower than w’ . Now recall that, as e increases, ﬁl
increases, so that by choosing an e large enough we must be able to make

ﬁl > w. Thus we have

Proposition 8.1 Economies with low enough levels of labor productivity

will always have rentiers.

Notice that since ﬁl is a lower bound on the value of Bl(-), the appearance
of rentiers as e is increased will generally not be limited to cases in which
él exceeds w (the simulation example in Appendix C is a case in point).
Consider now an economy in which ﬁl < é; we may interpret this case as
representing a "poor" economy since all project-takers consume all of their
inherited wealth. The highest point in support of the stationary distribution
will be ﬁl, and as we have seen this will increase as we increase e. We also
established that w decreases as we increase e so that, as long as we are in

this case, we find that

Proposition 8.2 In the poor economy, inequality (as measured by the

range) declines when labor productivity is increased.

If we think of the economy undergoing exogenous productivity increases
starting from a very low level of productivity one will therefore expect to
see an initial reduction in the level of inequality. This suggests that there
are plausible models in which the Kuznets hypothesis that development will

initially cause an increase in inequality will not hold.
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Changes in I

An increase in I, like a decrease in g, represents an increase in the
productivity of the economy, though it is evident from looking at the way they
enter the expressions for the returns that they do not have exactly the same
effect. Given B, increasing I increases the payoffs to taking the project and
putting in the effort regardless of the realized return since (;—;) + (ro—é)ﬂ
exceeds zero by Proposition (5.4). But it also makes the payoffs to the
option of taking the project and not putting in the effort larger, and the net
effect on B may be ambiguous. However, the effect of increasing I on BO(S) for
a fixed s is given by

dB (s)/dl - (r-r) + (r,-T)f + I(r -r)dp/dl.
We know that the sum of the first two terms is unambiguously positive, and
while the third term may be negative, it can be shown that the net effect is
always positive.

One implication of this conclusion is that dw/dI is positive which tells
us that an increase in the average productivity of the project makes the
poorest people better off. More generally, since each agent has the option of
keeping the level of savings unchanged, dBO/dI > 0 gives us an unambiguous

result concerning the welfare effects of an increase in I, namely

Proposition 8.3 An increase in capital productivity I implies that in the

long run all agents are better off.

This is of some interest since it is a property of the equilibrium level of

risk-sharing. One can easily think of situations with no risk-sharing where

people are so risk-averse that an increase in I makes everybody worse off.
It is also straightforward to show that increasing I makes él go up by

more than w. We have therefore

Proposition 8.4 In the poor economy, increases in I result in increases

in inequality, as measured by the range.
This result contrasts with the other case of productivity increase. In fact

it might seem paradoxical that it is the labor-replacing productivity growth

(reduction in e) which reduces inequality while the capital-augmenting
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productivity growth (increase in I) actually increases inequality. The
paradox is only apparent, however, since in this very simple economy even the

poorest people are effectively "capitalists".

A Tax Policy Example

Here we are concerned with the effects of a linear profits tax-subsidy
scheme on the distribution of wealth and welfare. It is well known (Domar and
Musgrave, 1944; Stiglitz, 1969) that under exogenous risk such a scheme ought
to reduce the level of inequality and should also be welfare-improving, since
it acts as a kind of insurance; moreover, since there is no effect on the
expected returns, it should increase the capital stock by making projects
more attractive.33 We will show that such a result need not obtain when the
amount of risk borne is endogenous.

Suppose the government imposes a profits tax of the form

tax = a'(r-;),

wher o is positive and less than one. It is easy to check that such a scheme
is self-financing. The policy gives rise to a new random variable p which
replaces r in our equations, where p = (l-a)r + ar. (This can be also be
interpreted simply as an exogenous reduction in the riskiness of the project
due to better technology.)

Notice now that the modified value of Br(s) corresponding to p will be

B (s)= st + I(r-r) + v(s)(l-a)(r-T),

where v is the retained equity share under the tax scheme. If we now pick ¥
such that vy(s)(l-a) = B(s), where B(s) is the corresponding share for the
original random variable r, we would have Br(s) = Bp(s) and therefore the
incentive compatibility constraint will be satisfied. From the uniqueness of 8
we know that y = 8/(l-a) must be the right share for the modified problem. But
if this is the value of v that people will choose it is evident that Br(s)
will be unchanged by the change in the random variable. We have therefore

shown

Proposition 8.5 A linear profits tax or risk reduction is fully neutral.

3In our model the capital stock is measured by the fraction of the population
which takes projects.
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That is, the tax policy will leave the entire path of the distribution of
wealth and welfare unchanged. The positive welfare effect of the insurance
policy is completely offset by the negative incentive effect that it has.
This is not to say that tax policies in general will always be neutral;
but it does emphasize that explicit consideration of the endogeneity of
risk-bearing can yield very different conclusions concerning the effects of

particular policies from those reached with exogenous risks.

9. Endogenous Supply in the Loan Market

Our analysis in the previous sections is based on the assumption that
there is a perfectly elastic supply of capital available in the economy at a
certain, fixed interest rate. A possible alternative would be to assume that
the interest rate moves to equate the supply and demand for loans within the
economy. Thus, we will now regard all those who want to save at the safe rate
of return as potential suppliers of loans and those who want to invest in the
project but cannot afford to finance it as potential demanders. The safe
return is determined by the requirement that these agents will be in
equilibrium.

It is easy to see that in this case the safe rate of return in each
period will depend on the particular distribution of wealth at the beginning
of the period and will typically vary over time. This will make the dynamics
of the distribution, even for a single lineage, considerably more
complicated. An in-depth analysis of this case is beyond the scope of this
paper; therefore we will limit ourselves to some simple, informal comments.

Note first that the rate of return on loans r is necessarily less than r,
since at the latter rate no one would take the project and so there will be an
excess supply of loans. Second, note that r is necessarily at least as large
as r, since if it was any less than that, people would borrow in order to
invest in the project and then put in no effort. As this would still yield a
positive rate of return at no cost in utility, the demand for loans at this
rate must be infinite; r < r therefore cannot be an equilibrium.

In other words, the equilibrium value of r must be less than r and not
less than r.- Note however since at r the agents are indifferent between

lending and investing in the project (and choosing not to work) there is
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either net excess demand at r, or the market for loans clears. The question
of whether a market-clearing r exists then boils down to showing that the
excess demand for loans which is negative at r and positive at r passes
through 0 somewhere in between.

This would be obvious if the individual’s excess demand was continuous in
i, but it is easy to see that we cannot assume that it is continuous.

However, if the aggregate excess demand jumps from positive to negative at
some value r then it is easy to check (applying the theorem of the maximum)
that at r = r" a positive mass of agents must be indifferent between the two
investment strategies. By allocating an appropriate number of these agents to
each of the two alternative strategies we can therefore always clear the
market for loans.

This informal argument should persuade the reader that each period,
starting from an arbitrary initial distribution of wealth, there is always an
equilibrium in which the market for loans clears in that period; which will
generate a new initial distribution of wealth for the next period. There is
thus a well-defined Markov process which maps from a wealth distribution today
to a wealth distribution tomorrow.

The question of whether this map yields an ergodic distribution and
whether it has any desirable convergence properties are beyond the scope of
this paper. We can, however, say something about the ergodic distribution, if
it exists.

In our analysis of the model in Section 5 we made the assumption that
uw (x) > V'(X);. Since in this section we are no longer assuming that ; is a
constant, this assumption does not really make sense. One rather restrictive
alternative , which is certainly well-defined, is to assume that u’ (x) >

v/ (x)r. This will guarantee that our original assumption is valid for all

4Consider what would happen if the wealth distribution had an atom in a
neighborhood of the switch point.

This essentially amounts to convexifying the excess demand correspondence.

6By appeal to some law of large numbers (what is meant by this in the present
context is subtle, however — see e.g. Green (1989)), the map from the space
of distributions to itself is actually deterministic.
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relevant r. We can then use all our results in Section 5 to describe the
ergodic distribution; there will be only one switch point and the support of
the distribution will be a connected, compact, non-trivial interval starting
strictly above w = 0.

One may feel, however, that the condition u’ (x) > v/ (x)T is too strong. A
weaker alternative is u’ (x) > V’(x)ro. While this does not allow us to apply
all the results of Section 5 to the ergodic distribution, it can be checked
that the proof of Proposition (5.9) and the lemmas leading up to do not rely
on any assumption of this type. The ergodic distribution will still involve
only one switch between being an investor and being a rentier.

Further it can be shown that the ergodic distribution will be
non-trivial, i.e. it will not be a point mass. To see this, assume instead
the contrary. 1In this case it must be that no one (actually no positive mass
of agents) is doing the project, hence there is no demand for loans. But then
the rate of return on the safe asset must be r. But now the condition
assumed above, that u’ (x) > v’(x)r0 implies that w, > w o, and so the initial
(trivial) distribution is not reproduced in the next period. This contradicts
invariance entailed in the assumption of ergodicity. So, if an ergodic

distribution exists, it must be nondegenerate.

10. Conclusion: Directions for Further Research

In this paper we have introduced a class of models which point toward a
well-developed positive theory of economic distribution. Once the notion of
perfect insurance entailed in the assumption of complete markets is dispensed
with, an interesting economic theory of distribution can be derived, and the
way is opened for analyzing ramifications of different institutional
structures and sources of market incompleteness. We hardly claim yet to have
such a complete theory; the following are possible lines of future research.

1) We have skirted the issue of the functioning of the loan market. 1In
a world in which moral hazard is problematic in the equity market, it would
likely present similar difficulties in the loan market. To eliminate such
loans entirely would be to err in the other extreme (and may lead to the
unsatisfactory result that everyone's wealth goes to zero); it would be better
to consider the intermediate case in which loans are available, but the

effective borrowing cost is decreasing in wealth.
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2) Similarly, we might dispense with the questionable assumption that
bequest utility is unbounded below. We have already suggested the
difficulties that relaxing this assumption may raise: incentive compatibility
may not be satisfied if the utility loss from moral hazard cannot be made
arbitrarily large. This raises the realistic possibility that agents may need
a certain minimum wealth before they can finance projects, or that only
smaller projects might be available to the poor. Bounding utility may also
affect behavior in the loan market in much the same way as a bankruptcy
constraint.

3) A realistic labor market is conspicuously absent. Under the
assumptions of this paper, nothing prevents one agent from working for
another; but whether it is a manager in its own firm or someone else'’s, the
same problem of eliciting effort arise, and the "employment" contract that
would arise would be indistinguishable from the share contract we have
examined here.

Perhaps the simplest extension would introduce a technology which allows
agents to expend their effort monitoring other agents who in turn would
provide their labor services in exchange for a wage. Agents could also be
allowed to choose larger project sizes. This approach would lead to a more

plausible institutional characterization of market economies.
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APPENDIX A: ©PROPOSITION PROOFS FOR SECTION 5
Proposition 5.2 B is unique for each value of w-c for which it is

defined.

Proof: It is enough to show that the function
f v(B )dF(r) - V(BO) - 1, zeros of which correspond to optimal g, is strictly
r
increasing in B. Then there is at most one zero for each value of w-c. By

straightforward calculation:

8% {f V(B )dF(r) - v(B) - 1}

- v'(Br)I(r-E)dF(r) - v'(BO)1<rO-§).
Perform the integration on the intervals [ro,r) and [r,rl] separately. On the
first interval, the integrand is negative, but strict concavity of v implies
that [v’(Br)(r—;)l < |V’(B0)(r0-;)|, so that the expression is positive. On

the second interval, both terms are positive, yielding the result. O

Proposition 5.3 (a) s*(w) is nondecreasing; (b) s**(w) is increasing.

Proof: (a) There are two cases:

(1) the constraint w-c = 0 binds; the result is trivial since s 1is
constant (= 0).

(2) the agent chooses the project; suppose the proposition is false, that
is suppose w, < w, but the corresponding optimal values of s have the relation
s > s - By definition of optimality

u(w -s ) + v(B (s)) = w(w -s ) + v(B (s)), (A.1)

u(wz—sz) + V(Bo(sz)) > u(wz-sl) + V(Bo(sl))’ (A.2)
where s, is available at W, since it is less than S, and s is available at
w since w, is greater than w - Because u(-) is strictly concave, the
following relation holds:

u(wl—sz) - u(wl-sl) > u(wz-sz) - u(wz-sl). (A.3)
Now rearrange (A.l) and (A.2) and add to obtain

u(wl—sz) - u(wl—sl) < u(wz-sz) - u(wz-sl),
a contradiction.

(b) Implicitly differentiate (5.4) to obtain ds _ W . g

dw u”+v”£2

Lemma A.l Whenever it is optimal for the agent to choose the project,

* o

c = cC
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Proof: First consider interior solutions, and suppose, contrary to
ok *
the proposition, that ¢ > ¢ . Then
Kk * k" L2 2l
u(c ) >u(c) > v(B) >v(s r) & vV(B) <vVv(s 1) >
~ —_ * 9*‘ -~ * 0 %k * *k

v’(BO)(r+I(rO—r)ﬂ’(s )) < v(s r)r = u(c)<u(c )& c >c
a contradiction.

For corner solutions, entrepreneurial consumption is w, while rentier

consumption, which is always interior, is less than w. O

ok ~
Proposition 5.5 For all positive wealth, s (w)r < w. Whenever the

project is chosen, s*(w)£ < w.
Proof: (1) Trivial if s = 0.
(2) Suppose st > w. Then

ek L2 2ol ~ ~
w (w-s ) = Vv (s r)r < vV(w)r. However, u (w) > v/ (w)r so that
P o
u (w-s ) < W (w) = w-s > w, a contradiction.
k4 Pk * ok
(3) By the lemma ¢ > ¢ &= s < s when the project is
* N Feke ©

taken; thus, sr < s r < w. 0O

Proposition 5.6 The agent strictly prefers the risky strategy to the safe

strategy at éo and sets s* = 0 there.

Proof: First observe that regardless of the optimal choice of s
the agent can consume all of its initial wealth and undertake the project,
achieving a utility of u(ﬁo) + V(éo). On the other hand, forgoing the project
yields at most u(c ) + v(s r). Now ¢ < BO, since it is interior, and s r
< B0 by Proposition (5.5). Thus taking the project is strictly preferred.

To see that s = 0, suppose instead that it were positive. Then
necessarily the first-order condition (5.2) holds with A = 0, and we have
u'<é0) < u'<ﬁo-s*) - v’(BO<s*))[£+1<r0-§)ﬁ']
< v’(BO(s Nr < v’(BO)r,
where we have used the facts that the term in brackets is less than r and that

Bo(s) is increasing; the first and third inequalities follow from strict

concavity. But we know that u’(BO) > v’(Bo)r, a contradiction. O

- - N . -
Proposition 5.7 There exists w > B0 such that ¢ = w (s = 0) for w < w
* * -~

and ¢ < w (s > w) for w > w.

Proof: We proceed in four steps.
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(1) By Proposition (5.3a), if s*(w’) = 0 then sw(w) = 0 for all
w < w . Since s*(éo) = 0 by the previous proposition, the set Z = {w:s*(w)=0)
is nonempty.

(2) Define ® to be the unique (from strict concavity) solution

to
W (w) = v (B) [r+I(r -1)p (0)],
which exists, since lim u’ (w) = « and lim u’ (w) = 0.
w0 ; W
(3) We claim that w is an upper bound for Z. To see this,
suppose the contrary, that is, there is w > w with s*(w’) = 0. Then v (v ) <

u’(&). On the other hand,
w (@) = V(B [T+I(r -0 (0)] + A > w (o),
where A > 0 by uniqueness of w. Contradiction.
(4) Z is nonempty and has an upper bound, so define

w = sup Z. Since ﬁo € Z, w > éo' O

Proposition 5.8 There exists w € (O,&) below which the bequest is larger

than initial wealth.

Proof: Simply set w = éo' By step (1) of the previous proposition,
s =0 for w< Bo’ so the bequest is Br(O). But by the same reasoning as in
the proof of Proposition (5.6) the agent chooses the project in all of (0,w).
Thus, for w < w, the lowest possible realization of the bequest is éo = w and

the proposition is proved. O

Lemma A.2 As w — o, s**(w) — o and cﬁ*(w) — o,
Proof: Suppose, to the contrary, that s**(w) is bounded, say by M.
Then V’(sﬂﬁg)é is bounded below by v’(Mé)i > 0. But by the first-order
condition, u’(w—sﬂ*) = v’(swwg)i. Thus, the LHS approaches zero (since u is
bounded above), while the RHS is bounded away from zero, a contradiction. The

proof for c**(w) is similar. O

Proposition 5.9 There exists a unique w > w such that the agent takes the

project if w < w and does not if w > w.

Proof: By Lemma (A.2), the utility of the safe strategy approaches

ook *

— —_— e
its upper bound, say u + v, as w — «, since ¢ — ®© and s — «. The

utility of the risky strategy is bounded by u + f vdF - 1 =u+ v - 1. Thus
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the safe strategy is strictly preferred for high enough wealth. On the other
hand, Proposition (5.6) says that the risky strategy is strictly preferred for
wealth low enough, viz., at w. The value functions for the two programs are
continuous and are therefore equal at some w > w.
We show that w is unique, and therefore that the agent does indeed
take the project below w and declines it above w. Define the value
functions
W () = u(c () + V(B (@),
V(@) = u(c (@) + v(s" (@),
Assume first that right- and left-hand derivatives of WR(-) are equal at w,
i.e. that w is not also a jump point for the risky strategy consumption
function c*(w). By the envelope theorem, W%(w) = u’(c*(w)) and Wé(w) =
u (¢ (w)) (this remains true even if w < w,
i.e. c*(w) = w). We show that
(1) if WR(S) = ws(f)’ then Wé(w) < Wé(w); B
(2) if Wh(w) = Ws(w) and W;(w) = Wé(w) then for any w > w
with
WR(w’) = Ws(w’) we must have W;(w’) < Wé(w’).
Thus, WS cannot cut WR from above, and they intersect with common slope at no
more than one point.Then there are only two possibilities: there is a unique
intersection, and it is transverse; there are two intersections, one of which
is transverse, the other of which is a tangency (which keeps one value
function below the other). In the second case, we may suppose that at the
tangency, the agent resolves its indifference by maintaining the strategy
corresponding to the higher value function. In either case, the switch point
w corresponds to the unique transverse intersection.
To show (1), note that W;(g) > Wé(;) = u’(c*(a)) > uf(c**(a)) =
* — v —
¢ (w) < ¢ (w), which contradicts Lemma (A.1l).
For (2), wR'(E) = WS’(Z) => c*(a) = c**(a) = s*(a) = s**(;) by strict
concavity of u(-); equality of the value functions implies
B:(;) = s**(a); and therefore I(;-£)+Iﬂ(ro-;) = 0. Now B(-) is nondecreasing
in w; WR(w’) = Ws(w’) and W%(w’) = W;(w’) for w > w would imply that B(-)
remains constant over the interval [w,w”]. Since B(-) is increasing in s, it
must be the case that s*(w) is constant there and therefore s**(a) = s**(w’).

RiA1 g
But this is a contradiction, because s (-) is strictly increasing in w, by
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Proposition (5.3b). (In fact, it is easy to show using Proposition (5.4) that
the tangency, if it exists, must occur above the transverse intersection at
w.)

In case that w is a jump point for c*, essentially the same argument goes
through: the right-hand derivative of Wﬁ, which is at least as large as the
left-hand derivative (since consumption can only jump down), cannot exceed the
derivative of WS. If it does, then WR > WS in a right neighborhood of w,

while u” (c ) > u’(c**) =c < there, contradicting Lemma (A.l). O
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APPENDIX B: PROPOSITION PROOFS FOR SECTIONS 6 AND 7

Proposition 6.1 For all r, Br(w) is nondecreasing, and increasing for
w > é.

Proof: Since B (w) = B (w) + ﬁ(s"(w))(r-ro), and B(-) is
nondecreasing, it suffices to prove the proposition for Bo' But, as we have
said, B0 is increasing in s (its derivative is positive), we need only show
that s*(w) is increasing for w > é. On this set, s satisfies the first order
condition u’(w-sﬁ) = v’(BO(s*))B;(s*). If s*(') were not increasing, then
there would exist two different values of w for which s was the same. But

this clearly cannot happen, since u(-) is strictly concave. O

Proposition 6.2 w is the unique fixed point of Bo(w).
Proof: Since we have already established that w is a fixed point of

Bo(w) and that Bo(w) = ﬁo > w for w < w, it suffices to show that Bo(w) < w
for all w > w. This is obvious if Bo(w) = Bo’ so suppose that Bo(w) > BO
i.e. s (w) > 0. Then u (w-s (w)) = v’(BO(s (w)))B;(s (w)) < V’(Bo(s (wW)))r
< u’(BO(s (w))); the first inequality follows from the relation B;(s ) < r
asserted in Section 5, and the second follows from (2.2). Now if w <
Bo(s*(w)), then we would have by the strict concavity of u(:), uw (v) >

¥ ¥*
w (w-s ), or w < w - s, a contradiction. 0O

Proposition 6.4 At the switch point, we have sk*(a)r > Bo(a).

Proof: Since u(c (w)) + V(B (©)) = ulc (@) + v(s (@)r), and by
Lemma (A.1) c*(;) > c**(a), we have V(Bo(a)) < v(s**(a)i) and the result is

immediate. O

Proposition 7.2 An invariant measure of ¥ is atomless.

Proof: Suppose the proposition is false, and let x be an atom for

an invariant measure p with p(x*) = €. By invariance,

p(x*) = f ¢(w)[x*]p(dw). Now consider I = {w € Q: 3 r s.t. B (w) = X*)‘
Q X r

Then
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fww) Ju(dw) + p(B_'(x)), if B (x) > w

p(x') =
J P(w) [x ]p(dw) otherwise

But since F(-) is atomless, w(w)[x 1= P(r=(x -s (w)-I(;-£)+Iﬂ;)/Iﬂ) =0,and the
integrals vanish. Thus, x > B (5) and u(Bﬂ(x*)) = ¢. Since B (:) 1is

s s S
increasing, we can repeat the argument and conclude that g has an infinity of

atoms of measure ¢, a contradiction. O

Proposition 7.3 Let X denote Lebesgue measure on . If p is an invariant

measure on {} under ¥, then X < pu.
Sketch of Proof: We show that if E C  with A(E ) > 0, then p(EO)
> 0. Suppose instead that u(E ) = I Y(w) [E ]u(dw) = 0. Slnce ¢(w)[EO] is

nonnegative, it must equal zero for p-almost every w: letting E1 = {w € Q:
w(w)[EO] > 0}, u(El) = 0. Now look at Figure 4. It is clear that E1 =
ﬁﬂ(EO) = U ¢ﬂ(e), where ¢ is the stochastic policy correspondence defined

e€E

0 -1

in Section 6, and ¢ "(-) denotes inverse image. Notice that for any point w €
(w,w), ¢—1(w) contains an open interval. Thus, El contains the union of open
intervals, and A(El) > 0, while, as we said, p(El) = 0. Continue in a like
manner, constructing the sequence Ek = {w € Q: w(w)[Ekq] > 0} and concluding
#(E)

It is easy to see (refer to Figure 4) that the sequence so constructed
converges to (w,w) in the sense that Ek«1 C Ek and for all w € (w,w), there is
a k with w € Ek. (Taking the inverse images of points, let alone of a
A-nonnegligible set of them, gives a sequence of intervals, the inverse images
of which rapidly converge to the whole space.) But since u[(w,w)] =1, and

p(Ek) = 0, we conclude that p must contain an atom, which contradicts the

previous proposition. O

Lemma 7.5 If wt(w)[A] = 1 for all w € A, then there exists w € A such
that W, < w.
Proof: For t = 1, suppose instead w > w, all w € A, and choose w €
A. Then (v )[A] = 1 implies B («') € A. If B (v') < w, we are done.
min (k: B:(w’) < )

. 2
Otherwise, we must have B (w” ) € A. One can see that K
S

is well defined. Set w = BK(w’). Then w < w and w € A, as desired.
S
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For t > 1, if K is a multiple of t, define w, as before. Otherwise, note
that we must have wﬁ(w’)[A] = 1, for all j. Now choose m to be the smallest
integer making mt-K positive. Then w; = ¢K(w’) < w. Now note that the
support of every iterate of w;, in particular ¢mvx(w;), will intersect [9,5]

mt-K

. . t
in a nondegenerate interval J. But ¥ (w;) = ¢m(w’), so A-almost every

point in J must be in A. So choose w, from J n A, O
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APPENDIX C: SIMULATIONS

The purpose of this appendix is to provide an illustration of the kind of
wealth distribution that our model predicts, rather than to provide a
substitute for comparative statics.

We ran a version of the model in which utility took the form

ux) = Ax' /1), v(x) = x' /(1-y),
and the distribution of project returns was uniform on [ro,rl] (uniform
distributions are reasonably far-removed from empirical income distributions,
so this was thought not to bias things in our favor). For the runs in Figure
5, the parameter values are given in Table 1, and the computed values for the
distribution are in Table 2.

The parameter values were varied somewhat, and all gave the same general
shape; the most striking variation was in the narrowing of the range (and the
elimination of rentiers, as suggested in Section 8) when effort disutility was
decreased from 1.5 to 1.0.

Two kinds of experiments were run. In the first, the evolution of one
lineage’s wealth was followed for several thousand trials. 1In the second,
5,000 independent lineages were followed for a few trials. The frequency
distribution of the first experiment is shown in Figure 5(a), the second in
5(b). The reader may judge whether these two distributions look the same, as
our convergence theorem implies they should (two statistical tests, the
chi-square and the Kolmogorov-Smirnov could not reject the hypothesis that
they are). The jaggedness in the distributions should probably be discounted,
for the reported number of trials is relatively "small" (there is a noticeable
increase in smoothness as one increases the number of trials for the temporal
wealth distribution).

One obvious shortcoming of our simulations is that the right tail is too
short, i.e., the distribution is not sufficiently skewed. For the sake of
comparison, values of the coefficient of variation and skewness for the U. S.
income distribution (estimated from Internal Revenue Service summary data on
individual tax returns) are presented in Table 3. These measures are somewhat
fragile, though: two sets of values are given, the first corresponding to all
returns, the second with the very high income bracket ($500,000 and up,
constituting about 0.09 percent of the returns) excluded. Either way, though,

they suggest a good deal more empirical variation than do the simulations.
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Given the restrictions of our model, however, particularly the inability of an
agent to take projects of more than unit size, this should not surprise us

terribly.
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Table 1.

initial
wealth

2.1 1.

1.1

1.0 1.

5

Parameter values for simulations in Figure 5.

. — w
w B mean c.v. |skewness|$ rentier
= G O]
.25 0.34 0.55 0.82 0. 0.47 0.28 +0.57 0.9
Table 2. Statistics for simulated distribution.
c.v. |skewness
all returns| 2.06 +6 .47
top bracket
excluded 1.07 +1.74
Table 3. Statistics for U.S. income distribution
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